Endothelial Dysfunction and Inflammatory Activation in Patients with Bicuspid Aortic Valves

Master of Clinical Science

Faculty of Health Sciences: Discipline of Medicine

Date: February 2016

Matthew John Chapman

Student ID: 1218491

Supervisor Professor John Horowitz, Dr Than Ha Nguyen
Introduction:

1.1 Clinical perspectives in contemporary western society..........................16

1.2 Inflammatory activation and the progression of AS.................................18

1.3 Available therapy and economic impact...20

2.1 BAV a special case...21

2.2 Clinical diagnosis...24

2.3 Imaging studies..25

(a) Echocardiography...25

(b) Magnetic resonance imaging..26

2.4 Genetics...28

2.4.1 Laboratory models of BAV: Clinical correlates.................................28

2.4.2 Interaction with pro-inflammatory stimuli.....................................29

2.5 Endothelium and valve homeostasis..30

(a) Protective role

2.6 Determinants of anti-inflammatory role of nitric oxide..........................31

2.7 Replacement of valve endothelium – role of endothelial progenitor cells....32
2.8 Transformation of valve matrix and development of inflammation / calcification

2.9 Can we improve treatment

2.9.1 Improve prediction of rapid progression

2.9.2 Slowing progression

3.0 Scope of the present study

3.1 Hypothesis

(a) Primary

(b) Secondary

3.2 Study design

3.2.1 Subject selection

3.2.2 Clinical data

3.2.3 Statistical methods

3.2.4 Methods

(a) Imaging – echocardiography

(b) MRI

3.2.5 Investigations

(a) Flow mediated dilatation FMD

(b) FMD technique

(c) Endothelial progenitor cells EPC

(d) Nitric oxide responsiveness / platelet studies
3.2.6 Biochemical evaluations...46
(a) Asymmetric dimethylarginine – ADMA...46
(b) High sensitivity C-reactive protein – hsCRP...47
(c) Myeloperoxidase – MPO..47
(d) Matrix metalloproteinase 2 MMP2..47

3.3 Results..48

3.3.1 Patient / subject characteristics..49

3.3.2 Comparisons...49
(a) Parameters of endothelial function / Nitric oxide signalling.......................49
(b) Parameters of inflammatory activation...52

3.3.3 Determinants of valvular dysfunction...53
(a) Parameters of endothelial function / NO signalling...................................53
(b) Inflammatory activation...55

3.3.4 Determinants of ascending aortic dilatation..58

3.3.5 Determinants of “selective” aortic valve degeneration....................................60

3.4 Discussion...65

3.5 Conclusion and future perspectives..70
Table

Table 1 Causes of aortic stenosis

Table 2 Subtypes of bicuspid aortic valves, their anatomical associations and laboratory model features to the different BAV subtypes

Figures

Figure 1.1 Postulation of inflammation and calcification in the progression of AS
Figure 2.1 Schematic: types of BAV
Figure 3.1 Echocardiographic features of BAV: TAV
Figure 4.1 NO responsiveness / Platelet study

Results section

Results table

Table 1 A Clinical characteristics
Table 1 B Comparison of physiological and biochemical parameters of nitric oxide function between groups
Table 1 C Markers of inflammatory activation
Table 2 A Summary: Predictors of valve dysfunction on multivariate analysis: - Results of backwards stepwise multiple logistic regression for peak AV_{max}
Table 2 B Age correlation with ascending aortic diameter
Table 2 C Multivariate analysis: significant correlates of selective involvement of aortic valve over aorta, as measured by AV_{max}AscAO
<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Relationship between age and FMD for BAV and control subjects</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Univariate correlates of valvular dysfunction: FMD</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Univariate correlates of valvular dysfunction: ADMA</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Univariate correlates of valvular dysfunction: hsCRP</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Univariate correlates of valvular dysfunction: MPO</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Bland-Altman plot: MRI and echocardiography ascending Aortic dimensions</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Univariate correlates of aortopathy: Age</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Relationship between AscAo diameter and AV<sub>max</sub></td>
</tr>
<tr>
<td>Figure 9 A</td>
<td>Relationships between plasma MPO concentrations</td>
</tr>
<tr>
<td>Figure 9 B</td>
<td>Relationships between FMD (%)</td>
</tr>
</tbody>
</table>
Abstract

Bicuspid aortic valve (BAV) is found to affect 1-2% of the Western population and represents the most common congenital cardiac disorder. BAV is associated with valvular dysfunction and aortopathy and its main clinical significance lies in its association with increased variable rates of progressive valve calcification and/or dilatation of the ascending aorta. Often significant aortic stenosis and/or regurgitation ensue. Sometimes BAV is associated with other forms of congenital heart disease particularly that of coarctation of the aorta. Furthermore the natural history of BAV often results in the need for extensive, corrective valvular and/or aortic surgery before the age of 60. Both inflammatory activation and endothelial dysfunction have been considered as potential modulators of these changes; however the predominant pathophysiological bases are unclear. Data from endothelial nitric oxide synthase (eNOS) -/- mice and aortic biopsies in patients undergoing surgery suggest an association between eNOS deficiency and BAV though detailed evaluation of NO signalling in BAV is lacking. Furthermore, valvular and aortic degeneration varies widely among individuals with BAV. Both aortic stenosis and aortic dilatation in the context of BAV have shown to be associated with an inflammatory process. Therefore the relative impacts of inflammatory infiltration and endothelial dysfunction on valvular function and aortic dilatation in a cohort of patients with BAV were examined.
Methods:

A case-control study of patients with BAV was performed together with a multivariate analysis within the BAV group in order to identify factors associated with:

(a) Development of significant valvular disease.

