NATURAL HISTORY AND PATHOGENESIS OF TAKOTSUBO CARDIOMYOPATHY

Kuljit Singh

Thesis submitted for the degree of
Doctor of Philosophy
In
Medicine
At
The University of Adelaide
(Faculty of health Sciences)

Department of Cardiology

The Queen Elizabeth Hospital
SA Australia 5011
Declaration

This thesis is the result of my own investigation, except where otherwise stated. It contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for load and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of these works.

I also give permission for the digital version of my thesis to be made available on the web, via the university’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

..............................

Kuljit Singh (9.2.2015)
Acknowledgements

I would like to express my appreciation and gratitude to my supervisor, Professor John David Horowitz; you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a researcher. I am truly indebted and thankful to you for your help in generating ideas and for your support and guidance throughout. I would also like to acknowledge Dr. Yuliy Chirkov, who, as well as co-supervising this project, took a leading role among all the scientists at the Basil Hetzel Institute to teach me basic research procedures.

My colleagues, Dr. Christopher Neil, Ms. Irene Stafford, Dr. Thanh Ha Nguyen, Ms. Jeanette Stansborough and Ms. Kristin Carson have all been of great assistance in the TTC project, with both intellectual contributions as well as involvement in the day-to-day work of the study.

This thesis relied heavily on the basic research techniques: in this regards, notable thanks go to Dr. Giovanni Licari. Without his guidance and assistance in the basic laboratory work this thesis would not have been possible. In addition, I would like to acknowledge the help of Mr. Matthew Chapman for his help in human and animal cardiac imaging.

I would like to thank the National Health and Medical Research Council for funding this work and, similarly, the generosity of numerous patients and controls in giving their time for the studies described herein.

Finally, I would like to thank my wife Upinder Kaur Bhalla and my mother Amarjit Kaur for their support, patience and understanding.
Statement of contribution to research

The studies were conceived and designed jointly by Professor John Horowitz and myself.

Execution

I performed all the recruitment and organization of patients into the studies, with the assistance of Ms. Jeanette Stansborough (research nurse). I collected all the clinical data with assistance from Ms. Stansborough. I performed all the data search and meta-analysis with the assistance of Ms. Kristen Carson. I analysed of the echocardiographic studies for humans and animals. Some of the immunohistochemistry studies, in particular detection of apoptosis (TUNEL staining), Poly ADP ribose (PAR Staining) were performed by me. I also performed platelet aggregometry on new patients diagnosed with TTC between 2012 and 2014. Dr. Giovanni Licari performed immunohistochemistry studies of measurement of 3-nitrotyrosine and TXNIP. I performed quantification of staining for 3-nitrotyrosine and TXNIP with the assistance of Dr. Giovanni Licari. I performed quantification of staining for apoptosis, and inter-observer analysis were performed with Dr. Betty Raman. Plasma 3-Nitrotyrosine levels were analyzed in Prof. Tsikas’s laboratory in Hannover, Germany.

Analysis

All the data were collated and analyzed by myself.
List of published studies

Table of Contents

Declaration ... 3
Acknowledgements ... 5
Statement of contribution to research ... 7
List of published studies ... 9
List of figures ... 15
Abstract ... 20

