The Efficient and Selective Catalytic Oxidation of Terpenoids and Aromatic Hydrocarbons by the P450 Monooxygenase CYP101B1

Emma Ashleigh Hall

Supervisors:
Dr Stephen Bell
Associate Professor Hugh Harris

August 2015

Thesis submitted for the degree of Master of Philosophy
Contents

Abstract \hspace{10cm} v

1 Introduction to Cytochrome P450 enzymes and CYP101B1 \hspace{1cm} 2
 1.1 General Overview of P450s \hspace{1cm} 2
 1.2 The CYPome of Novosphingobium aromaticivorans \hspace{1cm} 7

2 Experimental \hspace{1cm} 10
 2.1 General \hspace{1cm} 10
 2.2 Whole-cell turnovers \hspace{1cm} 12
 2.3 Enzyme Purification \hspace{1cm} 13
 2.3.1 Purification of CYP101B1 \hspace{1cm} 13
 2.3.2 Purification of ArR \hspace{1cm} 14
 2.3.3 Purification of Arx \hspace{1cm} 14
 2.4 Spin-State Shifts \hspace{1cm} 15
 2.5 Dissociation constants \hspace{1cm} 15
 2.6 In-vitro turnovers and NADH consumption rates \hspace{1cm} 17

3 Assessing the Substrate Range of CYP101B1 \hspace{1cm} 19
 3.1 Introduction \hspace{1cm} 19
 3.2 Norisoprenoid Results \hspace{1cm} 20
 3.3 Norisoprenoid Discussion \hspace{1cm} 28
 3.4 Aromatic Substrate Results \hspace{1cm} 29
 3.5 Aromatic Substrate Discussion \hspace{1cm} 32
 3.6 Summary \hspace{1cm} 33

4 Analysis of Terpenoids as Substrates for CYP101B1 \hspace{1cm} 35
 4.1 Introduction \hspace{1cm} 35
 4.2 Results \hspace{1cm} 36
 4.3 Discussion \hspace{1cm} 47

5 Oxidation of Monoterpenoid Acetates by CYP101B1 \hspace{1cm} 50
5.1 Introduction .. 50
5.2 Results ... 50
5.3 Discussion ... 57

6 The Oxidation of Two-ring Aromatics by CYP101B1 60
6.1 Introduction .. 60
6.2 Results ... 60
6.3 Discussion ... 69

7 Conclusion and Future Directions 73

List of Figures .. 80
List of Tables .. 86
A Retention Times of Substrates and Products 87
B Spin State Shifts ... 90
C Dissociation Constant Analysis 95
D In vitro NADH Consumption Rates 98
E GC-MS and HPLC Analysis of Turnovers 100
F NMR Data of Products .. 106
 F.1 β-Ionone .. 106
 F.2 α-Ionone .. 111
 F.3 β-Damascone .. 118
 F.4 α-Methyl ionone .. 123
 F.5 α-Ionol ... 127
 F.6 β-Ionol ... 134
 F.7 Phenylcyclohexane .. 139
 F.8 Camphor ... 141
 F.9 1,8-Cineole ... 144
 F.10 1,4-Cineole .. 155
 F.11 (+)-Fenchone ... 160
 F.12 (1R)-(−)-Nopol ... 163
 F.13 cis-Jasnone .. 170
 F.14 2-Adamantanol ... 176
 F.15 2-Adamantanone ... 176

iii
F.16	Fenyl acetate	177
F.17	Bornyl acetate	181
F.18	Isobornyl acetate	186
F.19	5-Norbornen-2-yl acetate	190
F.20	Myrtenyl acetate	193
F.21	(+)-Sclareolide	199
F.22	2,7-Dimethyl naphthalene	202
F.23	3-Methyl biphenyl	206
F.24	4-Methyl biphenyl	208
F.25	(1,1'-biphenyl)-4-methanol	210
F.26	Diclofenac	212

G Publications Arising from this Thesis 213
Abstract

CYP101B1, from the bacterium *Novosphingobium aromaticivorans*, has been shown to bind and oxidise β-ionone to 3-hydroxy-β-ionone and camphor to 5-exo-hydroxycamphor. Whole-cell reactions of CYP101B1 have been observed to turn blue, which suggests indole oxidation to indigo. Therefore, CYP101B1 has the potential to act as a biocatalyst for the oxidation of a broad range of substrates.

