
ACCEPTED VERSION 

 

Shuai He, Ching-Tai Ng 
A probabilistic approach for quantitative identification of multiple delaminations in 
laminated composite beams using guided waves 
Engineering Structures, 2016; 127:602-614 
 

 
© 2016 Elsevier Ltd. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Final publication at http://dx.doi.org/10.1016/j.engstruct.2016.08.052 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/103883 
 

PERMISSIONS 

https://www.elsevier.com/about/our-business/policies/sharing 

Accepted Manuscript 

Authors can share their accepted manuscript: 

 […] 

After the embargo period  

 via non-commercial hosting platforms such as their institutional repository 
 via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

 link to the formal publication via its DOI 
 bear a CC-BY-NC-ND license – this is easy to do, click here to find out how 
 if aggregated with other manuscripts, for example in a repository or other site, be 

shared in alignment with our hosting policy 
 not be added to or enhanced in any way to appear more like, or to substitute for, 

the published journal article 

Embargo 

0141-0296   Engineering Structures     24 months   
 

1 November 2018 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.engstruct.2016.08.052
http://hdl.handle.net/2440/103883
https://www.elsevier.com/about/our-business/policies/sharing
https://www.elsevier.com/about/our-business/policies/sharing/how-to-attach-a-user-license
https://www.elsevier.com/about/our-business/policies/hosting


A Probabilistic Approach for Quantitative Identification of Multiple 

Delaminations in Laminated Composite Beams Using Guided Waves 

 

Shuai He and Ching-Tai Ng* 

School of Civil, Environmental & Mining Engineering, The University of Adelaide, 

Adelaide, SA 5005, Australia 

 

Abstract 

In this study a probabilistic approach is proposed to identify multiple delaminations in 

laminated composite beams using guided waves. The proposed method is a 

model-based approach, which provides a quantitative identification of the delaminations. 

This study puts forward a practical damage identification method, and hence, it can 

identify multiple delaminations using guided wave signal measured at a single 

measurement point on the laminated composite beams. The proposed method first 

determines the number of delaminations using Bayesian model class selection method. 

The Bayesian statistical framework is then employed to not only identify the 

delamination locations, lengths and through-thickness locations, but also quantify the 

associated uncertainties, which provides valuable information for engineers in making 

decision on necessary remedial work. In addition the proposed method employs the 

time-domain spectral finite element method and Bayesian updating with Subset 

simulation to further improve the computational efficiency. The proposed probabilistic 

approach is verified and demonstrated using data obtained from numerical simulations, 

which consider both measurement noise and modeling error, and experimental data. The 

results show that the proposed method can accurately determine the number of 
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delaminations, and the identified delamination locations, lengths and through-thickness 

locations are closed to the true values. 

 

Keywords: Multiple delaminations; Damage identification; Bayesian statistical 

framework; Bayesian model class selection; Guided waves; Spectral finite element; 

Subset simulation; Experiment 

 

1 Introduction 

1.1 Composite and non-destructive evaluation techniques 

Laminated composite materials have been extensively used in many engineering 

applications, such as aerospace, mechanical and automotive engineering, due to their 

high strength, anti-corrosion and lightweight characteristics. Common defects occur in 

the laminated composite materials are fibre breaking, matrix cracking and delamination 

[1]. In particular the delamination could cause significant reduction in the stiffness and 

strength of structures and leads to structural failure. Detecting and identifying the 

delamination before structural failure are essential in improving the safety, durability 

and serviceability of the structures made by laminated composite materials. 

Delamination is a separation of adjacent sub-surface laminae without any obvious 

visual evidence on the surface, and hence, non-destructive evaluation (NDE) techniques 

are required for detecting the delamination. Conventional NDE techniques, such as 

ultrasonic C-scan and A-scan, are point-to-point inspecting methods. They are time 

consuming and not able to inspect inaccessible locations of the structures. Low 

frequency vibration techniques [2] are efficient in inspecting large area of structures, 

however, they are insensitive to local defects, such as delamination.  

 



1.2 Damage detection using guided waves 

Guided wave has been widely recognized as one of the promising techniques for 

detecting the local defects [3, 4]. It is elastic stress wave, whose propagation 

characteristics depend on structural boundaries. Guided wave can be used to inspect 

large area of structural components due to its long propagation distances. Because 

guided waves are excited at high frequency, i.e. in the order of kilohertz, their 

wavelengths are small, and hence, they are sensitive to the local and incipient defects, 

e.g. delamination. 

Recently, guided wave based damage detection techniques have been widely 

employed in identifying the defects in one-dimensional (1D), e.g. beams [5] and rods[6], 

and two-dimensional (2D) waveguides, e.g. plates  [7-10] and shells [11]. For 2D 

waveguides, a number of damage detection techniques have been developed in the 

literature such as pre-stack reverse-time migration technique [12], tomography [13] and 

diffraction tomography [14, 15]. With the use of a transducer network, guided wave and 

scattered waves could be actuated and measured at different directions from the defect, 

respectively. This provides sufficient information for characterising the defects in 2D 

waveguides, e.g. defect location, size and shape. For 1D waveguides, most of the 

methods focused on determining the defect location based on the time-of-flight 

information of the reflected wave from the defect [16, 17]. There was relatively less 

work focused on the defect characterization, especially for delamination in the 

laminated composite beams. 

 Model-based approach has been employed to characterise the defects based on the 

measured guided wave signals in 1D waveguides. This approach treats defect 

parameters, such as defect location and size, as variables, by which the damage 

identification is achieved by minimising the discrepancy between the modelled and the 

measured guided wave signals. A number of model-based approaches have been 



developed for characterising different types of defects, such as step damages [18-20] 

and cracks [21-23] in aluminium rods and beams. However, there were limited studies 

focused on delamination in laminated composite beams [24]. 

 Recently the Bayesian statistical framework [25] has been applied to provide a 

quantitative identification of the defect in 1D waveguides [18] and this method was 

verified using experimentally measured guided wave signals [19]. It incooperated a 

spectral finite element (SFE) model in the Bayesian statitiscal framework to provide a 

computational efficient and quantatitive identification of the defect. One of the 

advantages of the Bayesian statistical framework is that it not only provides a 

characterization of the defect, i.e. identifying the defect location and size, but also 

quantifies the uncertainties associated with the defect identification results. This 

provides valuable information on making decision about the remedial work necessary to 

repair the strucutral damage. 

