The Design, Synthesis and Quantitative Analysis of a Bistable Mixed Feedback Loop Gene Network

Julian Michael Juers Pietsch

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

February 2015
Abstract

Bistability, the capacity for switch-like memory, is a fundamental building block for robust behaviour in the noisy biochemical environment of a cell. Bistability has been observed experimentally in gene networks that exhibit overall positive feedback in some form; particular properties are endowed by variations on the basic network topology. The Mixed Feedback Loop (MFL) is a two-protein network that can be configured for positive feedback, and is notable since it has been observed to arise in nature more often than expected. The MFL includes an intervening protein-protein interaction to close a transcriptional feedback loop. This network architecture has been predicted to support bistable operation even without molecular cooperativity. To investigate the capabilities and features of the MFL, a synthetic bistable MFL was designed for construction in *Escherichia coli* (*E. coli*) using genetic components from bacteriophage 186. The design consists of the phage CI repressor protein inhibiting the production of its corresponding Tum antirepressor. This Tum–CI MFL prototype was first validated using a deterministic model expressly formulated for this instance of the MFL. It was then constructed in *E. coli* with dual LacZ and fluorescent reporters to permit multiple modes of measurement. Hysteresis assays — assays testing for history dependence or ‘memory’ of the system — were chosen as the measure of bistability, both since the bistable MFL naturally lends itself to such an assay, and since the assay simultaneously enables optimisation and setting of the switch. Measured by LacZ assay, the bistable MFL showed limited hysteresis. A detailed experimental characterisation of the network components and strains assisted in refining the data and setting bounds on model parameters. However, whilst this served to increase analytical accuracy, the deterministic model remained a poor fit of the data. When instead measuring activities in single cells by flow cytometry using the fluorescent reporter, two semi-stable sub-populations were discovered. Poor separation of the sub-populations necessitated the development of a system-specific mixture model for accurate identification of their characteristics, but the sub-population dynamics found much better agreement with the deterministic model. By building on this model with a hybrid stochastic/deterministic model, the limited hysteresis seen by LacZ assay can be explained by variation in switch robustness: the steady-state repressor concentration weights each cell’s ‘decision’ for either of the two stable states. These results further an understanding of the core requirements for stable maintenance of epigenetic memory. The simplifications made by isolating the MFL according to the ‘synthetic biology’ approach allowed key features of this network motif to be determined. A deep knowledge of simple circuit structures like the MFL contributes fundamentally towards the way we understand proteins and how they fit into the complex networks that underpin the workings of life.
I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Julian Pietsch

Date
Acknowledgements

This thesis would not have been possible without the generous assistance, support and patience of many others.

A number of colleagues were instrumental in guiding the development of the theoretical models and analytical methods employed in this thesis. The stochastic models started their development under the guidance of Kim Sneppen at the Niels Bohr Institute in Copenhagen. Sandeep Krishna, also from the Niels Bohr Institute, provided many thoughtful discussions on modelling techniques, which helped me to refine and simplify the deterministic models. Ray Correll (originally CSIRO) provided useful advice on advanced statistical practice and methods of inference, particularly for the analysis of the bacterial growth curves.

Many, many thanks must go to my supervisors Keith Shearwin and Ian Dodd, who were always excited about my work, but equally inspiring for the way they tempered my inventive imagination with sound wisdom. Thank you for tirelessly reading through many lengthy thesis drafts and for giving me the opportunity to work on such an enjoyable project.

Many past and present members of the Shearwin lab provided valuable experimental tips, reagents when I was short, and a satisfying source of good conversation. Rachel Schubert and Linda Shearwin provided a number of foundational materials and results for the work on the Tum protein. Adam Palmer and Michael Pocock started the MFL project, providing a solid cornerstone upon which much of this thesis has been built. Barry Egan, the previous head of the lab, provided encouragement and an infectious enthusiasm for phage 186. Alexandra Ahlgren-Berg, Erin Cutts, David Priest, Danna Li, Cui Lun and Andrew Hao made sure that I always had someone to chat with and participated in many hours of discussion at the lab-ins I presented. Thank you for being there for me through the highs and lows of the thesis. Many thanks must also go to Iain Murchland, who kept me up to date with the affairs of the outside world, entertained me with plenty of cheerful banter whilst at the bench, and was always willing to hear through my (often fanciful) thoughts and ideas.

In the final throes of the thesis, Pierre Dumuid helped me to steer back on course and establish realistic goals. Many thanks for standing with me in the face of a mammoth task.

My siblings Antony and Hannah Pietsch, and Taria and Adam Schulze have always given me something to smile about and look forwards to. Thank you for all the love and support you have shown me over the past few years, and for so many laughs and dinners.

My mum and dad, Helen and Mike Pietsch, have spoiled me with their generous love and care for many, many years. Thank you for being such amazing parents.

I owe so very much to my wife Alia Pietsch. You are my inspiration, my light. And your patience and love always carried me through the PhD’s darkest moments. Thank you for believing in me.
Contents

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Cellular networks drive cell behaviour 2
1.2 Synthetic biology as a tool for studying network motifs 4
 1.2.1 Defining modules for rational circuit design 5
 1.2.2 Predictive models of cellular networks 6
 1.2.3 Bacteriophage 186: a source of new components for synthetic biology 8
1.3 The bistable MFL is an excellent candidate synthetic network 10
1.4 Thesis overview ... 12

2 Directing design of a bistable genetic circuit by mathematical modelling

2.1 Origin of bistability in the Tum−CI MFL 16
2.2 Developing a mathematical model of the Tum−CI MFL 17
 2.2.1 Modelling the CI−pR interaction 19
 2.2.2 Modelling the Tum−CI interaction 20
 2.2.3 Deterministic free species model 23
 2.2.4 Deterministic total species model 26
2.3 Steady-state analysis of the Tum−CI MFL model 29
 2.3.1 Solving the free species model at steady-state 29
 2.3.2 Varying the parameters .. 34
2.4 Hysteretic behaviour .. 38
 2.4.1 Time course simulations of the Tum−CI MFL 40
 2.4.2 Simulating the hysteresis assay 44

3 Designing and characterising a bistable Mixed Feedback Loop (MFL)

3.1 Designing and cloning the MFL strains 51
 3.1.1 Development of the preliminary Tum−CI MFL strains 51
 3.1.2 Introducing a fluorescence-based reporter module 56
 3.1.3 Shifting the range of CI expression levels 59
3.2 Assaying hysteresis in the Tum−CI Mixed Feedback Loop 61
3.3 Characterising the CI induction module 66
3.4 Host strain characteristics .. 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 Optical density measurements</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2 Growth rate</td>
<td>79</td>
</tr>
<tr>
<td>3.4.3 Growth rates in alternative media</td>
<td>84</td>
</tr>
<tr>
<td>3.4.4 Cell volume</td>
<td>86</td>
</tr>
<tr>
<td>3.5 Balancing the MFL module</td>
<td>87</td>
</tr>
<tr>
<td>3.5.1 Quantitating intracellular proteins</td>
<td>87</td>
</tr>
<tr>
<td>3.5.2 Degradation rates of Tum and CI</td>
<td>89</td>
</tr>
<tr>
<td>3.5.3 Production rate from pR</td>
<td>95</td>
</tr>
<tr>
<td>3.5.4 Production rate from P_{lac}</td>
<td>101</td>
</tr>
<tr>
<td>3.6 Chapter summary</td>
<td>104</td>
</tr>
<tr>
<td>4 The MFL displays only weak bistability when measured over a whole population</td>
<td>105</td>
</tr>
<tr>
<td>4.1 Experimental limitations of the hysteretic LacZ assay</td>
<td>105</td>
</tr>
<tr>
<td>4.1.1 Variations in optical density bias LacZ assay measurements</td>
<td>106</td>
</tr>
<tr>
<td>4.1.2 Normalising P_{lac} induction levels to production rates improves but does not complete the picture of hysteresis</td>
<td>108</td>
</tr>
<tr>
<td>4.2 Extending the hysteresis assay equilibration time</td>
<td>112</td>
</tr>
<tr>
<td>4.2.1 Extending the time for equilibration brings the control strains to steady state</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2 Complete hysteresis is observed with a long equilibration time</td>
<td>115</td>
</tr>
<tr>
<td>4.3 The deterministic model does not capture the behaviour of the MFL</td>
<td>118</td>
</tr>
<tr>
<td>4.3.1 Searching the parameter space of the deterministic MFL model</td>
<td>118</td>
</tr>
<tr>
<td>4.3.2 Fitting the WR-MC data set alone</td>
<td>122</td>
</tr>
<tr>
<td>4.3.3 Fitting the combined data sets</td>
<td>124</td>
</tr>
<tr>
<td>4.4 Chapter summary</td>
<td>128</td>
</tr>
<tr>
<td>5 Hysteresis is obscured by stochastic switching between semi-stable states</td>
<td>129</td>
</tr>
<tr>
<td>5.1 Relating single-cell and whole-population measures of promoter activity</td>
<td>130</td>
</tr>
<tr>
<td>5.1.1 Assaying gene circuit hysteresis by flow cytometry</td>
<td>130</td>
</tr>
<tr>
<td>5.1.2 Choosing an appropriate data transformation</td>
<td>132</td>
</tr>
<tr>
<td>5.1.3 An automated filter for selecting cell populations</td>
<td>132</td>
</tr>
<tr>
<td>5.1.4 Morphology normalisation refines the distribution of fluorescence</td>
<td>133</td>
</tr>
<tr>
<td>5.1.5 The curated data is suggestive of population mixing</td>
<td>137</td>
</tr>
<tr>
<td>5.2 MFL samples within the bistable region are a mixture of two cell populations</td>
<td>138</td>
</tr>
<tr>
<td>5.3 The mixed population model reveals the stable states predicted for the MFL strains</td>
<td>147</td>
</tr>
<tr>
<td>5.4 Noisy switching between sub-populations occurs throughout the hysteresis assay</td>
<td>154</td>
</tr>
<tr>
<td>5.5 Chapter Summary</td>
<td>158</td>
</tr>
<tr>
<td>6 Investigating noisy switching in the Tum−CI MFL by stochastic modelling</td>
<td>159</td>
</tr>
<tr>
<td>6.1 Stochastic modelling of gene networks</td>
<td>160</td>
</tr>
<tr>
<td>6.2 A hybrid stochastic/deterministic model of the Tum−CI MFL</td>
<td>167</td>
</tr>
<tr>
<td>6.3 Establishing a parameter regime for the hybrid stochastic/deterministic model</td>
<td>173</td>
</tr>
<tr>
<td>6.3.1 Fitting the dynamic deterministic model to a stochastic data set</td>
<td>173</td>
</tr>
<tr>
<td>6.3.2 Optimising the magnitude of noise to reproduce observed rates of stochastic switching</td>
<td>178</td>
</tr>
</tbody>
</table>
Table of Contents

6.4 A simple stochastic model is sufficient to reproduce salient features of the Tum–CI MFL
- 181

6.5 Improving and interpreting the stochastic model
- 187

7 The MFL now and going forwards
- 189

8 Materials and Methods
- 193
 8.1 Reagents
- 193
 8.2 General cloning methods
 - 8.2.1 Growth of bacteria
 - 8.2.2 Storage of bacterial strains
 - 8.2.3 Preparation and purification of DNA
 - 8.2.4 Polymerase Chain Reactions
 - 8.2.5 Analysis of DNA
 - 8.2.6 DNA recombination work
 - 8.2.7 Competent cells
 - 8.2.8 Sequencing
 - 8.2.9 Changing resistance genes for the pR-tum plasmid
- 199
 8.3 Strains and DNA
 - 8.3.1 Bacterial strains
 - 8.3.2 Primers
 - 8.3.3 Plasmids
- 206
 8.4 Assays
 - 8.4.1 Preparation of cell extracts
 - 8.4.2 Polyacrylamide gel electrophoresis of proteins and Western blotting
 - 8.4.3 Quantitating concentrations of cells in culture
 - 8.4.4 Growth of bacteria for 96-well plate assays
 - 8.4.5 LacZ assay
 - 8.4.6 Flow cytometry
- 214

9 Structure-function studies for Tum
- 217
 A Fitting growth curves
 - 251
 - A.1 Log-linear fits
 - A.2 Gompertz fits
 - A.3 Comparing the models
 - A.4 Growth rate measurements
 - 257
 B Scripts for analysis of flow cytometry data
 - 259
 - B.1 General utility functions
 - B.2 Automated selection of the main cell population
 - B.3 Logicle transformation
 - B.4 Morphology normalisation
 - B.5 Constrained skew-t regression
 - 270
 C Fitting deterministic time-course models to the Tum–CI MFL data
 - 279
 - C.1 Deterministic simulation of the MFL in R
 - C.2 Fitting the model to the LacZ assays
 - C.2.1 Loading and curating the data set
- 291
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Common cellular network motifs.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>A diagrammatic representation of the bacteriophage 186 genome.</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Gene regulatory networks that can exhibit bistability.</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Circuit diagram for the bistable mixed feedback loop.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Stable states of the Tum−CI MFL.</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Tum-CI MFL model parameters.</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Fitting parameters for the Tum-CI interaction.</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Bistability in the Tum−CI MFL arises as a result of the sigmoidal response of Tum production as a function of total Tum concentration.</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Stable points of the MFL.</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Equilibrium solutions for the Tum−CI MFL as a function of total CI steady-state concentration.</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Variation in bistable region location as a function of equilibrium parameters.</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Observing variation in bistable region location as a function of production and degradation rate parameters.</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Qualitative description of hysteresis in the Tum−CI MFL</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Deterministic time course simulations of the Tum−CI MFL.</td>
<td>43</td>
</tr>
<tr>
<td>2.12</td>
<td>Deterministic hysteresis loop simulations of the Tum−CI MFL.</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>Equilibration times near the points of bifurcation</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Tum−CI MFL strain design.</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Sequence maps for the pR-lacZ and pR-tum MFL modules.</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Sequence maps of the plasmids used for introducing a fluorescent reporter to the MFL.</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Sequence maps of the CI expression plasmids.</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparing repression of the pR promoter by CI expression plasmids that utilise alternative cI RBSs.</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>The Tum−CI MFL shows hysteresis.</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>Sequence maps illustrating plasmid precursors to the IPTG induction reporter plasmid.</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Induction of the P_{lac} promoter has an ultrasensitive dependence on the concentration of IPTG inducer in MFL-like strains.</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>Heteroscedasticity is reduced by using a Box-Cox transformation prior to fitting the P_{lac} induction reporter assay data with Hill curves.</td>
<td>72</td>
</tr>
</tbody>
</table>
3.10 Comparing P_{lac} promoter induction under different assay conditions in MFL-like strains. ... 73
3.11 Scaling the P_{lac} induction curves measured by LacZ assay to the equivalent steady-state CI concentrations. 76
3.12 Calibrating absorbance measurements at 620 nm, for cultures grown in M9 minimal media in 96-well plates, to standard optical densities at 600 nm. 78
3.13 Comparing log-linear and Gompertz fits of growth curves. 81
3.14 Growth curves for a MFL strain grown in alternative growth media. 85
3.15 Fitting the sigmoidal response of band intensity to TumHis$_{6}$ mass. 88
3.16 Using Box-Cox transformation of Western blot band intensities to derive a quantity with linear dependence on Tum mass. 88
3.17 Following Tum degradation by Western blot. .. 90
3.18 Measuring degradation of Tum and CI. .. 91
3.19 Comparing soluble and insoluble fractions of Tum at initial and final time points of the degradation assays. 92
3.20 The degradation-resistant fraction of Tum appears to be a subset of the insoluble fraction. ... 93
3.21 The fraction of soluble Tum appears to saturate as the production rate is increased. 94
3.22 Western blots for quantitating steady-state production of Tum from pR. 97
3.23 Calibrating Tum-specific band intensities on Western blots with Tum mass. 97
3.24 Estimates of the mass of Tum from extracts of MFL strains with pMTS-pR-tum$^+$ (pMTS-pR-tum$^+$) but without the ci gene. 98
3.25 Quantitating steady-state CI production from P_{lac} by Western blot for induction at 300 μM IPTG. .. 102
3.26 Estimating the mass of CI in the wRBS and eRBS extracts. 103
3.27 Comparing steady-state estimates of CI concentration for the MFL strains with those previously obtained for the same induction system. 104
4.1 Expressing the normal equilibration time hysteresis curves in terms of CI production rate reveals a wider putative region of bistability. 111
4.2 Extending the time for equilibration allows the control curves to reach equilib- rium. ... 113
4.3 Complete hysteresis is observed when using the long equilibration time assay at the cost of loop collapse. .. 116
4.4 The steady-state model of bistability does not compare well with the long equi- libration time assays. ... 120
4.5 The deterministic Tum–CI MFL model cannot match all features of the experimental WR-MC MFL hysteresis assays. 123
4.6 The whole-population WR-MC and ER-MC data sets can be matched up, but the additional data does not improve the model fit. 125
5.1 The bacterial cell population is easily identified using the forward and side scatter intensities. ... 133
5.2 The resolution between low and high fluorescence populations is poor. 134
5.3 The mean fluorescence of the cell populations overlaps well with the mean pR activity measured by LacZ assay. 136
5.4 Viewed as cell populations, hysteresis in the Tum–CI MFL is manifest as a history-dependent broadening of fluorescence. 137
5.5 The skew-t distribution provides a good fit of population fluorescence for the MFL control strains. ... 141
5.6 The interquartile range of intensity for the MFL control distributions varies as a function of the median intensity. ... 142
5.7 The fitted skew-t parameters of the MFL controls vary as functions of the median and interquartile range of intensity. ... 144
5.8 MFL distributions in the bistable region are a bimodal mixture of control-like sub-populations. ... 145
5.9 Bimodal cell populations are found in each of the Tum$^{-}$CI MFL strains. ... 151
5.10 The results obtained by flow cytometry can be interpreted in terms of the steady-state deterministic model. ... 152
5.11 Bimodal populations are found at all the equilibration time points tested for the ER-MC Tum$^{-}$CI MFL. ... 156