β-Ionone and other similar norisoprenoids were initially tested to determine which structural features were important for binding to CYP101B1. Small adjustments to the β-ionone structure indicated the butenone side chain was important for tight substrate binding to CYP101B1. The cyclohexene component of β-ionone is also a better fit for the active site than linear or aromatic analogues. Further testing of aromatic substrates, such as indole, phenylcyclohexane and *p*-cymene, indicated that CYP101B1 binds substituted aromatics such as phenylcyclohexane and could produce products in a reasonable yield. Smaller aromatics, such as *p*-cymene, could still bind and react with CYP101B1, but the activities and product levels generated were lower than the larger two-ring aromatics.

CYP101B1 oxidation of camphor and other terpenoid based substrates was studied. However, these substrates had large dissociation constants and low product formation rates due to a larger proportion of the NADH being used to reduce oxygen to hydrogen peroxide or water instead of products. Multiple oxidation products were formed with these substrates, which was most likely due to their poor fit in the CYP101B1 active site. This was not an ideal outcome, so the substrates or enzyme require modification to improve the reactivity and selectivity of the biocatalyst.

Terpenoid substrates were modified to include an acetate side chain, resulting in a structure more similar to the norisoprenoids. This greatly improved the binding and activity with CYP101B1, and resulted in production of a single oxidation product in the *in vitro* turnovers. The ketone moiety of the acetate group leads to better binding to CYP101B1 and results in more desirable catalytic properties.

The affinity of CYP101B1 for aromatic structures was determined using a range of biphenyl and naphthalene derivatives. These structures exhibited reasonably tight binding; however, moderate NADH consumption rates, product formation rates and coupling between the substrate and CYP101B1 were observed. Therefore, the CYP101B1 active site favours more polar sub-
strates. Activity for hydrophobic substrates could be increased by modifying CYP101B1 to remove specific contact between a hydrophilic amino acid side chain and the ketone group, which is important in the binding of norisoprenoids and monoterpenoid acetate substrates. The turnovers had high product selectivity and, in most cases, only a single product was generated. The drug, diclofenac, was reacted with CYP101B producing the metabolite, 4'-hydroxydiclofenac, in reasonable yield.

CYP101B1 is a useful biocatalyst for selective C–H bond oxidation of norisoprenoids and terpenoid acetates. It also shows potential for other substrates if CYP101B1 is modified or with the addition of an ester protecting group onto the target molecule.
Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: Date:
Acknowledgments

I would like to thank Stephen Bell for being an extremely helpful supervisor over the two years of my project. Thanks goes to Hugh Harris who also provided help whenever I asked.

The Bell group and Pyke group also deserve thanks for all their support and friendship during my masters which meant I always enjoyed my time in the lab.

I would also like to thank my family and friends for always encouraging me to be the person I can be and to perform to the best of my abilities.

Special thanks to Michael, who put up with proofreading my thesis and all the other ups and downs associated with doing a research degree and writing a thesis.
List of Figures

1.1 Structure of a heme cofactor .. 2
1.2 The different classes of electron transfer proteins used by P450s 3
1.3 The catalytic cycle of P450 enzymes 4
1.4 The radical recombination mechanism of P450 enzymes 4
1.5 Epoxidation and group migration reactions 5
1.6 Aromatic oxidation by the NIH shift 5
1.7 Two main uncoupling reactions of P450s 6