1 Chapter: Literature review ... 22

1.1 Cardiac cell death ... 23

 1.1.1 Cell death ... 23

 1.1.2 Cardiac cell death .. 24

1.2 Evolution of cardiovascular medicine: From acute myocardial infarction to Takotsubo Cardiomyopathy ... 24

1.3 Takotsubo cardiomyopathy .. 25

 1.3.1 History ... 27

 1.3.1.1 The problem of historical definition and diagnosis ... 29

 1.3.1.2 Evolving views regarding diagnostic algorithms ... 30

 1.3.2 Epidemiology .. 33

 1.3.2.1 Incidence and prevalence .. 33

 1.3.2.2 Age of onset ... 34

 1.3.3 Clinical characteristics .. 35

 1.3.3.1 Antecedent psychological stress in TTC ... 35

 1.3.3.2 Medical and surgical illness ... 35

 1.3.3.3 Association of cancer with TTC ... 36

 1.3.3.4 Symptom onset .. 37

 1.3.4 Electrocardiographic, biochemical and imaging abnormalities ... 37

 1.3.4.1 Electrocardiographic changes .. 37

 1.3.4.2 Biochemical markers ... 38

 1.3.4.3 Echocardiographic changes ... 45

 1.3.4.4 Cardiac magnetic resonance imaging .. 49

 1.3.5 Pathogenesis ... 52

 1.3.5.1 TTC as ischemia .. 52

 1.3.5.2 Role of interaction between catecholamines and myocardium in the pathogenesis of TTC .. 56

 1.3.6 Natural history .. 68

 1.3.6.1 The acute phase issues ... 68

 1.3.6.2 Long term outcome- incomplete recovery and problem of recurrence 71

2 Chapter: Pathogenesis of Takotsubo Cardiomyopathy-Animal work 74

2.1 Introduction .. 75

2.2 Methodology .. 78

 2.2.1 Development of rat model of TTC ... 78
2.2.2 Echocardiographic analysis ...79
2.2.3 Immunohistochemical studies ..81
 2.2.3.1 3Nitrotyrosine, TXNIP and PAR staining ..82
 2.2.3.2 TUNEL staining ..83
2.2.4 Quantification of staining ..84
 2.2.4.1 3NT and TXNIP staining quantification ..84
 2.2.4.2 TUNEL staining quantification ...85
 2.2.4.3 PAR staining quantification ...86
2.3 Statistical analysis ...87
 2.3.1 Effects of Isoprenaline ..87
 2.3.2 Effects of 3AB ..87
2.4 Results ..87
 2.4.1 Induction of TTC ...88
 2.4.1.1 Echocardiographic analysis ...90
 2.4.1.2 Histological/immunohistological evaluation93
 2.4.2 Modulation of TTC: effects of 3AB ...96
 2.4.2.1 Echocardiographic analysis ...96
 2.4.2.2 Immunohistochemistry results ...99
 2.4.3 Discussion ..101
3 Chapter: Pathogenesis of Takotsubo Cardiomyopathy- Human experiments107
 3.1 Introduction ...108
 3.2 Methods ..109
 3.2.1 Plasma 3NT concentration ..110
 3.2.2 Post-mortem studies in TTC patients ..110
 3.2.3 Statistical methods ...111
 3.3 Results ...111
 3.3.1 Evaluation of plasma 3-NT concentrations111
 3.3.1.1 Clinical characteristics ..111
 3.3.2 Plasma 3NT comparison ...113
 3.3.3 Post mortem studies ...116
 3.4 Discussion ...120
4 Chapter: Implications of right ventricular involvement in Takotsubo cardiomyopathy122
 4.1 Introduction ...123
 4.2 Methods ..125
 4.2.1 Statistical methods ...127
 4.3 Results ...127
 4.3.1 Overall basic characteristics ...128
 4.3.2 RV involvement predicts greater LV injury129
 4.3.3 RV involvement is a univariate correlate of hypotension, shock and PHS130
4.3.4 RV involvement predicts more extensive LV involvement, but is not a multivariate correlate of hypotension, shock or PHS ...134

4.4 Discussion ...135

4.5 Study limitations...138

4.6 Conclusions...138

5 Chapter: Meta-Analysis and systematic review of clinical correlates of acute mortality in Takotsubo cardiomyopathy ...139

5.1 Introduction ..140

5.2 Methods...142

5.2.1 Study eligibility...142

5.2.2 “Primary” vs. “secondary” TTC..142

5.2.3 Data Sources and search strategy ...142

5.2.4 Study selection and data extraction..143

5.2.5 Quality assessment...143

5.2.6 Statistical analysis...143

5.3 Results...146

5.3.1 Literature identification...146

5.3.2 Basic characteristics..146

5.3.3 Mortality..147

5.3.3.1 Overall ..147

5.3.3.2 Clinical correlates of mortality rates..148

5.3.3.3 “Primary” vs. “secondary” TTC..148

5.3.3.4 Gender differences...149

5.3.3.5 Advanced age..151

5.3.3.6 Catecholamine use..152

5.3.4 Complications...152

5.3.5 Quality assessment...153

5.4 Discussion...156

6 Chapter: A meta-analysis of recurrence of Takotsubo Cardiomyopathy................167

6.1 Introduction..168

6.2 Methods...169

6.2.1 Inclusion criteria...169

6.2.2 Search strategy..169

6.2.3 Statistical analyses...170

6.3 Results...171

6.4 Discussion...177

8 Summary and future perspectives..186

8.1 Summary: major findings ...187

8.2 Mechanistic issues ...188

8.2.1 Key findings...188
List of figures

Figure 1: Left ventricular in Takotsubo cardiomyopathy, mimicking the appearance of an “octopus trap”..26

Figure 2: Electrocardiogram of a patient diagnosed with Takotsubo cardiomyopathy showing presence of T wave inversion in all the 12 leads..31

Figure 3: Cardiac MRI showing presence of apical odema in a patient diagnosed with Takotsubo Cardiomyopathy..51

Figure 4: Molecular mechanisms of peroxynitrite mediate cell death. ...65

Figure 5: Postulated NO signaling cascade with possible sites for intervention. ..66

Figure 6: Radial strain at different time intervals post 5 mg/Kg of Isoprenaline. ...78

