A Randomised Controlled Trial of DHA-Rich Fish Oil Supplementation During Pregnancy and Subsequent Development of Language in Early Childhood

NICOLA R GAWLIK

School of Paediatrics and Reproductive Health
Discipline of Paediatrics
University of Adelaide

June 2016
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>9</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>12</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>13</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>14</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>19</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>24</td>
</tr>
</tbody>
</table>

1 LITERATURE REVIEW | 24

1.1 INTRODUCTORY REMARKS | 24

1.2 The science of early childhood development | 26

1.2.1 The importance of the early years | 26

1.2.2 An overview of brain development | 28

1.2.3 Experience and brain development | 31

1.2.4 Summary | 35

1.3 Long chain polyunsaturated fatty acids in early life | 36

1.3.1 Essentiality, structure and function | 36

1.3.2 Docosahexaenoic acid | 39

1.3.3 Docosahexaenoic acid in early life | 41

1.3.4 Assessing the functional effects of docosahexaenoic acid | 46
1.3.5 Summary and implications 48

1.4 Language development 49
1.4.1 Defining and disentangling key terms 49
1.4.2 The structural components of language 49
1.4.3 An overview of language development 51
1.4.4 Language assessment 55
1.4.5 The neural correlates of language processing 58
1.4.6 Docosahexaenoic acid and children’s language development 60
1.4.7 Summary 65

1.5 The influence of docosahexaenoic acid on language development: a systematic review of randomised controlled trials 66
1.5.1 Statement of Authorship 66
1.5.2 ABSTRACT 69
1.5.3 INTRODUCTION 71
1.5.4 METHODS 72
1.5.5 RESULTS 75
1.5.6 DISCUSSION 106
1.5.7 CONCLUSION 111

1.6 Rationale for the current study 112
1.6.1 Research gap 112
1.6.2 Significance 113
1.6.3 Summary 114

1.7 Theoretical framework 115
1.7.1 A brief overview of the bio-ecological theory of human development 115
1.7.2 Application of theory the current study 118
1.7.3 Summary 121

CHAPTER 2 122
Design and Implementation of Double Blinded Randomised Controlled Docosahexaenoic Acid Intervention Trial

Context for the current study

The original DOMInO trial

Aim

Inclusion/exclusion criteria

Intervention

Randomisation

Blinding

The 18-month follow-up

The four-year follow-up

The current study

Participants

Procedure

Measures

Overall analytic approach

Chapter 3

The Effect of Prenatal Maternal Docosahexaenoic Acid Supplementation on Children’s Language Development at Four Years of Age: A follow-up of a Double-Blinded Randomised Controlled Trial

Introduction

Research hypotheses

Methods

Participants

Procedure

Measures
CHAPTER 4

4 INTERACTIONS BETWEEN PRENATAL MATERNAL DOCOSAHEXAENOIC ACID SUPPLEMENTATION AND OTHER ENVIRONMENTAL VARIABLES INFLUENCING CHILDREN’S LANGUAGE DEVELOPMENT AT FOUR YEARS OF AGE

4.1 Introduction 156
4.1.1 Child sex 158
4.1.2 Maternal age 159
4.1.3 Maternal education 160
4.1.4 Maternal smoking 161
4.1.5 Maternal alcohol consumption 162
4.1.6 Maternal depression 164

4.2 Research hypotheses 165

4.3 Methods 165
4.3.1 Participants, procedure and measures 165
4.3.2 Data analysis 168

4.4 Results 169
4.4.1 Sample and participant flow 169
4.4.2 Characteristics of study participants 169
4.4.3 Main findings 170
Appendix 2: Participant information sheet (Women’s and Children’s Hospital) 265
Appendix 3: Participant information sheet (Flinders Medical Centre) 269
Appendix 4: Consent form (Women’s and Children’s Hospital) 274
Appendix 5: Consent form (Flinders Medical Centre) 277
Appendix 6: Updated contact details form (Women’s and Children’s Hospital) 280
Appendix 7: Updated contact details form (Flinders Medical Centre) 283
Appendix 8: 4 year CRF questions 286
Appendix 9: ‘Questionnaire pack’ and BRIEF-P 306
Appendix 10: Standard Operating Procedures - Head 317
Appendix 11: Standard Operating Procedures - Height 322
Appendix 12: Standard Operating Procedures – Weight 329
Appendix 13: Ethics approval (Women’s and Children’s Hospital) 336
Appendix 14: Ethics approval (Flinders Medical Centre) 338
Appendix 15: Validity of CELF P-2 subtests and composites 341
Appendix 16: Interpretation of SDQ scores 343

