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Abstract 

This paper proposes a new method for detecting and locating delaminations in laminated 

composite beams using nonlinear guided wave. It is shown that when incident wave interacts 

at the delamination, the nonlinear effect of wave interaction with contact interfaces at the 

delamination generates higher harmonic guided waves due to contact acoustic nonlinearity 

(CAN). The proposed method employs a transducer network to detect and locate the 

delamination using the higher harmonic guided waves. A sequential scan is used to inspect 

the laminated composite beams by actuating the fundamental anti-symmetric mode (A0) of 

guided wave at one of the transducers while the rest of the transducers are used for measuring 

the impinging waves. A series of numerical case studies are performed using three-

dimensional explicit finite element simulations, which consider different delamination 

locations, lengths and through-thickness locations. Experimental case studies are carried out 

to further validate and demonstrate the capability of the proposed method. The results show 

that the proposed method is able to accurately detect and locate the delamination in the 

laminated composite beams using the higher harmonic guided waves. One of the advantages 

of the proposed method is that it does not rely on baseline data to detect and locate the 
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delamination, and hence, it has less influence by varying operational and environmental 

conditions. 

 

Keywords: nonlinear guided wave, contact acoustic nonlinearity, higher harmonic, 

delamination, laminated composite beam, baseline-free method, transducer network 

 

1. Introduction 

1.1. Overview 

In last decade, fibre-reinforced composite materials have been widely used in different 

engineering structures due to its attractive characteristics, such as high specific stiffness, 

light-weight and corrosion resistance [1]. Delamination is one of the common types of 

damage for this kind of material and it could lead to structural failure. Delamination is a 

separation of adjacent subsurface laminae without any obvious visual evidence on the surface 

and is usually caused by fatigue loading, low velocity impact and imperfection during 

manufacturing process. 

Many techniques have been developed for damage detection in last two decades [2,3]. 

Low-frequency vibration damage detection approach has been extensively investigated in the 

literature [4-9]. However, this approach is generally not sensitive to local incipient defects, 

such as delamination. Non-destructive evaluation techniques [10-15], such as conventional 

ultrasonic techniques, have been used for safety inspection of a wide range of structures. 

However, they are a point-to-point inspection method, and hence, the safety inspection is 

usually time consuming and not applicable to inaccessible locations of structures. 

In the recent years, the use of guided waves has attracted considerable attention for 

damage detection [16-21]. Many studies have been carried out and focused on different types 

of materials, such as isotropic [22-27] and composite materials [28-30]. In the literature, 

guided waves have gained prominence for damage detection due to their potential for online 



structural health monitoring and inspection at inaccessible locations. Moreover, guided waves 

have been proved to be sensitive to small and different types of defects and are able to 

propagate long distance for monitoring relatively large area of structures [16,17]. So far, most 

of the existing ultrasonic guided wave damage detection techniques rely on linear guided 

wave scattering phenomena, such as reflection, transmission and mode conversion 

information at the excitation frequency [31-35]. Majority of these techniques detect the 

damage by comparing the guided wave signals obtained from the current condition of a 

structure with signals obtained from its pristine condition. However, the changing 

environmental and operational conditions, e.g. temperature variation, can significantly affect 

the performance and accuracy of the damage detection techniques relied on baseline data 

[36,37] and could lead to misdetection of the damage and false alarms. Therefore, it limits the 

practical applications of the damage detection techniques using linear guided wave.  

 

1.2. Damage detection using nonlinear guided waves 

The use of nonlinear guided waves has recently attracted considerable attention. Recent 

developments have shown that the sensitivity of nonlinear guided waves to small defects is 

much higher than conventional linear guided waves. Thus, there has been a growing interest 

in theoretical developments and applied research on using various classical and non-classical 

nonlinear phenomena for damage detection. The nonlinear guided wave techniques rely on 

higher harmonic generation due to material nonlinearity [38] or contact acoustic nonlinearity 

(CAN) [39-43]. The higher harmonic generation has been known to be an indication of defect 

existence in structures. Early developments on the use of the higher harmonics generated by 

CAN focused on determining the existence of the defects in the structures. In recent years, 

significant progress has been made towards using higher harmonic guided waves for damage 

detection, which demonstrated the feasibility of using them for detecting plastic strain, 

fatigue damage, micro-cracking and other types of material damages [44-50]. 



Li et al. [44] proposed to detect thermal fatigue damage in composite laminates using 

second harmonic Lamb waves. It was shown that there is a monotonic increase of acoustic 

nonlinearity with respect to thermal fatigue cycles. It was concluded that nonlinear Lamb 

waves can be used to assess thermal fatigue damage and the technique is better than 

conventional linear Lamb wave technique in terms of accuracy and efficiency. Soleimanpour 

and Ng numerically [45] and experimentally [46] investigated the generation of second 

harmonic when guided waves interact at delamination in laminated composite beams. It was 

shown that the second harmonics generated due to CAN is sensitive to the existence of 

delaminations in laminated composite beams. Hong et al. [ 47] investigated the phenomenon 

of CAN related to breathing fatigue cracks and included material nonlinearity effect in their 

study. They showed that the relative acoustic nonlinearity parameter increases proportionally 

with the wave propagation distance due to the geometric and materials nonlinearities. Zhao et 

al. [48] studied the second harmonic generation of Lamb waves in transversely isotropic plate 

and a symmetric composite laminate. They showed that for transversely isotropic plate, when 

waves propagate along material principal directions, the symmetric second harmonic Lamb-

like waves modes can be generated whereas for propagation direction other than material 

principal direction only the symmetric second harmonic waves are generated. Moreover, for 

symmetric composite laminate, only the symmetric second harmonic waves can be generated 

provided that the power flux is non-zero.  

Although extensive research works have been carried out on the use of higher 

harmonic for damage detection, there were very limited studies [49,50] focused on 

determining the location of the defects, especially for delamination in laminated composite 

materials using higher harmonic guided wave generated due to CAN. Kazakov et al. [49] 

proposed a method to determine the location of a crack using high-frequency tone bursts 

modulated by a continuous low-frequency wave. Experimental verification was carried out 

using a steel plate. Dziedziech et al. [50] proposed a damage detection method based on the 



synchronisation of the low-frequency vibration with the interrogating high-frequency guided 

wave. The method was employed to detect and locate fatigue crack in aluminium beam 

experimentally. Their results demonstrated the feasibility of using higher harmonic guided 

wave for baseline-free damage detection.  