 

1.3 Challenges in multiple delamination identification 

In practical situation, the number of defects is unknown before the damage detection, 

and hence, the identification of multiple defects is a challenging issue for 1D 

waveguides, especially for a situation that the number of transducers is limited. For 

non-model based approach, it is difficult to determine the number of defects based on 

the information of the scattered waves as a number of scattered waves can be induced 

by multiple wave reflections between the defects. For multiple delaminations, the 

problem is more complicated. At each delamination region, the waveguide is divided 

into two individual sub-waveguides, and hence, reflection happens when the wave 

entering and leaving each of the delamination. 

Although the model-based approach is able to provide quantitative identification of 

one defect, it has a difficulty in identifying multiple defects. In the situation that the 



number of defects is unknown, the model considered more number of defects always 

has better fitting between the modeled and measured guided wave signals. Therefore, 

damage detection method based solely on the fitting between the modeled and the 

measured guided wave signals can be very misleading given the existence of modeling 

error and measurement noise in the measured data. 

The aim of this study is to address the challenges in quantitative identification of 

multiple delaminations in laminated composite beams. The proposed method is 

developed based on the Bayesian statistical framework. The quantitative identification 

of the delaminations is achieved by solving a Bayesian updating problem, and hence, it 

could provide quantitative information of the delaminations, such as number of 

delaminations, delamination locations, lengths and through-thickness locations, and also 

the uncertainties associated with the damage identification results. To overcome the 

aforementioned challenge in identifying the multiple delaminations in laminated 

composite beams, the proposed method employs the Bayesian model class selection [26, 

27] to provide a robust determination of the number of delaminations. In addition the 

proposed method employs the formulation of Bayesian updating with structural 

reliability method (BUS) [28], and hence, the Bayesian updating problem can be solved 

by a computational efficient and robust algorithm, i.e., Subset simulation [29-31]. In 

this study both numerical calculated and experimentally measured guided wave signals 

are used to verify and demonstrate the capability of the proposed method. 

The paper is organised as follows. In Section 2 the details of the Bayesian approach 

for multiple delaminations identification are presented first. This section describes the 

Bayesian model class selection, Bayesian model updating, BUS formulation and Subset 

simulation for improving the computational efficiency and robustness of the proposed 

multiple delaminations identification method. Section 3 describes the SFE method and 

modelling of the delaminations. Section 4 presents the results of the numerical case 



studies to verify the proposed multiple delaminations identification method. The 

numerical case studies consider different situations, such as different number of 

delaminations, delamination locations, lengths and through-thickness locations, to 

assess the performance of proposed method. Experimental verification is provided in 

Section 5 to demonstrate the practicability of the proposed method. Finally conclusions 

are drawn in Section 6. 

 

2 Bayesian approach for multiple delaminations identification 

The proposed Bayesian approach is developed based on the Bayesian model class 

selection and Bayesian model updating, which are used to determine the number of 

delaminations and provide quantitative identification of the delaminations. In the 

Bayesian approach, a laminated composite beam with length L and different number of 

delaminations are considered. A schematic diagram of the laminated composite beam 

with multiple delamination is shown in Figure 1. In this study we assume there are  N M  

delaminations existed in the laminated composite beam and they are represented by 

different model classes { : 1,2,..., }= =M j MM j N . M j  is the model class 

representing the laminated composite beam with j  delaminations. The delamination 

parameters l j  and dj  are used to describe the location and length of j-th delamination. 

For the through-thickness location, kj  is used to describe the delamination located 

between the k-th and (k+1)-th layers of the laminated composite beam. 

The selection of the ‘optimal’ model class solely based on the fitting between 

measured and simulated data is impractical. In order to address this problem, this study 

used the Bayesian model class selection method in selecting the “optimal” model class 

to identify the number of delaminations. In addition the delamination parameters and 

their associated uncertainties are identified by the Bayesian statistical framework. The 

following sub-sections describe the Bayesian model class selection, Bayesian model 



updating, and BUS formulation with Subset simulation for identifying multiple 

delaminations in the laminated composite beam. 

 

[Figure 1. Schematic diagram of the laminated composite beam with multiple delaminations] 

 

2.1 Bayesian mode class selection for determining the number of delaminations 

Consider a set of possible model classes { : 1,2,..., }= =M j MM j N , which represent 

laminated composite beams with j  delaminations. Bayesian model class selection can 

be used to determine the probability of each model class conditional on a set of 

measured guided wave data D as [25, 26, 32]  

 ( ) ( ) ( )
( ), =

M
M

M
j j

j

p D M P M
P M D

p D
 (1) 

where ( ) 1 N=M MjP M  is the prior probability of each model class jM . ( )Mp D  

is a normalising constant and ( )jp D M  is the evidence of the model class jM  that 

has the following expression  

 ( ) ( ) ( )∫j j j j j jM M Mp D = p D , p dθ θ θ  (2) 

where jθ  is a vector that consists of the uncertain delamination parameters, such as 

delamination locations jl , lengths jd  and through-thickness locations jk .

( )| ,j jp D Mθ
 
is the likelihood function, a larger value of which means there is a 

better fitting between the simulated and experimentally measured guided wave signals. 

However, direct numerical integration of Equation (2) is impractical because it involves 

a multi-dimensional integral [33]. Asymptotic approach can be used for calculating 

Equation (2) but they are only applicable to globally identifiable situation [26]. In order 

to evaluate the model evidence, this study employs an improved BUS formulation [29], 

and hence, the Bayesian updating with Subset Simulation can be used to efficiently 



calculate the evidence of the model class. The details of the BUS formulation and 

Subset simulation will be described in the sub-section 2.3.  

A challenging issue in the identifying multiple delaminations is that the model 

class with more delamination parameters can have better fitting between the simulated 

and the experimentally measured data as the extra delamination parameters tend to fit 

the measurement noise and modelling error. However, the Bayesian model class 

selection algorithm addresses this issue by automatically penalising more ‘complex’ 

model class, i.e. the model classes with more delaminations. This can be illustrated by 

considering the evidence from an information-theoretic point of view. Consider the 

logarithmic form of Equation (2) [25, 32, 34] as 
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 (3) 

where ( )ln jp D M  is the log-evidence for the model class jM . The log-evidence 

consists of the log-likelihood function and relative entropy between the prior and 

posterior distribution, which are the first and second term at the right side of Equation 

(3), respectively. The log-likelihood function is a data-fit term that indicates the 

plausibility of the model class jM . The relative entropy between the prior and 

posterior distribution is a measure of the information gained about the complexity of the 

model class, and hence, it provides a penalty against more ‘complex’ model class. 