BIBLIOGRAPHY 345
ABSTRACT

There is no more important period in human development than conception through early childhood in maximizing developmental potential. It is during the last trimester of pregnancy when brain development accelerates (1, 2) and where accumulation of docosahexaenoic acid (DHA) in neural tissues occurs most rapidly (1, 3). Dietary intake and maternal stores of DHA during pregnancy and lactation have important implications for the developing brain. Uncertainty surrounding the ability of Westernised diets to fulfill requirements of DHA during pregnancy has raised concern for the developmental outcome of children raised in this dietary context (4).

Some children in Australia have very limited language ability, impacting both the individual and society. Intervention for language development during the early years should be a primary focus for research. The role that DHA might play presents as a compelling area of investigation undertaken in this thesis.

This thesis contains a literature review, including a systematic review and meta-analysis, and also proposes a theoretical framework from which to understand the potential variation in language development as a function not only of DHA but also of interacting biological and social variables (Chapter 1). The methods used in the current study are detailed (Chapter 2). Within a randomised controlled trial design (Chapter 3) the current study investigates whether DHA supplementation during the prenatal period has an
effect on language development at 4 years of age. Interactions between DHA and other individually contributing factors posed by the bio-ecological model (Chapter 4) and relationships between markers of DHA and language development (Chapter 5) are examined. A model proposed to provide a broader or more comprehensive conceptualization of the role of DHA within the larger system of influences on language development was tested (Chapter 6).

The current study found no significant effect of DHA supplementation during pregnancy on children’s language development at 4 years of age as measured by the primary outcome of the current study: mean Core Language Scores, assessed using the second edition of the Clinical Evaluation of Language Fundamentals Preschool. There were no significant interactions between treatment group and child sex, maternal age, in utero exposure to maternal cigarette smoking or alcohol consumption, or maternal depression. There was, however, a significant interaction for maternal education. There was also no significant relationship between markers of DHA status and language development for the whole group, and no significant difference in language development between those with cord blood DHA in the 25th and 75th percentile. There were, however, both significant positive and negative relationships between the number of fish meals and DHA foods (respectively) the child consumed in the month prior to the 4-year assessment and language development at 4 years of age. Findings from structural equation modelling analyses provided no support for understanding the relationship between DHA and children’s language
development through focusing on the relationships proposed by the bio-ecological model.

Overall, findings suggest that prenatal DHA supplementation does not benefit children’s language development. Longer-term follow-up of early DHA supplementation is required to determine whether delayed effects emerge.
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Nicola Gawlik

21 June 2016
ACKNOWLEDGEMENTS

First and foremost, thank you to the children and their parents who so generously volunteered their time and support. Without you, the completion of this research would not have been possible.

I offer my sincerest gratitude to my supervisors, Prof Maria Makrides and Dr Lisa Kettler, who have supported me throughout my thesis with their patience and knowledge whilst allowing me the scope to work in my own way. Their advice, supervision, and crucial contribution made them a backbone of this research and so too this thesis.

To Dr Julie Robinson for perusing my thesis proposal with a critical eye and providing many helpful suggestions and ideas, I thank you for your initial input and attention to detail.

Many thanks to all the staff at the Child Nutrition Research Centre who helped me collect my data. In particular, I would like to thank Helen Loudis for adding a smile, laugh, and shot of inspiration to my days.

I also thank those who have offered personal support during this study: Jessica Collins, Georgia Lawrence, Lauren Frensham, Lenka Malek, Jacqueline Gould, Ashlee Davies, Anna Seamark, Helen Thorne, Suzy Stiles, and Natalie Fuller. Thank you for listening to my stream of consciousness, for the uncontrollable laughter, and for the free flowing wine and countless cups of tea!