Figure 7: Analysis of rodent left ventricular apical strain post Isoprenaline ..80

Figure 8: Reduction in left ventricular apical strain 24 hours post..90

Figure 9: Apical, mid-ventricular and basal left ventricular fractional area shortening at baseline and 24 hours post-isoprenaline..92

Figure 10: Mean data for TUNEL content in the apical and basal myocardial sections from control rats (blue) and those treated with isoprenaline (red). P = NS, Bonferroni post hoc correction for apex and base..94

Figure 11: Mean data for 3 nitrotyrosine content in the apical and basal myocardial sections from control rats (red) and those treated with isoprenaline (blue). ..95

Figure 12: Mean data for TXNIP content in apical and basal myocardial sections from control rats and those treated with isoprenaline. Data are represented as % of the microscopic field. 96

Figure 13: Mean data for LV apical strain at baseline and after treatment with isoprenaline in rats with and without pre-treatment with 3 aminobenzamide..98

Figure 14: Mean data for apical fractional area shortening at baseline and after treatment with isoprenaline in rats with and without pre-treatment with 3 aminobenzamide..98

Figure 15: Mean data for 3 nitrotyrosine percentage staining at left ventricular apex and base after treatment with isoprenaline in rats with and without pre-treatment with 3 aminobenzamide. ..99
Figure 16 Mean data for TXNIP percentage staining at left ventricular apex and base after treatment with isoprenaline in rats with and without pre-treatment with 3 aminobenzamide.

Figure 17: Mean data for TUNEL stain percentage (quantification of apoptosis) at left ventricular apex and base following isoprenaline treatment with and without 3 aminobenzamide pretreatment.

Figure 18: Plasma 3-NT concentrations in Takotsubo cardiomyopathy patients (TTC) and age-matched controls (C). There was no significant difference between the groups.

Figure 19: Concentration of 3NT at the LV apex and base of TTC patients and control.

Figure 27: Pooled analysis with RD and 95% CI comparing acute mortality in primary and secondary TTC groups.

Figure 28: Pooled analysis with OR and 95% CI comparing acute mortality in males and females diagnosed with TTC.

Figure 29: Pooled analysis with RD and 95% CI comparing acute mortality in males and females diagnosed with TTC.

Figure 30: Risk of bias assessment presenting review author’s judgments about each quality criterion presented as a percentage across all included studies. Criterions were based on an adaption of the categories reported in the Tooth et.al. 2005 paper ‘Quality of reporting of observational longitudinal research’.

Figure 31 Risk of bias summary with review author’s judgments about each quality criterion for each included study. Criterions were based on an adaption of the categories reported in the Tooth et.al. 2005 paper ‘Quality of reporting of observational longitudinal research’.

Figure 32: Schematic presentation of literature search and identification of studies.

Figure 33: Adjusted rate of recurrence per 100 patients per year among the studies included in the systematic review (Shown in percentage).

Figure 34: Accumulative incidence of recurrence of Takotsubo cardiomyopathy at 6-month intervals.
Figure 35: The graph showing correlation of percentage of patients discharged on β-adrenergic blockers with incidence of recurrence. Each dot represents a separate study. (R = -0.207, P = 0.28).

Figure 36: The graph showing correlation of percentage of patients discharged on angiotensin converting enzyme inhibitor and angiotensin receptor blockers (ACE/ARB) with incidence of recurrence. Each dot represents a separate study. (R = -0.448, P = 0.016).

Figure 37: Detailed risk of bias assessment showing review authors’ judgement about each risk of bias item for each included study (red = high risk of bias, green = low risk and yellow = not applicable or unclear risk).