Therefore, the log-evidence value is able to provide a robust determination of the 

number of delaminations in the laminated composite beams. 

 

2.2 Bayesian model updating for identifying the delamination parameters   

For identifying the delamination parameters of a given model class jM , i.e. the 



delamination locations, lengths and through-thickness locations, the measured guided 

wave data D  can be used to update the corresponding plausibility of the uncertain 

delamination parameters. The posterior probability density function (PDF) of the 

delamination parameters jθ  is obtained as [33, 35] 

 ( ) ( ) ( ) ∝j j j j j jp D,M p D ,M p Mθ θ θ  (4) 

where ( )j jp Mθ  is the prior PDF that reflects the initial engineering judgement of the 

delamination parameters. ( )| ,j jp D Mθ  is the likelihood function and is assumed 

following the Gaussian distribution with zero mean and standard deviation of the 

prediction error jσ  based on the Principle of Maximum information Entropy [25, 36, 

37] 

 ( ) ( )
( )22 2 exp 2

1 1

2

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

o tj j jN N
j

p D ,M = - t;
σπσ

Jθ θ  (5) 

where oN  is the number of measurement points and /= ΔtN T t  is the number of 

time steps. T  is the duration of measurement and Δt  is the time steps. 
  
J t;θ j( )  is the 

goodness-of-fit function and is defined as 

 
   
J t;θ j( ) = qm t( ) - qs t;θ j( )⎡

⎣
⎤
⎦

2

t=1

Nt

∑
o=1

No

∑  (6) 

where sq  is the simulation data and mq  is the experimentally measured data. In this 

study the simulation data is obtained from the SFE model described in Section 3. The 

variance 2σ  in the likelihood function is normally a positive real number and it is 

sampled randomly from the inverse of Gamma distribution    
IG(0.5Nt No +1,0.5J (t;θ j ))  

[38].  

The BUS formulation with Subset simulation, which will be described in Section 

2.3, is used in this study to draw samples from the target distribution, and hence, 

approximating the posterior PDF in Equation (4). Once the samples are asymptotically 



distributed as ( )| ,j jp D Mθ , the delamination parameters can be estimated by the 

sample means, where the sample c.o.v.s of the delamination parameters can be obtained 

by calculating the ratio of the sample standard deviation to the sample means. For 

determining the marginal posterior PDF of the each of the uncertain delamination 

parameters, the adaptive kernel density estimation with Gaussian distribution being the 

kernel PDF [39-41] can be used and it is defined as  

 ( ) ( ) ( )( )
1

1( ) ( ), ( , )
=

= Ν∑ C
sN

h h
j j

hs

k i W i i i
N

θ θ  (7) 

where ( , )Ν Σµ  is the multivariate Gaussian PDF with mean µ  and covariance 

matrix Σ . ( )hW  is the weighting of the hth sample and i is an index for choosing the 

uncertain delamination parameter in the marginal posterior PDF calculation. ( , )C i i  is 

the ith diagonal element of the sample covariance matrix calculated by the samples when 

they are asymptotically distributed as ( )| ,j jp D Mθ . 

 

2.3 BUS formulation 

This section describes the BUS formulation that allows the Bayesian updating problem 

to be solved by a computational efficient algorithm, Subset simulation. The BUS 

formulation converts the Bayesian problem to a reliability problem [28] with the 

purpose of determining the failure probability ( )P F  of the failure event F . In the 

context of BUS, F  can be defined as  

 ( ){ }0>= −j jp D ,F M Uc θ  (8) 

where U  is a random value between 0 and 1. c  is a constant denoted the ‘likelihood 

multiplier’ satisfied the following inequality 

 ( ) 1≤j jp D ,c Mθ   (9) 

For any max<c c , the posterior samples jθ  follows the posterior PDF ( )j jp D,Mθ  



[29]. While the selected maxc  for the multiplier significantly influences the efficiency 

and correctness of the sampling, its value is not available before the determination of 

the maximum likelihood value ( )ˆ
j jp D ,Mθ  with the optimal parameter ˆ jθ . This is 

contradictory since maxc  is required for seeking the correct optimal parameter ˆ jθ . In 

order to overcome this problem, the BUS formulation has recently been improved by 

Au, DiazDelaO and Yoshida [29], by which the failure event is transformed into the 

followed inequality 

 
( )

ln ln
⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= > −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

j jp D ,M
F c

U

θ
 (10) 

It can be rewritten as  

 { }= >F Y O  (11) 

where ln= −O c  and Y  denotes the driving variable, which has the form 

 
( )

ln
⎡ ⎤
⎢ ⎥=
⎢ ⎥
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j j

U

M
Y

p D ,θ
 (12) 

Let O  be an admissible threshold level, when O  is larger than min maxln= −O c  

the posterior samples jθ  will follow the posterior PDF ( )j jp D,Mθ . Consider the 

failure probability ( )P F  can be estimated using the posterior samples from Subset 

simulation, ( )P F  can be expressed by the evidence of the model class ( | )jp D M  

[29] 

 ( ) ( )−= O
jP F e p D M  for min>O O  (13) 

For sufficiently large O, Equation (13) shows that ( )P F  will decay exponentially with 

O as ( | )jp D M  is constant for a given problem. ( )P F  can be interpreted as the 

complementary cumulative distribution function (CCDF) of Y, where the exponential 

decay is similar to a typical CCDF in reliability analysis. 