More recently but by no means less importantly, I have greatly valued the support and wisdom of Ms Rosemary Hambledon and Dr Claire Ralfs. Together they have not only helped me across the line but have triggered and nourished my intellectual maturity that I will benefit from for a long time to come.

To my Mum and Dad, Mary and Konrad, thank you for your unflagging love and unconditional support. You have always taught me to do things well, pursue what interests me, and work with pride on whatever is in front of me. Without you (tolerating me), what I have achieved might not have been possible!

I would also like to thank everybody who was important to the successful realisation of this thesis, as well as expressing my apologies that I could not mention each individual personally.

Finally, it is with my deepest gratitude and love that I dedicate this thesis to my grandparents who have been a constant source of knowledge and inspiration. And also for the myriad of ways in which, throughout my life, they have actively supported me in my determination to find and realize my potential, and to make a positive contribution to our world.
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic Acid</td>
</tr>
<tr>
<td>AEDC</td>
<td>Australian Early Development Census</td>
</tr>
<tr>
<td>AEDI</td>
<td>Australian Early Development Index</td>
</tr>
<tr>
<td>AI</td>
<td>Adequate Intake/s</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha linolenic Acid</td>
</tr>
<tr>
<td>ASQ</td>
<td>Ages and Stages Questionnaire</td>
</tr>
<tr>
<td>Bayley-II</td>
<td>Bayley Scales of Infant Development, Second Edition</td>
</tr>
<tr>
<td>Bayley-III</td>
<td>Bayley Scales of Infant Development, Third Edition</td>
</tr>
<tr>
<td>BRIEF-P</td>
<td>Behaviour Rating Inventory of Executive Function–Preschool</td>
</tr>
<tr>
<td>BW</td>
<td>Birth Weight</td>
</tr>
<tr>
<td>C</td>
<td>Capsule</td>
</tr>
<tr>
<td>CA</td>
<td>Corrected Age</td>
</tr>
<tr>
<td>CBCL</td>
<td>Child Behaviour Checklist</td>
</tr>
<tr>
<td>CELF P-2</td>
<td>Clinical Evaluation of Language Fundamentals Preschool, Second Edition</td>
</tr>
<tr>
<td>CFI</td>
<td>Comparative Fit Index</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CLAMS</td>
<td>Clinical Linguistic and Auditory Milestone Scale</td>
</tr>
<tr>
<td>CLS</td>
<td>Core Language Score</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Ctrl</td>
<td>Control</td>
</tr>
<tr>
<td>d</td>
<td>Day/s</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DAS-II</td>
<td>Differential Abilities Scales, Second Edition</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic Acid</td>
</tr>
<tr>
<td>Diff</td>
<td>Difference</td>
</tr>
<tr>
<td>DNBC</td>
<td>Danish National Birth Cohort</td>
</tr>
<tr>
<td>DNS</td>
<td>Day Night Stroop</td>
</tr>
<tr>
<td>DOMInO</td>
<td>DHA to Optimise Mother Infant Outcomes</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic Acid</td>
</tr>
<tr>
<td>Egg-DTG</td>
<td>Egg-Derived Triglyceride</td>
</tr>
<tr>
<td>ELVS</td>
<td>Early Language in Victoria Study</td>
</tr>
<tr>
<td>EP</td>
<td>Egg Phospholipid</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic Acid</td>
</tr>
<tr>
<td>EV</td>
<td>Expressive Vocabulary</td>
</tr>
<tr>
<td>F</td>
<td>Formula</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty Acid/s</td>
</tr>
<tr>
<td>FAD GF</td>
<td>Family Assessment Device – General Functioning subscale</td>
</tr>
<tr>
<td>FAS</td>
<td>Fetal Alcohol Syndrome</td>
</tr>
<tr>
<td>FASD</td>
<td>Fetal Alcohol Spectrum Disorders</td>
</tr>
<tr>
<td>FMC</td>
<td>Flinders Medical Centre</td>
</tr>
<tr>
<td>FO</td>
<td>Fish Oil</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>GA</td>
<td>Gestational Age</td>
</tr>
<tr>
<td>GMDS</td>
<td>Griffiths Mental Development Scales</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
</tbody>
</table>
PPVT-III Peabody Picture Vocabulary Test, Third Edition
Preg Pregnancy
RBC Red Blood Cell
RCT Randomised controlled trial/s
RLE Recent Life Events
SD Standard Deviation
SDQ Strengths and Difficulties Questionnaire
SS Sentence Structure
SSRI Selective Serotonin Reuptake Inhibitor
TLI Tucker and Lewis Index
Trt Treatment
UK United Kingdom
USA United States of America
Veg Vegetable
VIQ Verbal IQ
VLBW Very Low Birth Weight
WASI Wechsler Abbreviated Scale of Intelligence
WCH Women’s and Children’s Hospital
WIAT-II Wechsler Individual Achievement Test, Second Edition
WISC-III Wechsler Intelligence Scale for Children, Third Edition
Wk Week/s
WMD Weighted Mean Difference
WPPSI-R Wechsler Preschool and Primary Scale of Intelligence – Revised
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPPSI-III</td>
<td>Wechsler Preschool and Primary Scale of Intelligence, Third Edition</td>
</tr>
<tr>
<td>WS</td>
<td>Word Structure</td>
</tr>
<tr>
<td>y</td>
<td>Year/s</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE 1. NHMRC Adequate Intake recommendations for total n-3 LCPUFA (DHA+EPA+DPA) during pregnancy and lactation ...44