6.1 Illustrating the Gillespie algorithm. ... 162
6.2 Noisiness in the hybrid stochastic/deterministic model of the Tum$^{-}$ control strain. ... 172
6.3 The deterministic model matches the long equilibration time data in spite of a simplified parameter set. ... 177
6.4 The level of noise in CI production affects rates of stochastic switching differently to that for Tum production. ... 180
6.5 The hybrid stochastic/deterministic model reproduces the broad regions of modality observed experimentally. ... 182
6.6 The timing of stochastic switching in the hybrid stochastic/deterministic model of the Tum$^{-}$CI MFL. ... 184
6.7 Sub-populations fitted to the simulated Tum$^{-}$CI MFL data validate the semi-deterministic interpretation. ... 186

8.1 1.5% agarose gel of diagnostic digest of pMTS-pR-tum$^{+}$ plasmid with AatII, Xhol and Ndel. ... 202
8.2 1.5% agarose gel of diagnostic digest of pR-tum plasmids with Ndel/Xhol. ... 203
8.3 2.0% agarose gel of diagnostic digests to check for the correct origin in the pR-tum plasmids. ... 204

A.1 Well-to-well variations in 96-well plates are correlated over time. ... 251
A.2 Fitting the ‘lac2’ data using alternative GLMs. ... 253
A.3 The Gompertz curve. ... 254
A.4 Comparing growth rate determinations between the various models of growth for the MFL strains. ... 256
A.5 The ‘wrmc2’ plate deviates significantly due to fitting biases introduced by the selection of time points. ... 256
A.6 MFL strain doubling times show little dependence on IPTG or assay conditions. ... 257
A.7 Induction reporter strain doubling times show little dependence on IPTG or assay conditions. ... 258

C.1 Deterministic fits of the ER-MCTum$^{-}$CI MFL flow cytometry hysteresis assay. ... 305
List of Tables

3.1 Parameters determined for Hill fits of induction. 74
3.2 Doubling times measured for notable strains within the present thesis. 82
3.3 Growth rates measured for an MFL strain in alternative growth media. 85
3.4 Tabulating the strengths of the \(pR \) and \(P_{\text{lac}} \) promoters in the MFL strains. 99

4.1 Comparing parameters measured experimentally or obtained from the literature with those determined by fitting the deterministic model. 127

6.1 Stochastic reactions in the Tum–CI MFL model. 170
6.2 A comparison of experimental parameter estimates and the deterministic parameters fitted to the time-course flow cytometry data. 176

8.1 Standard chemicals used in this thesis. 193
8.2 Standard buffers and growth media used in this thesis. Buffers were prepared in Milli-Q water (H\(_2\)O) unless otherwise specified. 195
8.3 Concentrations of antibiotics used in this thesis. 197
8.4 Bacterial strains used in this thesis. 204
8.5 Primers used in the course of this thesis. 205
8.6 Plasmids referred to and cloned in the course of this thesis. 206

C.1 A comparison of the deterministic parameters fitted to various subsets of the time-course flow cytometry data. 307
List of Boxes

4.1 Correcting for the dependence of LacZ units on optical density (OD_{600}) reduces variability and increases separation between the hysteresis curves. . . 107
5.1 The skew-t distribution. 140
Introduction

The cell stands at the heart of the living world as one of nature's most versatile building blocks. These packages of DNA, RNA and protein show a remarkably diverse range of behaviours and functions, from the efficient and rapid replication of the bacterial cell to the community of cells that make up the human body. Amazingly, this complexity is encoded in each cell’s DNA using just a four-letter alphabet that prescribes the regulated production of RNAs and proteins, the chief workhorses of the cell. Understanding how these fundamental components can coordinate cellular behaviour is a key challenge facing the life sciences, with central relevance in understanding issues like how normal cells turn cancerous or how some pathogenic bacteria can alternate between dormant and aggressive disease-causing states.

To learn the principles upon which such complex systems are founded, it is often effective to begin by studying simple examples. The relative simplicity of bacteria have made them popular model organisms for the general study of cell behaviour. Though only small, single-celled organisms, bacteria are highly capable, being able to process their environment and make decisions. Lacking a network of neuronal cells, the ‘brain’ of a bacterium is instead the network of interactions between the many molecules inside the cell. The network of protein-DNA interactions, that is, the transcription regulation network, has traditionally been the best studied. However, interesting new patterns of network connectivity are emerging that involve a combination of protein-DNA and protein-protein interactions. One of the simplest examples, the MFL, involves a protein-DNA interaction that feeds back on itself via a protein-protein interaction.

Bacteria can ‘remember’ past events and use these to inform future decisions. The simplest example of this is digital memory — a bistable switch that can remember one of two alternative states. Such bistability can be achieved in a number of ways, but a common element is positive feedback in some form. There are many examples of positive feedback in natural networks, but these are typically integrated as part of a much larger network. To better understand memory in the cell, synthetic networks have been constructed in an attempt to discover the requirements for bistability by building it ourselves. Such synthetic systems have already proven to be quite informative, but they also present advances in the field of synthetic biology, which makes use of the rich functionality of biological systems.
for the creation of new systems that can be applied in medicine and industry.

The MFL has the capacity to behave as a memory module, but has not yet been studied in isolation as a synthetic circuit. This thesis seeks to construct a synthetic bistable MFL in the bacterium *Escherichia coli* (*E. coli*) using parts obtained from bacteriophage.

1.1 Cellular networks drive cell behaviour

Just as the operation of an electronic circuit relies on the coordinated action of many interconnected components, the operation of a living cell relies on a vast and highly connected network of interactions between proteins, DNA, RNA and metabolites [Hartwell et al., 1999; Shen-Orr et al., 2002; Oltvai and Barabási, 2002; Joyce and Palsson, 2006]. This multi-layered web drives the ‘intelligent’ behaviours exhibited by cells: from the way that a single bacterial cell can sense and move towards food (chemotaxis), to the commitment that human stem cells make towards a particular cell type (differentiation). The systems responsible for such behaviours can involve large numbers of interacting partners forming complex interaction networks. In spite of their complexity, however, cellular networks have evolved to favour high-order organisation [Alon, 2003; Barabasi and Oltvai, 2004; Alon, 2007; Mitra et al., 2013], and this has helped to direct research into the origins of cellular intelligence.

Electronic circuits are modular by design, and in a similar fashion cellular networks are punctuated by common ‘network motifs’: patterns of connectivity that are found more frequently than would be expected from randomised networks. Examples of some of the most common simple network motifs are depicted in Figure 1.1. Autoregulatory and feed forward motifs (Figures 1.1(a) and 1.1(b)) are common in the gene regulatory networks of both prokaryotes [Shen-Orr et al., 2002] and eukaryotes [Lee et al., 2002]. Motifs that cross traditional network boundaries are also prevalent, and their importance is being increasingly recognised [Ray et al., 2011; Mitra et al., 2013]. One of the simplest examples of this type of motif is the MFL depicted in Figure 1.1(c), which involves both gene and

![Figure 1.1: Common network motifs in cells. Motifs are depicted using network diagrams, where circles (nodes) represent different genes in the network and connecting lines differ depending upon the type of interaction. For simplicity, each node represents both a gene and its protein product. Transcriptional regulation of one gene by the protein product of another is depicted using an arrow. Dashed lines represent a protein-protein interaction between gene products.](image-url)
protein interactions. The MFL is known to be a significant motif in the yeast *Saccharomyces cerevisiae* (*S. cerevisiae*) and is also found in many other cell types ranging from bacterial to mammalian [Yeger-Lotem et al., 2004]. In contrast, the transcriptional feedback loop in Figure 1.1(d) is not well-represented in the typically fast-response networks of bacteria or yeast, but is a notable motif in the long-term developmental pathways of higher organisms [Alon, 2007]. In their respective contexts, the over-abundance of each of these motifs implies that they may capture some core processing functionality, and much attention has been given both to their discovery in other species and to their characterisation, as reviewed by Alon [2007].

Such studies are of broad impact: network architecture is thought to be better conserved between species than the constituent components are [Oltvai and Barabási, 2002], with some structural similarities even being shared with unrelated networks like food webs, social networks and the internet [Milo et al., 2002]. As such, many of the principles learned by studying small networks are transferable, making it possible to study larger networks from the bottom up [Guido et al., 2006]. Indeed, much of our current understanding of cellular networks builds upon concepts developed last century using the relatively simple networks of the model organism bacteriophage λ (phage λ) and its host, the bacterium *E. coli*. An excellent overview of this body of research for phage λ can be found in the book by Ptashne [2004], but a brief summary follows. λ is a temperate phage — a virus that infects bacteria and that, upon infection, decides between two alternative lifecycles. In one, the lytic pathway, it uses host machinery for aggressive replication and packaging of its DNA into phage particles, which are eventually released by bursting (lysing) the host. In the other, the lysogenic pathway, the phage DNA reproduces passively with replication of the host by integrating (inserting) its genome into the host chromosome and keeping the genes responsible for lytic growth silent. The decision between these two pathways is controlled by a small network of transcription factors. The core motif of this network is an example of the transcriptional feedback loop (Figure 1.1(d)) found in developmental pathways, and its study has been instrumental in building an understanding of how network architecture can translate into a committed decision between two states. Furthermore, in spite of its relative simplicity, the transcriptional network of phage λ continues to shed light on cell regulation and memory [Dodd et al., 2004; Zeng et al., 2010; Zong et al., 2010; Cui et al., 2013].

Rigorous studies of the roles and functions of network motifs stand as pivotal steps towards understanding cellular behaviour. Amongst the ways for studying network motifs, the methods of synthetic biology stand as some of the most promising, and are worth developing in their own right.
1.2 Synthetic biology as a tool for studying network motifs

Synthetic biology is an emerging field whose aim is the creation of new biological functions and organisms. Living systems have evolved a plethora of elegant solutions to the challenges posed by nature. By building upon this diverse and highly capable toolkit to engineer solutions to humanity’s own challenges, synthetic biology holds the potential for landmark applications in both industry and medicine. Though still a young field, promising applications have already come to fruition. The engineering and optimisation of a metabolic pathway for biosynthesis of artemisinic acid in *S. cerevisiae* [Ro et al., 2006] has paved the way for large-scale production of the antimalarial compound artemisinin [Paddon et al., 2013]. Bacteriophage have been engineered to break down bacterial biofilms that would normally act as a protective barrier for pathogenic strains [Lu and Collins, 2007]; others have been engineered to enhance the efficiency of antibiotics at eliminating infections [Lu and Collins, 2009]. Bacteria have been synthesised that can specifically target and deliver cytotoxic payloads to cancerous cells [Anderson et al., 2006; Huh et al., 2013], or that can stimulate the immune system to eliminate human lymphomas [Massa et al., 2013]. In response to the threat of global warming, much effort has also been spent in engineering microbes for the sustainable production of biofuels as reviewed by Kung et al. [2012]. Many other applications of synthetic biology are in development and covered in more detail in the reviews by Khalil and Collins [2010] and Ruder et al. [2011]. Synthetic biology holds many exciting applications, but important accompanying functions of these endeavours are the lessons learned about nature’s design rules.

Much like synthetic chemistry helped to establish the principles of chemical reactivity and molecular structure, the process of building novel gene circuits tests and can help to refine our understanding of network architecture [Yeh and Lim, 2007]. By rearranging existing components to test their presumed purpose, or by attempting to recreate observed behaviours using unnatural components, synthetic biology can help to identify core biological functions that are easily missed by observation and analysis alone [Benner and Sismour, 2005]. The simple motifs found in gene networks are prime candidates for reconstruction as synthetic gene networks, and much has already been learned by this approach [Sprinzak and Elowitz, 2005; Mukherji and van Oudenaarden, 2009]. The development of key design standards has driven much of synthetic biology over the last decade [Way et al., 2014]. These include the identification of modularity in biology [Agapakis and Silver, 2009], the need for predictive mathematical models [Hasty et al., 2002], and the need for a standardised library of decoupled parts [Endy, 2005]. These concepts will be introduced in more detail in the coming sections.
1.2 Synthetic biology as a tool for studying network motifs

1.2.1 Defining modules for rational circuit design

In rationally designing new systems, it is important to recognise parts that are modular: parts whose functions in a native context could be transferred intact into engineered environments. Modularity is present to varying degrees at almost all levels of operation of the cell, from the triple base pair codons that are translated into amino acids, to protein domains, genes and many of their control elements [Benner and Sismour, 2005]. Entire sub-networks can even be classified into modules by associating network nodes that share a common purpose [Mitra et al., 2013].

Modules are the synthetic biologist’s building blocks, and in gene network engineering, some of the most important are transcription factor genes and the promoters they regulate. Well-characterised transcription factors, like the CI repressor protein from phage \(\lambda\), the TetR repressor protein that regulates resistance to the antibiotic tetracycline, and the LacI repressor protein that regulates lactose metabolism in \(E. coli\), have seen extensive use in synthetic gene networks. The earliest synthetic gene networks were built from novel rearrangements of just these three transcription factors and their respective promoters to create small networks with a diverse range of behaviours and architectures, including a switch [Gardner et al., 2000], an oscillator [Elowitz and Leibler, 2000], logic gates [Guet et al., 2002] and autoregulatory motifs [Becskei and Serrano, 2000; Rosenfeld et al., 2002]. The reusability of these parts demonstrates their modularity, and indeed these regulatory networks can be interfaced with other components to predictably alter sensory inputs and phenotypic outputs [Kobayashi et al., 2004]. Furthermore, these parts were used to replace functionally analogous ones in the phage \(\lambda\) lysis-lysogeny switch, and the synthetic network shown to reproduce the salient behaviour of the natural system [Atsumi and Little, 2006].

The success of these early synthetic networks showed that transcription factor genes and their promoters could be treated as modular and rewired by DNA recombination to produce desired behaviours. These were, however, exploratory studies that produced qualitative rather than quantitative agreement with the design specifications. It has since become apparent that the point-blank abstraction of these parts as autonomous modules with singular functions is, in many cases, too crude a simplification for the robust development of new network architectures [Andrianantoandro et al., 2006; Nandagopal and Elowitz, 2011]. This has prompted a more careful and detailed treatment of the modules used in synthetic biology.

In their native contexts, most proteins and regulatory elements are tightly integrated within the broader cell network, displaying multiple, often overlapping functions. Even the CI repressor of phage \(\lambda\), a frequent component of synthetic networks, has multiple functions: depending on the genetic context, it can act either as a transcriptional repressor or activator of promoter elements, and it is also linked to the host SOS response network, in which it gets cleaved and thereby inactivated upon SOS signalling [Ptashne, 2004]. Avoid-
Chapter 1. Introduction

ing such coupling in the design of new networks has until more recently been a common theme in synthetic biology [Nandagopal and Elowitz, 2011]. Though it might be technically possible to create completely specified environments by rewriting the entire genome of an organism [Gibson et al., 2008, 2010], or by constructing minimal synthetic systems in vitro [Kim et al., 2006], the engineering and analysis of small synthetic gene circuits is most easily achieved using an existing organism as the ‘host’. This means that global cell regulatory factors are an important consideration in circuit design. For example, the introduction of new genes can result in changes to growth rate, with global consequences that can affect quantitative and qualitative behaviours of the gene circuit [Klumpp et al., 2009]. Designs may even need to account for coupling between modules: wiring the output of one module to the input of the next can have unintended effects on the dynamics of the upstream module — a phenomenon known as retroactivity [Del Vecchio et al., 2008; Jayanthi et al., 2013].