As shown in Equation (13), when min>O O  the failure probability ( )P F  is 



theoretically related to the evidence ( | )jp D M . However, minO  is not known in the 

actual implementation, therefore, it is essential to determine whether min>O O , and 

hence, the samples conditional on { }>Y O  are confidently collected as the correct 

posterior samples in the Subset simulation. In order to determine when the value of O  

has become larger than the unknown minO , the characteristic trends of the logarithmic 

failure probability in Equation (13) are investigated. Consider ln ( ) ( )= − +P F O V O , 

hence, 

 ( ) ln ( )= +V O P F O  (14) 

At the beginning, ( )V O  increases linearly with O  as ln ( ) 0≈P F . This means 

( )V O  first increase linearly and then go through a transition until it settles at 

( ) ln ( | )= jV O p D M  when min>O O . Therefore, the log-evidence ln ( | )jp D M  can 

be obtained as 

 ln ( | ) ln ( )= +jp D M O P F  for min>O O  (15) 

 

2.4 Subset simulation for generating posterior samples 

Based on the BUS formulation, the failure probability ( )P F  can be evaluated using 

the posterior samples obtained from the conditional samples in the efficient Subset 

simulation [29]. Essentially, Subset simulation progressively generates conditional 

samples towards the target failure events through a series of intermediate failure events, 

which converts a rare reliability problem into a series of more frequent one. It is 

efficient and sustainable to the high dimension problem as the Markov Chain Monte 

Carlo (MCMC) sampling technique [33] is implemented in each intermediate step. As 

shown in Equation (15) once the failure probability ( )P F  is evaluated and min>O O , 

the evidence ( | )jp D M  of the model class can be determined. 

 

[Figure 2. Schematic framework of Subset simulation] 



 

The schematic framework of Subset simulation is shown in Figure 2. In the Step 1 

of the Subset simulation, the number of samples N  for each stage and the probability 

level of the intermediate simulation 0P  need to be defined. It should be noted that 

0NP  and 01/ P  are positive integrates. N  i.i.d. (independent and identically 

distributed) samples are uniformly generated from the prior distribution using the 

standard Monte Carlo method and the corresponding driving variable Y  is calculated 

using Equation (12).  

 In Step 2, Y  is firstly rearranged in ascending order, giving an ordered list 

denoted by ( ){ : 1,..., }=s
rO r N  for stage s . For min<sO O , at which 

0

( )
(1 )−= s

s N PO O  is the 

0(1 )−N P -th sample in the ordered list, the last 0P N  samples in the ordered list are used 

as ‘seed’ samples to simulate 0P N  MCMC chains. These chains have equal sampling 

length as 01/ P , and hence, producing N  new samples for the next Subset simulation 

level 1= +s s . The failure probability at each stage s is obtained conditionally on the 

failure events from the previous stages as  

 ( ) ( ) ( 1)
0

0

( ) ( | )−

=

−= =∏
s

s s s s
r r r

f

N rP F P F F P
N

 for 1,...,=r N  (16) 

where ( )s
rF  is the failure event of stage s. From Equation (16) it is shown that the 

probability of the rare failure event can be gradually approximated in the Subset 

simulation. The failure probability ( )( )srP F  is then used to evaluate the minO  as stated 

in the Section 2.3. Step 2 is repeated until min>sO O . 

Finally, in Step 3, the log-evidence of model class Mj is evaluated using Equations 

(15) and (16), and hence 

 0ln ( | ) ln ( ) ln= + ≈ +j sp D M O P F O s P  (17) 

In the Bayesian approach the number of delamination and the delamination 



parameters are assumed unknown initially. The approach first considers a model class 

with a delamination and identifies the delamination parameters by solving the Bayesian 

updating problem using the BUS formulation with Subset simulation. Once the 

delamination parameters are identified, the evidence of this model class is then 

evaluated. After that the Bayesian approach considers a more “complex” model class, 

e.g. two delaminations and repeated the aforementioned calculations. The procedure 

stops when the value of the evidence of the currently considered model class is smaller 

than the less “complex” model class. Therefore, the number of delaminations and the 

delamination parameters can be determined by the model class with the largest evidence 

value. 

  

3 Time-domain spectral finite element method for modelling laminated composite 

beams with multiple delaminations 

The modeling of guided wave propagation in laminated composite laminated using the 

SFE method is similar to the conventional FE method, in which the problem can be 

represented by the time-domain ordinary differential equation [42-44] 

 

 ( )+ + =MU CU FUK&& & t  (18) 

where U , U& and U&& are the displacement, velocity and acceleration vector in time 

domain, respectively. M  is the global mass matrix, C  is the global damping matrix, 

K  is the global stiffness matrix and ( )F t  is the global force vector at time t. The 

global mass matrix M  and the stiffness matrix K are assembled using their element 

matrices [42, 43]. In this study the guided wave propagation in the laminated composite 

beam is simulated using the higher order theory along with the Poisson’s contraction 

effect [45]. The displacement field in the composite beam can be written as 



 ( ) ( ) ( ), ≈ −u x y u x x yϕ  (19) 

 ( ) ( ) ( ), ≈ +v x y v x x yψ  (20) 

where u  and v  are the axial and transverse displacements in the neutral axis of the 

beam as shown in Figure 3. ϕ  is the rotation of the cross section and ψ  is the 

contraction due to Poisson’s effect. y  is the vector of distance measured from the 

neutral axis. The strain field can be expressed as [45] 

 

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂⎢ ⎥
= ⎢ ⎥
⎢ ⎥∂ ∂+ −⎢ ⎥
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u y
x x

v y
x x

ϕ

ε ψ
ψ ϕ

 (21)  

Based on the higher order theory along with the Poisson’s contraction effect, the 

element mass matrix Me , element stiffness matrix K e  and the element force vector 

( )Fe t  at time t used to formulated the corresponding global matrices in Equation (18) 

are 

 ( ) ( ) ( )( )
1

det
=

≈∑M N rNe i e i

n
Te

i i
i

w Jξ ξξ  (22) 
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 ( ) ( ) ( ) ( ) ( )( )
1

det
=

≈∑F N f Ne i e e

n
Te

i i
i

it w t Jξ ξ ξ  (24) 

where b  and kN  are the width and the total number of layer of the laminated 

composite beam. ∂= ∂J x ξ  is the Jacobian function transferring the local coordinate 

to the global coordinate. kh  and 1−kh  denote the height of upper and lower surface of 

the k-th layer, respectively. fe  is the external excitation. Different to the conventional 

FE method, the SFE method employs the Gauss-Lobatto-Legendre (GLL) nodes iξ  in 



each element. This leads to the diagonal form of the mass matrix that can be solved 

efficiently by the central difference scheme, and hence, reducing the mesh density. The 

local coordinate of the iξ  can be determined by 

 ( ) ( )2
11 0−′− =n ii Lξ ξ  for [ 1,1]∈ −iξ  and 1,...,∈i n  (25) 

where 1−′nL  is the first derivative of the (n-1)th order Legendre polynomial. In this 

study n = 6. The distribution of the GLL nodes and their corresponding shape function 

value are shown in Figure 3. iw  is the weight of the corresponding GLL node iξ  and 

is defined as 

 
( ) ( ) 21

2
1 [ ]−

=
−i

n i

w
n n L ξ

 (26) 

where 1−nL  is the (n-1)th order Legendre polynomial. 