(b) Dilatation of the ascending aorta.

(c) Differential valve: aortic disease.

BAV patients and controls underwent evaluation of endothelial function with flow mediated dilatation (FMD) and plasma concentrations of asymmetric dimethylarginine (ADMA). Correlations with inflammatory markers, myeloperoxidase (MPO) and high sensitivity C-reactive protein (HsCRP), endothelial progenitor cell counts (EPC) were also examined. Morphological and physiological assessment of the valve and ascending aorta was performed with transthoracic echocardiography (TTE) and magnetic resonance imaging (MRI).

Results:

Patients with BAV (n=43) and controls (n=25) were age and gender-matched. FMD was significantly lower in the BAV patient group (7.85% ± 3.48% vs 11.58%± 3.98%, $p = 0.001$) and these differences were age-independent on ANOVA. Within the BAV cohort, upon
multivariate analysis, correlates of peak aortic valve velocity (peak AV\textsubscript{max}) were ADMA and MPO plasma concentrations (both p< 0.01), while increasing age was noted as an independent correlate of ascending aortic diameter (p<0.05). Furthermore, both low FMD and inflammatory activation were multivariate correlates of selectivity for valvular over aortic disease.

Conclusions:

While BAV is associated with endothelial dysfunction evident from low FMD and inflammatory activation (specifically MPO release), its structural impact primarily acts on the integrity of the valve, rather than the aortic structure. Confirmatory therapeutic interventions should be directed at reversal of these pathophysiological changes as well as slowing of disease progression.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

Signed: Matthew John Chapman

..
Acknowledgements

I am grateful to Dr P Disney for his assistance with patient recruitment. I also wish to acknowledge the assistance of recruitment of BAV patients and normal control subjects, and the administrative assistance of Ms Nadine Smith and Ms Greer Dymmott.

To my supervisor Professor John Horowitz, I thank him for his guidance and enthusiasm to drive and inspire me to achieve something I thought would not be possible. I have enjoyed working in this capacity with Professor Horowitz and furthermore enjoy the continuum of clinical and research work load through the Queen Elizabeth Hospital, particularly that through the echocardiography department.

Thanks to Dr Than Ha Nguyen for working on the bicuspid aortic valve project. I thank Ha for guidance in particular statistical analysis and workload of physiological and biochemical analysis.

Thanks to Dr Yuli Churkov for guidance and help in work load particularly that of NO signalling.

I thank Dr Onn Akbar Ali who has mentored me through my early studies of echocardiography and my role of cardiac physiologist at the Queen Elizabeth Hospital. In addition Onn taught me flow mediated dilatation and echocardiography features of bicuspid aortic valve. Onn has also mentored me with managerial skills that have aided me in my current role of principal medical scientist at the Queen Elizabeth Hospital.
Publication / presentation list

Presentations Conferences

Abbreviations

Adenosine 5’-diphosphate ADP
Angiotensin II ANGII
Angiotensin converting enzyme ACE
Angiotensin receptor blockers AT1
Aortic valve AV
Aortic valve replacement AVR
Aortic sclerosis Asc
Ascending aorta AscAO
Asymmetric dimethyl arginine ADMA
Bicuspid aortic valve BAV
Cardiac magnetic resonance imaging CMRI
Colour flow doppler CFM
Continuous wave CW
Cyclic guanosine monophosphate cGMP
Electrocardiogram ECG
Endothelial dysfunction ED
Flow mediated dilatation FMD
High sensitivity C-reactive protein HsCRP
Inflammatory activation IA
Left ventricular LV
Low density lipoproteins LDL’s
Left ventricular outflow tract LVOT
Mast cell MC
Matrix metalloproteinases MMP’s
<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloperoxidase</td>
<td>MPO</td>
</tr>
<tr>
<td>Nicotinamide adenine dinucleotide phosphate-oxidase</td>
<td>NADPH</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>NO</td>
</tr>
<tr>
<td>Pulsed wave</td>
<td>PW</td>
</tr>
<tr>
<td>Parasternal long axis view</td>
<td>PLAX</td>
</tr>
<tr>
<td>Parasternal short axis</td>
<td>PSAX</td>
</tr>
<tr>
<td>Sodium nitroprusside</td>
<td>SNP</td>
</tr>
<tr>
<td>Thioredoxin Interacting Protein</td>
<td>TXNIP</td>
</tr>
<tr>
<td>Trans-aortic valve implantation procedures</td>
<td>TAVI</td>
</tr>
<tr>
<td>Transforming growth factor β₁</td>
<td>TGFβ₁</td>
</tr>
<tr>
<td>Tricuspid aortic valve</td>
<td>TAV</td>
</tr>
<tr>
<td>Two dimensional</td>
<td>2D</td>
</tr>
<tr>
<td>Valvular endothelial cells</td>
<td>VECs</td>
</tr>
<tr>
<td>Velocity time interval</td>
<td>VTI</td>
</tr>
</tbody>
</table>