This paper presents a novel technique for determining the location of delaminations in 

laminated composite beams using higher harmonic guided wave generated by CAN. The 

proposed technique has the following advantages: 1) it does not rely on the baseline data for 

detecting and locating the delaminations, and hence, it has less influence by varying 

environmental conditions; 2) the nonlinear damage feature is sensitive to small incipient 

damages.  

The paper is organized as follows. Section 2 describes the theoretical background of 

CAN in generating the higher harmonic guided wave. Section 3 presents the proposed 

damage detection methodology, which describes the details of the proposed damage detection 

technique in determining the location of the delamination in laminated composite beams. In 

Section 4 a series of numerical case studies are presented. In this section, the performance 

and capability of the proposed damage detection methodology are assessed and demonstrated 

through a number of numerical case studies. Delaminations with different locations, sizes and 

through-thickness locations are considered. In Section 5, experimental case studies are 

presented to verify the applicability of the proposed damage detection method in practical 

situation. Finally, conclusions are drawn in Section 6. 

 

2. Theoretical Background 

Higher harmonic generation involves various classical and non-classical nonlinear 

phenomena in ultrasonic wave responses. Classical nonlinear phenomenon refers to higher 

harmonic generation due to material imperfections, in which the wave distortion occurs when 

incident wave interacts with nonlinear elastic response of the medium during the wave 



propagation. In the presence of micro-scale damages, e.g. distributed micro-cracks in the 

materials, the higher harmonic generation is significantly enhanced. The phenomenon of 

higher harmonic generation due to material nonlinearity was formulated by Hegedron [51], 

Lee and Choi [52] and Naugolnykhand and Ostrovsky [53]. It was shown that if a harmonic 

input with a single frequency component of ω is imposed on a nonlinear system, the output of 

the system contains higher harmonics of 2ω and 3ω. Therefore, the material nonlinearity can 

be a possible source of the wave nonlinearity.  

In non-classical nonlinear phenomenon, higher harmonics can be generated due to 

CAN, which is a nonlinear effect of wave interaction with contact interfaces at material 

discontinuities, e.g. fatigue cracks and delaminations. CAN is related to the lack of stiffness 

symmetry for near-surface strain across the interfaces [40]. Since the compression is 

accompanied by weakening or rupture of the contact between the surfaces, the compression 

elasticity is higher than that of a tensile stress. Therefore when the mechanical wave passes 

through the contact interfaces, a bi-modular area is created and can be simulated by a piece-

wise stress–strain relation. This bi-modular surface causes clapping form of behaviour, which 

is generated due to asymmetry in stress-strain characteristics of damaged interfaces. The 

formulation of clapping between interfaces was proposed by Solodov et al. [40]. Consider a 

pair of interfaces, subjected to the clapping of the interfaces due to longitudinal or flexural 

wave. The clapping behaviour, which is caused by asymmetrical dynamics of the interface 

stiffness, can be approximated by a stress-strain relation as [40] 

 𝜎 = 𝐸!![1− 𝐻 𝜀 − 𝜀!
ΔE
𝐸!! ]𝜀 (3) 

 ΔE = [E!! − !!
!"

 ] for ε>0 (4) 

where ε is strain and σ is stress, 𝐻 𝜀  is the Heaviside unit step function and 𝐸!! is the intact 

material second-order linear elasticity.  𝜀! is the initial static contact strain. 

A harmonic strain 𝜀 𝑡 = 𝜀!𝑐𝑜𝑠𝜔𝑡 of period 𝑇 = 2𝜋/𝜔, which passes through the bi-

modular interface, works like a mechanical diode causing variation in 𝐸!!. In this case the 



compressional part of the wave penetrates into the contact region while the tensile part does 

not. Thus, once the incident wave interacts with the interfaces, the waves shape is rectified 

nearly half-wave, which provides an unconventional nonlinear waveform distortion as shown 

in Fig. 1. As 𝐸!!  is a periodic function of the frequency, the induced nonlinear part of 

spectrum 𝜎!" at the damaged area is  

 𝜎!" 𝑡 =  𝛥𝐸 𝑡 . 𝜀(𝑡) (5) 

which consists higher harmonics and the amplitude of the n-th harmonic 𝐴! are modulated by 

the sinc-envelope function as follows [40] 

 𝐴! =  ΔEΔτ𝜀![𝑠𝑖𝑛𝑐 𝑛 + 1 Δτ − 2cos (πΔτ)sinc nΔτ + sinc( n− 1 Δτ)] (6) 

 Δ𝜏 =  !
!
 , 𝜏 = !

!
Arc cos(!

!

!!
)  (7) 

where 𝛥𝜏 is the normalized modulation pulse length. When the strain is larger than the 

threshold of clapping ε0, i.e. ε > ε0, the spectrum of nonlinear vibration contains both odd and 

even harmonics [40].  

 

[Fig. 1 CAN strain-stress model and wave rectification] 

 

3. Damage Detection Methodology 

The majority of existing damage detection techniques use baseline data for damage detection. 

It means that damage detection needs to be carried out by comparing the data obtained from 

the current state of the structure with the baseline data obtained from the pristine structure. 

However, the varying operational and environmental conditions of the structure can adversely 

influence the collected data and cause errors [36,37]. To address this problem, this study 

proposes to use the second harmonic guided wave generated by clapping of delamination 

interfaces to detect and locate the delaminations in laminated composite beams, and hence, 

the damage detection does not rely on the baseline data. 



It has been shown that the fundamental anti-symmetric mode (A0) of guided wave 

possesses a smaller wavelength compared to the fundamental symmetric mode (S0) of guided 

wave at the same frequency. In addition, the anti-symmetric mode guided waves have much 

larger out-of-plane displacement magnitude than that in in-plane direction. As the out-of-

plane displacement is perpendicular to the subsurfaces of the laminae (contact surfaces in 

CAN) at the delamination, it provides a better correlation in terms of higher harmonic guided 

wave generation at the delamination. Therefore, A0 guided wave is used as the incident wave 

in this study. 