Instead of presenting a hindrance to circuit design, coupling between modules and coupling with global host factors can present opportunities for novel regulatory mechanisms. Synthetic circuits can be constructed using factors known to modulate growth rate, and this modulation then exploited for the production of a memory network [Tan et al., 2009]. The generation of oxidative radicals by the fluorescent reporter proteins normally used to track cell state can be used to engineer long-distance quorum sensing behaviour [Prindle et al., 2012]. Different proteins that are actively degraded by the same host protease can be coupled by saturation of that enzyme, and this coupling used to create an oscillator [Prindle et al., 2014].

Nonetheless, many instances of coupling are unexpected in the early stages of network design, making the process of synthetic biology naturally an iterative one [Sprinzak and Elowitz, 2005]. Yet with the construction of each new synthetic network, the arsenal of mitigation strategies in the synthetic biologist’s toolkit keeps expanding. These strategies are reviewed in more detail by Brophy and Voigt [2014], but include an increasing variety of methods for tuning module behaviour, such as the adjustment of promoter strengths, ribosome binding site (RBS) strengths, rates of degradation or gene dosage (e.g., by adjusting plasmid copy number). Even the effects of retroactivity can be overcome through the judicious application of time scale separation [Mishra et al., 2014]. Ideally, these improvements could all be made in the design process itself by refining the mathematical models that are used to predict network behaviour.

1.2.2 Predictive models of cellular networks

Quantitative modelling provides a rigorous framework for developing and testing ideas about the behaviour of gene networks. Indeed, a quantitative appreciation of a network’s components is essential for accurately determining its dynamical behaviour [Ronen et al., 2002]. Even the seemingly simple coupling of regulators with effectors in inducible and
repressible circuits can see qualitative changes arising out of quantitative ones [Hlavacek and Savageau, 1996; Wall et al., 2003]. As such, mathematical models are particularly influential in synthetic biology, where they can benefit both the design and evaluation of synthetic gene networks [Hasty et al., 2001, 2002]. Even in the very first synthetic gene networks, mathematical models were instrumental in the design process [Elowitz and Leibler, 2000; Gardner et al., 2000]. Though the models in these early studies were not quantitatively accurate, they could be used to identify possible classes of dynamic behaviour and thereby inform the optimisation of experimental parameters. Since then, improvements in the experimental quantitation of network components and in the models used to describe them have resulted in circuit designs where the calibrated model can accurately predict the quantitative output of the engineered network [Isaacs et al., 2003; Guido et al., 2006; Rosenfeld et al., 2007; Ellis et al., 2009b].

Gene networks can be characterised using many different types of modelling depending on the desired level of detail [Karlebach and Shamir, 2008]. Of these, deterministic rate equation models and a variety of stochastic models have seen regular use alongside synthetic networks [Kaern et al., 2003]. Deterministic models track network components like messenger RNA (mRNA) and proteins as continuously varying concentrations that can be defined in terms of an Ordinary Differential Equation (ODE). Deterministic models are popular in formulating the initial network design, since their analytical tractability helps to simplify the process of exploring suitable parameter regimes [Gardner et al., 2000; Rosenfeld et al., 2002; Atkinson et al., 2003; Tigges et al., 2009; Palani and Sarkar, 2011]. Such models are kept deliberately simple to facilitate fast prototyping of designs, whilst simultaneously avoiding the typically poorly-defined details of many biochemical reactions. This loss of accuracy does not necessarily reduce their utility: simplified models are quite likely to be valuable in summing up the behaviours of large networks from the behaviours of their motifs [Sneppen et al., 2010].

In contrast, stochastic models provide a more accurate account of network dynamics at the cost of simplicity. Cellular environments are noisy: at such small scales, the intrinsically random timing of biochemical reactions can become significant, prompting the treatment of transcription and translation as stochastic reactions [Ozbudak et al., 2002; Elowitz et al., 2002]. Stochastic models are frequently applied after characterisation of a synthetic circuit to explain its noisy behaviour, or to investigate network mechanics in more detail [Elowitz and Leibler, 2000; Becskei and Serrano, 2000; Isaacs et al., 2003; Hooshangi et al., 2005; Stricker et al., 2008]. Methods for stochastic simulation continue to be improved, and can in some cases be applied to accurately predict the behaviour of synthetic networks [Guido et al., 2006]. Furthermore, our increased understanding of different stochastic mechanisms have led to advances in network analysis: distributions of noise can provide additional information about regulatory activity, and by developing an analytical framework through the use of simple synthetic circuits, the behaviour of natural
gene networks can be better understood [Dunlop et al., 2008].

Irrespective of the choice of model, careful characterisation of the components is essential to a model’s predictive success. This highlights another fundamental goal of synthetic biology: the collation of a library of well-characterised parts that can be rationally pieced together with the assistance of both deterministic and stochastic models.

1.2.3 Bacteriophage 186: a source of new components for synthetic biology

The modular interpretation of the cell paved the way for many landmark synthetic gene networks, whose success depended on a core collection of well-studied parts [Voigt, 2006]. However, the limited number of such parts and the absence of systematic methods for their characterisation soon made it clear that standardised component libraries would be required for continued growth in the field [Endy, 2005]. These observations prompted the development of rigorous standards for the specification of parts [Canton et al., 2008], and the development of a comprehensive and accessible repository of interchangeable parts [Shetty et al., 2008]. Whilst these represented major steps forwards in bioengineering capacity, the next generation of synthetic networks are set to demand increasingly large collections of orthogonal components [Lu et al., 2009]. Significant progress has already been made in generating large promoter and RBS libraries with a broad range of strengths [Ellis et al., 2009b; Mutalik et al., 2013]. Such libraries can be used for predictable tuning of expression levels when optimising synthetic networks, but do not contribute to the diversity of network connectivity. Libraries of network components are most easily obtained using the wealth of parts present already in nature. For example, it became possible to synthesise a large network containing multiple logic gates by finding homologues of the required components in different strains of bacteria, making use of directed evolution to optimise these for dynamic range and orthogonality (i.e., reduced coupling) [Moon et al., 2012].

Viruses, including bacteriophage, are one of the planet’s most abundant organisms, and stand as an especially diverse source of genetic material [Rosario and Breitbart, 2011]. As was previously observed in the case of phage λ, the relative simplicity of bacteriophage makes them useful model organisms, but it also makes them convenient sources of parts for synthetic biology. Temperate phage, in particular, contain components that are valuable in network design, since they require a memory circuit to maintain the lysogenic state of passive replication with the host. A temperate phage that has been studied in detail over the last three decades is the bacteriophage 186 (phage 186) [Woods and Egan, 1974; Kalionis et al., 1986; Dodd et al., 1990; Neufing et al., 2001; Dodd et al., 2007b]. This phage displays many functional similarities with phage λ, but is remarkable for its distinct regulatory mechanisms [Trusina et al., 2005]. This has made phage 186 a useful counterpoint to phage λ and makes it an exciting new source of synthetic parts, especially since many of its components have already been well-characterised.
Two major distinguishing features of phage 186 are its switch control region and its mechanism of induction in response to host SOS signals. To illustrate these differences by reference to the gene network of phage 186, a schematic of the entire phage genome is given in Figure 1.2, with additional details for the switch control region shown in the inset. Like phage λ, a repressor protein called CI maintains the lysogenic state by keeping the lytic promoter pR silent [Lamont et al., 1993; Dodd and Egan, 2002]. However, unlike phage λ, the promoters that drive lysogenic and lytic development (pL and pR respectively) are located in a face-to-face arrangement. This means that repression of the lytic state is further enhanced by transcriptional interference — the repression of a promoter by incident RNA polymerases [Callen et al., 2004; Dodd et al., 2007b].

The mechanism of phage induction in response to SOS signalling is another point of contrast. The SOS network of E. coli gets activated in response to DNA damage [Little and Mount, 1982], and under such conditions, lysogens of phage λ and phage 186 are induced into lytic development by the inactivation of their repressor proteins. In the case of phage λ, inactivation of the repressor occurs by stimulated autocatalytic cleavage of λ CI by the host RecA protein [Little, 1984]. In the case of phage 186, response to the host SOS system is mediated by the $p95$ promoter that is normally held repressed by the host LexA protein [Brumby et al., 1996]. Upon SOS signalling, LexA is inactivated and expression of the tum gene produces the antirepressor Tum. Tum reversibly inactivates CI by preventing

1Note that unless otherwise indicated, references to CI or CI in this thesis will be used to refer to that gene or protein respectively in phage 186, rather than to the identically named repressor protein in phage λ.

Figure 1.2: A diagrammatic representation of the bacteriophage 186 genome. The entire genome consists of only 30.6 kilobases of DNA, but encodes for all the functionality of the phage. The inset provides more detail for the main control region. Points of CI binding are indicated by the red heavy dashed lines; the binding sites flanking the pR promoter (F_L and F_R) are indicated by a black dot in the inset. See the text for descriptions of the most relevant genes and proteins. (Adapted from a figure by Ian Dodd).
its binding to the pR promoter and thereby allowing lytic transcription [Shearwin et al., 1998]. The precise mechanism of CI inactivation by Tum is unknown, but it is known that (1) the Tum protein acts on CI without the aid of any other factors, (2) the effect is Tum concentration-dependent, and (3) the action of Tum on CI is reversible [Shearwin et al., 1998]. So for the purposes of network design, CI can be thought of as a repressor protein for the pR promoter, and Tum as an antirepressor that interacts with CI as if by a protein-protein interaction. This makes these two components ideal candidates for studying the intersection of transcriptional and protein-protein interaction networks.

1.3 The bistable MFL is an excellent candidate synthetic network

Cellular networks that can exhibit bistability — that is, an ability to stably maintain either of two alternative states — have attracted much attention, since such a property can give a cell the capacity to exhibit committed all-or-none responses. Natural examples of bistable networks include the lysis-lysogeny decision of phage λ [Oppenheim et al., 2005], the regulation of lactose metabolism in E. coli [Ozbudak et al., 2004], the persistence of antibiotic-resistant bacteria in the treatment of infection [Balaban et al., 2004], the transient competence of Bacillus subtilis (B. subtilis) [Süel et al., 2006], the differentiation of the photoreceptor cells responsible for colour vision in Drosophila [Mikeladze-Dvali et al., 2005], and the epigenetic inheritance of nucleosome modifications [Dodd et al., 2007a] and DNA methylation [Lim and van Oudenaarden, 2007]. This widespread incorporation of bistability in natural networks underscores their importance in building complex network behaviours, and real-world medical and industrial applications of bistable synthetic networks are anticipated [Burrill and Silver, 2010]. Precedent for potential medical applications was recently set with the synthesis of a diagnostic bacterial strain: by making use of the bistable phage λ switch, the synthetic strain could remember diagnostic signals detected while passing through the mouse gut [Kotula et al., 2014].

Synthetic bistable networks have also played significant roles in advancing our understanding of bistable behaviour and the requirements for bistability. Bistability requires both overall positive feedback, but also some form of nonlinearity [Ferrell, 2002]. Examples of gene regulatory networks with overall positive feedback are illustrated in Figure 1.3. The first synthetic bistable network was built using the toggle switch design (Figure 1.3(b)) [Gardner et al., 2000]. The toggle switch is very similar to the bistable motif of phage λ, and derives nonlinearity from the cooperative binding of the repressor proteins to their promoters. It is a mutually exclusive switch: in one state only A is expressed, since A represses the expression of B; in the other state only B is expressed. Toggle switches have since been synthesised in mammalian cells [Kramer et al., 2004; Kramer and Fussenegger, 2005] and also in a minimal in vitro system [Kim et al., 2006]. An enhanced mammalian toggle switch was also synthesised, in which the stability of each state was enhanced through
1.3 The bistable MFL is an excellent candidate synthetic network

![Diagram of gene regulatory networks](image)

Figure 1.3: Gene regulatory networks that can exhibit bistability. Promoters are depicted as bent arrows, genes as directed boxes and proteins as circles or squares. (a) Positive autoregulation where protein A activates its own transcription. The switch can exist in high A or low A states. (b) The genetic toggle switch where protein A represses transcription of protein B, and protein B similarly represses transcription of protein A. The switch can exist in high A/low B or low A/high B states. (c) The bistable mixed feedback loop where protein A represses transcription of protein B, whilst protein B interacts with protein A to prevent its repression of the PB promoter. The switch can exist in high B or low B states.

an additional feedback mechanism involving mRNA silencing by siRNAs (short interfering RNA molecules) [Greber et al., 2008].

Shortly following construction of the original toggle switch, a bistable circuit based on the positive autoregulation design (Figure 1.3(a)) was constructed in *S. cerevisiae* [Becskei et al., 2001]. Such circuits also derive nonlinearity from cooperative binding. An autoregulatory switch was also synthesised in *E. coli*, which became a robust oscillator with the addition of a linked negative feedback loop [Atkinson et al., 2003]. A particularly stable switch was engineered by instead linking positive autoregulation with the bistable motif of the lac operon [Chang et al., 2010]. In fact, more generally, the linking of fast and slow positive feedback loops is believed to be an important means for increasing robustness in bistable networks [Brandman et al., 2005].

In *E. coli*, the toggle switch is not a common motif [Shen-Orr et al., 2002], and positive autoregulation is much less common than negative autoregulation [Thieffry et al., 1998]. Rather, composite feedback loops involving a transcriptional and post-transcriptional link are thought to be more important [Shen-Orr et al., 2002], as they are in *S. cerevisiae* [Yeger-Lotem and Margalit, 2003; Yeger-Lotem et al., 2004]. One of the most common composite motifs is a feedback loop consisting of a protein-protein interaction and a protein-DNA interaction [Yeger-Lotem et al., 2004; Alon, 2007]. This MFL motif, introduced earlier in Section 1.1, has been shown in theory to support either bistability or oscillations depending
on the overall sign of the feedback [François and Hakim, 2005]. With overall negative feedback, the MFL can behave as an oscillator. In human cells, the tumour suppressor p53 and its negative regulator Mdm2 form such a loop: p53 activates transcription of Mdm2 (positive interaction), whilst the Mdm2-p53 protein-protein interaction targets p53 for degradation (negative interaction) [Lahav et al., 2004]. The yeast galactose operon contains a MFL with overall negative feedback comprising the Gal4p activator and the Gal80p protein, but two additional positive feedback loops involving the sequestration of Gal80p by Gal3p and Gal1p make this network a bistable one [Smidtas et al., 2006; Venturelli et al., 2012].

With overall positive feedback the MFL can behave as a bistable switch [François and Hakim, 2005]. An example of the MFL motif in this regime is illustrated in Figure 1.1(c). In *B. subtilis*, the decision between chained growth in biofilms and motility is governed by such a bistable MFL. The SinR repressor controls production of SlrR, which in turn forms a complex with SinR that prevents it from repressing SlrR production [Chai et al., 2010a,b]. Another bistable MFL is found in the genetic switch of temperate bacteriophage TP901, where the CI repressor of that phage controls the production of MOR, an antirepressor that inhibits repression by CI [Nakanishi et al., 2009; Alsing et al., 2011]. In *S. cerevisiae*, the Swi4 and Swi6 proteins involved in cell cycle control also form an MFL with overall positive feedback, though this example is embedded within a much larger network [Baetz and Andrews, 1999].

Bistability in the MFL is possible without cooperativity in protein binding, since protein sequestration itself generates an ultrasensitive response [Buchler and Louis, 2008; Buchler and Cross, 2009]. Stochastic modelling of a theoretical MFL with overall positive feedback shows that both intrinsic and extrinsic sources of noise could be capable of causing switching between the two stable states, and, for certain parameter regimes, a noisy MFL may even support oscillations [Li and Li, 2008]. Whilst there are natural examples of the MFL embedded in larger networks and theoretical studies of the bistable MFL, a systematic study of a synthetic bistable MFL has not, to the author’s knowledge, yet been performed. As such, the primary aim of this thesis is the construction and detailed characterisation of a synthetic bistable MFL using the repressor and antirepressor proteins of phage 186.

1.4 Thesis overview

A MFL with overall positive feedback could be made by placing the expression of the Tum antirepressor under the control of the *pR* promoter and supplying CI from another promoter. A proof-of-principle deterministic model of this Tum–CI MFL is developed in Chapter 2. By considering the deterministic model at steady-state, the capacity for bistability in the Tum–CI MFL is demonstrated for a range of different model parameters. The dynamical behaviour of the model is then used to propose an experimental design that
could demonstrate bistability by the traversal of a hysteresis loop. The cloning of various alternative Tum–CI MFL strains in *E. coli* is then described in Chapter 3. Traversal of the hysteresis loop is enabled by placing the expression of CI under the control of an inducible promoter. A dual reporting system is also devised so that the state of the switch — the activity of the pR promoter — can be tracked either by fluorescence or by LacZ assay. Preliminary experiments obtained by LacZ assay prompt better characterisation of the switch components, including the nonlinearity present in the induction system, and the production and degradation rates of Tum and CI.