 

[Figure 3. Distribution of the 5th order GLL nodes and the corresponding shape function value 

of a spectral beam element] 

  

Be  is the strain-displacement operator and is defined as  
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B Ne e
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y
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where 1−∂ ∂ = ∂ ∂x J ξ . Ne  is the shape function matrix of the SFE element, which 

has the form 

 = ⊗N N Ie  (28) 

where 1[ ( ),..., ( )]= ξ ξN nN N  is a row vector. I  is a 4×4 identity matrix. ‘⊗ ’ is the 

Kronecker product. The shape function ( )iN ξ  at node i has the orthogonal property 

and can be calculated by  
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where n is the number of GLL integration points in each element and m is the sequence 

of node. Using the shape function, the displacement fields are approximated as follow 
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where qe  is the vector of nodal displacement in the corresponding degrees-of-freedom. 

The matrix r  from Equation (22) has the form 
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where ρk  is the density of the k-th layer. In Equation (23), Q k  is the material property 

matrix of the kth layer of the laminated composite beam in the defined orientation and is 

defined as 
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where 11Q , 13Q , 33Q  and 55Q  can be found in [46]. In order to model the 

delamination, the intact beam elements e1 and e2, as shown in Figure 4, are separated 

into e1-up, e2-up and e1-low, e2-low elements to form a delamination element. Specifically, 



the nodes in the intact beam elements are duplicated at the delaminated region and only 

the nodes at the delamination tips are connected. In this study the aforementioned SFE 

is used to model the laminated composite beam and the delamination element is used to 

model each of the delmainations. In addition the Hilbert transform [47] is first used to 

obtain the signal envelopes for the modeled and experimentally measured data guided 

wave signals. The signal envelopes are then used in the proposed Bayesian approach in 

Section 2 for identifying the number of delaminations, delamination locations, lengths 

and through-thickness locations. 
 

[Figure 4. Modelling of the laminated composite beam with a delamination and zoom-in at the 

delamination] 

 

4 Numerical case studies 

A series of numerical case studies were used to systematically assess the performance of 

the proposed Bayesian multiple delaminations identification method with the 

consideration of different delamination scenarios. The numerical case studies 

considered a 500 mm long and 6 mm wide cross-ply laminated composite beam with 

stacking sequence of [0/90/0/90]s. The total thickness of the beam is 2 mm, which 

consists of eight 0.25 mm thick unidirectional carbon/epoxy prepreg plies. The elastic 

properties of the each ply are shown in Table 1. In this study the fundamental 

anti-symmetric mode (A0) guided wave was used as the incident wave as it has been 

demonstrated that it is sensitive to the delamination [48]. The excitation signal was an 

80 kHz narrow-band five-cycle sinusoidal tone burst modulated by a Hanning window. 

The excitation was applied to the left end of the laminated composite beam and the 

guided wave signal was calculated at the same location. The duration of the calculated 

guided wave data in the numerical case studies allows the incident A0 guided wave 

propagates from the excitation location to the beam end, and then reflects and 



propagates back to the excitation location but the beam end reflected wave pulse was 

not included in the data. 

 The time-domain SFE method described in Section 3 was used to model the 

laminated composite beams with different numbers of delaminations and the models 

were treated as the identification model for simulating guided wave data sq  in 

Equation (6) of the proposed Bayesian approach. For each model class, the uncertainty 

delamination parameters are the locations jl , lengths jd  and through-thickness 

locations jk  of the delaminations. In the time-domain SFE model, 12 mm long 

spectral elements with 8 GLL nodes were used to model the laminated composite beam. 

The time step Δt  used in the simulation was 0.75e-7 sec to ensure the solution of the 

time-domain ordinary differential Equation (18) to be converged. 

 The laminated composite beams with delaminations were also modeled using the 

three-dimensional (3D) finite element method and the calculated data was treated as 

synthetic experimental data as mq  in Equation (6). Therefore the modeling error was 

considered in the numerical case studies as the synthetic experimental data was 

generated by 3D FE method. Commercial software ABAQUS v6.12-1 [49] was used to 

simulate the guided wave in this study. Eight-node 3D reduced integration solid brick 

element (C3D8R) was used and the mesh size was 0.3 mm. The A0 guided wave was 

generated by applying shear traction at the edge of the left beam end. Enhanced 

hourglass control was enabled and the dynamic explicit solver was employed to solve 

the guided wave propagation. The time step in the simulation was automatically decided 

by ABAQUS. In this study the signal envelope calculated by the Hilbert transform [47] 

was used as the simulated data by SFE and synthetic experimental data by 3D FE to 

reduce the complexity of the signals. Measurement noise was considered in synthetic 

experimental data. It is assumed to be white noise and was taken to be 3% of the RMS 

of the noise-free signals. 



 
[Table 1. Elastic properties of the the pre-preg lamina in the numerical case studies] 

 

Five cases, i.e. Cases N1, N2, N3, N4 and N5, shown in Table 2 were used to study 

the performance of the proposed multiple delaminations identification method. For 

Cases N1, N2 and N3, one delamination was considered in the laminated composite 

beam and the length of delaminations (d1) were 6 mm, 10 mm and 20 mm, respectively. 

They are all located at 1l  = 200 mm from the left beam end of the laminated composite 

beam. Case N4 considers two delaminations while Case N5 considers three 

delaminations. The Subset simulation was employed to generate the posterior samples, 

and hence, approximating the posterior PDF of the delamination parameters and 

probability of the model classes for each case. The assignment of the prior PDF for the 

location and length of the delamination are uniformly distributed over [10mm 490mm] 

and [1.3mm 18mm], respectively. The through-thickness location of the delamination is 

an integer and it has equal probability from kj = 1 to 7. It should be noted that the 

delamination located at kj = 1, 2 and 3 has the same effect for kj = 7, 6 and 5, 

respectively, on the guided wave. The number of samples N at each stage of Subset 

simulation was set as 500 and the probability level of the intermediate simulation 0P  

was chosen as 0.1. 