 

3.1. Transducer arrangement for damage detection 

Without loss of generality, a transducer network consists of at least three transducers is used 

to detect and locate the delamination in the laminated composite beams in this study. Each of 

the transducers can act as both actuator and receiver for excitation and measurement. The 

advantage of using the transducer network is that it provides a flexibility of inspecting a long 

length of one-dimensional (1D) waveguide (e.g. laminated composite beam), which addresses 

the wave attenuation issue due to material damping of laminated composite materials. In this 

section a transducer network consists of three transducers, labelled as Transducers 1, 2 and 3, 

is used to illustrate the concept of the proposed method for detecting and locating the 

delamination. Fig. 2 shows a schematic diagram of the transducer network arrangement. The 

laminated composite beam is divided into four zones. A sequential scan for inspecting the 

laminated composite beam can be performed by actuating the A0 guided wave at one of the 

transducers while the rest of the transducers are used for measuring the impinging waves. 

 

[Fig. 2 Schematic diagram of a transducer network for detecting and locating delaminations] 

 



In general there are two conditions, pulse-echo and pitch-catch, depending on the 

location of the delamination. Using the transducer network in Fig. 2 as an example, in which 

Transducers 1 and 2 are used as actuator and receiver, respectively, if the delamination is 

located in zone 3, it is the pulse-echo condition. Under this condition, Transducer 2 measures 

the reflected waves, i.e. reflected linear guided wave and higher harmonic guided wave from 

the delamination. If the delamination is located in zone 2, it is the pitch-catch condition. 

Transducer 2 measures the transmitted waves, i.e. scattered linear guided wave and higher 

harmonic guided wave induced at the delamination. 

In this study a general approach, which considers both the pulse-echo and pitch-catch 

condition, is proposed to detect and locate the delamination in the laminated composite 

beams using the higher harmonic guided wave. Thus the proposed method is applicable to 

different actuation-sensing situations in the transducer network. Sections 3.2 and 3.3 describe 

the details of detecting and locating the delamination under the pulse-echo and pitch-catch 

condition. 

 

3.2. Pulse-echo condition 

In the case of pulse-echo condition, the delamination is located at one side of both actuator 

and receiver as shown in Fig. 3c. The incident wave generated by the actuator passes through 

the receiver and then reaches the delamination. The receiver measures the reflected linear 

guided wave and the second harmonic guided wave induced due to the interaction of the 

incident wave with the delamination. The linear guided wave reflection is at the same 

frequency as the incident wave (fc) while the second harmonic guided wave is at frequency 

2fc. 

Figs. 3a and 3b show a schematic diagram of the incident wave and the second 

harmonic guided wave in time-domain and time-frequency domain, respectively. The 

incident wave and second harmonic guided wave package arrive the receiver at different 



times, i.e. 𝑡!! and 𝑡!!!. As shown in time-frequency energy density spectrum in Fig. 3b, there 

are three contours. Two contours are at the excitation frequency fc and the other contour is at 

frequency 2fc. The two contours at fc refer to the incident wave and reflected linear guided 

wave package from the delamination while the contour at frequency 2fc refers to the second 

harmonic guided wave package generated due to CAN at the delamination. 

The arrival time of the incident wave (𝑡!!) is 

  𝑡!! =
𝑑!!!
𝑐!(𝑓!)

 (14) 

where 𝑑!!!  is the distance between the actuator and receiver as shown in Fig. 3c and 𝑐!(𝑓!) is 

the group velocity of the incident A0 guided wave at the excitation frequency 𝑓!. The arrival 

time of the second harmonic guided wave package (𝑡!!!) is 

 𝑡!!! =
𝑑!!!
𝑐!(𝑓!)

+
𝑑!!!
𝑐!(𝑓!)

+  
𝑑!!!
𝑐!(2𝑓!)

 (15) 

where 𝑐! 2𝑓!  is the group velocity of the second harmonic guided wave and 𝑑!!! is the 

distance between the delamination and the receiver. Therefore, using Equations (14) and (15), 

the delamination location can be determined by 

 𝑑!!! =  ∆!.!!(!!!).!!(!!)
!! !!! !!!(!!)

  where   ∆𝑡 =  𝑡!!! −  𝑡!! (16) 

where ∆𝑡 is the time difference between the arrival time of the incident wave (𝑡!!) and the 

second harmonic guided wave (𝑡!!!). Once the value of ∆𝑡 is determined from the measured 

guided wave data, the delamination location 𝑑!!! can be obtained. 

In the case of using linear guided wave information to detect and locate the 

delamination, it usually requires the baseline data to extract the linear scattered wave 

information when the delamination is close to the receiver or the beam is relatively short as 

the linear scattered wave overlaps with the incident wave or wave reflected from boundaries. 

In contrast the determination of the delamination location 𝑑!!! using the higher harmonic 

guided wave, it only relies on the information of 𝑡!! and 𝑡!!! , i.e. the arrival time of the 



incident wave and second harmonic guided wave, as shown in Equation (16). Thus the 

delamination can be detected and located without the baseline data. 

 
 

[Fig. 3 Typical signal in time domain, time-frequency domain and schematic diagram of the 
(a)-(c) pulse-echo and (d)-(f) pitch-catch condition] 

 

3.3. Pitch-catch condition 

For the pitch-catch condition, the delamination is located between actuator and receiver as 

shown in Fig. 3f. Different to pulse-echo condition, the incident wave generated by the 

actuator first interacts with the delamination and then reaches the receiver. When the incident 

wave interacts with the delamination, it induces a linear scattered wave and a second 

harmonic guided wave due to CAN at the delamination. Figs. 3d and 3e show a schematic 

diagram of the incident wave and the second harmonic guided wave in time-domain and 

time-frequency domain, respectively. As shown in Fig. 3d the transmitted wave package 

contains the incident wave, linear scattered wave and second harmonic guided wave. The 

arrival time of the incident wave and higher harmonic guided wave are 𝑡!! and 𝑡!!!, and they 

can be obtained at frequencies 𝑓! and 2𝑓! in the time-frequency domain, respectively. 

