Using Stakeholder Theory to Explain the Development and Operation of Safety Culture and Systems to Improve Safety Performance in the Construction Industry in Saudi Arabia

Thesis submitted by

Torky Althaqafi
Master of Applied Project Management (Adelaide University, Australia 2010)
Advanced Diploma of Occupational Health and Safety (SAI Global, Australia 2010)
Diploma of Quality Auditing (SAI Global, Australia 2009)
Bachelor of Science, (King Abdul Aziz University, Saudi Arabia 2002)

The University of Adelaide

Faculty of the Professions
Entrepreneurship, Commercialisation and Innovation Centre (ECIC)

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

November 2015
Table of Contents

Table of Contents

List of Tables vii
Statement of Originality xii
Acknowledgements xiii
Abstract xlv

Chapter 1

Introduction 2
1.1 Focus of the thesis 2
1.2 Background to the research 3
1.3 The research problem 7
1.4 Research questions and objectives 9
1.5 Rationale for the research 10
1.6 Contribution to knowledge 11
1.7 Methodology 12
1.8 Outline of the thesis 13
1.8 Key assumptions and limitations 16
1.9 Summary 16

Chapter 2

Contextual background 17
2.1 The growth of construction in Saudi Arabia 17
 2.1.1 The construction market in the Kingdom of Saudi Arabia
 2.1.2 The organisation of the construction industry in the Kingdom of Saudi Arabia
2.2 Existing structure of the work environment in Saudi Arabia 24
 2.2.1 Occupational health and safety rules in Saudi labour law
 2.2.2 General Organization for Social Insurance in Saudi Arabia
 2.2.3 Socio-cultural influences on the work environment
2.3 Saudi construction’s weaknesses 31
 2.3.1 Strategic priorities for Saudi’s building and construction industry
 2.3.2 Safety in Saudi’s building and construction industry
2.4 Summary 34
Chapter 3

Literature review

3.1 The construction industry
 3.1.1 The construction industry in the Kingdom of Saudi Arabia

3.2 Safety: Definition and principles
 3.2.1 Safety in the construction industry worldwide
 3.2.2 Safety in Saudi’s construction industry

3.3 Accident causation
 3.3.1 The domino theory
 3.3.2 Leather’s potential accident subject model
 3.3.3 Project management accident model
 3.3.4 Distractions theory
 3.3.5 Rasmussen’s work behaviour model
 3.3.6 The Swiss cheese model
 3.3.7 The construction accident causation (ConCA) model
 3.3.8 Root causes of the accidents in the Saudi construction industry

3.4 The big picture: Organisational and safety culture
 3.4.1 Organisational culture
 3.4.2 Concepts of a safety culture
 3.4.3 Safety culture models
 3.4.4 Reviews of the safety culture literature
 3.4.5 Safety culture vs safety climate
 3.4.6 Previous studies on safety in Saudi construction industries

3.5 Stakeholders and stakeholder theory
 3.5.1 The stakeholder
 3.5.2 Stakeholder theory

3.6 Application of stakeholder theory
 3.6.1 Stakeholder theory in management
 3.6.2 Stakeholder theory in marketing
 3.6.3 Stakeholder theory in finance and accounting
 3.6.4 Application of stakeholder theory in strategic management

3.7 Stakeholders in the construction industry
 3.7.1 A wide array of stakeholders
 3.7.2 Stakeholder and safety culture in the workplace

3.8 The research problem and contribution

3.9 Summary
6.3.3 Greatest influence on stakeholders
6.3.4 Management safety practices
6.3.5 Organisational safety attitudes
6.3.6 Safety management system
6.3.7 Safety performance

6.4 Development of the first part of the model: Stakeholder involvement
 6.4.1 One factor model – Safety enforcement
 6.4.2 One factor model – Safety influence

6.5 Development of the second part of the model – Safety culture
 6.5.1 One factor model – Management safety practices
 6.5.2 One factor model – Organisation safety attitude
 6.5.3 One factor model – Safety management system
 6.5.4 One factor model – Safety performance

6.6 Cross validation model for the seven latent variables
 6.6.1 Specification of the seven-factor model
 6.6.2 Model output of the five-factor model
 6.6.3 Model re-specification

