THE EFFECT OF ACTIVE MASS THICKNESS ON THE CYCLE LIFE OF LOW-ANTIMONY LEAD-ALLOY SPINE EMPLOYED IN DEEP-CYCLE BATTERIES

by

VAN HAO NGUYEN

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF ENGINEERING SCIENCE

School of Chemical Engineering
The Faculty of Engineering, Computer and Mathematical Science (EMCS)

THE UNIVERSITY OF ADELAIDE
South Australia

January 2015
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give my consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
Abstract

The cycle life of conventional starting-lighting-ignition (SLI) lead-acid batteries with low-antimony lead-alloy grids is reduced when subjected to repetitive deep-discharge cycling. Reduced cycle life is caused by the rich layer of lead sulfate formed in the corrosion layer interface (Barrett et al. 1981; Chang & Valeriote 1985). However, the cycle life of the tubular traction lead-acid batteries containing low-antimony lead-alloy grids is unknown when subjected to identical conditions.

Preliminary forensic analysis of a tubular traction cell subjected to similar conditions at Pacific Marine Batteries (PMB) indicates the reduced cycle life was caused primarily by corrosion of the positive grids which may have caused by stress created by the increased in the corrosion volume produced during cycling. Rogatchev, Papazov and Pavlov (1983) and Garche (1995) demonstrated that with increased in thickness of the active mass in tubular-plate formation of the corrosion product is reduced, hence reduce internal stress. Alternatively, Garche (1995) suggested the stress corrosion may be reduced by the partial compensation of the thickness of the active mass. Likewise, Chang and Valeriote (1985) recommended that low-antimony lead-alloy grids may be more suitable to be used in the design of tubular grids for deep-discharge cycling. They believed easy pathway for the acid to reach the grid surface was the main cause for the rich layer of lead sulfate to form. Therefore, further research is needed to provide insights into, and understanding of, the implication of the preliminary forensic analysis, hence help to extend the cycle life of the batteries.

Cells were assembled with a tubular positive electrode and one flat negative plate. Low-antimony lead alloys spines ~ 2.0 wt.% Sb with a diameter of ~3 mm was used. The independent variable studied was the effect of 1.60 mm, 2.15 mm and 2.80 mm active mass thickness on cycle life of the positive spines subjected to repetitive deep-discharge cycling. Cross-sections of cycled electrodes at different stages during cycling were examined for mode of failure using electron probe micro analysis (EPMA), secondary electron microscopy (SEM) images and iTEM5 image analysis software.
Average cell performance of cycled tubular electrode under 20 h discharge rates for various active mass thicknesses indicated the capacity was not exhibit sign of rapid reduced capacity. Back-scattered electron images and quantitative electron microprobe analysis were used to investigate the elemental distribution of sulfur (S present as sulfate) in the corrosion layer interface have provided no evidence of rich layer of lead sulfate formation in the corrosion layer.

The results from the residual cross-sectional areas indicated that corrosion failure result from stresses was the primary cause of the positive spine of low-antimony lead-alloy tubular-plate traction batteries subjected to repetitive discharge cycling. The effect of the active mass thickness on positive grid corrosion (cycle life) was inconclusive due inconsistent data when subjected to repetitive deep-discharging cycling.
Acknowledgement

This thesis would not have eventuated without the help and support from a number of people, including the company for which I currently work who have contributed significantly to this research and I would like to express my gratitude to all.

PMB Defence for their encouragement and for providing the opportunity and support to further improve my study and knowledge which may be helpful for the company and my own achievement.

Associate Professor Brian O’Neill, School of Chemical Engineering, University of Adelaide, my principal supervisor, for his precious time to support, guide and assist my thesis writing.

Mr. Peter Chaplin, PMB Defence Engineer, my ex-manager and external supervisor, who has encouraged me to complete my Master Degree, and for his ideas and support to build test equipment to conduct this research.

Mr. Brenton Swansson, my current manager, who allowed me to conduct this research in the Laboratory and during work hours.

Ms. Rosalie Louey, PMB Defence Engineer, my current work colleague at PMB and Mr. Rocky Caruso, Exide Technologies, my ex-work colleague at Exide for their technical review of my thesis.

I would like to dedicate this thesis to my parents, wife (Jasmine) and sons (Jamie & Jordan) for their endless love and support.