The arrival time of the incident wave travel from the actuator to the delamination and 

then to the receiver (𝑡!!) is 

  𝑡!! =
𝑑!!! + 𝑑!!!

𝑐!(𝑓!)
  (17) 

where 𝑑!!!  is the distance between the actuator and delamination in the pitch-catch 

condition. The arrival time of the second harmonic guided wave is 

 𝑡!!! =
𝑑!!!
𝑐!(𝑓!)

+
𝑑!!!
𝑐!(2𝑓!)

 (18) 

Using Equations (17) and (18), the delamination location 𝑑!!! can be determined by  

 𝑑!!! =  ∆!.!!(!!!).!!(!!)
!!! !!! !!! !!

  where Δ𝑡 =  𝑡!!! −  𝑡!! (19) 



Under the pitch-catch condition, if the excitation frequency is at the flat region of the 

A0 group velocity dispersion curve, the group velocity of the higher harmonic guided wave 

𝑐!(2𝑓!) is almost the same as the group velocity of the linear incident wave 𝑐!(𝑓!), and 

hence, ∆𝑡 ≈ 0. In this case, although information is not enough to determine the delamination 

location 𝑑!!!  in the pitch-catch approach, it can still indicate the existence of the 

delamination and also the delamination zone based on the presence of higher harmonic 

guided wave measured by the actuator-receiver pair. If the excitation frequency is at the 

dispersive region of the A0 group velocity dispersion curve, i.e. the low frequency non-flat 

region, the group velocity of the higher harmonic guided wave 𝑐!(2𝑓!) is different to the 

incident wave 𝑐!(𝑓!). In this case, ∆𝑡 ≠ 0, and hence, the delamination location 𝑑!!! can be 

determined without the baseline data. In contrast, the pitch-catch approach using the linear 

guided wave does not provide enough information to determine the delamination location 

even the baseline data is available. Therefore, the use of the higher harmonic guided wave 

can provide additional information in damage detection. 

 

3.4. Determination of delamination zone and location  

In this study, the excitation frequency is selected at the flat region of the A0 group velocity 

dispersion curve, and hence, it can minimise the dispersion effect of the A0 guided wave to 

maximize the wave propagation distance. Under this situation, the group velocity of the 

higher harmonic guided wave is almost the same as the linear incident wave, therefore, the 

pitch-catch condition is only used to determine the existence of the delamination and the 

delamination zone. 

 In practical situation, the existence and location of the delamination are unknown 

before the damage detection. A sequential scan is required to detect and locate the 

delamination using the transducer network as shown in Fig. 2, and hence, the actuator-

receiver pair can be under pulse-echo or pitch-catch condition depending the location of the 



delamination. As discussed in Sections 3.2 and 3.3, if the difference of the arrival time 

between the incident wave and higher harmonic guided wave obtained from the measured 

data is ∆𝑡 ≈ 0, i.e. 𝑑!!! ≈ 0, this means it is the pitch-catch condition, and hence, the 

delamination is located within this actuator-receiver pair. Therefore, the delamination zone 

can be identified. The location of the delamination can be determined by using the other 

actuator-receiver pair under the pulse-echo condition. In this case ∆𝑡 can be obtained from 

the measured data to determine the delamination location based on the Equation (16). 

 Table. 1 summarises all possible combinations in estimating the delamination location 

using a sequential scan of the transducer network with three transducers. The delamination 

location determined using the data measured by Transducer i is defined as 𝑑!!! in Table 1. 

𝑑!!! is the distance of the delamination away from the Transducer i. Using Transducer 1 as 

the actuator, the rest of the transducers as receivers, and the delamination is located in zone 2 

as an example, 𝑑!!! ≈ 0 and 𝑑!!! ≈ 0. It then needs to consider using Transducer 2 as the 

actuator. In this case, 𝑑!!! ≈ 0 and 𝑑!!! > 0. Therefore the delamination is in zone 2 and 

the location is 𝑑!!!. Similarly the delamination location can be obtained by using Transducer 

3 as the actuator for the delamination located in zone 2, in which 𝑑!!! ≈ 0 but 𝑑!!! > 0. 

This means the delamination is in zone 2 and the location is 𝑑!!!. In general, damage zone 

can be identified using any actuator-receiver under the pitch-catch condition and at least an 

actuator-receiver pair needs to be under pulse-echo condition for determining the 

delamination location. Since the delamination location is calculated based on the information 

of the incident wave and second harmonic guided wave, it can be detected and located 

without using the baseline data. 

 
[Table 1. Possible combinations for estimating the delamination location using a sequential 
scan of a transducer network with three transducers for delamination located at different 
zones] 
 



3.5. Continuous Gabor wavelet transform 

In this study the measured data is processed by the continuous Gabor wavelet transform, and 

hence, the time-frequency energy density spectrum can be obtained to accurately estimate the 

arrival time of the incident wave and the higher harmonic guided wave from the 

delamination. The continuous wavelet transform (CWT) displays the scale-dependent 

structure of a signal as it varies in time. This scale-dependent structure is essentially the 

frequency. Therefore, CWT provides a view of the frequency versus time behaviour of the 

signal [54]. The wavelet coefficient 𝑊𝑇 𝑝, 𝑞  can be obtained by convolving the measured 

guided wave signal 𝑢 𝑡  with the translation p and dilation q as 

 𝑊𝑇 𝑝, 𝑞 =  𝑢 𝑡 𝜒!,!∗
!

!!

𝑡 𝑑𝑡 (21) 

where 

 𝜒!,! 𝑡 =  
1
𝑞

 𝜒 (
𝑡 − 𝑝
𝑞 ) (22) 

The asterisk donates the complex conjugate. 𝜒(𝑡) is the mother wavelet and Gabor wavelet is 

used in this study. The Gabor wavelet is defined as 

 𝜒 𝑡 =  
1
𝜋!  

𝜔!
𝜂 exp[−

(𝜔! 𝜂)!

2  𝑡! + 𝑖𝜔!𝑡]  (23) 

The time-frequency analysis resolution depends on the value of 𝜔! and 𝜂. These values are 

usually considered as 𝜔! = 2 𝜋 and 𝜂 =  𝜋 2/ln2 ≈ 5.336. The energy density spectrum is 

calculated by 𝑊𝑇(𝑝, 𝑞) !, which indicates the energy distribution of the signal around t = p 

and ω = 𝜔!/q. Thus, the energy density spectrum can be used to calculate the arrival time of 

the incident wave and higher harmonic guided wave at a specific frequency, and hence, the 

delamination location can be accurately identified. 