6.7 Validation measure
 6.7.1 Convergent validity
 6.7.2 Construct validity
 6.7.3 Discriminant validity
 6.7.4 Invariance testing

6.8 Summary

Chapter 7

Results, part 2

7.1 Full structural model
 7.1.1 Specification of the full structural model
 7.1.2 Model output of the full structural model

7.2 Developing composites for the full structural model
 7.2.1 Safety culture composites
 7.2.2 Stakeholder involvement composites

7.3 Full composite model

7.4 The estimated standardised total and direct effects from the overall and final structural equation model

7.5 Hypothesis testing

7.6 Multi-group analysis of the moderating variables
 7.6.1 Group analysis between small and medium size organisations
 7.6.2 Group analysis between small size of organisation and large size
 7.6.3 Group analysis between medium and large organisations
Chapter 8

Discussion and conclusion

8.1 Background information

8.2 Brief reiteration of the results
 8.2.1 The descriptive data
 8.2.2 A fragmented approach
 8.2.3 The conceptual model and its components
 8.2.4 Stakeholder involvement
 8.2.5 Comparison of ideas of safety culture
 8.2.6 Evaluation of the impact of safety culture on safety performance
 8.2.7 The effect of primary stakeholders on safety culture
 8.2.8 The effect of secondary stakeholders on safety culture
 8.2.9 The effect of the organisation’s size on safety culture
 8.2.10 The relationship between the organisation’s size and stakeholder involvement on improving safety culture
 8.2.11 Summing up

8.3 Knowledge contribution
 8.3.1 Theory building
 8.3.2 Practical implication

8.4 Policy and practice
 8.4.1 Enforcement factors
 8.4.2 Influence and motivation factors
 8.4.3 Organisation safety factors
 8.4.5 Time frame for implementation

8.5 Strengths and limitations of the research

8.6 New research directions

8.7 Summary

References

Appendices
List of Tables

Table 1.1 Serious claims: number and percentage of total by industry, 2009-2010 (Adapted from GOSI, 2011) 4
Table 1.2 The number of workers and accidents in the construction industry in Saudi Arabia, 2006-2010 (Adapted from GOSI, 2011) 4

Table 2.1 Saudi Arabia’s megaprojects boom (Thompson, R 2013, p. 1) 20
Table 2.2 Serious claims: Number and percentage of total by industry, 2009-2010 (Adapted from GOSI, 2011) 33
Table 2.3 The number of workers and accidents in the construction industry in Saudi Arabia, 2006-2010 (Adapted from GOIS, 2011) 33

Table 3.1 Summary of seven accident causation models 45
Table 3.2 Selected safety culture definitions 49
Table 3.3 A summary of past studies about safety culture 55
Table 3.4 Previous studies on safety in the Saudi’s construction industries 66
Table 3.5 A summary of stakeholder definitions 70
Table 3.6 Stakeholder attributes and levels of influence on safety management (Adapted from Loebbaka & Lewis 2009) 74
Table 3.7 The reactive–accommodative–defensive–proactive scale (based on Clarkson 1995) 76

Table 4.1 Main constructs of ‘stakeholder involvement’ and corresponding questions (part of the questionnaire in Appendix C) 104
Table 4.2 Main constructs of ‘safety attitudes’ and corresponding questions (part of the questionnaire in Appendix C) 107
Table 4.3 Main constructs of ‘safety practices’ and corresponding questions (part of the questionnaire in Appendix C) 111
Table 4.4 Main constructs of ‘safety management system’ and corresponding questions (part of the questionnaire in Appendix C) 113
Table 4.5 Main constructs of ‘safety performance’ and corresponding questions (part of the questionnaire in Appendix C) 115

Table 5.1 Stakeholder constructs and their indicators 129
Table 5.2 All latent constructs and their indicators and codes 130
Table 5.3 The positions and years of experiences of each participant in the workshop 151