Hysteresis of the experimental Tum–CI MFL is demonstrated in Chapter 4. The LacZ assay enables efficient screening of the different strain designs, but also reveals that the original hysteresis protocol does not allow enough time for equilibration of the network. By using a protocol that produces a longer equilibration time, hysteresis is confirmed in some strains but not in others. However, even in the successful strains, the observed hysteresis is weak. Neither the deterministic model nor the measured component properties could be used to explain this weak hysteresis. Instead, an explanation in terms of noise-induced instability is proposed. Measurements by LacZ assay give only the average pR activity of a large population of cells, so LacZ assay results could mask a more complicated underlying distribution of pR activities in individual cells. Thus in Chapter 5, measurements by flow cytometry are used to measure the pR activities of single cells using the fluorescent reporter. Evidence for a mixture of two cell populations in the middle of the hysteresis loop prompts the development of a mixture modelling method that can resolve these sub-populations. The mean activities of these sub-populations mark a much better match to the hysteresis curves predicted by the deterministic model. To explain the split into two sub-populations, however, a stochastic model is required. A basic hybrid deterministic/stochastic model is derived in Chapter 6 that can reproduce the split-population phenotype based on just the intrinsic noise in CI and Tum production. However, in order to match the level of noisy switching observed experimentally, larger than expected fluctuations in Tum expression are required, suggesting an explanation of switch instability based on plasmid copy-number fluctuations.

In Chapter 7, the synthetic Tum–CI MFL is compared with other natural and synthetic examples of bistability and future work on the Tum–CI MFL is proposed. Detailed experimental methods for the preparation and analysis of the Tum–CI MFL can be found in Chapter 8. The thesis concludes with a draft paper describing further characterisation of the Tum protein by mutation and structure prediction to better consolidate Tum as a useful part for future synthetic circuits.
Directing design of a bistable genetic circuit by mathematical modelling

The bistable Mixed Feedback Loop (MFL) as envisioned by François and Hakim [2005] is a two-component network consisting of a positive feedback loop in which a protein gene product indirectly regulates its own transcription via a protein-protein interaction. This network is schematically represented in Figure 2.1 with an antirepressor factor B that stimulates its own production from the promoter P_B by relieving repression of that promoter by the repressor A. François and Hakim developed a generalised dynamical model of the MFL, showing that with this overall positive feedback, the MFL operates under a bistable regime\(^1\). Such an antirepressor-repressor interaction is found between the Tum antirepressor and CI repressor of phage T4 [Shearwin et al., 1998]. In the phage, expression of Tum is activated by the host SOS response; Tum then reversibly acts against the CI repressor to relieve repression of phage lytic promoters such as pR. In principle, a bistable MFL could be constructed using these phage components by placing Tum production under control of the CI-repressible promoter pR. In this chapter, further design considerations regarding the practical implementation of a synthetic Tum–CI MFL network are explored. To this end, initial qualitative descriptions of this circuit and its behaviours are developed into quantitative models that consolidate and extend our understanding of the network.

\(^1\)François and Hakim [2005] contrast the MFLs bistable regime with an oscillatory regime with overall negative feedback in which the the protein B relieves activation of its own promoter.

Figure 2.1: The bistable Mixed Feedback Loop (MFL) is a genetic network motif in which positive autoregulation of gene B proceeds via an intervening protein-protein interaction with A. The bistability of this genetic circuit depends on overall positive feedback, generated here by a double negative feedback loop where the antirepressor B relieves repression of its own promoter P_B by the constitutive repressor A.
2.1 Origin of bistability in the Tum−CI MFL

By definition, bistable systems are those for which there are two distinct stable states. A light switch shows bistable behaviour since it ‘remembers’ whether it is on or off. The switch can be flipped between the two states by outside interference (a finger), but once it enters either state, it stays there indefinitely. Note how this contrasts with a doorbell — a monostable system — which can be induced to an on state (by pressing the button), but always returns to its stable off state when the inducing signal is removed. In biochemical networks, these states are protein concentrations or promoter activities. In the bistable MFL, the ‘on’ state has a high concentration of protein B and high expression from \(P_B \), whilst the ‘off’ state has a low concentration of protein B and low expression from \(P_B \).

These two states are illustrated in Figure 2.2 for a MFL constructed from Tum and CI. In the ‘on’ state, production of the antirepressor Tum from the \(pR \) promoter is high, so cellular concentrations of Tum are high. This shifts the Tum−CI equilibrium towards formation of an inactive complex. The available CI is sequestered (i.e., locked away) and cannot act at the \(pR \) promoter so the ‘on’ state is maintained. In the ‘off’ state, transcription from \(pR \) is low, so cellular concentrations of Tum are also low. This shifts the Tum−CI equilibrium away from formation of the complex, and the available CI is then free to act at the \(pR \) promoter and maintain the ‘off’ state. Notice that in both ‘on’ and ‘off’ states, the level of CI is the same. This highlights the important point that in bistable networks, identical external states (fixed CI expression levels) can give rise to two alternative internal states (high or low Tum concentrations). Put another way, the equilibrium state of the bistable MFL cannot be predicted without first knowing its history.

Simultaneously achieving the capacity for two stable states requires balanced production rates. The ‘on’ state can only be stably maintained if high enough rates of Tum production can be reached to overcome repression of \(pR \) by the fraction of unbound CI. Conversely, the ‘off’ state can only be stably maintained if low enough rates of Tum production can be reached to prevent sequestration of the fraction of free CI.

![Figure 2.2](image)

Figure 2.2: The two stable states of a bistable Tum−CI Mixed Feedback Loop. CI repressor produced from \(P_{lac} \) would normally repress the promoter \(pR \) that drives production of the antirepressor Tum. However, in the ‘on’ state Tum relieves this repression by sequestering CI and sustaining its own production. In the ‘off’ state, the same level of CI produces an alternative stable state where there is not enough Tum present to begin with to prevent repression of the \(pR \) promoter.
A source of feedback is necessary but not sufficient to guarantee bistability. A further, less obvious requirement, is ultrasensitivity [Ferrell, 2002], that is, feedback that proceeds via a nonlinear response curve that is sigmoidal or S-shaped. The simplest type of ultrasensitivity arises as a result of the cooperative binding of oligomers to produce a Hill curve response [Smolen et al., 2000; Qian, 2012]. This is sufficient to produce bistable circuits, but other mechanisms have also been shown [Keller, 1995; Siegal-Gaskins et al., 2011]. In particular, ultrasensitivity can arise by sequestration of a species [Buchler and Louis, 2008], like the way in which CI acts to sequester Tum in the MFL; as Tum levels increase, they are buffered by the titrant (CI), and thus a corresponding ultrasensitive response is observed to occur. The critical relation is the ultrasensitive decrease in free CI concentration as a function of the increase in production of Tum. That is, a change in the production rate of Tum results in an equivalently larger reduction in free CI in the ultrasensitive region.

With the complex requirements for balancing production rates and ultrasensitivity in the MFL, a mathematical model of this system will become indispensable, as it does for most projects in genetic network design [Kaern et al., 2003].

2.2 Developing a mathematical model of the Tum–CI MFL

The mathematical framework developed by François and Hakim [2005] to describe a MFL provides a good starting point for understanding the basic requirements for bistable or oscillating MFLs. Their analysis is based on a generic model of deterministic rate equations that characterise the time evolution of each species. In order to simultaneously model both activators and repressors, François and Hakim included terms for production from P_B (refer to Figure 2.1) in both bound and unbound states of the transcription factor A. A major conclusion of their work was that bistability was possible as long as the overall production rate for the unbound form of promoter P_B was higher than the rate of production from P_A and the overall production rate for the bound form of P_B was lower than the rate of production from P_A. They further showed that in this configuration the circuit can show history-dependent behaviour (hysteresis) as a function of the rate of production from P_A, a characteristic feature of bistable systems [Ferrell, 2002]. Here a similar model is employed, albeit with some minor modifications given the specific application to a Tum–CI MFL. In particular the Tum–CI and CI–pR interactions are both known to be highly cooperative, so here a model is formulated accordingly to gauge the effects of additional cooperativity on the bistability of the circuit.

The key network interactions of the Tum–CI MFL are the repression of pR by CI and the sequestration of CI due to the formation of the Tum–CI complex. Both of these can be thought of as equilibrium reactions that are characterised by the concentrations of free CI (specified as C), free Tum (specified as T) and Tum–CI complex (specified as S). The level of free CI determines the equilibrium between bound (specified as R for ‘repressed’) and
Figure 2.3: Parameters used for modelling the bistable Tum–CI MFL. The state of the system is defined by the concentrations of the three species illustrated (free Tum, free CI and Tum–CI complex). The time evolution of these species is defined by the production \((p_C, p_T)\) and degradation \((\delta_C, \delta_T, \delta_S)\) rates and the network interactions by equilibria, which are approximately described using Hill curves with EC\(_{50}\)s \((\varepsilon_R, \varepsilon_S)\) and Hill coefficients \((H_R, H_S)\).

unbound (specified as \(U\) for ‘unrepressed’) forms of the \(pR\) promoter, but is itself determined by the equilibrium with free Tum and Tum–CI complex. A summary diagram of these reactions and the production and degradation reactions that constitute the Tum–CI MFL is shown in Figure 2.3. Each reaction is labelled by the parameters used to describe it, with subscripts chosen to reflect the species each parameter pertains to. The assumptions made in choosing this model and the corresponding set of parameters will be discussed and justified in the following sections, but put simply:

- the overall rate of production of CI is set by parameter \(p_C\), with the overall rate of production of Tum from unbound \(pR\) set by \(p_T\),
- degradation/loss of each species is assumed to be first order in the concentration of that species with degradation rates \(\delta_C, \delta_T\) and \(\delta_S\) for free CI, free Tum and Tum–CI respectively, and
- the network interactions are described using Hill approximations for the equilibria with Hill coefficients \(H_R\) and \(H_S\), and EC\(_{50}\)s \(\varepsilon_R\) and \(\varepsilon_S\) for the CI–\(pR\) and Tum–CI equilibria respectively.

It is worth noting here that a significant departure from the François and Hakim model is to neglect modelling of the intermediate mRNA species in the production of Tum. The delay introduced by the mRNA half-life was critical for getting oscillations in their model [François and Hakim, 2005]. However, here only the bistable mode is of interest so such dynamics are less relevant. This approximation simplifies the steady-state analysis and does not significantly impact the relevant deterministic dynamics as long as the half-life of the mRNA is much shorter than that of the protein [Sneppen et al., 2010]. This same assumption was successfully applied in the simple mathematical model used to describe the first synthetic bistable circuit [Gardner et al., 2000].
2.2 Developing a mathematical model of the Tum–CI MFL

2.2.1 Modelling the Cl–pR interaction

Of the two equilibrium reactions, repression of pR by CI is better understood. The available experimental data suggests that CI forms dimers at very low concentrations — with a dissociation constant of at most 1×10^{-8} M [Shearwin and Egan, 1996] — and that these CI dimers can bind cooperatively to form a heptamer (7-mer) of dimers [Pinkett et al., 2006]. There are a number of sites in the phage where CI is able to bind, including the opposing promoters pR and pL and two distant flanking sites, F_R and F_L, that increase the level of repression at pR and pL [Dodd and Egan, 2002]. Modelling of the in vivo repression data shows that CI binds cooperatively to repress the pR promoter and further suggested that the DNA wraps around the CI 14-mer, forming a CI wheel structure [Dodd et al., 2007b]. DNA wrapping of the 14-mer and DNA looping of the flanking sites have both been confirmed in vitro by atomic force microscopy and tethered particle motion [Wang et al., 2013]. For the Tum–CI MFL, the pR promoter without the flanking binding sites was chosen for its balance between ultrasensitivity and dynamic range.

Here, a model for the Cl–pR equilibrium similar to that used by Dodd et al. [2007b] is employed to characterise the cooperative equilibrium between bound and unbound CI at the pR promoter. In this model, the complex series of reactions leading from CI monomers to the complete 14-mer are approximated (1) by presuming that the only CI species capable of binding to and repressing the pR promoter is the complete CI wheel, and (2) by using a Hill approximation to ignore all intermediate states (for which little data is available). It is further assumed here that at physiologically relevant CI protein concentrations, CI exists almost completely as dimers, like for the phage λ model [Ackers et al., 1982]. As a result the action of CI at pR can be modelled by a single equilibrium reaction between the unbound pR promoter and free CI dimers and the repressed promoter bound by a CI wheel (Cl_{14}–pR):

$$7Cl_2 + pR \rightleftharpoons Cl_{14} \cdot pR$$

(2.1)

According to this formula, the concentration, R, of repressed pR and concentration, U, of unrepressed pR are related by equilibrium considerations to the concentration, C, of free CI as:

$$R = U \left(\frac{C}{\varepsilon_R} \right)^{H_R}$$

(2.2)

with reaction order (Hill coefficient) H_R and EC$_{50}$ ε_R. According to this description of promoter binding, the fraction of unbound pR, f_U, can be written as a Hill equation:

$$f_U = \frac{U}{U + R} = \frac{U}{U + U(C/\varepsilon_R)^{H_R}} = \frac{1}{1 + (C/\varepsilon_R)^{H_R}}$$

(2.3)

and conversely the fraction of bound pR, f_R, can be written:

$$f_R = \frac{R}{U + R} = \frac{1}{1 + (C/\varepsilon_R)^{-H_R}}$$

(2.4)
To relate this CI–DNA binding data to a production rate from pR, it is assumed here that production from the pR promoter is negligible when CI is bound, so that the promoter firing rate is proportional to the fraction of unbound pR, as given in Equation (2.3). Note that this is a gross oversimplification in comparison with the detailed model developed by Dodd et al. [2007b], which additionally accounts for a number of other unproductive states and also the effects of transcriptional interference at pR due to firing from pL. However, the simple proportionality model results in a far more tractable analysis, whilst still capturing the essential behaviour for the pR promoter, and has been successfully applied to describe other bistable gene networks [Gardner et al., 2000; Ozbudak et al., 2004]. In effect, the complexity is hidden within a fixed constant of proportionality, p_T, which can be set by measuring pR activity when $C = 0$, that is, in the absence of CI.

Using a DNA fragment containing the entire pR–pL region without flanking binding sites, the fraction of bound DNA has been measured in vitro as a function of CI concentration by gel shift assay [Dodd and Egan, 1996]. Using that data, the parameters in Equation (2.4) were fit to give a Hill coefficient of $H_R = 1.7$ and an EC_{50} of $\epsilon_R = 28$ nM [Shearwin et al., 1998]. This is in contrast with the parameters determined by Dodd et al. [2007b] to fit the in vivo repression data, where the Hill coefficient was determined as $H_R = 2.2$ and the EC_{50} as $\epsilon_R = 0.57$ WLU (wild-type lysogenic units) [Dodd et al., 2007b], which is equivalent to 630 nM using the quantitative Western blot measurements of Dodd and Egan [2002]. Perhaps most surprising is the order of magnitude difference in EC_{50} between in vitro and in vivo data sets. This seeming discrepancy can be partly rationalised on the basis that there is a much higher abundance of non-specific DNA-binding sites in vivo, thus increasing the effective concentration of CI required to repress pR. Note that for the models presented here, where it is assumed that the atomic CI unit is the dimer, the EC_{50}s reported above should be halved to give 14 nM worth of dimers in vitro and 315 nM in vivo with negligible changes to the Hill coefficients.

2.2.2 Modelling the Tum–CI interaction

The antirepressor Tum inactivates CI by suppressing its DNA-binding activity and is thus presumed to involve a direct protein-protein interaction [Shearwin et al., 1998]. The equilibrium has been characterised in vitro using a gel-shift assay to measure the decrease in the fraction of DNA bound by CI as a function of increasing Tum concentration. For a total CI concentration of $C_{tot} = 150$ nM, the response showed high cooperativity with a Hill coefficient of 4.5 and half maximal inhibitory concentration (IC$_{50}$) of 3.3 μM. The fraction of DNA bound by CI is an indirect measure of Tum activity, but by using the in vitro CI–pR binding data discussed in the previous section, the Tum–CI interaction can be more directly examined as a change in concentration of free CI as a function of increasing Tum.

2The effect of transcriptional interference on pL is far more pronounced, and further, the pR promoter has three strong repressor binding sites, whilst the pL promoter has only one.
2.2 Developing a mathematical model of the Tum—Cl MFL

Figure 2.4: The Tum—Cl equilibrium model derived in the text (solid) provides a good fit for the in vitro gel-shift data (points) of Shearwin et al. [1998]. The gel-shift assay was used to quantify the decrease in the fraction of DNA bound by Cl for increasing concentrations of Tum, but the original data has been transformed here to the concentration of free Cl using a complementary gel shift measurement that characterised the Cl—pR interaction alone. Listed at top right with standard errors in the fit, are the Hill coefficient, H_S, and EC_{50}, ε_S, determined for the Tum—Cl equilibrium model presented in the text.