 

4. Numerical Case Studies 

An eight-ply [(0/90)2]S laminated composite beam with a delamination was considered in this 

study. The dimensions of the beam is 166 mm × 12 mm × 1.6 mm. The elastic properties of 



the lamina are shown in Table. 2, and the thickness and density are 0.2 mm and 1538 kg/m3, 

respectively. The delaminations considered in the numerical case studies have different 

locations, sizes and through-thickness locations. In this study a three-dimensional (3D) 

explicit finite element method [55] was used to simulate the propagation of linear and higher 

harmonic guided wave in the laminated composite beam. The model was created in 

ABAQUS®/CAE and the simulations were solved by the explicit finite element code in 

ABAQUS/Explicit, which uses the central-difference integration [55]. In this scheme, the 

integration operator matrix is inverted and a set of nonlinear equilibrium equations is solved 

at each time increment. The increment time step is automatically calculated by ABAQUS. 

 
[Table 2. Elastic properties of the lamina] 

 

Each lamina was modelled using a layer of eight-noded 3D full integration linear 

solid elements (C3D8I) with incompatible mode and hourglass control. The incompatible 

mode elements have more internal degrees-of-freedom (DoFs) compared to reduced 

integration mode elements. Each node of the solid brick element has three translational DoFs. 

The hourglass energy was limited to less than 2% of the total energy to ensure the accuracy 

of the finite element simulations [56]. Damping effect of the composite materials was 

considered in the simulation. It was simulated using the Rayleigh mass proportional and 

stiffness proportional damping using experimentally obtained results from the specimens with 

the same material properties in the Section 5. The A0 guided wave was used as the incident 

wave and it was simulated by applying out-of-plane nodal displacements to surface nodes of 

the beam, which simulates a piston type excitation generated by a 12 mm × 6 mm rectangular 

transducer. The in-plane dimensions of the elements were 0.4 mm × 0.4 mm and the 

thickness was 0.2 mm for all finite element models. The delamination was modeled by 

duplicating the finite element nodes at the delamination region, which allows two sub-

laminate interfaces located at the delamination region move independently. Contact-pair 



interaction with associated properties was assigned to the sub-laminate interfaces at the 

delamination to model the CAN effect described in Section 2. It should be noted that in real 

situation, the delamination interfaces include some closing stresses due to fibre or matrix 

bridging. In the numerical case studies, the pure clapping effect was considered at the 

delaminations, which means no static contact strain is considered in the finite element 

simulations. However, the experimental study in Section 5 will provide a more realistic 

situation for verifying the proposed damage detection technique.  

In the numerical case studies the excitation signal was a 70 kHz narrow-band five-

cycle sinusoidal tone burst modulated by a Hanning window. The wavelength of the A0 

guided wave at this excitation frequency and second harmonic frequency are 16 mm and 8 

mm, respectively. The group velocity of the guided wave was calculated using the CWT 

described in Section 3.5 and compared with experimentally measured results. Fig. 4 shows 

the group velocity dispersion curve of the A0 guided wave. There is a good agreement 

between the results of the numerical simulations and experimental data. The noise effect was 

considered in the numerical data, which was simulated by adding white noise to the time-

domain guided wave response. The noise level considered in this study was approximately 

1% of the maximum amplitude of each signal, which is similar to the noise level observed in 

the experimental data in Section 5. 

 
[Fig 4. Group velocity dispersion curves of A0 mode guided wave] 

 

Using the transducer network as shown in Fig. 2, two scenarios are considered in this 

study. Scenario 1 considers the delamination located in zone 3, i.e. between Transducers 2 

and 3, while Scenario 2 considers the delamination located in zone 4, i.e. at the beam end. 

Each scenario was studied numerically in this section and also experimentally in Section 5. 

The distance between each transducer is 50 mm and the Transducers 1 and 3 are located at 33 

mm away from the left and right beam ends, respectively. Different delamination lengths 



from 4 mm to 16 mm in steps of 4 mm were considered in the numerical case studies. 

Without loss of generality, the delamination lengths are presented in term of the delamination 

length to the wavelength of the incident linear A0 guided wave ratio 𝑑/𝜆.  Figs. 5a and 5b 

show the details of the Scenarios 1 and 2 with delamination length of 8 mm, i.e. 𝑑/𝜆 = 0.5. 

For each delamination length, different delamination through-thickness locations were 

considered, i.e. the delaminations were located between the first and second, the second and 

third and third and fourth layers of the laminated composite beams. Table 3 shows a summary 

of damage cases considered in each scenario. In each scenario, 12 damage cases considering 

different lengths of delaminations located at different through-thickness locations were used 

to verify and demonstrate the performance of the proposed method in detecting and locating 

the delaminations. In total there were 24 damage cases considered in the numerical case 

studies. 

 

[Fig. 5 a) Schematic diagram of Scenario 1 and b) 2 in numerical case studies] 

 
[Table 3. Summary of delamination sizes and through-thickness locations of damage cases 

for each scenario in numerical studies] 

 

4.1. Scenario 1: Delamination is located between the actuator-receiver pair 

Fig. 6 shows a snapshot of the finite element simulation results when the A0 guided wave 

interacting with the delamination located at third and fourth layers in the laminated composite 

beam (Damage Case B3), in which 𝑑/𝜆 = 0.5. As shown in Fig. 6, the contact interaction 

applied to the subsurfaces of the laminae at the delamination, which prevents the 

interpenetration between the subsurfaces and simulates the CAN in delamination area.  