Table 6.1 The sample characteristics 154
Table 6.2 Skewness, kurtosis and corresponding critical ratios of the attributes. 156
Table 6.3 Internal consistency of the latent constructs 159
Table 6.4 Safety enforcement’s variables with their codes 164
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.5</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>The goodness-of-fit statistics of the measurement models</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Safety influence’s variables with their codes</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>The goodness-of-fit statistics of the measurement models</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Primary stakeholders’ variables with their codes</td>
</tr>
<tr>
<td>Table 6.13</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.14</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.15</td>
<td>The goodness-of-fit statistics of the measurement models</td>
</tr>
<tr>
<td>Table 6.16</td>
<td>Management safety practices’ variables with their codes</td>
</tr>
<tr>
<td>Table 6.17</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.18</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.19</td>
<td>The goodness-of-fit statistics of the measurement models of OSA</td>
</tr>
<tr>
<td>Table 6.20</td>
<td>Organisational safety attitudes’ variables with their codes</td>
</tr>
<tr>
<td>Table 6.21</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.22</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.23</td>
<td>The goodness-of-fit statistics of the measurement models of OSA</td>
</tr>
<tr>
<td>Table 6.24</td>
<td>Safety management system’s variables with their codes</td>
</tr>
<tr>
<td>Table 6.25</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.26</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.27</td>
<td>The goodness-of-fit statistics of the measurement models of OSA</td>
</tr>
<tr>
<td>Table 6.28</td>
<td>Safety performance’s variables with their codes</td>
</tr>
<tr>
<td>Table 6.29</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.30</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.31</td>
<td>The goodness-of-fit statistics of the measurement models</td>
</tr>
<tr>
<td>Table 6.32</td>
<td>Regression weights</td>
</tr>
<tr>
<td>Table 6.33</td>
<td>Standardised regression weights</td>
</tr>
<tr>
<td>Table 6.34</td>
<td>Correlations</td>
</tr>
<tr>
<td>Table 6.35</td>
<td>The goodness-of-fit statistics of the measurement model</td>
</tr>
<tr>
<td>Table 6.36</td>
<td>Reliability checks for all constructs</td>
</tr>
<tr>
<td>Table 6.37</td>
<td>χ^2 Difference tests for assessing discriminant validity</td>
</tr>
<tr>
<td>Table 6.38</td>
<td>Invariance test results</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The goodness-of-fit statistics of the measurement model</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Safety performance coefficient H and Cronbach’s α calculations</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Rescaled factor score weightings for safety performance</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Organisation safety attitude coefficient H and Cronbach’s α calculations</td>
</tr>
</tbody>
</table>
Table 7.5 Rescaled factor score weightings for organisation safety attitude
Table 7.6 Safety management system coefficient H and Cronbach’s α calculations
Table 7.7 Rescaled factor score weightings for safety management system
Table 7.8 Management safety practice coefficient H and Cronbach’s α calculations
Table 7.9 Rescaled factor score weightings for management safety practices
Table 7.10 The primary stakeholders coefficient H and Cronbach’s α calculations
Table 7.11 Rescaled factor score weightings for primary stakeholders
Table 7.12 Safety enforcement coefficient H and Cronbach’s α calculations
Table 7.13 Rescaled factor score weightings for safety enforcement
Table 7.14 Computing factor loadings and error variances for the composite variables
Table 7.15 The goodness-of-fit statistics of the measurement model
Table 7.16 Regression weights
Table 7.17 Standardised regression weights
Table 7.18 Squared multiple correlations
Table 7.19 Estimated standardised total and direct effects from the overall and final structural equation model
Table 7.20 Structural invariance analysis between small and medium groups
Table 7.21 Structural invariance analysis between small and large groups
Table 7.22 Structural invariance analysis between medium and large groups
Table 7.23 The estimated standardised total (direct and indirect) effect for stakeholder involvement
Table 7.24 Summary of hypothesis relationships identified
Table 7.25 Model validation rating by participants

Table 8.1 Comparison of safety culture dimensions between the current study and the previous studies
Table 8.2 Summary of hypothesis relationships identified
Table 8.3 Summary of the three suggested factors
List of Figures

Figure 1.1 Overview of the research thesis

Figure 2.1 Contract awards (Thompson, R 2013, p. 4)
Figure 2.2 Saudi Arabia’s megaprojects boom (Thompson, R 2013, p. 4)
Figure 2.3 The existing structure of employer-employee relationships in Saudi Arabia