 
[Table 2. Summary of all cases in the numerical case studies] 

 

4.1  Identifying the number of delaminations 

The numbers of delaminations were identified using the proposed Bayesian approach 

described in Section 2. The results of the Cases N1 - N5 are summarised in Table 3. 

From Equation (1), it shows that the probability of a model class Mj is proportional to 

the evidence value, which can be evaluated using Equation (17) when min>O O .  



 In order to determine the minO , the value of ( )V O  is investigated. Figure 5 is 

used as an example to illustrate the determination of 
3min,MO  and the log-evidence for 

model class M3 in Case N5. In the figure, 
3min,MO  is the value that needs to be 

determined for model class 3M . Firstly, after the rearrangement of Y, the value of 

( )V O  is calculated at each stage. If ( )V O  reaches its maximal value at this stage, the 

ranking of the sample corresponding to this maximal ( )V O  in the ordered list is taken. 

If this ranking is higher than the ranking ( )01−P N -th (i.e., 450-th for N = 500 and 

0P = 0.1), the Subset simulation proceeds to the next stage. As shown in Figure 5, at 

stage s=13 the recorded ranking corresponding to the maximal value of ( )V O  is 77-th, 

which is indicated by the vertical dotted line. As this recorded ranking (i.e. 77-th) is 

higher than 450-th, the Subset simulation stops at this stage, and the value of O 

corresponding to the 77-th sample is chosen as the 
3min,MO , i.e. 

3min,>s MOO  where sO  

is the value corresponding to the 450-th sample. Finally, the log-evidence can be 

obtained using Equation (17). Using the similar approach the estimation of the model 

log-evidence for all the model classes in Case N5 is shown in Figure 6. The values 

needs to determined for model class 1M , 2M  and 3M  are 
1min,MO , 

2min,MO  and

3min,MO , respectively. It is clear from the figure that the model class M3 has the largest 

log-evidence value, indicating the most plausible number of delaminations is three for 

Case N5. 

 

Figure 5. Estimated log-evidence at each stage for model class M3 in Case N5 

 

Figure 6. Estimated log-evidence of each model class in Case N5 

 

The identification result of the delamination number for Cases N1 to N5 are 

summarised in Table 3. In the third column, the log-likelihood is taken as the average of 



the log-likelihood value of the posterior samples for each model class. In the fourth 

column, the information gain is calculated as the difference between the model 

log-likelihood and the log-evidence value illustrating the penalty against the model class 

with more delaminations. The fifth column is the determined log-evidence of the model 

class from Equation (15) and the last column is the probability of the model class 

calculated based on the value of the log-evidence. From Table 3 it is shown that the 

numbers of delaminations are correctly identified for all cases as the probability of the 

correct model class is the largest for each case. Specifically, the probability of the model 

class M1 with one delamination in Cases N1 to N3 is distinct (e.g., over 98%) from 

other the model class. While the uncertainty slightly increases in Case N4 as the 

probability of the model class M2 with the correct number of delamination is 95.69%. In 

Case N5, where the actual number of delamination is 3, the probability of the correct 

identification increases to 99.59%. This is due to the increase of the information gain 

for the more complex model class, i.e. more delaminations.  

 

[Table 3. Identified number of delaminations in the numerical case studies] 

 

In general, as the number of delamination increases, the log-likelihood indicating 

the goodness of fitting between the simulation and the measurement also increases. The 

information gain penalising the complexity of the model class. This provides the 

log-evidence value for the Bayesian model class selection. Specifically, when the 

number of delaminations of the corresponding model class is less than the actual 

situation (e.g., 1M  in Case N4 and 1M  and 2M  in Case N5), the log-likelihood is 

significantly less than that of other model classes indicating the simulation data is not 

very well fitted with the measurement data in this situation. On the other hand, when the 



number of delaminations (e.g.,   M2  in Case N1, 3M  in Case N4 and 4M  in Case 

N5) is larger than the correct number of delaminations, the log-likelihood increases 

slightly as the reflected wave from the additional delamination in the SFE model is used 

to fit the measurement noise and modelling error.  

 

4.2 Identifying the delamination parameters and quantifying the associated 

uncertainties  

In this section the parameters for the delamination are identified for all cases. The 

influence of the length of delamination on the damage identification is studied in Cases 

N1 to N3. Cases N1, N2 and N3 considers a delamination with length of 6 mm, 10 mm 

and 20 mm, respectively, and they are all located at 200 mm from the left beam end. 

Cases N4 and N5 increase the identification difficulty by considering two and three 

delaminations with different delamination lengths and though-thickness locations. 

The identified results are shown in Table 4. The results of Cases N1 to N5 show 

that all the delamination parameters are accurately identified. The percentage of error 

and percentage of sample c.o.v. are also shown in the brackets and squared brackets, 

respectively. The maximum percentage of error for the identification delamination 

location and length are 2.34% and 10.09%, respectively. The identified delamination 

lengths in Cases N1 to N3 show that the error increases with the delamination length. 

This is because the wave reflection occurs when the incident guided wave entering and 

leaving the delamination region, and hence, the reflected wave pulse used in the damage 

identification process is a combination of the two reflected waves. For longer 

delamination, the reflected wave is usually more complicated. For the identified 

through-thickness location, although the results of the Delamination 1 in Case N3, and 

the Delaminations 2 and 3 in Case N5 are one layer different to the true 



through-thickness location, the delamination location and length are still very close to 

the true value. The results show that for cases considered more than one delamination, 

there is an error in the identified through-thickness location but the delamiatnion 

location and length can still be accurately identified. In general the sample c.o.v. of  

the identified delamination length is larger than the delamination location. It should be 

noted that the amplitude of the reflected wave from the delamination is not a linearly 

proportional to the delamination size due to the multiple wave reflection when the 

incident wave entering and leaving the delaminations. 

 

[Table 4. Identified delamination parameters for numerical case studies]  

 

Figure 7. Evolution of the Subset simulation samples for the length of Delaminations 1 and 2 in 

Case N5 

 

The evolution of the generated samples at each stage in Case N5 using the Subset 

simulation is shown in Figure 7. The samples converged efficiently to their target 

distribution from the initial prior distribution, which shows the high efficiency of Subset 

simulation in generating posterior samples. At Stage 4, the figure show that there are 

two local optimums and it reduced to a global optimum at Stage 7 and it converged to 

the final solution at Stage 13. In Figure 8 the marginal PDFs of the delamination length 

of the Delaminations 1, 2 and 3 in Case N5 were calculated using the adaptive kernel 

density estimation (Equation (7)) based on the posterior samples generated from Subset 

simulation. A comparison of the posterior marginal PDFs is shown in Figure 8, the drop 

in PDF value away from the peak for the Delamination 3 is faster than the Delamination 

1 but slower than the Delamination 2. This is consistent to the corresponding sample 

c.o.v. as shown in Table 4.  