 
[Fig. 6. A snapshot of the A0 guided wave interacting with the delamination in Damage Case 

B3] 

 



The data simulated was the time-domain out-of-plane displacement responses at the 

location of the transducers. Figs. 7a-7c show the acquired data at the measurement locations 

in time-domain when the incident wave was excited at Transducer 1 and the data was 

measured at Transducer 2. In addition to the calculated time-domain data, the data proceed 

with Fast Fourier transform (FFT) is also shown in Fig. 7. According to the arrival time of the 

wave packages in Fig. 7, the first, second and third wave packages attribute to the incident 

wave, linear reflected wave from the delamination and wave reflection from the beam end, 

respectively. As the linear reflected wave from the delamination is slightly overlapped with 

the incident wave package, it is difficult to accurately determine the arrival time of the linear 

reflected wave without the baseline data, especially for more complicated structures or 

delamination is close to the receivers. As shown by the frequency-domain data in Fig. 7, 

second harmonic was observed in all damage cases. To ensure the second harmonic was 

generated by the CAN at the delamination, an intact laminated composite beam was also 

created using the finite element method. It was confirmed that there is no higher harmonic in 

the intact laminated composite beam. 

 
[Fig 7. Simulated signal in time-domain and frequency-domain for Damage Cases a) B1 b) B2 

and 3) B3 in numerical case studies] 

 

Although the presence of higher harmonic components in frequency-domain can 

indicate the existence of the delamination in the laminated composite beam, more 

information is required, i.e. arrival time of the second harmonic guided wave, to locate the 

delamination. Therefore, the simulated data was transformed to time-frequency domain using 

CWT described in Section 3.5. Figs 8a, 8b, 8d, 8e, 8g, and 8h show the time-frequency 

energy density spectrum, which are zoomed-in at frequency ranges around the excitation and 

second harmonic frequency for Damage Cases B1 and B2 and B3. The information is useful 

for determining the location of the delaminations. As shown in the time-frequency energy 



density spectrum, the energy is concentrated at two frequencies, i.e. around the excitation 

frequency and second harmonic frequency. Figs. 8c, 8f and 8i also show the corresponding 

normalized wavelet coefficients at the excitation frequency and second harmonic frequency. 

The arrival time of the incident wave and second harmonic guided wave, which were 

determined based on the maximum magnitude of the normalized wavelet coefficients at the 

excitation frequency and second harmonic frequency, respectively, are indicated by vertical 

dash-dotted lines. The estimated ∆𝑡 are also indicated in the figures. As shown in Figs. 8c, 8f 

and 8i, at double frequency, several smaller humps can be observed before the arrival time of 

second harmonic wave. They may be higher harmonic waves induced due to mode 

conversion effect, i.e. in-plane waves, when the incident A0 wave interacting at the 

delaminations not located at the mid-plane of the laminated composite beams. However, 

these in-plane waves usually have smaller magnitude than the flexural higher harmonic 

waves in both numerical and experimental case studies. 

 
[Fig. 8. Time-frequency energy density spectrum, and corresponding normalised wavelet 

coefficient at excitation frequency (solid line) and second harmonic frequency (dashed line) 
for Damage Cases (a)-(c) B1, (d)-(f) B2 and (g)-(i) B3 (vertical dash-dotted lines: estimated 

arrival times)] 

 

For Damage Case B1, the arrival time of the incident wave and second harmonic 

guided wave at the excitation frequency and second harmonic frequency are 66.0 µsec and 

100.3 µsec, respectively. Hence, the estimated delamination location from the receiver using 

Equation (16) is 𝑑!!! = 23.9 mm from the Transducer 2 (delamination located between 

Transducers 2 and 3). Similarly, the estimated delamination location from the receiver for 

Damage Cases B2 and B3 are 𝑑!!! = 25.9 mm and 𝑑!!! = 23.5 mm, respectively. It should 

be noted that the true left and right end location of the delamination are at 21 mm and 29 mm 

from the receiver (Transducer 2), i.e. 𝑑!!! = 21 𝑚𝑚 − 29 𝑚𝑚. Since the higher harmonic 

guided wave is contributed by the occurrence of CAN at different locations within the 



delamination region, i.e. 21 mm – 29 mm, the identified delamination location within this 

range is considered to be reasonably accurate. The results of other damage cases are 

summarised in Table 4.  In Scenario 1, the delamination is located in zone 3, the delamination 

distance from Transducer 2 (𝑑!!!) is useful for estimating the delamination location as the 

actuator-receiver pair (Transducer 1 – Transducer 2) is under the pulse-echo condition. 

Therefore, the results of 𝑑!!! are included in Table 4. The results confirm that the proposed 

technique can detect and locate the delaminations without using the baseline data. As shown 

in Table 4, the delamination locations are accurately estimated in all damage cases.  

 
[Table 4. Summary of the results for all damage cases in the numerical case studies] 

 

4.2. Scenario 2: Delamination is located at the beam end 

Scenario 2 considers the delamination located at the beam end. The time-domain signal 

measured by Transducer 3 while the Transducer 2 is used as actuator shows that the signal is 

more complicated compared to the signal in Scenario 1. Fig. 9a shows the reflected wave 

from the delamination is hidden in incident wave reflected from the beam end in Damage 

Case C2. It is impossible to extract the information of the reflected linear wave from the 

delamination without the baseline data. However, the second harmonic can still be observed 

in the frequency-domain as shown in Fig. 9b, which indicates the existence of the 

delamination. With the simulated signals from other actuator-receiver pairs, the delamination 

zone can be identified if the determined delamination location is close to zero. After that, the 

signal simulated by the actuator-receiver pair under the pulse-echo condition is used to 

estimate the delamination location. Table 5 summarises the estimated delamination locations 

for all damage cases and the results show that the delamination locations are accurately 

determined using the second harmonic guided wave without the baseline data. 
 
 
 



[Fig. 9 Simulated signal in time-domain and frequency-domain for Damage Case C2 in 
numerical case studies] 

 
 

[Table 5. Summary of all results for Scenario 2 in the numerical case studies] 

 

5. Experimental Case Studies 

In experimental case studies, two eight-ply [(0/90)2]S laminated composite beams were 

manufactured. The specimens were made by unidirectional carbon/epoxy prepreg. The elastic 

properties of the lamina are E11 = 120.20 GPa, E22 = E33 = 7.47 GPa, G11= G12 = 3.94 GPa, 

G13 = 2.31 GPa, ν12 = 0.32, ν23 = ν13= 0.33 and ν13 = 0.32, which are the same as the material 

properties used in the finite element model as shown in Table 2. The lamina has a fibre 

volume fraction of 0.55, with density and thickness being 1538 kg/m3 and 0.2 mm, 

respectively. 