2.1 The spin state shifts of P450$_{\text{cam}}$ 16
2.2 An example of a NADH turnover assay 17

3.1 Aromatics, Norisoprenoids and related substrates 19
3.2 The products from the α-ionone and β-ionone in vivo turnovers 21
3.3 GC-MS analysis of CYP101B1 turnovers of α-ionone 21
3.4 Spin state shifts and dissociation constants for α-ionone and β-damascone .. 23
3.5 The products produced from the β-damascone turnovers 24
3.6 GC-MS analysis of CYP101B1 in vivo turnover of β-damascone 24
3.7 GC-MS analysis of CYP101B1 in vitro turnover of pseudoionone 25
3.8 Spin state shifts for selected norisoprenoid compounds 26
3.9 Products of α-methyl ionone, α-ionol and β-ionol 27
3.10 Dissociation constants for selected norisoprenoid compounds . 28
3.11 A whole-cell turnover after the addition of indole 29
3.12 Conversion of indole to indigo mediated by P450 30
3.13 The reactions of Phenylcyclohexane and p-cymene with CYP101B1 31
3.14 Spin state shifts and dissociation constants for phenylcyclo-
hexane and p-cymene .. 31
3.15 GC-MS analysis of in vitro CYP101B1 turnover of p-Cymene . 32

4.1 The terpenoid substrates tested with CYP101B1 35
4.2 Products from the turnovers of the camphor isomers 36
4.3 GC-MS analysis of CYP101B1 turnovers of (1R)-(+) camphor and (1S)-(−)-camphor .. 37
4.4 GC-MS analysis of CYP101B1 in vivo turnover of (+)-fenchone 38
4.5 The in vitro turnover of (+)-Fenchone with CYP101B1 39
4.6 The products from the 1,8-cineole whole-cell turnover 40
4.7 GC-MS analysis of CYP101B1 turnovers of 1,8-cineole 40
4.8 The identified product from the 1,4-cineole turnovers 41
4.9 GC-MS analysis of CYP101B1 in vitro turnover of 1,4-cineole 42
4.10 The products from the 1-adamantanol, 2-adamantanol and 2-adamantanone whole-cell turnovers 43
4.11 The structures of carvone, α- and β-pinene 43
4.12 The products isolated from the (1R)-(−)-nopol in vivo turnover 44
4.13 GC-MS analysis of CYP101B1 turnovers of (1R)-(−)-nopol . 45
4.14 The products isolated from cis-jasmon oxidation 45
4.15 GC-MS analysis of CYP101B1 in vitro turnover of cis-jasmon 46
4.16 The single product isolated from (+) -sclareolide oxidation with the ß-ionone-like backbone in red. 46

5.1 The monoterpenoid acetate substrates tested with CYP101B1 51
5.2 GC-MS analysis of CYP101B1 in vivo turnover of neryl acetate 52
5.3 GC-MS analysis of CYP101B1 in vivo turnover of fenchyl acetate 52
5.4 The single product produced from the whole-cell turnover of fenchyl acetate ... 53
5.5 Isobornyl acetate and bornyl acetate products from the in vitro turnovers with CYP101B1 53
5.6 Spin state shifts for selected terpenoid acetate and parent terpenoid substrates ... 55
5.7 Myrtanyl acetate products from the in vivo turnover. 56
5.8 GC-MS analysis of CYP101B1 turnovers of myrtanyl acetate . 57
5.9 Showing the site of oxidation for the monoterpenoid acetates and ß-ionone which is 6 or 7 carbons away from the ketone group. ... 58

6.1 The NADH consumption of CYP101B1 turnover of naphthalene 61
6.2 Aromatic Substrates tested with CYP101B1 62
6.3 1-methyl naphthalene and 2-methyl naphthalene products from the in vitro turnovers .. 63
6.4 Spin state shifts for selected aromatic compounds 64
6.5 2,7-Dimethyl naphthalene products from the in vitro and in vivo turnovers ... 65