Figure 3.1 An overview of the literature review process
Figure 3.2 Leather’s (1987) potential accident subject model (Leather 1987)
Figure 3.3 Project management accident model (Whittington et al. 1992, p.97)
Figure 3.4 Rasmussen’s work behaviour model (Rasmussen et al. 1994)
Figure 3.5 Reason Swiss cheese model of accident causation (Reason, JT 1997, p.9)
Figure 3.6 The ConCA model, after Reason’s model (Gibb et al. 2006, p.47)
Figure 3.7 Classes of stakeholders (adapted from Mitchell et al. 1997, p.872)
Figure 3.8 The pyramid of corporate social responsibility (Visser 2006, p. 34)
Figure 3.9 Three approaches of stakeholder theory (Donaldson & Preston 1995, p. 74)

Figure 4.1 The suggested conceptual model
Figure 4.2 Mapping of hypotheses onto illustration of construct

Figure 5.1 Research design for the current study
Figure 5.2 Elements of the conceptual model (see also Chapter 4, Figure 4.1) These four dimensions are those highlighted in Edwards et al.’s study (2013), which augmented the model for this study.
Figure 5.3 Elements of the conceptual model (see also Chapter 4, Figure 4.1) These three dimensions were added for the current study.
Figure 5.4 The conceptual model that emerged (see also Chapter 4, Figure 4.1)
Figure 5.6 Reflective and formative measures (Coltmn et al. 2008, p. 1253)
Figure 5.7 Stages in the methodology for scale validation (Garcia-Valderrama & Mulero-Mendigorri 2005, p. 315)

Figure 6.1 The mean score of stakeholder participation
Figure 6.2 The mean score of enforcement on stakeholders
Figure 6.3 The mean score of influence on stakeholders
Figure 6.4 The mean score of management safety practices
Figure 6.4 The mean score of organisational safety attitudes
Figure 6.5 The mean score of safety management system
Figure 6.6 The mean score of safety performance
Figure 6.7 Latent variables for safety enforcement
Figure 6.8 Latent variables for safety influence
Figure 6.9 Latent variables for safety influence
Figure 6.10 Latent variables for management safety practices & leadership
Figure 6.11 Latent variables for organisation safety attitude (Model 1)
Figure 6.12 Latent variables for safety management system (Model 1)
Figure 6.13 Latent variables for safety performance (Model 2)
Figure 6.14 Cross validation for the seven-factor model

Figure 7.1 The full structural model
Figure 7.2 Safety performance one factor measurement model
Figure 7.3 Organisation safety attitude one factor measurement model
Figure 7.4 Safety management system one-factor measurement model
Figure 7.5 Management safety practice one-factor measurement model
Figure 7.6 Primary stakeholder one-factor measurement model
Figure 7.7 Safety enforcement one-factor measurement model
Figure 7.8 Full structural model using composites
Figure 7.9 Structural path diagram for multi-group analysis (Model 1)
Figure 7.10 Structural path diagram for multi-group analysis (Model 2)
Figure 7.11 Structural path diagram for multi-group analysis (Model 3)
Figure 7.12 The standardised total (direct and indirect) effect for stakeholder involvement

Figure 8.1 The research model
Figure 8.2 The standardised total (direct and indirect) effect for stakeholder involvement
Figure 8.3 The proposed process to improve safety culture and performance
Statement of Originality

I hereby certify this thesis and the research contained within comprises no information that has been presented and accepted for any award including degree at any university or institution of higher learning. This thesis is to the best of my knowledge does not include information that has been published previously or has been written by any person, except where references indicates otherwise in the text. Furthermore, I attest that the work contained herein will not be used at any time for the submission of any additional qualification at any other institution of higher learning, without the express written consent from the University of Adelaide.

I do hereby give consent for a copy of this thesis to be deposited in the University of Adelaide library and thereby be made available to be copied or lent but only within the provisions set forth under the Copyright Act 1968. The thesis author accepts that the copyright of published information conveyed within this thesis is inherently the property of the copyright holder(s) of that information.