TABLE 2. Summary of maternal prenatal DHA supplementation interventions included in the review ...80

TABLE 3. Summary of maternal postnatal DHA supplementation interventions included in the review ...82

TABLE 4. Summary of infant DHA supplementation interventions included in the review ...84

TABLE 5. Summary of trials involving supplementation to preterm infants89

TABLE 6. Summary of risk of bias assessment for each included trial95

TABLE 7. Variables used in the current study, time point at which they were collected, and chapter in which they are discussed ...135

TABLE 8. Guidelines for describing the quality of language proficiency according to the CELF P-2 manual ..143

TABLE 9. Comparison of baseline characteristics between treatment groups among consenters to DOMInO-4 who participated in the language assessment at four years of age ...147

TABLE 10. Treatment group differences in Core Language Scores and subtests ..148

TABLE 11. Treatment group N differences in Core Language Score classification ...150

TABLE 12. Treatment group N differences in Core Language Score classification (females). N, number ...184

TABLE 13. Treatment group N differences in Core Language Score classification (males). N, number ...184

TABLE 14. Indicators of DHA status and language outcomes199

TABLE 15. Comparison of post randomisation variables between treatment groups ...232

TABLE 16. Treatment group differences in post randomisation variables235

TABLE 17. Bivariate correlations between microsystem, individual and language development variables (control group) ...239

TABLE 18. Bivariate correlations between microsystem, individual and language development variables (DHA group) ...240
TABLE 19. Baseline measurement model (Model 0) comparing DHA and control groups regression loadings. ...242

TABLE 20. Fit statistics for the model..244

TABLE 21. Model 4: treatment group invariance of the structural paths between the individual and microsystem and language...246

TABLE 22. CELF P-2 Australian intercorrelations of norm-referenced subtests and composite scores ..342

TABLE 23. Interpretation of SDQ scores ..344
LIST OF FIGURES

Figure 1. The returns of investment in human capital as product of the age at which it commenced, reproduced from (35) ...27

Figure 2. Overview of important events in brain development, reproduced from (39) ..28

Figure 3. Simplified anatomy of a neuron, reproduced from (44) ...29

Figure 4. Synapse density over time, reproduced from (48). ...30

Figure 5. The difference in the molecular structure of saturated and unsaturated fatty acids..36

Figure 6. Essential fatty acids and their derivatives. AA, arachidonic acid; ALA, alpha linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; LA, linolenic acid ..38