The dimensions of the laminated composite beams are 166 mm × 12 mm × 1.6 mm, 

which are the same as the numerical case studies. There is a 15 mm long delamination in each 

composite beam specimen. In Damage Case 1, the delamination is located between the third 

and fourth ply. The true right and left end locations of the delamination are at 17.5 mm and 

32.5 mm, respectively, i.e. 𝑑!!!  = 17.5 mm – 32.5 mm at the right hand side of the 

Transducer 2. In Damage Case 2, the delamination is located between the third and fourth ply 

and between the Transducer 3 and the right beam end. The true left and right end locations of 

the delamination are at 18 mm and 33 mm from the Transducer 3, i.e. (𝑑!!! = 18 𝑚𝑚 −

33 𝑚𝑚). The details of the laminated composite beam specimens and the location of the 

transducers are shown in Fig 10. The delamination in the laminated composite beam 

specimen was created by inserting two very short Teflon films at the required through-

thickness location during the manufacturing process. A three-point bending test was then 

employed to grow the delamination to the required length by breaking the weak bonding 



between the plies and Teflon film. Therefore, there is still a certain level of the static contact 

strain effect considered in the experimental study. 

 
[Fig. 10 Schematic diagram of composite beam specimens with a delaminations for a) 
Damage Case 1 b), Damage Case 2 and c) cross-section at delamination location in 

experimental case studies] 

 

A computer controlled National Instrument PXIe-1073 chassis, which consists of a NI 

PXI-5412 arbitrary waveform generator and a NI PXI-5105 digitizer was used in the 

experimental study. Three rectangular piezoceramic transducers with dimension 12 mm × 6 

mm × 2 mm were adhesively bonded to the surface of each of the laminated composite beam 

specimen. The excitation signal was generated by the arbitrary waveform generator and then 

amplified by an amplifier with peak-to-peak voltage of 50 V. The responses of the receiver 

were recorded by digitizer and then sent to the computer. Fig. 11 shows the schematic 

diagram of the experimental setup. The excitation signal is the same as the numerical case 

studies in Section 4, i.e. a 70kHz narrow-band five-cycle sinusoidal tone burst modulated by 

a Hanning window. Prior to each measurement, it was confirmed that there was no inherent 

nonlinearity induced by the electrical equipment at the selected excitation frequency. 

Moreover, to further ensure that the captured higher harmonics are not generated due to the 

inherent nonlinearity of electrical equipment or the debonding of piezoelectric transducers, an 

intact laminated composite beam specimen was used to confirm there is no non-damage 

related higher harmonic induced in the experiments.  

 
 

[Fig. 11 Experimental setup] 

 

The transducers were actuated sequentially, in which one of the transducers was used 

to generate the incident wave while the other two transducers were used for data acquisition. 

The delamination zone was first identified using Table 1. Figs. 12a and 12b show the 



measured results by one of the actuator-receiver pairs in the frequency-domain. Fig. 12a is 

the data measured by Transducer 2 while Transducer 3 was used as the actuator in Damage 

Case 1. In Fig. 12b, the data was measured using Transducer 3 while Transducer 2 was the 

actuator in Damage Case 2. As shown in Fig.12a and 12b, the higher harmonics induced due 

to the clapping effect at the delamination interfaces are observed in both damage cases. 
 

[Fig. 12. Measured signal in frequency-domain, a) Transducer 2 is the receiver while 
Transducer 3 is the actuator in Damage Case 1, b) Transducer 3 is the receiver while 

Transducer 2 is the actuator in Damage Case 2] 

 

To determine the delamination location, the measured data was transformed to time-

frequency domain using CWT. Fig. 13a and 13b show the time-frequency energy density 

spectrum for Damage Cases 1 and 2, respectively. The normalized CWT coefficient at the 

incident wave frequency and second harmonic frequency are also shown in Figs. 13c and 13f. 

In Damage Case 1, the arrival time of the incident wave and second harmonic guided wave 

are 69.8 µsec and 116.4 µsec, respectively. The estimated delamination location is 𝑑!!! = 

32.5 mm from the receiver (Transducer 2), which is within the true delamination location 

range, i.e. 𝑑!!! = 17.5 mm – 32.5mm. In Damage Case 2, the arrival time of the incident 

wave and second harmonic guided wave are 79.8 µsec and 107.9 µsec, respectively. 

Therefore the estimated delamination location is 𝑑!!! 19.6 mm, which is again within the 

true delamination location range, i.e. 𝑑!!!= 18 mm – 33 mm. Overall the results show that 

the delamination location can be accurately determined without using the baseline data. 

 
[Fig 13. Time-frequency energy density spectrum zoom-in, and the corresponding normalised 
CWT coefficients at excitation frequency (solid line) and second harmonic frequency (dashed 

line) for a) Damage Case 1 and b) Damage Case 2 (vertical dash-dotted lines: estimated 
arrival times)] 

 



6. Conclusions 

In this study, a baseline-free method has been proposed to detect and locate the delaminations 

in laminated composite beams using the generated higher harmonic guided wave due to 

clapping effect, i.e. CAN, at delaminations. To take into account the practical situation, the 

proposed method employs a transducer network consisting at least three transducers. A 

sequential scan for inspecting the laminated composite beam has been performed by actuating 

A0 guided wave at one of the transducers while the rest of the transducers are used for 

measuring the impinging waves. The proposed method covers all possible conditions, i.e. 