This is achieved by rearranging Equation (2.4) in terms of the fraction, f_R, of bound DNA:

$$C = \varepsilon_R \left(\frac{1}{f_R} - 1 \right)^{-1/H_R}$$

and applying that equation to the data using the in vitro Hill coefficient and EC_{50} discussed in Section 2.2.1 (recall that $\varepsilon_R = 14$ nM worth of dimers). The data thus transformed is displayed in Figure 2.4, and shows the highly cooperative nature of the interaction. Note that ‘free Cl’ here refers to the subset of Cl that is neither bound by Tum nor bound to DNA, but the subset bound to DNA can be ignored since the concentration of DNA was presumed negligible in the experiment.

There are a number of alternative mechanisms by which Tum might prevent Cl binding to DNA, including direct binding of Tum to the DNA-binding region of Cl or disruption of Cl multimerisation [Shearwin et al., 1998]. However, with relatively limited biochemical information available on the form of the Tum—Cl interaction, a simple representative reaction scheme has been chosen:

$$2 \text{Tum} + \text{Cl}_2 \xrightarrow{} \text{Tum}_2 - \text{Cl}_2$$

The stoichiometry has been chosen to reflect the significant cooperativity observed in response to changes in Tum concentration, and also to match what little is known about Tum multimerisation. Sedimentation equilibrium experiments have indicated that at a concentration of 9.5 μM, Tum acts like a single monomeric species with molecular weight twice that of a Tum monomer [Shearwin et al., 1998]. That is, at a concentration of 9.5 μM, Tum is
predominantly dimeric and, whilst unlikely, all ultrasensitivity in the present model of the Tum−CI interaction is attributed to this dimerisation. This scheme results in the following Tum−CI equilibrium equation relating the concentrations of free CI (C), free Tum (T), and Tum−CI complex (S):

\[S = \varepsilon_S^{-a-b+1}C^aT^b \]

(2.7)

where the concentrations C and T obey yet-to-be-determined reaction orders, a and b, and the coefficient \(\varepsilon_S \) is defined to be analogous to an EC\(_{50} \) with dimensions of unit concentration, hence the choice of the power for that term.

The in vitro Tum−CI gel shift data shows the response of free CI to the total concentration of Tum. However, the level of free Tum can be obtained from the total concentrations of Tum (\(T_{tot} \)) and CI (\(C_{tot} \)) using the mass-balance equations:

\[C_{tot} = C + S \]

(2.8a)

\[T_{tot} = T + 2S \]

(2.8b)

where it has been assumed that \(C + S \gg 7R \), the concentration of CI bound to DNA, since the concentration of DNA is presumed negligible. This greatly simplifies the analysis since it means the Tum−CI and CI−pR equilibria operate independently of each other, and it also eliminates the need for a constraint equation for the total concentration of DNA. For known concentrations \(C_{tot} \) and \(T_{tot} \) and after substituting with Equation (2.7), the constraints in Equation (2.8) are a system of equations in two variables. By eliminating S from Equations (2.8a) and (2.8b), solving for \(T \), and substituting this expression into Equation (2.7), Equation (2.8a) can be specified completely in terms of \(C \):

\[C_{tot} = C + \varepsilon_S^{-a-b+1}C^a(T_{tot} - 2C_{tot} + 2C)^b \]

(2.9)

The only free variable in Equation (2.9) is \(C \), which can be found using numerical root-finding algorithms. The non-linear least squares fitting algorithm of the R application [R Development Core Team, 2012] was used to fit the gel-shift data using this model with free parameters \(\varepsilon_S \), a and b and with \(C_{tot} \) set to 75 nM worth of dimers. With all parameters left free the data was fitted well, but the parameter estimates were obtained with very low confidence. This was mainly due to a high correlation between the two power parameters, a and b. Hence, without any evidence to the contrary and since \(b > a \) for the general fit, a was then fixed to 1 so that all cooperativity was attributed to Tum. This choice of parameters produced a similarly good fit of the data (as judged by the residual sum of squares), and is shown in Figure 2.4 on page 21. With this choice of reaction order, the equilibrium equation can be simplified as:

\[S = C \left(\frac{T}{\varepsilon_S} \right)^{H_S} \]

(2.10)

where \(H_S = a \) has become the Hill coefficient for the Tum−CI equilibrium. Observe in the figure that since \(C_{tot} \) is small compared with \(T_{tot} \), the concentration of \(S \) is also necessarily
small compared with T_{tot} to satisfy the mass balance equations. Hence, $T_{tot} \approx T$ and the value of ε_S (2.35 µM) is close to the EC$_{50}$ of the displayed curve.

2.2.3 Deterministic free species model

The CI–pR and Tum–CI equilibria set the concentrations of the free CI and Tum species at steady state, but in the in vivo MFL these species additionally evolve over time according to protein production and degradation rates. To describe the complete gene network, then, the dynamics of the interaction equilibria need to be considered in the context of the dynamic production and degradation reactions. Such a time-dependent deterministic description of the Tum–CI MFL model can be fully represented as a set of first order ODEs in terms of the free species variables. To start with, the time evolution of the Tum–CI complex is derived. The concentration of the Tum–CI complex, S, changes in response to formation and dissociation of the complex according to the equilibrium established in Section 2.2.2, and is also lost in vivo by degradation. The differential equation for evolution of the complex reads:

$$\frac{dS}{dt} = \gamma S + (\delta_S + \delta_{SC} + \delta_{ST}) S + k_S C T^{Hs} - k_{-S} S$$ \hspace{1cm} (2.11)

For complete generality, degradation of the complex as specified in the above equation has been split into a number of terms: (1) a complex-specific degradation term, $-\delta_S S$, representing targeted degradation of the complex, (2) CI- and Tum-specific degradation terms, $-\delta_{SC} S$ and $-\delta_{ST} S$, representing targeted degradation (removal) of either CI or Tum respectively from the complex, and (3) a general growth-rate dependent dilution term, $-\gamma S$, that represents loss in complex concentration as the cells grow in volume. These terms sum together to give a bulk term for loss of the complex by degradation/dilution as shown. The degradation rates δ_{SC} and δ_{ST} reflect the level of protection that the complex affords to each species compared with active degradation of the free species.

The final two terms in Equation (2.11) describe evolution due to the Tum–CI equilibrium reaction. Here, however, the steady-state description derived in Section 2.2.2 has been split into separate rate law terms for formation and dissociation of the complex. The form of these terms is not immediately obvious and deserves some additional discussion. Rate law descriptions of typical one-step two-species binding equilibria can be neatly split between forwards and reverse reactions, with complex formation being a second-order term in the two reactant concentrations and complex dissociation being a first-order term in product concentration. That is, $\frac{dS}{dt} = k_S C T - k_{-S} S$, where the on rate, k_S, and off rate, k_{-S}, are set such that at equilibrium ($\frac{dS}{dt} = 0$) their ratio gives the association constant, K, for the reaction ($K = k_S/k_{-S}$). With such a simple scheme, the association constant is merely the inverse of the EC$_{50}$, so that $\varepsilon_S = 1/K$. The off rate (with units of inverse time) effectively sets the timescale of the reaction, that is, the time it takes to reach equilibrium. This is made more transparent when the differential equation (for one-step complex
formation) is rewritten:

$$\frac{dS}{dt} = k_{-S} (KCT - S)$$ \hspace{1cm} (2.12)

Clearly, the association constant, K, simply sets the steady-state species concentrations (consider the steady state, that is, when $\frac{dS}{dt} = 0$), and k_{-S} scales the time taken to get there.

The model of the Tum–CI interaction in Section 2.2.2 accounts for a more complicated multi-step reaction scheme by simplifying it to an effective one-step reaction using a Hill approximation, where the simple one-step two-species intermediate reactions are neglected. Such an approximation reduces the complexity and number of parameters required to describe the equilibrium, but makes it more difficult to interpret the meaning of bulk on and off rates for what is in fact a multi-step reaction. Nonetheless, to retain the simplicity of a one-step reaction in the deterministic model, the Tum–CI interaction is split into reactant and product terms as given on either side of the equilibrium relation in Equation (2.10) (Section 2.2.2), and the differential equation for time evolution of the complex is rewritten:

$$\frac{dS}{dt} = - (\gamma + \delta_S + \delta_{SC} + \delta_{ST}) S + k_{-S} C \left(\frac{T_{\xi_S}}{T} \right)^{H_S} - k_{-S} S$$ \hspace{1cm} (2.13)

The off rate, k_{-S}, is used as a multiplier for both directions of the binding reaction and hence sets the timescale of the reaction as it would in the case of the two-species binding equilibrium described by Equation (2.12). Furthermore, the EC$_{50}$ for the Tum–CI reaction is used instead of the association constant since it is easier to interpret within the Hill approximation and hence serves as a more useful parameterisation. Observe that if degradation of the complex is ignored in Equation (2.13), then at steady state the equilibrium equation (Equation (2.10)) is obtained.

The time evolution of the free CI dimers is now considered. The pool of free CI dimers with concentration C participate in both the Tum–CI and CI–pR equilibria and are further subject to degradation and dilution that are complemented by production from the P_{lac} promoter. Hence, the time evolution of free CI dimers is modelled by the following differential equation:

$$\frac{dC}{dt} = p_C - \delta_C C + \delta_{ST} S - k_{-S} C \left(\frac{T_{\xi_S}}{T} \right)^{H_S} + k_{-S} S$$ \hspace{1cm} (2.14)

The steps involved in production of CI from P_{lac} have been rolled into a single zeroth order production term p_C. The first order terms for degradation and dilution have been combined together as a single constant δ_C, which for convenience has been defined as the sum of the general species dilution rate, γ, and the rate of active degradation, so that the active degradation rate of CI is given by $\delta_C - \gamma$. Degradation of Tum from the Tum–CI complex leads to increased availability of free CI as given by the $\delta_{ST} S$ term. The Tum–CI formation and dissociation terms are simply the reverse of those formulated for the rate of change of S in Equation (2.13). Finally, whilst CI participates in the CI–pR equilibrium,
here it is assumed that the concentration of pR binding sites in vivo will be negligible in comparison with the concentrations of CI that occur within a functional bistable MFL, and hence have little effect on the dynamics of free CI.

Finally, the time evolution of free Tum can be considered. The production rate of Tum from pR can be assumed proportional to the concentration (availability) of unrepressed pR promoters, U, providing a one step model of production is used. Production and degradation typically occur on a much slower timescale than binding equilibria, so by further assuming that the dynamics of CI binding to pR are always at equilibrium, then, as discussed in Section 2.2.1, the production rate of Tum from pR can be written as a function of free CI concentration, that is, production of Tum is proportional to the fraction of unrepressed pR given by Equation (2.3) on page 19. Hence the following differential equation for the evolution of free Tum:

$$\frac{dT}{dt} = \frac{PT}{1 + \left(\frac{C}{\epsilon_R}\right)^{H_R}} - \delta_T T + 2\delta_{SC} S - 2k_{-S} C \left(\frac{T}{\epsilon_S}\right)^{H_S} + 2k_{-S} S \quad (2.15)$$

As done for the free CI equation, degradation and dilution of Tum are combined into a single degradation rate, δ_T. Degradation of CI in the complex leads to an increase in free Tum, but the reaction stoichiometry suggested in Section 2.2.2 was that the Tum–CI complex was formed from one CI dimer and two Tum monomers, hence one unit of CI (dimers) and two units of Tum are returned for every unit of the complex ($2\delta_{SC} S$). This similarly applies for the Tum–CI equilibrium terms which are identical to those for the free CI equation apart from the factor of two.

Putting these equations together, the system of first order ODEs governing the concentrations of CI (C), Tum (T) and Tum–CI complex (S) in the Tum–CI MFL are written as:

$$\frac{dC}{dt} = p_C - \delta_C C + \delta_{ST} S - k_{-S} C \left(\frac{T}{\epsilon_S}\right)^{H_S} + k_{-S} S \quad (2.16a)$$

$$\frac{dT}{dt} = \frac{PT}{1 + \left(\frac{C}{\epsilon_R}\right)^{H_R}} - \delta_T T + 2\delta_{SC} S - 2k_{-S} C \left(\frac{T}{\epsilon_S}\right)^{H_S} + 2k_{-S} S \quad (2.16b)$$

$$\frac{dS}{dt} = -(\delta_S + \gamma + \delta_{SC} + \delta_{ST}) S + k_{-S} C \left(\frac{T}{\epsilon_S}\right)^{H_S} - k_{-S} S \quad (2.16c)$$

Note that in contrast with the MFL model developed by François and Hakim [2005], here the equilibrium between free and sequestered Tum and CI is explicitly modelled. François and Hakim chose to ignore feedback resulting from dissociation of the complex, essentially by employing a pseudo-equilibrium assumption for evolution of the complex. This is equivalent to setting $\frac{dS}{dt} = 0$ in the above equations, which leads to substantial simplifications. This assumption relies on the complex being a transient population that is actively degraded. In the case of the Tum–CI interaction, on the basis that Tum can act
reversibly against CI in vitro without the need for degradation [Shearwin et al., 1998], and without any evidence for targeted degradation in vivo, it is likely that Tum acts as a molecular ‘sink’ for CI, with sequestration being the primary mechanism of action. Hence the effects of ‘retroactivity’ — where the consumption of an active species (either Tum or CI in this case) feeds back on system dynamics [Del Vecchio et al., 2008] — cannot be ignored, and the pseudo-equilibrium assumption is not valid in this case. Note that whilst pseudo equilibrium was assumed for the CI−pR interaction, this can be justified on the basis that the concentration of CI binding sites at pR are low compared with the relevant concentrations of free CI. The same cannot be said of the Tum−CI interaction, since in that case the concentration of the complex cannot be assumed small compared with the concentrations of free CI and Tum.

The ODEs as written have a somewhat overcomplicated parameterisation of degradation. Without evidence for any protection from degradation of CI and Tum when part of the Tum−CI complex, it seems reasonable at this stage to assume that degradation of CI and Tum when in the complex simply occurs at the same rate as active degradation of the free species, that is, \(\delta_{SC} = \delta_C - \gamma \), and \(\delta_{ST} = \delta_T - \gamma \). This is the same as assuming that neither species receives any protection from degradation when part of the complex. The result of this minor modification is a reduced number of parameters in Equation (2.16) so that the system of equations can be rewritten:

\[
\begin{align*}
\frac{dC}{dt} &= p_C - \delta_CC - k_{-S}C \left(\frac{T}{\varepsilon_S} \right)^{H_S} + (\delta_T - \gamma + k_{-S}) S \\
\frac{dT}{dt} &= \frac{p_T}{1 + \left(\frac{C}{\varepsilon_R} \right)^{H_R}} - \delta_T T - 2k_{-S}C \left(\frac{T}{\varepsilon_S} \right)^{H_S} + 2(\delta_C - \gamma + k_{-S}) S \\
\frac{dS}{dt} &= k_{-S}C \left(\frac{T}{\varepsilon_S} \right)^{H_S} - (\delta_S + \delta_C + \delta_T - \gamma + k_{-S}) S
\end{align*}
\]

2.2.4 Deterministic total species model

Whilst the model in terms of the free species and Tum−CI complex is sufficient to completely describe the system, the form of the equations is simplified and the origin of bistability easier to understand when they are written in terms of the evolution of the total concentrations of Tum and CI. Nonetheless, the system of ODEs in terms of the free species is still easier to solve numerically, so those equations will remain useful. A system of ODEs in terms of the total concentrations of Tum and CI can be obtained by differentiating the mass balance equations given in Equations (2.8a) and (2.8b) by time, and substituting from
Equations (2.8) and (2.17) to give:

\[
\frac{dC_{\text{tot}}}{dt} = p_C - \delta_C C_{\text{tot}} - \delta_S S \\
\frac{dT_{\text{tot}}}{dt} = \frac{p_T}{1 + \left(\frac{C}{\varepsilon}\right)^{H_R}} - \delta_T T_{\text{tot}} - 2\delta_S S
\]

(2.18a)

(2.18b)

This does not eliminate the dependence on the free species, but if it is assumed that the fast binding reactions, that is, the Tum–CI and CI–pR equilibria, are always at equilibrium as constrained by the time-varying total concentrations of CI and Tum, then the free species variables can instead be considered as (somewhat complicated) functions of C_{tot} and T_{tot}. With the mass balance equations as given (i.e., neglecting CI bound at pR), then the concentration of free CI is simply found by solving for C in Equation (2.9) as was done for the in vitro Tum–CI equilibrium. For reference, the constraint equation reads:

\[
C_{\text{tot}} = C + C \left(\frac{T_{\text{tot}} - 2C_{\text{tot}} + 2C}{\varepsilon S}\right)^{H_S}
\]

(2.19)

which cannot be solved in terms of C analytically, but can be solved using numerical root-finding procedures. The concentration of the complex, S, can then simply be deduced from the mass balance equations as $S = C_{\text{tot}} - C$. Note that this equilibrium assumption is not the same as the pseudo-equilibrium assumption used by François and Hakim [2005] and discussed in the previous section, since time evolution of the complex is still accounted for as part of the total species concentrations. Loss of the complex by dilution and by degradation at the standard free species degradation rates is implicit in the total species ODEs. The total species degradation terms become more complicated if either of the species are protected from degradation when bound up in the Tum–CI complex. In that case, there would be additional dependence in the degradation rate terms on the concentration of the complex.