Figure 7. g/100g DHA in different parts of the human body. RBC, red blood cell. 40

Figure 8. Recommendations for fish consumption during pregnancy and lactation, reproduced from (105) ..45

Figure 9. Language is made up of three components – form, content, and use, reproduced from (117). ..51

Figure 10. Classical brain regions associated with language processing, reproduced from (130). ...58

Figure 11. The randomised controlled trial design, reproduced from (152). ..64

Figure 12. Progress of randomised controlled trials identified and included in the systematic review and meta-analysis. LCPUFA, long-chain polyunsaturated fatty acid; RCT, randomised controlled trial; sup., supplemented. ^ Few trials were included in the meta-analysis due to heterogeneity of language assessments used. ..77

Figure 13. Meta-analysis forest plots of WMDs for language development at 14 months of age measured with the MCDI Vocabulary Comprehension scale - a standardized assessment instrument (mean ± SD: 100 ± 15) after supplementation with DHA during the postnatal period up until 12 months of age. DHA, docosahexaenoic acid; MCDI, MacArthur-Bates Communicative Development Inventories; WMDs, weighted mean differences ...104

Figure 14. Meta-analysis forest plots of WMDs for language development at 14 months of age measured with the MCDI Vocabulary Production scale - a standardized assessment instrument (mean ± SD: 100 ± 15) after supplementation with DHA during the postnatal period up until 12 months of age. DHA,
docosahexaenoic acid; MCDI, MacArthur-Bates Communicative Development Inventories; WMDs, weighted mean differences

Figure 16. The process for scoring the CELF P-2 subtests of Sentence Structure (SS), Word Structure (WS) and Expressive Vocabulary (EV), and determining the Core Language Score (CLS)

Figure 17. Treatment group differences in Core Language Scores by sex of child. Results presented are Mean (Standard Deviation)

Figure 18. Treatment group differences in Core Language Scores by maternal age group. Results presented are Mean (Standard Deviation)

Figure 19. Treatment group differences in mean Core Language Scores by maternal education. Results presented are Mean (Standard Deviation)

Figure 20. Treatment group differences in Core Language Scores by maternal smoking. ^ Maternal smoking defined as “in the 2-3 months before pregnancy and/or during pregnancy”. Results presented are Mean (Standard Deviation)

Figure 21. Treatment group differences in Core Language Scores by maternal alcohol consumption. ^ Maternal alcohol consumption defined as “in the 2-3 months before pregnancy and/or during pregnancy”. Results presented are Mean (Standard Deviation)

Figure 22. Treatment group differences in Core Language Scores by maternal depression. ^ Maternal depression defined as “a diagnosis of depression at study entry”. Results presented are Mean (Standard Deviation)

Figure 23. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Core Language Scores, r = 0.05, p = 0.37

Figure 24. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Core Language Scores for females only, r = 0.09, p = 0.20

Figure 25. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Core Language Scores for males only, r = 0.02, p = 0.82

Figure 26. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Bayley-III Language Composite Scores, r = -0.03, p = 0.51
Figure 27. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Bayley-III Language Composite Scores for females only, $r = 0.03$, $p = 0.64$. 202

Figure 28. Scatter plot of the relationship between cord blood plasma DHA (percentage of total phospholipid fatty acids) plotted against Bayley-III Language Composite Scores for males only, $r = -0.07$, $p = 0.39$. 203

Figure 29. Number of fish meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores, $r = 0.11$, $p = 0.01$. 205

Figure 30. Number of fish meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores for females only, $r = 0.09$, $p = 0.15$. 206

Figure 31. Number of fish meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores for males only, $r = 0.12$, $p = 0.03$. 206

Figure 32. Number of DHA meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores, $r = -0.10$, $p = 0.02$. 208

Figure 33. Number of DHA meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores for females only, $r = -0.06$, $p = 0.28$. 208

Figure 34. Number of DHA meals consumed by the child in the past month (from the time of assessment) plotted against Core Language Scores for males only, $r = -0.16$, $p = 0.01$. 209

Figure 35. Proposed structural regression model of language development225