81
6.6 HPLC analysis of CYP101B1 turnovers with 2,7-dimethyl naphthalene 65
6.7 1-ethyl naphthalene and 2-ethyl naphthalene products from the \textit{in vitro} turnovers .. 66
6.8 Products from the turnovers of 2-methyl biphenyl and 3-methyl biphenyl 67
6.9 Reaction scheme for the oxidation of 4-methyl biphenyl via a NIH shift rearrangement. 68
6.10 HPLC analysis of \textit{in vitro} CYP101B1 turnovers for 4-methyl biphenyl (black) and (1,1'-biphenyl)-4-methanol (red). 68
6.11 4-Methyl biphenyl and (1,1'-biphenyl)-4-methanol products from the \textit{in vitro} turnovers. 69
6.12 Product from the turnover over of diclofenac 69
6.13 Reaction scheme for the oxidation of naphthalene via a NIH shift rearrangement. 70

B.1 Spin state shifts for selected substrates 91
C.1 Dissociation constants for selected substrates 95
D.1 NADH consumption rates for selected substrates 98
E.1 GC-MS analysis of \textit{in vitro} CYP101B1 turnovers of 1-adamantanol, 2-adamantanol and 2-adamantanone co-eluted 100
E.2 GC-MS analysis of \textit{in vivo} CYP101B1 turnover of \(\alpha\)-ionol 101
E.3 GC-MS analysis of \textit{in vivo} CYP101B1 turnover of \(\beta\)-ionol 101
E.4 GC-MS analysis of \textit{in vivo} CYP101B1 turnover of \(\alpha\)-methyl ionone 102
E.5 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 1-methyl naphthalene co-eluted with 1-naphthyl methanol 102
E.6 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 2-methyl naphthalene co-eluted with 2-naphthyl methanol 103
E.7 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 1-ethyl naphthalene co-eluted with 1-naphthyl-1-ethanol 103
E.8 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 2-ethyl naphthalene co-eluted with 2-naphthyl-1-ethanol 104
E.9 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 2-methyl biphenyl co-eluted with 2-methanol biphenyl 104
E.10 HPLC analysis of \textit{in vitro} CYP101B1 turnover of 3-methyl biphenyl 105
F.1 \(\beta\)-Ionone products 106
F.2 1H NMR of 3-hydroxy-β-ionone ... 107
F.3 13C NMR of 3-hydroxy-β-ionone .. 108
F.4 1H NMR of 4-hydroxy-β-ionone .. 109
F.5 13C NMR of 4-hydroxy-β-ionone ... 110
F.6 α-Iionone products ... 111
F.7 1H NMR of trans-3-hydroxy-α-ionone 112
F.8 13C NMR of trans-3-hydroxy-α-ionone 113
F.9 1H NMR of 3-oxo-α-ionone ... 114
F.10 13C NMR of 3-oxo-α-ionone ... 115
F.11 1H NMR of cis-3-hydroxy-α-ionone ... 116
F.12 13C NMR of cis-3-hydroxy-α-ionone 117
F.13 1H NMR of 3-oxo-α-methyl ionone 123
F.14 13C NMR of 3-oxo-α-methyl ionone 124
F.15 1H NMR of trans-3-hydroxy-α-methyl ionone 128
F.16 13C NMR of trans-3-hydroxy-α-methyl ionone 129
F.17 1H NMR of cis-3-hydroxy-α-methyl ionone 132
F.18 13C NMR of cis-3-hydroxy-α-methyl ionone 133
F.19 1H NMR of 3-oxo-α-methyl ionone 134
F.20 13C NMR of 3-oxo-α-methyl ionone 135
F.21 1H NMR of trans-3-hydroxy-α-ionol 136
F.22 13C NMR of trans-3-hydroxy-α-ionol 137
F.23 1H NMR of 3-oxo-α-ionol ... 138
F.24 13C NMR of 3-oxo-α-ionol .. 139
F.25 1H NMR of cis-3-hydroxy-α-ionol ... 140
F.26 13C NMR of cis-3-hydroxy-α-ionol 141
F.27 1H NMR of trans-3-hydroxy-α-ionol 142
F.28 13C NMR of trans-3-hydroxy-α-ionol 143
F.29 1H NMR of cis-3-hydroxy-α-ionol ... 144
F.30 13C NMR of cis-3-hydroxy-α-ionol 145
F.31 1H NMR of 3-oxo-α-ionol ... 146
F.32 13C NMR of 3-oxo-α-ionol .. 147
F.33 1H NMR of 3-endo-hydroxy-1,8-cineole 148
F.34 Phenylcyclohexane product ... 149
F.35 1H NMR of trans-4-phenylcyclohexanol 150
F.36 Camphor products ... 151
F.37 1H NMR of 9-hydroxy-(1R)-(−)-camphor 152
F.38 13C NMR of 9-hydroxy-(1R)-(−)-camphor 153
F.39 1,8-Cineole products ... 154
F.40 1H NMR of 3-oxo-1,8-cineole .. 155
F.41 13C NMR of 3-oxo-1,8-cineole .. 156
F.42 1H NMR of 3-endo-hydroxy-1,8-cineole 157