I hope the results of my thesis would provide some contribution to PMB Defence and to society.
Table of Contents

Declaration ... ii
Abstract .. iii
Acknowledgement .. v
Table of Contents ... 1
List of Figures .. 4
List of Tables ... 8
Nomenclature .. 9
Abbreviations .. 9
Chemical abbreviations ... 10
1 Introduction ... 11
2 Background .. 13
2.1 Lead-acid battery background ... 13
2.2 Construction of a lead-acid battery ... 14
2.3 Plate types ... 16
2.3.1 Flat pasted plate production .. 16
2.3.2 Tubular-plate production .. 17
2.4 Chemistry of a lead-acid battery .. 18
2.5 Cycle life and the uses of traction lead-acid batteries ... 19
3 Literature review ... 20
3.1 Influence of antimony lead alloy grids employed in deep-cycle batteries 20
3.2 Stress in the positive electrode .. 23
3.2.1 Lead spines corrosion ... 24
3.2.2 Oxidation of lead and volume change and the relation to stress in the positive electrode ... 24
3.3 The effect of active mass thickness on cycle life of low-antimony lead-alloy spine employed in traction deep-cycle ... 26
3.4 Techniques for corrosion measurement .. 27
3.5 Research gap .. 29
3.6 Research objectives ... 29
4 Materials and methods ... 31
4.1 Materials ... 31
4.2 Preparation of the lead spines ... 31
4.3 Oxide filling and pickling process ... 33
4.4 Preparation of the PVC block prior to cell assembly ... 35
4.5 Assembling cells for testing ... 36
4.6 Experimental set up .. 37
 4.6.1 Charge/discharge unit calibration .. 38
 4.6.2 Cells formation and cycling test ... 39
 4.6.3 Positive active mass (PAM) utilization ... 41
 4.6.4 Reference electrode ... 41
 4.6.5 Recharge ... 42
 4.6.6 Sample preparation for microscopy ... 43
 4.6.7 Scanning electron microscopy (SEM) .. 44
 4.6.8 Spot and elements distribution mapping with electron probe micro analysis (EPMA) ... 45
 4.6.8.1 Spot analysis .. 45
 4.6.8.2 Elements distribution mapping .. 46
 4.6.9 Measurement of corrosion layer .. 51
5 Experimental results and discussions .. 52
 5.1 A forensic analysis of a decommissioned low-antimony lead-alloy tubular-plate traction lead-acid cell at Pacific Marine Batteries (PMB) 52
 5.2 The effect of active mass thickness on cycle life of low-antimony lead-alloy spine employed under deep-discharge cycling 55
 5.2.1 The effect of active mass thickness on cycle life 55
 5.2.2 The effect of active mass thickness on spine corrosion 58
 5.2.2.1 Corrosion measurement .. 61
 5.2.3 Lead sulfate layer in the corrosion layer interface 62
 5.3 The effect of active mass thickness on stress 69
 5.3.1 The effect of active mass thickness on electrode thickness 70
 5.3.2 The effect of active mass thickness on the corrosion layer morphology 71
 5.3.2.1 The effect of active mass thickness on corrosion layer cross-sectional area .. 71
 5.3.2.2 The effect of active mass thickness on the number of cracks found in the corrosion layer .. 72
 5.3.2.3 Effect of the active mass thickness on the porosity of the active mass 75
 5.4 Defects that may have influenced the results 76
 5.5 Conclusion .. 84
6 Recommendations for future study .. 86
7 References .. 87
Appendix A – Calibration results of the charge-discharge units 91
Appendix B – Obtained of residual cross-sectional area of the spine and the corrosion layer area from the SEM image of the cross section of the electrode utilization97
List of Figures