If targeted degradation of the complex is neglected, that is, $\delta_S = 0$, then the form of the equations becomes particularly simple and the origin of bistability in this model of the Tum–CI MFL is made transparent. With a constant production rate of CI, Equation (2.18a) tends towards a single steady-state concentration of total CI. So like with the in vitro gel shift assay of the Tum–CI interaction discussed in Section 2.2.2, the total CI concentration essentially remains fixed regardless of Tum concentration. On the other hand, the differential equation for total Tum, Equation (2.18b), does depend on the Tum–CI equilibrium. The steady states for that equation occur when the production rate is equal to the degradation rate. These terms are shown plotted against the concentration of total Tum in Figure 2.5. Bistability arises as a result of the sigmoidal shape of the production rate of Tum from pR. The shape of that curve is a direct result of the combined CI–pR and Tum–CI equilibria, and is in fact proportional to the curve expected for an in vitro measurement of the unbound fraction of DNA in the Tum–CI gel shift experiment (see Section 2.2.2).
Figure 2.5: Bistability in the Tum−CI MFL arises as a result of the sigmoidal response of Tum production as a function of total Tum concentration. Shown plotted are the production and degradation rate curves from the differential rate equation for total Tum. The production rate curve is equivalent to the response of the unbound fraction of pR DNA in the in vitro Tum−CI gel shift assay as a function of total Tum concentration (compare with Figure 2.4). For the sake of example, parameters were chosen that match the in vitro equilibria (ε_R = 14 nM, H_R = 1.7, ε_S = 2.35 µM, H_S = 4.6) where the steady-state concentration of total CI has also been set at C_tot = 75 nM worth of dimers. To balance production and degradation, p_T was set to 6 µM/min and δ_T to 1 min^{-1}. The filled and unfilled circles mark the two stable and one unstable equilibrium points respectively.

When the total Tum concentration is zero, the level of pR repression is set by that level expected when C = C_tot, the steady-state concentration of total CI, hence the non-zero offset at T_tot = 0. At this end of the curve, production outweighs degradation, and Tum concentration will tend to increase to the low T_tot stable equilibrium point. At the other end of the curve, T_tot is high enough such that repression of the promoter is completely relieved, and p_R production reaches its maximum rate. However, at these concentrations, degradation outweighs production, so total Tum concentration will tend to decrease to the high T_tot equilibrium where production and degradation are balanced. Between these two stable points, an unstable equilibrium point exists; any deviation from that point results in the system tending towards one of the stable points.

As a final note, an important (and easily modified) parameter is the production rate of CI, which sets the steady-state concentration of CI, C_tot. Variations in C_tot affect the shape of the Tum−CI equilibrium curve, and hence the shape of the production rate of Tum from pR. Observe that as p_C → 0, then C_tot → 0, and hence by the mass balance equations, C → 0. So in this case the system of ODEs becomes monostable with a single high T_tot state. Conversely as p_C → ∞, then C_tot → ∞, and when C_tot ≥ T_tot then C → ∞, and the term for Tum production vanishes so that the MFL becomes monostable with a low T_tot state. Between these two extremes, however, a subset of steady-state CI concentrations that are permissive for bistability can be anticipated.
2.3 Steady-state analysis of the Tum−CI MFL model

For the Tum−CI MFL to exhibit bistability, the system of ODEs by which it is characterised must produce two stable fixed points at steady state. An analysis of the steady-state equilibrium points can thus reveal the parameter values that support bistability. In this section, a general formula that can be solved to find the fixed points of the Tum−CI MFL is derived from the free species ODEs, and is then applied to determine the regions of bistability as a function of the model parameters.

2.3.1 Solving the free species model at steady-state

The steady-state fixed points, whether derived from the total or free species ODEs, should be equivalent, but at this point it is easier to start the analysis with the system of ODEs in terms of free species. At steady state, the rate of change of each species vanishes such that production and degradation are balanced. Setting the rates of change to zero in the system of ODEs derived in Section 2.2.3 produces three equations in terms of three variables, C, T and S, which can be solved in terms of those variables to find the fixed points of the Tum−CI MFL.

To begin with, just the equation for \(\frac{dS}{dt} \) is set to zero; this constitutes the case of a quasi-equilibrium assumption and the formulation made in the François and Hakim model. With this assumption, Equation (2.17) can be rewritten:

\[
\begin{align*}
\frac{dC}{dt} &= pC - \delta_C C - (\delta_C + \delta_S)C \left(\frac{T}{\epsilon_S} \right)^{H_S} \\
\frac{dT}{dt} &= \frac{pT}{1 + \left(\frac{T}{\epsilon_R} \right)^{H_R}} - \delta_T T - 2(\delta_T + \delta_S)C \left(\frac{T}{\epsilon_S} \right)^{H_S}
\end{align*}
\] (2.20a, b)

In the above equations, the use of \(\epsilon_S \) is an approximation. It is more precisely defined as an effective EC\(_{50}\) for the Tum−CI equilibrium given by:

\[
\left(\frac{1}{\epsilon_{S_{\text{eff}}}} \right)^{H_S} = \frac{k_{-S}}{\delta_S + \delta_C + \delta_T - \gamma + k_{-S}} \left(\frac{1}{\epsilon_S} \right)^{H_S}
\] (2.21)

However, it is written as \(\epsilon_S \) in the system of ODEs, since equilibration of the complex is expected to occur on a much faster timescale than production and degradation of the species. This means that \(k_{-S} \) will be much larger than the combined rates of degradation and dilution, so that, to a good approximation, the two EC\(_{50}\)s are equal.

Note the similarity of the quasi-equilibrium equations with the formulation in terms of total species (Equation (2.18)). Here, however, the free species \(T \) and \(C \) have to take over the role of the complex. So whilst the quasi-equilibrium formulation is much simpler than the formulations including modelling of the complex (that is, those based on either Equation 2.17 or 2.18), it performs quite differently when far from equilibrium.
Now setting \(\frac{dC}{dt} \) and \(\frac{dT}{dt} \) close to zero, the fixed points of Equation (2.20) can be determined. First take
\[
\frac{dT}{dt} - 2\frac{\delta T + \delta S}{\delta C + \delta S} \frac{dC}{dt}
\]
and rewrite in terms of \(T \) to obtain:
\[
\delta T T = p_T T_1 + \left(\frac{C}{\epsilon R S} (p_C - \delta C C) - \left(\frac{dT}{dt} - 2\frac{\delta T + \delta S}{\delta C + \delta S} \frac{dC}{dt} \right) \right)
\] (2.22)

When close to steady state, the differentials in the above equation will be small and can be ignored as long as the steady-state concentration of free Tum scaled by its degradation rate is much larger than zero, that is, \(\delta T T \gg 0 \). With that approximation, the free Tum equation can be substituted into Equation (2.20a) to obtain:
\[
\frac{dC}{dt} \approx p_C - \delta C C - \left(\frac{\delta S + \delta C}{\epsilon H S} C \right) \left(\frac{p_T / \delta T}{1 + (C/\epsilon R S)^{H_S}} - 2\frac{\delta T + \delta S}{\delta T + \delta S} \frac{\delta C}{\delta C + \delta S} (p_C - C) \right)^{H_S}
\]
which becomes exact as the system approaches steady state (\(\frac{dC}{dt} = 0 \)). This approximates the system of three ODEs as a one-dimensional differential equation, which can be plotted against the concentration of free CI to judge the Jacobian by eye (the Jacobian here is just the slope of the above equation in terms of its only free variable, \(C \)). A more practical expression can be obtained using the following substitutions:
\[
M_C = \frac{p_C}{\delta C} \quad D_C = \frac{\delta C}{\delta C + \delta S} \quad M_T = \frac{p_T}{\delta T} \quad D_T = \frac{\delta T}{\delta T + \delta S}
\]
to write the steady-state equation in terms of maximal steady-state CI and Tum levels (\(M_C \) and \(M_T \)) and fractional degradation adjustments (\(D_C \) and \(D_T \)):
\[
\frac{dC}{dt} \approx \delta C \left(M_C - C - \frac{C}{D_C \epsilon H S} \left(\frac{M_T}{1 + (C/\epsilon R S)^{H_S}} - 2\frac{D_C}{D_T} (M_C - C) \right)^{H_S} \right)
\] (2.23)

With the number of parameters thus reduced, then, aside from the parameters used to describe the equilibria, the only parameters that remain to be estimated are the maximal production rates and the fractional changes made to the degradation rates. To begin with, rough estimates for these parameters are made here; the effects of parameter adjustments starting from this first guess will be considered later.

Steady-state levels of CI produced from the \(P_{lac} \) promoter on a single-copy plasmid (pZC320) have been measured by Western blot for an IPTG-inducible system and ranged from undetectable when uninduced to 2390 CI monomers per cell with 100 \(\mu M \) IPTG [Dodd and Egan, 2002]. Using the concentration factor prescribed in the paper (1.27 nM) this gives a maximum steady-state level of CI \(dimers \) as \(M_C \approx 1500 \) nM. Since the production rate from \(P_{lac} \) can be set in an inducible manner, it stands as the easiest parameter to modify in the MFL. Hence, particular attention will be paid to variations in terms of this parameter, that is, CI production rate \(p_C \), or equivalently, the maximum concentration of total CI \(M_C \).
2.3 Steady-state analysis of the Tum−CI MFL model

The unrepressed production rate of Tum from the pR promoter has not previously been measured, so an estimate will be made by extrapolation from that made for CI. An integrated $P_{lac}-lacZ$ reporter construct was assayed in a strain with LacI supplied from the pUHA-1 plasmid at various concentrations of IPTG and measured to be approximately 250 LacZ units at 100 μM IPTG [Adam Palmer, unpublished data]. A similar integrated pR−lacZ reporter construct with consistent auxiliary plasmids produced an average unrepressed activity of approximately 860 LacZ units over a range of IPTG concentrations [Crooks, 2006]. This makes the pR promoter around 3.4 times stronger than P_{lac} at that level of induction. If it is assumed that translation and degradation rates of Tum match those of CI, and using the measured copy number of 1.4 ± 0.2 copies per chromosome for the pZC320 plasmid with mini-F origin [Shi and Biek, 1995], then the extrapolated steady-state level of Tum becomes $M_T = (3.4$ times stronger $) \times (1.4$ fewer copies $)^{-1} \times (3035$ nM of monomers $) \approx 7400$ nM.

Without any reason to suspect a degradation-mediated Tum antirepressor activity, a reasonable first assumption is that there is no additional degradation of the complex, that is, $\delta_S = 0$ and hence $D_C = D_T = 1$. Parameters describing the CI−pR and Tum−CI equilibria were discussed in Sections 2.2.1 and 2.2.2, where specifically, the in vivo CI−pR parameters are used ($H_R = 2.2$ and $\epsilon_R = 315$ nM worth of CI dimers), whereas the in vitro Tum−CI parameters are used ($H_S = 4.6$, $\epsilon_S = 2350$ nM worth of Tum monomers). This should present a reasonable choice of parameters, since the increased occurrence of non-specific DNA binding in vivo is anticipated to affect the CI−pR equilibrium, whilst the Tum−CI interaction is anticipated to occur in solution and more closely match the in vitro parameterisation.

With these parameter choices, Equation (2.23) can be plotted as a function of free CI, as shown in Figure 2.6. Recall that the rate equation as plotted is only a valid approximation for points close to equilibrium, however, the plots assist in finding the roots of the rate equation and also in interpreting the stability of each root. The concentrations of free CI at which the rate equation intersects the x-axis are the steady-state concentrations. When the slope of the rate equation at the zero point is decreasing, that state is stable; if the concentration C deviates from that steady-state value, the rate of change returns the system to equilibrium. When the slope of the rate equation is increasing, however, that steady-state is unstable; any increase/decrease in C results in a positive/negative rate of change, taking the system away from equilibrium.

Since the maximum concentration of total CI can be set by changing the level of induction of the P_{lac} promoter, the rate equation curve is depicted in the figure for three different choices of this parameter. This reveals that for certain choices of M_C, the rate equation is monostable with a single equilibrium point ($M_C = 0.5$ or 1.46 μM), but for $M_C = 1.0$ μM, the rate equation is bistable with two stable states straddling a single unstable state. Shown overlaid on each plot is the concentration of free Tum that would occur
Figure 2.6: The Tum−CI MFL model supports bistability as characterised by the steady-state values of the system of ODEs in terms of free species concentrations. Shown plotted is the value of $\frac{dC}{dt}$, as given by a one-dimensional approximation to the full model that is only accurate for values of C close to equilibrium (as described in the text). The parameters used are those described in the text, though the existence of two stable points (bistability) requires an alternative choice of parameter, M_C, for maximum CI steady-state concentration, which is listed at the top right of each plot. Steady-state points are indicated by closed (stable) and open (unstable) circles and marked along the free CI, C, axis using dashed lines. Shown in blue is the value of free Tum, T, at each concentration of free CI, and the respective steady-state values for T are marked on the right axis.

for a given free CI concentration as calculated by Equation (2.22) (note this is still only accurate for concentrations close to the equilibrium points). As can be seen in Figure 2.6, the two stable points in the centre panel can be described alternatively as low C and high C, or high T and low T states respectively.

The value of M_C for which the system transitions from monostability to bistability is termed a bifurcation point, which are more generally the points in model systems where changes in parameter values cause a changes in stability. Observe that the rate equation curve for $M_C = 1.46 \mu M$ is very close to the one of the bifurcation points in terms of the parameter M_C; the bifurcation occurs when the local minimum at low C concentrations touches the x-axis. The range of M_C concentrations that can support bistability must lie between two such bifurcation points. To better define these points, a plot of the equilibrium points versus the parameter M_C will be useful. Finding multiple roots of an equation as complicated as the free CI rate equation is a difficult numerical task. As it turns out, a far simpler approach is to find the root(s) of Equation (2.23) as a function of M_C for given values of C. If the variation of the rate equation as a function of M_C is considered, that is:

$$\frac{d}{dM_C} \left(\frac{dC}{dt} \right) = \delta_C \left(1 + 2 \frac{H_S C}{D_T \varepsilon S} \left(\frac{M_T}{1 + (C/\varepsilon R)^H_S} - 2 \frac{D_C}{D_T} (M_C - C)^{H_S^{-1}} \right) \right)$$

then it can be seen that the slope of the rate equation as a function of M_C will be positive
2.3 Steady-state analysis of the Tum−CI MFL model

Figure 2.7: Equilibrium solutions for the Tum−CI MFL as a function of the steady-state concentration of total CI, which is set by parameter M_C in the steady-state analysis of the free species rate equations defined in the text. Solid lines mark the stable states of (a) free CI concentration, C, or (b) pR activity, whilst the dotted lines mark unstable states of those variables.

for any choice of C. That is, the rate equation is *strictly increasing* as a function of M_C, which means that there can be at most one root in terms of M_C.

The root in terms of M_C was found for a range of C concentrations using numerical root finding algorithms and optimisation routines in R, and this data then plotted, after swapping the axes, in Figure 2.7(a). This shows the variation of the steady states of the Tum−CI MFL as a function of the parameter setting the maximum level of CI. Recall that this parameter is simply defined as the CI production rate from the P_{lac} promoter divided by the CI degradation rate, and as shown in Section 2.2.4, gives the steady-state concentration of total CI, C_{tot}. Hence, this parameter stands as a proxy for changes in CI production rate, which can easily be implemented using inducible promoters such as P_{lac}. This then reveals a simple experimental mechanism for adjusting system parameters until a bistable state is found. What can be seen in Figure 2.7(a) is that the level of free CI slowly increases as CI production increases, but then abruptly splits into three states (two stable, one unstable) soon after M_C increases above 0.5 µM. Then just before M_C reaches 1.5 µM, bistability abruptly disappears, but the steady-state concentration of free CI continues to increase linearly as a function of M_C as might be expected.