83
F.43 13C NMR of 3-endo-hydroxy-1,8-cineole 149
F.44 COSY of 3-endo-hydroxy-1,8-cineole 150
F.45 1H NMR of 3-endo-hydroxy-5-oxo-1,8-cineole 151
F.46 13C NMR of 3-endo-hydroxy-5-oxo-1,8-cineole 152
F.47 1H NMR of 3,5-endo-dihydroxy-1,8-cineole 153
F.48 13C NMR of 3,5-endo-dihydroxy-1,8-cineole 154
F.49 1,4-Cineole product 155
F.50 1H NMR of 6-endo-hydroxy-1,4-cineole 156
F.51 13C NMR of 6-endo-hydroxy-1,4-cineole 157
F.52 COSY NMR of 6-endo-hydroxy-1,4-cineole 158
F.53 DPFGSE NOESY for 6-endo-hydroxy-1,4-cineole for the exo
 H6 signal ... 159
F.54 (+)-fenchone product 160
F.55 1H NMR of 5-exo-hydroxy- (+)-fenchone 161
F.56 13C NMR of 5-exo-hydroxy- (+)-fenchone 162
F.57 (1R)-(−)-Nopol products 163
F.58 1H NMR of 1-hydroxy-(1R)-(−)-nopol 164
F.59 13C NMR of 1-hydroxy-(1R)-(−)-nopol 165
F.60 COSY NMR of 1-hydroxy-(1R)-(−)-nopol 166
F.61 1H NMR of 4-oxo-(1R)-(−)-nopol 167
F.62 13C NMR of 4-oxo-(1R)-(−)-nopol 168
F.63 COSY NMR of 4-oxo-(1R)-(−)-nopol 169
F.64 cis-jasmone products 170
F.65 1H NMR of 4-hydroxy-cis-jasmone 171
F.66 13C NMR of 4-hydroxy-cis-jasmone 172
F.67 COSY NMR of 4-hydroxy-cis-jasmone 173
F.68 1H NMR of 11-hydroxy-cis-jasmone 174
F.69 13C NMR of 11-hydroxy-cis-jasmone 175
F.70 2-adamantanol products 176
F.71 2-adamantanone products 176
F.72 Fenchyl acetate product 177
F.73 1H NMR of 5-exo-hydroxy-fenchyl acetate 178
F.74 13C NMR of 5-exo-hydroxy-fenchyl acetate 179
F.75 COSY NMR of 5-exo-hydroxy-fenchyl acetate 180
F.76 Bornyl acetate product 181
F.77 1H NMR of 9-hydroxybornyl acetate 182
F.78 13C NMR of 9-hydroxybornyl acetate 183
F.79 DPFGSE NOESY of 9-hydroxybornyl acetate for the exo H2
 signal ... 184
F.80 DPFGSE NOESY of 9-hydroxybornyl acetate for the exo H5
 signal ... 185
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.81</td>
<td>Isobornyl acetate product</td>
</tr>
<tr>
<td>F.82</td>
<td>1H NMR of 5-exo-hydroxyisobornyl acetate</td>
</tr>
<tr>
<td>F.83</td>
<td>13C NMR of 5-exo-hydroxyisobornyl acetate</td>
</tr>
<tr>
<td>F.84</td>
<td>COSY NMR of 5-exo-hydroxyisobornyl acetate</td>
</tr>
<tr>
<td>F.85</td>
<td>5-Norbornen-2-yl acetate product</td>
</tr>
<tr>
<td>F.86</td>
<td>1H NMR of 5-epoxynorborane-2-yl acetate</td>