Figure 1 - Portrait of Gaston Plante´ (Kurzweil 2010) .. 13
Figure 2 - Drawing of a secondary LAB cell with corroded coiled lead plates to illustrated the early development (Kurzweil 2010) .. 14
Figure 3 - Illustrates an early tubular battery constructed around 1900 using tubes of hard rubber washers piled upon one another (Ruetschi 1977) 15
Figure 4 - Cut out section showing the inside of a modern traction, lead-acid battery with positive tubular-plate using gauntlets (Pacific Marine Batteries) 15
Figure 5 - (a) Expanded grid (Pacific Marine Batteries) (b) cast grid (Exide Technologies) illustrating modern lead grid designs compared to a thin flat sheet of lead used for grid in early development ... 16
Figure 6 - Lead oxide pasted onto expanded and cast grids. (a) Dry unformed expanded negative flat plate (Pacific Marine Batteries) (b) Dry unformed flat positive plate (Exide Technologies) .. 17
Figure 7 - Die-cast lead spine. (b) Gauntlet ‘woven retainer tube’. (Pacific Marine Batteries)... 18
Figure 8 - Un-formed positive tubular-plate (Pacific Marine Batteries) 18
Figure 9 - Tubular-plate with central spines encapsulated by the active mass (PMB) 23
Figure 10 - SEM image of a grid corrosion layer interface for a cycled battery (Ball et al. 2002) .. 25
Figure 11 - Schematic representation of structure of corrosion layer (Pavllov 1994) 26
Figure 12 - Drawing illustrate a residual cross sectional area of the spine after 15 years of service under float charge condition (Battrien 2002) .. 28
Figure 13 - Cast spines from HADI die casting machine ... 32
Figure 14 - Spine was cut to the required length from the long cast spines 32
Figure 15 - (a) the boss was filed down to fit the 6.2 mm and 7.3 mm gauntlets. (b) Shows end results where the gauntlet was inserted firmly into the boss 33
Figure 16 - Illustrates how oxide was fed and held inside the gauntlet by knocking in the cap and applied the glue to hold it together .. 34
Figure 19 – Example of an assembled single tubular positive electrode with welded extended lug (terminal), was pickled in diluted H$_2$SO$_4$ prior to formation. 35
Figure 20 - The PVC block showing vertical drilled hole to support the free standing electrode and side holes to allow acid to move freely between plates. 35
Figure 21 – Illustration of how a single cell was assembled with a tubular positive electrode and one flat negative plate. .. 36
Figure 22 - Six individual cells were assembled in an automotive battery container.
Each cell consisted of a tubular electrode and one flat negative plate. PVC block was used to support the electrode and separate the positive and the negative from shorting out. .. 37
Figure 23 - Schematic of the multiple cells connected in series to a charge-discharge unit. .. 37
Figure 24 - Cells were wired up to the charge-discharge units and the data logger...... 38
Figure 25 - Charger-discharger unit built by PMB connected in series for calibration.. 38
Figure 26 - Calibration plot of set current vs discharge current under discharge mode. 39
Figure 27 – An example of a typical completed discharge/charge cycle 40
Figure 28 – Standard reference electrode (Ag/AgCl/Sat KCl) to measure positive and negative potentials .. 41
Figure 29 – The limited amount of PAM causes a steep positive potential curve at the end-of-discharge .. 42
Figure 30 - Electrodes were dried in the oven after washed .. 43
Figure 31- Prepared sections of the electrode for mounting in epoxy resin 44
Figure 32 - Drawing to illustrate the mounting of dissected electrode in epoxy resin... 44
Figure 33 - Sample of mounted sections electrode after final polishing 44
Figure 34 – BSC SEM image of a prepared cross section electrode captured on a Philips XL40 scanning electron microscope at an accelerating voltage of 15 kV 45
Figure 35 - Cameca SXFive Electron Microprobe equipped with five WDS X-Ray detectors .. 47
Figure 36 – A numerous of spots were quantitatively analyzed across the corrosion layer for Pb, O, Sb, Sn and S elements using a Cameca SXFive Electron Microprobe (400X) .. 48
Figure 37 – Elemental distribution mapped part of the selected corrosion layer area showing the colourisation intensities of five different elements analyzed by a Cameca SXFive Electron Microprobe ... 50
Figure 38 – Illustration of a SEM image showing the cross-sectional area of the corrosion layer, corroded spine and different type of cracks 51
Figure 39 - Photograph of a cell after 5 years in service. The bottom plastic bar that supported the plate and prevented the active mass from falling out has been pushed out from the gauntlet (PMB) ... 53
Figure 40 – The identical cell showing the top of the plate has been distorted as a result of expansion of the corroded spines (Courtesy of PMB Pty. Ltd.) 53
Figure 41 – A plate removed from the cell showing buckling due to stress caused by volume expansion of the corrosion product (Courtesy of PMB Pty. Ltd.) 54
Figure 42 - Photo of lead spines prior to service (Courtesy of PMB Pty. Ltd.) 54
Figure 43 - Photo of corroded lead spines after 5 years of service (Courtesy of PMB). 55
Figure 44 – Capacity test showing end of discharge voltage of the tubular-plate with different active mass thickness ... 56
Figure 45 – Increased PbO₂ content with increasing cycle number for various active material thicknesses .. 56
Figure 46 – Capacity of low-antimony lead-acid battery subjected to deep-discharge cycling (Barrett et al. 1981) ... 57
Figure 47 – Measurement of remaining spine radius ... 58
Figure 48 – Reduction in spine cross-sectional area with increasing cycle number for various active material thicknesses ... 60
Figure 49 – The relationship between corrosion rate and the active mass thickness (Rogatchev et al. 1983) .. 60
Figure 50 – SEM image of a cross section of a new electrode at unformed state with 40x magnification .. 61
Figure 51 - SEM image of a cycled electrode after 72 cycles at 40x magnification ... 62
Figure 52 - SEM of cross section of a cycled electrode at cycle number 72 showing the quantitative electron probe analysis positions .. 65
Figure 53 - SEM of cross section of cycled electrode at cycle number 72 showing the inner corrosion layer .. 65
Figure 54 – Electron micrograph of a positive plate showing sulfate rich layer (Barrett et al. 1981) .. 66
Figure 55 – Quantitative spot analysis of the lead (Pb), oxygen (O), antimony (Sb) and sulfur (S) composition .. 66
Figure 56 - Quantitative spot analysis of the antimony (Sb) and sulfur (S) composition from Figure 54 with smaller scale ... 67
Figure 57 – Area maps for antimony and sulfur .. 67
Figure 58 – SEM of a large corrosion defect showing the positions of quantitative electron probe analysis ... 68

