‘Heat Stress in Racing Greyhounds’

by

Jane McNicholl

A thesis submitted for the fulfilment of the requirements of the Doctor of Philosophy

February 2016

The University of Adelaide
Faculty of Sciences
School of Animal and Veterinary Sciences
Roseworthy Campus
Table of Contents

Abstract ... 8
Glossary .. 12

Chapter 1: Background ... 13
1.1 Community attitudes towards animals .. 14
1.2 Animals in recreation and sport ... 16
1.3 Greyhound racing .. 17
1.4 Animal welfare and the greyhound Industry ... 17

Chapter 2: Review of Literature .. 20
2.1 Thermoregulation .. 20
 2.1.1 Thermoneutral zone ... 22
 2.1.2 Heat gain ... 23
 2.1.3 Heat loss .. 27
2.2 Influence of environment on thermoregulation .. 30
 2.2.1 Acclimatization /acclimation ... 30
 2.2.2 Adaptation to cold environment ... 31
 2.2.3 Adaptation to hot environment ... 33
2.3 Influence of exercise on thermoregulation ... 36
2.4 Heat stress/heat strain/heat stroke .. 37
 2.4.1 Heat stroke ... 37
2.5 Exertional hyperthermia ... 40
2.6 Rhabdomyolysis/myoglobinuria .. 41
2.7 Transport .. 42
Chapter 3: Determination of effective means to measure greyhound body temperature

3.1 Introduction .. 73

3.2 Materials and methods .. 74
 3.2.1 Study 1 design ... 74
 3.2.2 Temperature recording devices ... 75
 3.2.3 Environmental monitoring ... 77
 3.2.4 Animals ... 78
 3.2.5 Statistical analysis ... 78
 3.2.6 Procedures ... 78

3.3 Results Study 1 .. 81
 3.3.1 Laboratory validation .. 81
 3.3.2 Field validation .. 83

3.4 Study 2 (ingestible sensors) ... 86
 3.4.1 Location .. 86
 3.4.2 Animals .. 86
 3.4.3 Procedure ... 86

3.5 Results Study 2 .. 88

3.6 Discussion .. 91
Abstract

Heat related illness has been recorded in dogs undertaking strenuous exercise in high temperatures. In South Australia, summertime daily maximum temperatures may reach 50°C. This study aimed to determine if a safe maximum ambient temperature for racing in greyhounds can be established and if particular environmental or phenotypic factors increase the risk of greyhounds developing hyperthermia.

A preliminary study compared four temperature recording devices to determine their suitability for use in a racing environment. Digital rectal thermometry was the most reliable and convenient method of recording greyhounds’ body temperature. An observational study was then undertaken at racetracks in South Australia, during which, environmental temperature and relative humidity were recorded and greyhounds’ body temperatures measured on arrival, pre- and post-race. A mean increase of 2.1 ± 0.4 °C in greyhounds’ (n=239) post-race rectal temperature was recorded. No association was found between environmental temperatures and greyhounds’ temperatures on arrival or pre-race. However, post-racing there was a small but significant relationship between shade temperature and both rectal temperature ($r^2 = 0.023, P = 0.027$) and the increase in rectal temperature ($r^2 = 0.033, P = 0.007$). No association between environmental relative humidity and body temperature was detected.

The influence of sex, bodyweight and coat colour on body temperature increases were investigated. There was a small but significant relationship ($r^2 = 0.04, P = 0.009$) between
bodyweight and post-exercise rectal temperature. Greyhounds of dark colours developed higher temperatures than light coloured greyhounds (P <0.05).

Animal housing at racetracks was examined and temperature and relative humidity levels in enclosed environments were recorded using data loggers and ibuttons. A significant relationship was found between kennel house temperatures and body temperature changes of greyhounds during racing ($r^2 = 0.03$, P = 0.009).

Temperature and relative humidity levels in dog transport vehicles were monitored with ibuttons when vehicles were stationary and moving in both laden and un-laden states. The effects of an air conditioning system on conditions within a vehicle were measured and responses of dog body temperatures to transport were assessed. In ambient temperatures <33°C the air conditioning system maintained internal trailer temperature below 26°C. Between ambient temperatures 33-37°C, although the internal temperature in the air conditioned trailer rose above 26°C, dogs were able to maintain normal body temperature. Following journeys of approximately 50 minutes in a trailer without air conditioning, mean dog rectal temperature increased by 0.5°C ± 0.2.

Results of these studies have identified a number of factors which may increase the risk of greyhounds developing a potentially hazardous level of hyperthermia after exercise. Following racing in external environmental temperatures ≥38°C, 39% of greyhounds developed rectal temperatures ≥ 41.5°C. Large, dark coloured greyhounds are at greater risk of developing hyperthermia. Conditions within kennel houses and transport vehicles may influence dog body temperature as a kennel house temperature ≥ 27°C and transport in temperatures ≥32°C are both associated with an increase in body temperature. These
findings will be important in the development of evidence-based guidelines to protect the
welfare of greyhounds racing in hot conditions in Australia and other countries.

Declaration of Originality

I declare that this work contains no material which has been accepted for the award of any
degree or diploma in my name in any university or other tertiary institution and to the best of
my knowledge and belief contains no material previously published or written by another
person, except where due reference has been made in the text. In addition, I certify that no
part of this work, will, in the future, be used in a submission in my name for any other degree
or diploma in any university or other tertiary institution, without the prior approval of the
University of Adelaide.

I give consent to this copy of my thesis, when deposited in the University library being made
available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library search and also through web
search engines, unless permission has been granted by the University to restrict access for
a period of time.
Acknowledgements

This study received financial support from Greyhound Racing South Australia and the Australian Greyhound Veterinarians special interest group of the Australian Veterinary Association. I would like to express my appreciation for the help provided at race meetings over several years, by the stewards and kennel staff of Greyhound Racing South Australia and for the co-operation of the many owners and trainers who permitted access to greyhounds. I would like to thank my fellow students and Geoff Coombe who assisted with the study of transport vehicles and thank Caitlin Jenvey and Marie Kozulic for assistance in formatting the thesis and Michelle Hebart for statistical advice. I would also like to express my great appreciation for the support and advice provided by my supervisors Prof. Gordon Howarth and Dr Susan Hazel, without whose assistance this work would not have been completed.
Glossary

Ambient temperature T_A = the air temperature of the environment.

Body temperature T_B = the temperature of the animal’s body.

Core temperature T_{CORE} = the temperature of the animal’s body core measured physiologically in the spinal cord and areas of the brain or by an internal device such as an ingested sensor travelling though the digestive tract or a sensor implanted within the abdomen, oesophagus or pulmonary artery.

Heat strain = physiological or pathological effects resulting from heat stress

Heat stress = environmental or metabolic factors impacting on the body

Heat stroke = pathological condition occurring when the body’s heat dissipating mechanisms are overwhelmed

Rectal temperature T_r = the temperature measured against the rectal wall.

Shade temperature = the air temperature measured outdoors in a shaded area.