 

Figure 8. Posterior marginal PDFs for the length of Delaminations 1, 2 and 3 in Case N5 

 

5 Experimental case studies 

5.1 Experimental setup 

Two laminated composite beams with width 6 mm were manufactured from eight 

HexPly®M21/IM7 unidirectional carbon/epoxy pre-preg with a stacking sequence of 

[0/90/0/90]s. The pre-preg lamina has a fibre volume fraction of 0.592 and the density is 

1.58 g/cm3. The thickness of each lamina is 0.184 mm. The initial values of the elastic 

properties were obtained from the material data sheet and calculated using 

micro-mechanics theory with the consideration of the constituents. The elastic 

properties were then adjusted such that the discrepancy between the simulated and 

experimentally measured incident guided wave pulse in the laminated composite beams 

is minimised. The elastic properties of the lamina are given in Table 5. One of the 

laminated composite beams has a delamination and the other has two delaminations, 

and they are named as Cases E1 and E2, respectively. Table 6 summarises the numbers, 

locations, lengths and through-thickness locations of the delaminations in Cases E1 and 

E2. The delaminations were generated by inserting thin release films between two 

laminae at the appropriate though-thickness locations.  

 

[Table 5. Elastic properties of the M21/IM7 pre-preg lamina] 

 

[Table 6. Summary of experimental case studies] 

 

 A schematic diagram of the experimental setup is shown in Figure 9. Both sides of 

the laminated composite beams were fixed at two rigid clamping systems. The length of 



the laminated composite beams between the fixed supports is 300 mm. A 6×6×2 mm3 

piezoceramic transducer was bonded to the left end of each of the laminated composite 

beam. A 6×6×4 mm3 brass mass was used as the backing mass to enhance the 

excitability of the A0 guided wave. The excitation signal was a 50 kHz narrow-band 

five-cycle sinusoidal tone burst pulse modulated by a Hanning window. The signal was 

synthetised by a computer and generated by a junction box with the output voltage of 

10V. It was then amplified by SERVO-AMP signal amplifier to 50V and applied to the 

piezoceramic transducer. The out-of-plane displacement of the guided wave signal was 

recorded using a 1D laser scanning Doppler vibrometer (Polytec PSV-400) with laser 

controller (OFV5000). The measurement position was located at 60 mm from the left 

beam end. Signal averaging and band-pass filter were used to further reduce the noise in 

the measured data. The measured data was then processed by a data acquisition unit and 

then transmitted back to the computer. 

 

[Figure 9. Schematic diagram of the experimental setup] 

 

5.2 Results and discussions 

The identified numbers of delaminations for the experimental case studies are 

summarised in Table 7. The model class M1 (single delamination) is selected for Case 

E1 while the M2 (two delaminations) is selected for Case E2 based on the calculated 

probability of the model classes. The results show that the proposed Bayesian approach 

is able to accurately determine the number of delaminations experimentally. Figure 10 

plots the estimate of the log-evidence, i.e., ( )V O  versus O  for Case E2, in which the 

log-evidence was computed using Equation (17). The identified delamination 

parameters and the corresponding sample c.o.v.s are shown in Table 8. It is shown that 



for Case E1 the delamination location and length are accurately identified and the 

corresponding percentages of error are 0.10% and 1.57%, respectively. In addition the 

through-thickness location of the delamination is also correctly determined. Table 8 also 

show that sample c.o.v.s of the delamination location and length, which are 0.018% and 

0.361%, respectively. 

 

[Table 7. Identified number of delaminations in the experimental case studies] 

 

Figure 10. Estimated log-evidence of each model class in Case E2 

 

Case E2 considers the laminated composite beam with two delaminations. Table 8 

shows the identified delamination locations, lengths and through-thickness locations, 

and corresponding percentages of error and sample c.o.v.s. Although the identified 

through-thickness location of the Delamination 1 is one layer different to the true 

location, the delamination locations and lengths are still accurately identified. The 

maximum percentages of error are 2.03% and 0.28% for the identified delamination 

locations and lengths. Similar to the results in the numerical case studies, the sample 

c.o.v. of the identified delamination length is larger than the identified delamination 

location. 

 

Figure 11. Evolution of the Subset simulation samples for the length of Delaminations 1 and 2 

in Case E2 

 

Figure 11 shows the evaluation of the samples generated by Subset simulation for 

the length of the delaminations 1 and 2. It is shown that the samples of delamination 

lengths efficiently converges to two local optimal regions at Stage 4, and finally 



converges to the global optimum at Stage 10. The marginal PDF in Figure 12 shows the 

uncertainties of the identified delamination length for Delaminations 1 and 2 in Case 

E2. The uncertainties of both delamination lengths indicated by the marginal PDF are 

consistent with sample c.o.v.s in Table 8. Figure 12 shows that the drop in PDF value 

away from the peak for the length of Delamination 1 is much faster than that for 

Delamination 2, which indicates the uncertainty of the identified delamination length of 

Delamination 1 is smaller than the Delamination 2. 

 

Figure 12. Posterior marginal PDFs for the length of Delaminations 1 and 2 in Case E2 

 

[Table 8. Identified delamination parameters for experimental case studies] 

 

6 Conclusions  

A probabilistic approach has been presented for quantitative identification of multiple 

delaminations in laminated composite beams using guided waves. The proposed method 

has addressed a practical situation in the damage detection using model-based 

approaches, i.e. the number of delaminations is not known in advance for guided wave 

based damage identification. The proposed method employs the Bayesian model class 

selection method to select the optimal model class, and hence, the number of 

delaminations can be accurately identified. In addition to the quantitative identification 

of the delaminations, i.e. identifying the number of delaminations, delamination 

locations, lengths and through-thickness locations, the proposed probabilistic approach 

also quantifies the associated uncertainties. This provides valuable information for 

engineers in making decision on the remedial work. In this study the time-domain SFE 

developed based on the higher-order theory and Bayesian updating with Subset 

simulation have been proposed to further improve the computational efficiency of the 



multiple delaminations identification. A series of numerical and experimental case 

studies have been carried out to verify and demonstrate the capability of the proposed 

probabilistic approach. The number of delaminations has been determined based on the 

probability of the modal class calculated using Bayesian model class selection method. 