</tr>
<tr>
<td>F.87</td>
<td>13C NMR of 5-epoxynorborane-2-yl acetate</td>
</tr>
<tr>
<td>F.88</td>
<td>Myrtenyl acetate products</td>
</tr>
<tr>
<td>F.89</td>
<td>1H NMR of 4-oxomyrtenyl acetate</td>
</tr>
<tr>
<td>F.90</td>
<td>13C NMR of 4-oxomyrtenyl acetate</td>
</tr>
<tr>
<td>F.91</td>
<td>1H NMR of 4-cis-hydroxymyrtenyl acetate</td>
</tr>
<tr>
<td>F.92</td>
<td>13C NMR of 4-cis-hydroxymyrtenyl acetate</td>
</tr>
<tr>
<td>F.93</td>
<td>COSY NMR of 4-cis-hydroxymyrtenyl acetate</td>
</tr>
<tr>
<td>F.94</td>
<td>(+)-Sclareolide</td>
</tr>
<tr>
<td>F.95</td>
<td>1H NMR of (S)-3-(+)-hydroxysclareolide</td>
</tr>
<tr>
<td>F.96</td>
<td>13C NMR of (S)-3-(+)-hydroxysclareolide</td>
</tr>
<tr>
<td>F.97</td>
<td>2,7-Dimethyl naphthalene products</td>
</tr>
<tr>
<td>F.98</td>
<td>1H NMR of 2-(7-methyl-naphthyl)methanol</td>
</tr>
<tr>
<td>F.99</td>
<td>1H NMR of 2-carboxy-7-methylnaphthalene</td>
</tr>
<tr>
<td>F.100</td>
<td>13C NMR of 2-carboxy-7-methylnaphthalene</td>
</tr>
<tr>
<td>F.101</td>
<td>3-methyl biphenyl product</td>
</tr>
<tr>
<td>F.102</td>
<td>1H NMR of 3-methanol biphenyl</td>
</tr>
<tr>
<td>F.103</td>
<td>1H NMR of 3-methanol biphenyl</td>
</tr>
<tr>
<td>F.104</td>
<td>1H NMR of 4'-hydroxy-4-methylbiphenyl</td>
</tr>
<tr>
<td>F.105</td>
<td>13C NMR of 4'-hydroxy-4-methylbiphenyl</td>
</tr>
<tr>
<td>F.106</td>
<td>1H NMR of (4'-hydroxy-1,1'-biphenyl)-4-methanol</td>
</tr>
<tr>
<td>F.107</td>
<td>diclofenac product</td>
</tr>
</tbody>
</table>
List of Tables

3.1 Substrate binding, steady state kinetic data and coupling data for norisoprenoids and selected aromatics with CYP101B1. . . 20

4.1 Terpenoid substrate binding, steady state kinetic data and coupling with CYP101B1. 37

5.1 Monoterpenoid acetate substrate binding, steady state kinetic data and coupling with CYP101B1. 54

6.1 Naphthalene and biphenyl derivatives steady state kinetic data with CYP101B1. 61

6.2 Aromatic substrate binding, steady state kinetic data and coupling with CYP101B1. 63

A.1 The GC-MS m/z and retention times and/or HPLC retention times of substrates and isolated products. 87

B.1 Spin state shifts for other substrates with CYP101B1 90