The proportion of total CI that is free is not easy to measure experimentally, whether *in vitro* or *in vivo*, and the total concentration of CI shows no indication of bistability as discussed for the system of ODEs in terms of total species concentrations. A far easier variable to measure would be the total concentration of Tum, though this would also necessitate a modification of Tum to include a reporter. Instead, an *in trans* pR reporter gene construct
will be used as a proxy for total Tum concentration to measure the state of the Tum–CI MFL. Use of the lacZ gene as a reporter is well-precedented in quantitating promoter activity for phage 186. So shown in Figure 2.7(b) are the pR promoter activities expected for the steady-state concentrations of C shown in Figure 2.7(a). These have been calculated using the Tum production term from the system of ODEs in terms of free species (Equation (2.17b)), but normalised instead to steady state LacZ units (recall that the pR promoter produces 860 LacZ units of activity when unrepessed). This curve has exactly the same bifurcation points but has an inverted form.

2.3.2 Varying the parameters

The points of bifurcation in terms of the maximum CI concentration, M_C, occur at the local minimum and maximum of the M_C roots of the free CI rate equation (given in Equation (2.23)) calculated as a function of free CI concentration. That is, the points of bifurcation occur at the local minimum and maximum of the graph in Figure 2.7(a) when the axes are swapped. These points, which can be found using numerical optimisation (minimisation/maximisation) routines in R, mark the boundaries of the bistable region.

Since M_C is one of the easiest parameters to adjust experimentally, it is instructive to consider how the size of this bistable region is affected by the other parameters in the steady-state formulation. These can influence where or even if the bistable region exists, thus also indicating the feasibility of synthesising a bistable Tum–CI MFL if some of the parameter estimates made in the previous section turn out to be far different than anticipated.

The parameters characterising the Tum–CI and CI–pR equilibria are considered first, and plots of the M_C bifurcation points versus each parameter in question are shown in Figure 2.8. The EC$_{50}$ for CI–pR repression, ε_R, primarily affects the location of the bistable region, but for high enough values, the bistable region disappears so that only monostable states are accessible (Figure 2.8(a)). ε_R reflects the strength of the CI–pR interaction, so that as ε_R increases, the strength of the interaction decreases, and higher levels of the CI production (M_C) are required to access the bistable region. Conversely, increasing the EC$_{50}$, ε_S, for the Tum–CI interaction leads to smaller required levels of CI production to balance the weakened strength of the Tum–CI interaction (Figure 2.8(b)). This forces the bifurcation points together until they converge and the capacity for bistability is lost.

Increasing either of the Hill coefficients, H_R or H_S, for the CI–pR or Tum–CI interactions leads to an increased size of bistable region (Figures 2.8(c) and 2.8(d)). This amounts to increasing the ultrasensitivity of either of those reactions; in the context of the system of ODEs in terms of total species this amounts to (asymmetrical) enhancements of the sigmoidal shape of the production rate term. In contrast, as the Hill coefficients are reduced, the size of the bistable region decreases until it disappears. In fact, bistability can still be obtained even if the CI–pR interaction is non-cooperative, that is, H_R is reduced below
2.3 Steady-state analysis of the Tum—CI MFL model

Figure 2.8: Observing variation in bistable region location as a function of parameters describing the Tum—CI and CI—pR equilibria. Plotted as a function of each indicated parameter are the bifurcation points of the Tum—CI MFL in terms of values of MC (the maximum CI concentration); between these values the system shows bistability. Above the blue (upper) line and below the red (lower) line, only single monostable states exist. Initial parameters are set to those used for the steady-state curves in Figure 2.7 and are kept fixed at these values aside from the parameter in question; the vertical dotted lines indicate the position of the initial parameters before variation.
1. Indeed, François and Hakim [2005] considered only the case of non-cooperative interactions in their model of the MFL, but were still able to find parameter regimes supporting bistability. For the Tum−CI MFL too, the capacity for bistability can be retained even in the non-cooperative case (that is, $H_S = H_R = 1$), providing either ε_S is sufficiently decreased, or M_T sufficiently increased. The existence of bistability without cooperativity can be rationalised by the fact that sequestration of a species, such as the sequestration of CI by Tum, can produce ultrasensitivity in and of itself [Buchler and Louis, 2008].

Plots of the M_C bifurcation points versus the production and degradation rate parameters are shown in Figure 2.9. The parameters for maximum CI and Tum concentrations, M_C and M_T, are related to both production and degradation rates of those species. Either an increase in production rate or decrease in degradation rate lead to increases in those parameters. Since production rates are more easily modified experimentally it makes more sense to refer to and think of these parameters as influencing the production rates. Increasing the maximum Tum concentration parameter, M_T, simply increases the size of bistable region indefinitely (Figure 2.9(a)). This is primarily due to the increase in the production rate (M_C) of CI that is required to reach the high C bifurcation point.

Thus far it has been assumed that Tum does not target CI for degradation, that is, the rate of targeted degradation of the complex $\delta_S = 0$. In that case, the degradation rates of either CI or Tum scale only the magnitudes of M_C and M_T, since if $\delta_S = 0$, the fractional degradation rate adjustment factors, D_C and D_T, are always one. However, if δ_S is non-zero, then the steady-state equations are shaped by D_C and D_T, which give the fraction of degradation attributable to the free species as a proportion of the combined degradation for free and complex-bound forms. Hence at this point, for a practical consideration of targeted degradation of the complex, additional estimates on the scales of both CI and Tum degradation rates need to be made. Little has been determined in terms of the stability or otherwise of the CI and Tum proteins, though the CI repressor is believed to be stable (not targeted for degradation). Stable proteins are only lost by dilution as the cells grow in volume and divide. For fast-growing *E. coli* a typical cell doubling time is 30 minutes, which gives a rate of dilution $\gamma = \log(2)/30 \approx 0.023 \text{ min}^{-1}$. This sets a base rate of loss of each species, and any significant contribution of targeted degradation must occur at comparable or faster rates.

If both the degradation rate of CI, δ_C, and the degradation rate of Tum, δ_T, are set to the dilution rate (such that targeted degradation of either free species is zero), then variation of δ_S simply amounts to varying ε_S. This can be seen by noting that the ratio D_C / D_T in that case would always be one, whilst the D_C term appears elsewhere to scale the ε_S parameter in Equation (2.23). In other words, an increase in δ_S results in a decrease in D_C, which then scales the magnitude of ε_S. A more interesting response occurs when the half-lives differ. Protein half-lives resulting from targeted degradation may be as short as 2 minutes as seen for the phage λ CII protein [Shotland et al., 1997]. To explore this possibility, the
2.3 Steady-state analysis of the Tum−CI MFL model

Figure 2.9: Observing variation in bistable region location as a function of parameters that characterise the production and degradation rates of the Tum−CI MFL. Plotted as a function of each indicated parameter are the bifurcation points of the Tum−CI MFL in terms of the maximum CI concentration, M_C, between which points the system shows bistability. Above the blue (upper) line and below the red (lower) line, only single monostable states exist. Initial parameters are set to those used for the steady-state curves in Figure 2.7 and are kept fixed at these values aside from the parameter in question; the vertical dotted lines indicate the position of the initial parameters before variation.
half-life of Tum is set ten-fold shorter (to 3 minutes), that is, Tum degradation is set ten-fold faster than that of CI (which is kept dilution limited). With these choices of degradation rate, increasing the degradation rate of the complex from zero to a rate of degradation equivalent to a half-life of 1 min, greatly increases the \(M_C \) required to reach the upper bifurcation point (Figure 2.9(b)). This trend can be attributed mainly to the faster decrease of \(D_C \) than \(D_T \) as \(\delta_S \) increases, which results from the choice of a slower rate of degradation, \(\delta_C \), for CI. In effect, degradation of the complex acts to magnify sequestration by siphoning off the complex as it is produced. If the half-lives of the free species are also unbalanced, as for this case where Tum degradation is much faster, then the slower-degrading CI is most affected, with much more of it required to outcompete the extra loss produced by complexation.

For completeness, the variation of the bifurcation points in terms of the parameters \(D_C \) and \(D_T \) are also shown (Figures 2.9(c) and 2.9(d)). Given their dependence on the degradation rate of the complex, these factors are harder to interpret physiologically. However, a decrease in \(D_C \) can be thought of as decreasing the rate of free CI degradation below that of the complex whilst keeping free Tum degradation much faster than that of the complex so that \(D_T \) remains at unity, and vice versa for a decrease in \(D_C \).

2.4 Hysteretic behaviour

The steady-state analysis of the Tum–CI MFL has shown that with a suitable choice of parameters, the genetic network has the capacity to produce two stable states. However, up until this point it has not been considered how each of those stable states might be accessed, that is, how switching between these two stable states might be achieved experimentally. The phenomenon of hysteresis — whereby a system ‘remembers’ its past state as parameters are varied — is a feature expected of all bistable networks [Ferrell, 2002]. This motivates an assay for bistability that exploits the hysteresis anticipated as the production rate of CI is varied.

In Section 2.3.1, it was shown that by balancing the steady-state concentration of total CI (\(M_C \)) against the other parameters, a region of bistability flanked by two monostable regions could be found. With CI production from an inducible \(P_{lac} \) promoter, the steady-state concentration of total CI is easily changed by modifying the concentration of inducer, in this case IPTG. If the production rate is set such that the system operates in one of the monostable regions, the state of the system is drawn to that monostable state. Once at equilibrium, if the production rate is then adjusted to take the system into the bistable region, the system should prefer the stable state that is closest to the monostable state it started in. This concept is illustrated and explained for the Tum–CI MFL in Figure 2.10. As alluded to earlier, the state of the switch will be monitored by the activity of the \(p_R \) promoter. This underpins the shape of the hysteresis curve as illustrated in the figure — it
2.4 Hysteretic behaviour

Figure 2.10: The Tum−CI MFL should exhibit hysteresis, a memory of state, which can be understood qualitatively by considering the effect of varying the CI production rate. Starting from the top left panel and proceeding clockwise, if production of CI is low enough, the MFL operates in a monostable regime where the pR promoter is always left unrepessed resulting in high activity and production of Tum. As CI production is increased from that level, the system follows the blue ‘on’ curve into the bistable region, since the effect of an increased CI concentration is absorbed by sequestration due to the pre-existing high level of Tum (top right panel). Eventually, a threshold is reached, after which point the concentration of CI overcomes the pool of Tum, and the system enters the alternative monostable regime where pR is always held repressed (bottom right panel). In contrast, if the production rate of CI is decreased to take the system from this monostable region into the bistable region, the ‘off’ curve is followed, since without sufficient Tum to relieve repression, CI continues to actively repress pR (bottom left panel). Again a threshold is reached when CI repression is so low that it cannot outcompete the level of expression of Tum from pR.

is based on the steady-state plot in terms of pR activity shown in Figure 2.7(b). In practical terms, the assay can be described:

1. grow cultures overnight in either high or low IPTG to set the switch in one of the monostable regions,
2. subculture into intermediate IPTG concentrations in the bistable region and grow to log phase to allow the system to equilibrate,
3. measure the production rate from pR by reporter gene assay.

Depending on which monostable region the system starts in, whether the low IPTG, low CI production state, or high IPTG, high CI production state, the Tum−CI MFL will follow either the ‘on’ or ‘off’ curves respectively. Cultures that end in the bistable region with the same final conditions (same IPTG), but alternative initial conditions are expected to result
in different final \(pR \) activities. This hysteresis would not be expected for a similar assay of a monostable system.

Assays of hysteresis have been used elsewhere to characterise bistability, including for a bistable positive autoregulatory circuit synthesised in mammalian cells [Kramer and Fussenegger, 2005], for a synthetic sequestration-based switch in \(E. coli \) [Chen and Arkin, 2012], for the natural \(lac \) operon [Ozbudak et al., 2004], and for a modified yeast galactose network [Venturelli et al., 2012]. Characterising bistability in the Tum–CI MFL using hysteresis is thus well preceded, and will be the primary assay for bistability used in this work.

2.4.1 Time course simulations of the Tum–CI MFL

To confirm that the present model of the Tum–CI MFL supports hysteresis as described, the system of ODEs in the free species concentrations (Equation (2.17)) can be solved over time, for given choices of initial conditions. A number of the necessary parameters were derived in the context of the steady-state model (see Section 2.3.1), but to further model dynamics these must be complemented by a number of additional parameters that set timescales for each process.

Degradation rate parameters for CI, Tum and the Tum–CI complex have already been discussed to a limited extent in Section 2.3.2. To start with here, both Tum and CI are assumed dilution limited, that is, with a half-life equal to a typical cell doubling time of 30 minutes so that \(\delta_C = \delta_T = \gamma \). However, the alternative choice with Tum degradation set 10 times faster will also be considered; additionally accounting for dilution Tum degradation becomes \(\delta_T = 10\delta_C + \gamma = 11\gamma \). These choices of degradation rate then also set the production rates, since these must balance to produce the steady-state maximum concentrations of CI and Tum, \(M_C \) and \(M_T \). With the choices of \(M_C \) and \(M_T \) made earlier, then:

\[
\begin{align*}
 p_C &= M_C\delta_C = (1500 \text{ nM}) \times (0.023 \text{ min}^{-1}) \approx 35 \text{ nM.min}^{-1} \\
 p_T &= M_T\delta_T = (7400 \text{ nM}) \times (0.023 \text{ min}^{-1}) \approx 170 \text{ nM.min}^{-1}
\end{align*}
\]

However, note that in the hysteresis assay, \(p_C \) is allowed to vary and the initial states must be chosen well within the monostable regions. For this reason, the low \(p_C \) state will be set to 0 nM.min\(^{-1}\) and the high \(p_C \) state to 50 nM.min\(^{-1}\), with final rates set between those extremes. For the case where Tum degradation \((\delta_T) \) is set 11 times faster than dilution, consistency with the steady-state model \(M_T \) is maintained, so that \(p_T \) must similarly be set 11 times faster to balance the faster degradation rate. Targeted degradation of the complex is ignored, that is, \(\delta_S = 0 \).

With a focus on the assay, another important consideration is the time evolution of the \textit{in trans} reporter product of the \(pR \) promoter. For a \(pR–\text{lacZ} \) reporter, the activity of the
β-galactosidase (β-gal) enzyme product of the lacZ gene is measured and assumed proportional to the concentration of enzyme in the cells. As with Tum production, the production rate of lacZ is reduced by repression so that the evolution of β-gal, Z, is described by:

\[
\frac{dZ}{dt} = \frac{pZ}{1 + \left(\frac{C}{\xiR}\right)H_R} - \delta_Z Z
\]

(2.24)

where the maximum production rate, \(p_Z\), and degradation rate, \(\delta_Z\), need to be determined for the β-gal enzyme. Since the enzyme activity (proxy for concentration) is reported in LacZ units, these are the units chosen to represent β-gal concentration, Z. This means that the maximum β-gal concentration from this promoter can be set using the β-gal activity for unrepressed \(pR\) stated above, that is, \(M_Z = 860\) LacZ units. β-gal is assumed stable so that its degradation rate is given by \(\delta_Z = \gamma = 0.023\) min\(^{-1}\), and hence the unrepressed production rate \(p_Z = M_Z\delta_Z \approx 20\) LacZ units.min\(^{-1}\).

The only parameter that remains to be determined is the off-rate for the Tum–CI sequestration reaction, which sets the timescale of the Tum–CI equilibrium reaction. Since this parameter is only a representative off-rate for a multi-step reaction scheme, an estimate is made by assuming the reaction simply follows second order kinetics with association constant \(K = 1/\xi_S\), the EC\(_{50}\) for the cooperative process. Then by assuming diffusion-limited dynamics for the representative two-species binding reaction, an on-rate, \(k_S\), can be estimated using protein diffusion rates in E. coli, and a typical off-rate determined using the relation \(k_{-S} = k_S/K = k_S\xi_S\). Diffusion of proteins in E. coli is dependent on shape, charge and size. However, for a small protein like Tum (approximately 40 kDa), diffusion would be close to that measured for green fluorescent protein (GFP) (approximately 60 kDa) with a rate of diffusion in E. coli ranging from 4.6 − 7.7 \(\mu\)m\(^2\).s\(^{-1}\) depending upon whether the protein is His\(_6\)-tagged Elowitz et al. [1999]. Using a diffusion coefficient, \(D\), the steady-state flux of molecules into a spherical interaction area can be used to derive on rates for diffusion-limited reactions [Sneppen and Zocchi, 2005]. For a single reaction centre, the rate of molecules entering the reaction zone is given by \(4\pi\epsilon Dc\), where \(\epsilon\) is the radius of the target binding region and \(c\) is the concentration of the diffusing species.