The delamination parameters and their associated uncertainties have been identified by 

calculating their sample means and sample c.o.v.s based on the posterior samples 

obtained in Bayesian updating with Subset simulation. The results have shown that the 

probabilistic approach is able to identify multiple delaminations using guided wave 

signal measured at a single measurement point in the laminated composite beam. All the 

identified delamination parameters were very close to the true values.  
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Table 1. Elastic properties of the the pre-preg lamina in the numerical case studies 

Properties E1 
(GPa) 

E2 
(GPa) 

E3 
(GPa) 

G12 
(GPa) 

G13 
(GPa) 

G23 
(GPa) 𝜐!" 𝜐!" 𝜐!" ρ  

(kg/m3) 

Value 128.75 8.35 8.35 4.47 4.47 2.9 0.33 0.33 0.44 1517 

 
Table 2. Summary of all cases in the numerical case studies 

Case Number of 
delaminations  

Delamination 
location (mm) 

Delamination 
length (mm) 

Delamination 
through-thickness location* 

N1 1 l1 = 200 d1 = 6  k1 = 3 or 5 

N2 1 l1 = 200 d1 = 10 k1 = 3 or 5 

N3 1 l1 = 200 d1 = 20 k1 = 3 or 5 

N4 2 
l1 = 200 d1 = 10 k1 = 4 
l2 = 300 d2 = 6 k2 = 3 or 5 

N5 3 
l1 = 150 d1 = 4 k1 = 2 or 6 
l2 = 250 d2 = 6 k2 = 3 or 5 
l3 = 350 d3 = 10 k3 = 4 

* Due to the symmetric stacking sequence of the laminated composite beam, the delamination at kj = 1, 2, 3 
has the same effect for kj = 7, 6, 5, respectively, on the guided wave reflection and transmission 

 

Table 3. Identified number of delaminations in the numerical case studies 

Case Number of 
delaminations Log-likelihood Information gain Log-evidence Probability (%) 

N1 
1 15853.63 4.24 15849.39 99.51 
2 15865.10 21.03 15844.07 0.49 

N2 
1 15892.59 6.72 15885.87 99.67 
2 15903.37 23.22 15880.15 0.33 

N3 
1 14962.32 3.83 14958.49 98.22 
2 14977.15 22.87 14954.48 1.78 

N4 
1 6516.87 0.33 6516.54 0 
2 13787.37 18.62 13768.75 95.69 
3 13799.22 33.57 13765.65 4.35 

N5 

1 5877.96 13.63 5864.33 0 
2 7587.29 18.65 7568.63 0 
3 14135.66 32.28 14103.38 99.59 
4 14153.14 55.27 14097.87 0.41 

 

 

 

 

  



Table 4. Identified delamination parameters for numerical case studies 

Case 
Location (mm) Length (mm) Through-thickness 

location 

lj (sample c.o.v. %) [error %] dj (sample c.o.v. %) [error %] ki 

N1 l1 = 200.65 (0.019) [0.33] d1 = 5.89 (0.298) [1.83] k1 = 3  

N2 l1 = 199.85 (0.040) [0.08] d1 = 10.73 (0.010) [7.28] k1 = 3 

N3 l1 = 197.15 (0.101) [1.43] d1 = 22.02 (0.221) [10.09] k1 = 3  

N4 l1 = 197.06 (0.001) [2.34] 
l2 = 299.31 (0.009) [0.96] 

d1 = 9.45 (0.006) [5.56] 
d2 = 5.82 (0.112) [3.33] 

k1 = 3 
k2 = 3 

N5 
l1 = 149.35 (0.065) [0.43] 
l2 = 249.86 (0.048) [0.06] 
l3 = 350.15 (0.029) [0.04] 

d1 = 3.81 (1.596) [4.77] 
d2 = 10.57 (0.232) [5.70] 
d3 = 5.68 (0.853) [5.33] 

k1 = 2 
k2 = 4 
k3 = 3 

 

 
Table 5. Elastic properties of the M21/IM7 pre-preg lamina 

Properties E1 
(GPa) 

E2 
(GPa) 

E3 
(GPa) 

G12 
(GPa) 

G13 
(GPa) 

G23 
(GPa) 𝜐!" 𝜐!" 𝜐!" ρ  

(kg/m3) 

Value 160 8.50 8.50 4.20 4.20 2.70 0.35 0.35 0.53 1580 
 

 

Table 6. Summary of experimental case studies 

Case Number of 
delaminations-  

Delamination 
location (mm) 

Delamination 
length (mm) 

Delamination 
through-thickness location * 

E1 1 l1 = 100±1 d1 = 6±0.5  k1= 3 or 5 

E2 2 
l1 = 100±1 d1 = 10±0.5  k1= 4 
l2 = 200±1 d2 = 6±0.5  k2= 3 or 5 

* Due to the symmetric stacking sequence of the laminated composite beam, the delamination at kj = 1, 2, 3 
has the same effect for kj = 7, 6, 5, respectively, on the guided wave reflection and transmission 

 
 

Table 7. Identified number of delaminations in the experimental case studies 

Case Number of 
delaminations  Log-likelihood Information gain Log-evidence Probability (%) 

E1 
1 9387.94 29.84 9358.10 99.99 
2 9408.82 60.15 9348.67 0.01 

E2 
1 6707.91 15.63 6692.28 0 
2 7342.14 24.15 7317.99 98.39 
3 7346.68 32.80 7313.88 1.61 

 
  



Table 8. Identified delamination parameters for experimental case studies] 

Case 
Location (mm) Length (mm) Through-thickness 

location 

lj (sample c.o.v. %) [error %] dj (sample c.o.v. %) [error %] ki 

E1 l1 = 99.90 (0.018) [0.10] d1 = 6.09 (0.361) [1.57] k1 = 3  

E2 l1 = 100.10 (0.013) [0.10] 
l2 = 195.95 (0.011) [2.03] 

d1 = 9.29 (0.147) [7.06] 
d2 = 5.98 (0.472) [0.28] 

k1 = 5 
k2 = 3 
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