both pulse-echo and pitch-catch condition, in using the higher harmonic guided wave and the 

transducer network to detect and locate the delamination without the baseline data. The 

continuous Gabor wavelet transform has been used to extract the arrival time information of 

the higher harmonic guided wave. A series of numerical case studies have been carried out, 

which have considered 24 damage cases with different delamination locations, lengths and 

through-thickness locations. Experimental case studies have also been carried out to further 

validate and demonstrate the capability of the proposed method. Overall the results show that 

the proposed method is able to accurately detect and locate the delamination in the laminated 

composite beams without using the baseline data. Although this study focuses on laminated 

composite beams, the proposed method is general and can be applied to metallic material in 

different engineering structures, e.g. civil, aerospace and mechanical engineering. It should 

be noted that further studies are required to investigate the feasibility of extending the 

proposed method for damage quantification.  
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Table 1. Possible combinations for estimating the delamination location using a sequential 
scan of a transducer network with three transducers for delamination located at different 

zones 
Actuator Transducer 1 Transducer 2 Transducer 3 

Receiver Transducers 2 & 3 Transducers 1 & 3 Transducers 1 & 2 

Zone 1 dd-2 ≈ dd-3 
dd-2 

dd-3 > 0 
dd-3 > dd-1 

dd-1 

dd-3 > 0 
dd-2 > dd-1 

dd-1 

dd-2 > 0 

Zone 2 dd-2 ≈ 0 dd-3 ≈ 0 dd-1  ≈ 0 dd-3 > 0 dd-1  ≈ 0 dd-2 > 0 

Zone 3 dd-2 > 0 dd-3 ≈ 0 dd-1 > 0 dd-3  ≈ 0 dd-1  ≈ 0 dd-2  ≈ 0 

Zone 4 dd-2 > dd-3 
dd-2 

dd-3 > 0 
dd-1 > dd-3 

dd-1 

dd-3 > 0 
dd-1 ≈ dd-2 

dd-1 

dd-2 > 0 

 

Table 2. Elastic properties of the lamina 
E11 

(GPa) 
E22 

(GPa) 
E33 

(GPa) 
G11 

(GPa) 
G12 

(GPa) 
G13 

(GPa) 𝑣!" 𝑣!" 𝑣!" 

120.20 7.47 7.47 3.94 3.94 2.31 0.32 0.32 0.33 
 

 

Table 3. Summary of delamination sizes and through-thickness locations of damage cases for 
each scenario in numerical studies 

 
Delamination length to 

wavelength ratio (d/λ) 

Delamination through-thickness location 

1st and 2nd layer 2nd and 3rd layer 3rd and 4th layer 

d/λ = 0.25 Case A1 Case A2 Case A3 

d/λ = 0.50 Case B1 Case B2 Case B3 

d/λ = 0.75 Case C1 Case C2 Case C3 

d/λ = 1.00 Case D1 Case D2 Case D3 

 

 

 

 

 



Table 4. Summary of all results for Scenario 1 in the numerical case studies 

Damage 

case 

Estimated arrival 

time 

Estimated delamination 

location* 

 True delamination 

location* 

𝑡!!!(µsec) 𝑡!!(µsec) 𝑑!!! (mm) 𝑑!!! (mm) 

A1 98.4 65.1 23.2 23-27 

A2 99.0 65.6 23.3 23-27 

A3 96.8 64.8 23.3 23-27 

B1 100.3 66.0 23.9 21-29 

B2 100.9 63.7 25.9 21-29 

B3 100.3 66.6 23.5 21-29 

C1 100.3 66.1 23.8 19-31 

C2 101.9 66.2 24.9 19-31 

C3 103.7 67.1 25.5 19-31 

D1 102.4 65.2 25.9 17-33 

D2 100.0 65.6 24.0 17-33 

D3 99.5 65.3 23.8 17-33 
* Delamination location from Transducer 2 and between Transducers 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Summary of all results for Scenario 2 in the numerical case studies 

Damage case 

Estimated arrival 

time 

Estimated delamination 

location* 

True delamination 

location* 

𝑡!!!(µsec) 𝑡!!(µsec) 𝑑!!! (mm) 𝑑!!! (mm) 

A1 110.5 66.6 30.8 29-33 

A2 116.1 67.3 32.5 29-33 

A3 113.1 67.4 31.8 29-33 

B1 110.0 66.7 30.2 25-33 

B2 109.6 66.3 30.3 25-33 

B3 102.1 66.3 25.7 25-33 

C1 98.7 66.4 22.5 21-33 

C2 98.7 65.8 22.9 21-33 

C3 950 64.8 21.3 21-33 

D1 100.3 66.5 23.5 17-33 

D2 104.2 67.0 25.9 17-33 

D3 99.2 66.4 22.9 17-33 
* Delamination location from Transducer 3 and between Transducer 3 and beam end. 

 

  



 
Fig. 1. CAN strain-stress model and wave rectification 

 

 

 

 
Fig. 2. Schematic diagram of a transducer network for detecting and locating delaminations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 3. Typical signal in time domain, time-frequency domain and schematic diagram of the 

(a)-(c) pulse-echo and (d)-(f) pitch-catch condition 
 

 
 

 
Fig. 4. Group velocity dispersion curves of A0 mode guided wave 

 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 5. Schematic diagram of Scenarios a) 1 and b) 2 in numerical case studies 

 
 
 

 
Fig. 6. A snapshot of the A0 guided wave interacting with the delamination in Damage Case 

B3 
 

 
Fig 7. Simulated signal in time-domain and frequency-domain for Damage Cases a) B1 b) B2 

and 3) B3 in numerical case studies 
 



 
Fig. 8. Time-frequency energy density spectrum, and corresponding normalised wavelet 

coefficient at excitation frequency (solid line) and second harmonic frequency (dashed line) 
for Damage Cases (a)-(c) B1, (d)-(f) B2 and (g)-(i) B3 (vertical dash-dotted lines: estimated 

arrival times) 

 

 

 
Fig. 9. Simulated signal in time-domain and frequency-domain for Damage Case C2 in 

numerical case studies 
 



 
Fig. 10. Schematic diagram of composite beam specimens with a delaminations for a) 

Damage Case 1 b), Damage Case 2 and c) cross-section at delamination location in 
experimental case studies 

 

 

 
Fig. 11. Experimental setup 

 

 

 

 



 
Fig. 12. Measured signal in frequency-domain, a) Transducer 2 is the receiver while 
Transducer 3 is the actuator in Damage Case 1, b) Transducer 3 is the receiver while 

Transducer 2 is the actuator in Damage Case 2 
 
 

 
Fig. 13. Time-frequency energy density spectrum zoom-in, and the corresponding normalised 
CWT coefficients at excitation frequency (solid line) and second harmonic frequency (dashed 

line) for a) Damage Case 1 and b) Damage Case 2. (vertical dash-dotted lines: estimated 
arrival times) 

	