Figure 59 - Electrode thickness increased with increasing cycle number for various active mass thicknesses ... 70

Figure 60 – Thickness of the electrode fully charged and in a discharged state for different active mass thicknesses (Gauntlet diameter) .. 71

Figure 61 – Increased in corrosion layer area with increasing cycle number for various thickness of the active mass at different cycle stage .. 72

Figure 62 – SEM of cross-section showing cracks perpendicular to the spine 74

Figure 63 – Number of cracks for various active mass thickness at different cycle stages .. 75

Figure 64 - SEM image of a charged cross section showing porous active mass structure ... 76

Figure 65 – SEM image of a cross section of an un-formed and un-cycled electrode showing lead spine with sharp corners .. 77

Figure 66 - SEM image of a cross section of the cycled electrode showing accelerated corrosion with large open cracks at sharp corners 78

Figure 67 – SEM image of the spine was not sitting central to the gauntlet 79

Figure 68 – Optical image showing a number of large voids in the lead spine 79

Figure 69 – Close up of the above SEM image showing porosity in the spine 80

Figure 70 - SEM image of corrosion attack along the defect areas at 40x magnification ... 80

Figure 71 – Close up SEM image that may be due to corrosion attack along the a large casting defect at 400x magnification ... 81

Figure 72 – SEM showing detached broken corrosion layer due to poor adhesion outer layer .. 82

Figure 73 – shedding of the outer corrosion due to increase in corrosion product 83
List of Tables

Table 1 - Provide design information to build the tubular positive electrode and negative plates.. 34

Table 2 – Summarized of element analyzed, peak/background position, count times and standards. .. 48

Table 3 – Summarized of elemental overlap corrections.. 49

Table 4 – XRD result showing increased in β-PbO₂ content during cycling 57

Table 5 - Quantitative electron probe analysis results at various spots on the areas of Figure 58... 69

Table 6 – X-ray diffraction (XRD) showing lead sulfate content in the corrosion layer 69
Nomenclature

% percentage
µm micro meter
A ampere
Ah ampere hour
g gram
h hour
kg kilogram
kV kilovolt
ml millilitre
mm millimetre
V volt
α alpha
β beta

Abbreviations

BEVs battery electrical vehicles
BSE backscattered electron
C/D charge/discharge
CL corrosion layer
DCSL dense corrosion sub-layer
EPMA electron micro-probe analysis
g/cc gram per cubic centimetre
LAB lead-acid battery
MAN mean atomic number
Me metal
NAM negative active mass
PAM positive active mass
PCSL porous corrosion sub-layer
PMB Pacific Marine Batteries
PVC polyethylene vinyl chloride
sat. saturated
SEM scanning electron microscope
sp. gr. specific gravity
tp polarization time
v/v volume/volume
WDS wavelength-dispersive spectroscopy
wt.% weight percentage
XRD X-ray diffraction

Chemical abbreviations

Ag silver
AgCl silver chloride
Ca calcium
H+ hydrogen atom
H2 hydrogen gas
H2O water
H2SO4 sulfuric acid
KCl potassium chloride
O2 oxygen
Pb lead
Pb3O4 red lead powder
PbO lead oxide
PbO2 lead dioxide
PbSO4 lead sulfate
Sb antimony
Sn tin