Figure 38: Risk of bias graph containing review author’s judgment about each risk of bias item presented as a percentage across all included studies (red = high risk of bias, green = low risk and yellow = not applicable or unclear risk).
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>ADMA</td>
<td>Asymmetric dimethyl arginine</td>
</tr>
<tr>
<td>ARB</td>
<td>Angiotensin receptor blocker</td>
</tr>
<tr>
<td>BNP; NT-proBNP</td>
<td>B-type natriuretic peptide; amino-terminal prohormone of BNP</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CA</td>
<td>Coronary angiogram</td>
</tr>
<tr>
<td>CMR</td>
<td>Cardiac magnetic resonance imaging</td>
</tr>
<tr>
<td>CVA</td>
<td>Cerebrovascular accident</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>TOE</td>
<td>Transesophageal echocardiography</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic echocardiography</td>
</tr>
<tr>
<td>TTC</td>
<td>Takotsubo cardiomyopathy</td>
</tr>
<tr>
<td>LAD</td>
<td>Left anterior descending artery</td>
</tr>
<tr>
<td>LGE</td>
<td>Late gadolinium enhancement</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of stay</td>
</tr>
<tr>
<td>LVEF</td>
<td>Left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVSV</td>
<td>Left ventricular stroke volume</td>
</tr>
<tr>
<td>LVOT</td>
<td>Left ventricular outflow tract</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>MR</td>
<td>Mitral regurgitation</td>
</tr>
<tr>
<td>MRS</td>
<td>Magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>Non-ST elevation myocardial infarction</td>
</tr>
<tr>
<td>PASP</td>
<td>Pulmonary artery systolic pressure</td>
</tr>
<tr>
<td>PAR</td>
<td>Poly (ADP) ribose</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly (ADP) ribose polymerase</td>
</tr>
<tr>
<td>PCWP</td>
<td>Pulmonary capillary wedge pressure</td>
</tr>
<tr>
<td>PHS</td>
<td>Prolonged hospital stay</td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricle</td>
</tr>
<tr>
<td>SAH</td>
<td>Subarachnoid hemorrhage</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST elevation myocardial infarction</td>
</tr>
<tr>
<td>TXNIP</td>
<td>Thioredoxin interacting protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>VF</td>
<td>Ventricular fibrillation</td>
</tr>
<tr>
<td>WMSI</td>
<td>Wall motion score index</td>
</tr>
<tr>
<td>3NT</td>
<td>3-Nitrotyrosine</td>
</tr>
<tr>
<td>3AB</td>
<td>3-Aminobenzamide</td>
</tr>
</tbody>
</table>
Abstract

Introduction: Takotsubo cardiomyopathy (TTC) is a transient left ventricular (LV) systolic dysfunction of uncertain pathogenesis, which occurs predominantly in ageing women. Although there is considerable uncertainty about the pathogenesis of TTC, pronounced catecholamine release and an acute inflammatory process is implicated. Furthermore, natural history of TTC is unknown and correlates of acute complications and incomplete recovery have not been evaluated.

Methods: In the 5 experimental chapters, this thesis examines aspects of (a) pathogenesis and (b) natural history of TTC. As regard the pathogenesis, we hypothesized that increased release of nitric oxide (NO) in patients with TTC potentially induces the formation of peroxynitrite (ONOO⁻) anion with associated redox stress, protein nitration and downstream activation of thioredoxin interacting protein (TXNIP). Evaluation of presence of nitrosative stress was performed in a rat model of TTC in parallel with human experiments looking at the local and systemic rise in the 3-nitrotyrosine (3-NT) as a footprint of ONOO⁻ formation. As a part of clinical investigations, we evaluated the role of RV involvement in early hemodynamic derangement. We performed a meta-analysis to assess the impact of “secondary” TTC, male gender, advancing age and catecholamine use on mortality in TTC. We used a similar approach to assess the correlates of recurrence rate of TTC.

Results:

A. Pathogenesis: In rat model of TTC, there was substantially increased myocardial 3-NT (2.9 ± 0.6 % and 0.3 ± 0.1 %; p< 0.01) and TXNIP content (16.5 ± 5.2 vs 0.5± 0.2%; p < 0.01). Furthermore, use of poly (ADP) ribose polymerase (PARP)-1 inhibitor attenuated the isoprenaline induced LV systolic dysfunction. In human experiments, plasma concentrations of 3-NT did not differ significantly between TTC (2.26 ± 0.22 nmol/L) and control subjects (2.20 ± 0.25 nmol/L). However, myocardial 3-NT and TxNIP content
were increased 4-fold and 10-fold respectively. Furthermore, myocardial content for poly (ADP) ribose (PAR) activity was increased 4 folds.

B. Clinical investigations: RV involvement occurred in 1/3rd of TTC patients. Hypotension was noted in 21% of TTC patients, while shock occurred in 16%. RV involvement was a univariate but not a multivariate correlate of either hypotension or shock and did not result in prolonged hospital stay. RV involvement predicted more extensive LV hypokinesis and LV systolic dysfunction.

C. Meta-Analysis: In-hospital mortality among patients with TTC was 4.5% (95% CI, 3.1%-6.2%). Male gender was associated with higher mortality (OR 2.6, 95% CI, 1.5-4.6, p=0.0008) so was “secondary” TTC (RD-0.11, 95%CI; -0.18 to -0.04, p=0.003). TTC had 1-2% annual recurrence rate, which was independent of clinic utilization of beta-blocker prescription, but inversely correlated (r =-0.45, p = 0.016) with ACEi/ARB prescription. Patients with severe TTC at index admission were noted to have more recurrences.

Conclusion:

A. TTC is associated with evidence of nitrosative stress within left ventricular myocardium.

B. RV involvement is not an independent predictor of hemodynamic derangement.

C. Male gender and “secondary” TTC are associated with higher mortality and use of ACEi might reduce recurrence rate.