Additionally, I do hereby consent to a digital copy of this thesis being made available through the web via the University of Adelaide’s digital research library catalogue. Similarly, through web based search engines, except where permission by the University of Adelaide has restricted access for a stipulated reason for any period of time.

__________________________ ________________
Candidate Date
Acknowledgements

Foremost, I give thanks to Allah, who has given me blessings, opportunities and guidance, and helped and empowered me to come to the end of this journey smoothly.

I wish to express my special appreciation to Dr Barry Elsey for his exceptional help, support and guidance since the beginning of my PhD journey and endless patience towards the end. My deep appreciation is also extended to my co-supervisor, Dr Graciela Corral, for being such a remarkable co-supervisor.

My heartfelt thanks go to my beloved, patient and encouraging father. Thanks for your love and prayers. For my wife, Safiah, and my kids, Ibrahim and Alaa, thanks for accompanying and supporting me. My gratitude also goes out to all of my brothers and sisters, as well as my friends (Majed and Mohammed), who provided strength and good cheer to me when I really needed it.

Finally, this study is dedicated to my father for his efforts and love.
Abstract

Project management in the Saudi Arabian construction industry is an activity complicated by the current widespread lack of a mature organisational safety culture, which results in a high incidence of serious and fatal accidents, making it difficult to deliver project objectives. The thesis addresses this major problem. In Saudi Arabia, the General Organization for Social Insurance (GOSI) released a report on the number of work-related fatalities, injuries, and disabilities for 2009-2010. There were 85,624 serious workers’ compensation claims and 587 fatalities compensated for (GOSI 2009-2010).

The construction industry has the highest number of accidents in Saudi Arabia, with 50.2% of all compensation cases related to construction. Such a high accident rate is not acceptable. Human resources are too valuable to waste through avoidable incidents. It is imperative, therefore, to identify factors and establish policy frameworks that can reduce the number of accidents.

The main causes of these accidents have been linked directly to pressures from management. Inconsistencies in policies, standards, quality control, training and knowledge dissemination all impact workforces negatively, as do financial restrictions, lack of interaction between workers, the workplace environment, equipment and materials (Charles et al. 2007; Gibb et al. 2006). Accidents have also been indirectly linked to human behaviour, social pressure, attitudes to risk taking, trade customs, financial pressure and industry traditions (Charles et al. 2007).

For many years, researchers around the globe have investigated the causes of the high level of accidents in the construction industry. In Saudi Arabia, they have grappled with the problem of understanding the ‘safety’ or ‘accident’ phenomenon, and have failed to identify the causes of the high number of accidents, or to determine the barriers that prevent individual workers, companies, and the government from improving safety.

Despite the growing body of literature on safety culture in the construction industry, it is still widely recognised that the empirical validation of stakeholder involvement in safety culture at the level of senior management is limited. Senior management contribution to safety performance has rarely been studied, and the connections between top management’s actions and their objectives in relation to safety performance appear to have been neglected.

This research is therefore an attempt to verify the causal relationships and interactions between stakeholder involvement, safety culture, and safety performance in the construction industry, thus providing a better understanding of their interaction which, in turn, may improve safety. To achieve this objective, a conceptual model was developed to enable empirical research via responses to a questionnaire distributed to the three different types of project – small, medium, and large – that comprise the Saudi construction industry. A total of 384 valid responses was received.

The results were analysed by means of various statistical methods, including inferential statistics. The proposed model was validated using reliability analysis, construct validity, confirmatory factor analysis, and structural equation modelling.

The qualitative findings confirmed the significance of stakeholder involvement in enforcing and influencing a positive safety culture, and revealed certain safety issues specific to Saudi Arabian
construction projects. Furthermore, the results show that in the context of the Saudi construction industry, a stakeholder’s involvement is positively associated with an organisation’s safety attitudes, management safety practices, the effectiveness of the safety management system, and safety performance.

The model provided in this study is a systematic approach to assess the safety culture of construction organisations and to guide them in self-assessments. The research contributes to the literature pertaining to assessments of stakeholder involvement and safety culture. Furthermore, it offers a valuable tool to government bodies and regulatory agencies for assessing their efforts in improving safety culture.