To generalise to a reaction rate for two diffusing species, the diffusion coefficient should be doubled [Phillips et al., 2009]. Hence, choosing \(\epsilon\) to be 6 nm (roughly the diameter of the amino-terminal domain (NTD) of CI) the on-rate for an in vivo second order reaction can be estimated at:

\[
k_S = 8\pi\epsilon D \quad (\mu m^3.molecule^{-1}.s^{-1})
\]

\[
= 8\pi\epsilon D \times (10^{-15} \text{L.}\mu\text{m}^{-3}) \times (N_A \times 10^9 \text{molecules.nmol}^{-1}) \times (60 \text{s.min}^{-1})
\]

\[
= 25–42 \text{nM}^{-1}.\text{min}^{-1}
\]

where \(N_A\) is Avogadro’s constant. Using this estimate and the estimate for \(\xi_S\) determined in Section 2.2.2, the timescale for the Tum–CI sequestration reaction will be around \(k_{-S} = \)
\[\varepsilon_{skS} = 5.8-9.6 \times 10^4 \text{ min}^{-1}. \]
This means that the Tum–CI equilibrium reaction should be much faster than the species degradation rates, lending further credence to the total species model (Equation (2.18)) where the Tum–CI reaction was assumed always at equilibrium.

With the parameters set, all that remains is to choose the initial conditions. In the hysteresis assay, growth overnight in the monostable regions is used to take the system close to each monostable steady state. In the modelling, this can be equivalently represented by first choosing concentrations \(C, T, S, \) and \(Z \) that are close to their equilibrium values when \(p_C \) is set to either 0 or 50 nM min\(^{-1} \) and then simulating growth in the monostable states for sufficient time to ensure that equilibrium is reached. The approximate equilibrium states are determined by first calculating the steady-state concentration of total CI, \(C_{tot} \), that is produced in each of the monostable regions. These concentrations are then used as a first guess for free CI, \(C \), so that an estimate of the steady-state concentration of total Tum, \(T_{tot} \), can be made. Using these values for \(C_{tot} \) and \(T_{tot} \), the Tum–CI equilibrium equation (Equation (2.19)) is solved for free CI and an improved guess for \(T_{tot} \) made using this new estimate. Then the concentrations of the free species can be calculated from these \(C_{tot} \) and \(T_{tot} \) estimates using the equilibrium and mass balance equations. The initial concentration of \(Z \) is simply set to the steady-state value calculated using the final estimate for free CI concentration.

The system of ODEs was solved numerically in R using the package deSolve [Soetaert et al., 2010], which provides interfaces to ODE solvers in R. Due to the vastly different timescales of the Tum–CI equilibrium reactions versus the production and degradation rates, the system of equations is expected to be stiff, requiring very small timesteps only for the balanced complex formation and degradation terms. As a result, the lsoda function was used, which provides an interface to the FORTRAN routine of the same name [Petzold, 1983; Hindmarsh, 1983] that automatically switches between stiff and non-stiff solvers.

To match the assay design, the system of ODEs is simulated from the initial conditions described above at the overnight \(P_{lac} \) promoter production rate (0 or 50 nM min\(^{-1} \)) for 100 minutes to ensure equilibrium in each monostable state. Then the production rate \(p_C \) is switched to an intermediate rate and simulation proceeds for another 6 hours (300 minutes). Simulations of the transition from one monostable state to the other and from each monostable state to the same production rate within the bistable region are shown in Figure 2.11.

When starting from a CI production rate in the low monostable region, the concentration of Tum equilibrates close to its maximum value, but the absence of CI results in very little complex being present. If the production rate of CI is increased into the high monostable region, to begin with all of the CI produced from \(P_{lac} \) is immediately sequestered by the high levels of Tum to become locked up in the complex. This reduces the concentration of free Tum, and as CI levels continue to rise to their new equilibrium value, eventually the concentrations of both free Tum and the complex are reduced to zero.
2.4 Hysteretic behaviour

Figure 2.11: Deterministic time course simulations of the Tum−CI MFL confirm the predictions of the hysteresis assay. Shown are time course trajectories of the concentrations of free CI, C, free Tum, T, and the Tum−CI complex, S, as determined by the system of ODEs in terms of those variables (Equation (2.17)). Vertical dotted lines mark the point at which the rate of production of CI from P_{lac} is changed from its initial rate to final rate; the specific P_{lac} activities are depicted beneath each simulation. The concentration of the reporter, β-galactosidase, was also simulated to determine the pR activity that would be measured in the assay (black curve). This was simulated in LacZ units so has been rescaled according to the right axis. Shown from top to bottom are simulations from each monostable region to the other (low p_C to high p_C and vice versa), and simulations from each monostable region to a single point in the bistable region.
In contrast, starting in the high monostable region leaves the initial concentrations of free Tum and the complex close to zero, with the concentration of free CI at its highest value. If the production rate is decreased into the low monostable region, the concentration of free CI decreases, and relief of repression at the \(pR \) promoter is observed. As free Tum increases in consequence, slight acceleration of the loss of free CI is observed when a small concentration of the Tum–CI complex appears. Past this point, free Tum continues to equilibrate to its maximum value.

It is worth noting the time it takes for these two extreme switching cases to reach a state close to equilibrium. Growth overnight takes upwards of 12 hours (720 minutes), so this is a good guarantee that equilibrium in the monostable regions is reachable. However, after subculturing 1/500 from an overnight (stationary phase) culture, a culture of \(E. coli \) typically takes only around 3–4 hours to grow to log phase (an optimal point for measurement by \(\beta \)-gal assay). If 3.5 hours (210 minutes) is chosen as a representative value, it can be seen that the cells will get close to but not quite reach equilibrium. This will be an important consideration if the cells reach log phase faster than expected, or dilution rates of the proteins have been underestimated (recall that these rates of loss effectively set the time it takes to reach equilibrium).

Also shown in Figure 2.11 are time course simulations from each of the monostable states to an intermediate production rate within the bistable region. In these cases, hysteresis is clear: when starting in the low monostable region with high Tum production, the high Tum production state is maintained into the bistable region; when starting in the high monostable region with low Tum production, the low Tum production state is maintained. Note that the transition from a high Tum production state into the bistable region produces no change in \(pR \) activity, since the increased concentration of CI is siphoned into formation of the complex due to the high levels of Tum present. In contrast, the transition from a low Tum production state into the bistable region is accompanied by an increase in \(pR \) activity, since the reduction in CI concentration reduces the level of repression at \(pR \), but not by enough to cause the switch to flip.

2.4.2 Simulating the hysteresis assay

The time course assays illustrated in Figure 2.11 can be repeated for a large range of final \(P_{lac} \) production rates to visualise the anticipated shape of the hysteresis assay curve. Two alternative time courses are obtained for each final production rate — one for cultures starting from the low monostable region, the other for cultures starting from the high monostable region — and the activity of \(pR \) determined from these time courses at the typical assay time of 3.5 hours gives each point of the hysteresis loop described earlier (Figure 2.10).

For the parameters described in the previous section, the hysteresis loop shown in Figure 2.12(a) is obtained. This is overlaid on top of the steady-state curve shown earlier
in Figure 2.7(b) for comparison. The hysteresis assay curve matches well with the steady-state predictions over the majority of the bistable region confirming that this assay is a suitable way to characterise the stable states of the Tum−CI MFL. However, with this standard time of equilibration at the new production rate (210 minutes), the trailing ends of each curve (in the opposing monostable regions) do not make it to their steady-state values. The divergence is most evident just past each of the bifurcation points.

As a control measure for equilibration and to demonstrate the result anticipated of a monostable system, it is useful to consider the case where Tum is absent from the network, thus removing the source of positive feedback. With Tum absent, no complex formation is possible and the system of ODEs in terms of the free species reduces to the following two differential equations:

\[
\frac{dC}{dt} = \frac{p_C - \delta_C C}{\left(\frac{C}{C_R}\right)^{H_R} - \delta_C Z}, \\
\frac{dZ}{dt} = \frac{p_Z}{1 + \left(\frac{C}{C_R}\right)^{H_R} - \delta_C Z},
\]

which involves no feedback and hence can only exhibit monostability. The steady-state free CI concentration is simply given by \(M_C = \frac{p_C}{\delta_C}\) and the steady-state reporter activity
by $M_Z/(1 + (M_C/ε_R)^{H_R})$ — a standard CI–pR repression curve. These equations can be similarly simulated over time using the same hysteresis assay protocol to produce the control curves shown in Figure 2.12(a). These curves do not overlap each other, but this is not an indication of two alternative states, but simply that equilibrium is not yet reached by this time point. They also reveal the similarity of the low pR activity stable state of the Tum−CI MFL with the shape of the standard CI–pR repression curve.

The time to reach equilibrium is affected primarily by the slow time evolution of the degradation and production reactions. Like for the case of complex formation and dissociation discussed in Section 2.2.3, the timescale of these reactions is set by the rate of degradation. The effect of an eleven-fold faster Tum degradation rate on the shape of the hysteresis curve was also simulated and is shown in Figure 2.12(b). This change has no effect on the shape of the control curves or the steady-state curve, but does produce a hysteresis curve that is much closer to steady state when measured at the same assay time.

Nonetheless, the hysteresis curves still diverge from equilibrium near the points of bifurcation, so a relevant consideration is the time needed to produce overlapping curves. Slightly increasing the equilibration time or choosing a faster CI degradation rate would help to close the ends and the Tum− controls. More worrying is that the closer each curve gets to its bifurcation threshold, the longer the system takes to equilibrate. This is exemplified in the time course simulations in Figure 2.13 which show the progression from the low monostable region to production rates that are all within the high monostable region. The bifurcation point between the bistable and high monostable regions occurs at approximately 33.62 nM.min$^{-1}$. Thus in reasonable time, the hysteresis curve can only ever be expected to approach equilibrium.
Figure 2.13: As the assayed production rate of CI nears the point of bifurcation, the time to reach equilibrium lengthens. Shown are time course trajectories performed exactly as described in Figure 2.11.
Designing and characterising a bistable MFL

The model of the Tum−CI MFL developed in the previous chapter showed that by placing expression of the tum antirepressor gene under the control of the CI-repressible pR promoter, it is possible to synthesize a MFL that is capable of bistability over a broad range of parameter values. Whilst derived based on sound biochemical principles, the mathematical model is nonetheless idealised, and the experimental behaviour of such a synthetic gene network is likely to deviate from its model when implemented in the complex and noisy intracellular environment [Sprinzak and Elowitz, 2005]. By basing the design on components from a bacteriophage, an independently functioning and predictable circuit is favoured, but far from guaranteed; the synthesis of fully autonomous circuits continues to remain an elusive possibility [Nandagopal and Elowitz, 2011]. In the MFL, the dependence of each component on the host environment is manifest in the reliance on host production machinery and possibly also on unrealised interactions with host proteases, since such degradation of phage proteins has been observed elsewhere [Shotland et al., 1997]. Even the formation of the Tum−CI complex may be subject to unidentified in vivo interactions. With these complications in mind, a good experimental design for the Tum−CI MFL will need to be both modular and flexible to compensate for the likelihood of unpredicted behaviours.

To this end, the Tum−CI MFL will be constructed from three modular systems, as illustrated in Figure 3.1, (1) the CI induction module that provides an IPTG-inducible level of CI, (2) the MFL construct module that supplies Tum from the pR promoter, and (3) the reporter modules that report on the level of pR repression. By cloning each of these systems as independent gene cassettes, the design is kept flexible and allows for easier rebalancing of each component independently of the others. As alluded to in Chapter 2, the inducible level of CI provides a way to balance the MFL and find the regions of bistability within the experimental assay. In this way, the circuit design already has in-built flexibility. Dual gfp and lacZ reporter constructs have been chosen to increase the available options for assaying pR activity, with the pR-lacZ cassette additionally chosen to facilitate comparisons with previous assays of pR activity [Dodd and Egan, 2002].
This chapter begins with a presentation of the technical details and considerations required for implementing and cloning the Tum−CI MFL in *E. coli*. This is followed with an experimental description of the hysteretic assay of CI production rate, the primary assay used to test for bistability of the MFL. Formative results are presented, but these then prompt a deeper investigation of each of the components, and the remainder of the chapter is devoted to measurement and calibration of the modules. This process is necessarily quantitative to complement the modelling and assist in refining both strain and assay designs. Indeed, even a quantitative difference in gain through a feedback loop has the potential to produce a qualitative difference in output response [Wall et al., 2004], making a quantitative analysis highly relevant here. A quantitative analysis adds power to the mathematical model for testing the model’s assumptions and concepts [Hasty et al., 2002], and hence this analysis further satisfies a major goal of synthetic biology to increase an understanding of design principles [Sprinzak and Elowitz, 2005; Yeh and Lim, 2007].

The quantitative characterisation of system components in this chapter is guided by the deterministic model developed in Chapter 2, and is targeted towards refining and constraining relevant model parameters. The hysteretic parameter in the model is the production rate of CI from the \(P_{\text{lac}} \) promoter, which is known to have an ultrasensitive dependence on the IPTG inducer [Palmer et al., 2009]; this dependence is characterised...
Designing and cloning the MFL strains

The process of cloning a synthetic bistable Tum−CI MFL has been an iterative one, with amendments to the genetic constructs made in response to deficiencies observed during the course of assaying each construct. Much of the early strain preparation was carried out by another student, Michael Pocock, who cloned some of the primary MFL constructs [Pocock, 2007]. This section starts by summarising the work done prior to the present thesis in preparing the MFL strains, including a brief discussion of some of the hurdles that were overcome. Motivated by the results of that work, the modifications made to this preliminary system as part of this thesis are then described. These included the addition of a fluorescent reporter gene and increasing the range of CI production rates accessible by the P_{lac} induction system.

Development of the preliminary Tum−CI MFL strains

The cloning and results described in this section are presented in more detail elsewhere [Pocock, 2007], but the brief summary here should be sufficient for understanding the results of the present work. Being an exercise in synthetic biology, the Tum−CI MFL was initially designed from a collection of well-studied components and genetic elements of both phage 186 and its host $E. coli$ [Brumby et al., 1996; Shearwin et al., 1998; Dodd and Egan, 2002; Pinkett et al., 2006; Dodd et al., 2007b]. The strain chosen to host the MFL was NK7049 [Simons et al., 1987], listed as E4300 in this thesis. E4300 is a derivative of the widely used K-12 strain, and is useful as a reporter strain due to removal of the lac operon, in particular, the $lacI$ and $lacZ$ genes. The history of E4300 is somewhat obscure, but it has a reported genotype of $\Delta lac\chi 74$ galOP308 $rpsL$ su− [Simons et al., 1987; Maurer et al., 1980]. Removal of the lac operon ($\Delta lac\chi 74$) is a complete deletion, but also removes additional sequences flanking the operon. Our group has observed that, when grown on L agar plates (L-plates), E4300 produces a bimodal population of small and large colonies. There is no evidence that this has an effect on assays of β-gal activity [Ian Dodd, personal communication], however, it is unknown what other effects this phenotype has on cell morphology. E4300 also grows very slowly in minimal media without added amino acids (presented in more detail later in Section 3.4.2).

To provide IPTG-inducible expression of 186 CI, the MFL design borrowed the induction system of a prior study of CI repression of pR in E4300 [Dodd and Egan, 2002]. Since CI is the maintenance repressor of phage 186, keeping the pR promoter repressed dur-
ing lysogeny when the phage is integrated in the chromosome, it is produced in single copy and operates against a single-copy promoter. The repression assays of Dodd and Egan [2002] were designed to be capable of replicating such expression levels. Hence, for induction of CI, the pZC320-WR-cI plasmid (labelled pZC320-186cI in Dodd and Egan) was used; the pZC320 backbone is based on a trimmed down version of the F plasmid, which maintains close-to chromosomal copy-numbers [Shi and Biek, 1995]. In the induction plasmid, the wild-type cI gene with its RBS are cloned downstream of the wild-type \(P_{lac} \) promoter, and the plasmid can be selected for via its ampicillin resistance gene. Induction of \(P_{lac} \) by IPTG occurs via inhibition of the lac repressor, which was supplied from the pUHA-1 plasmid with p15a origin and kanamycin resistance. For the MFL, these two plasmids were introduced as is.

Repression of \(pR \) was monitored by an integrated \(pR-lacZ \) reporter in Dodd and Egan [2002]. Turning the repressor system into an MFL could be as simple as replacing the \(lacZ \) gene with a \(tum \) gene, providing a single-copy \(pR-tum \) module is suitably balanced against the range of production rates from pZC320-WR-cI. Arguably, this should be the case, since upon SOS induction of the (chromosomally integrated) phage 186 lysogen, expression of the single-copy \(tum \) gene from the phage-borne \(p_{95} \) promoter acts against a lysogenic level of CI. This level of CI has been quantified and approximately corresponds to the steady-state level of CI produced from pZC320-WR-cI when induced at an intermediate value of 40 \(\mu \)M IPTG [Dodd and Egan, 2002]. Given that the \(pR \) promoter is moderately strong (thought to be greater than or at least comparable with the strength of \(p_{95} \)), this would suggest that even in single copy it should produce Tum in sufficient quantities to overcome at least the lowest induction levels of CI produced from the close-to single-copy pZC320-WR-cI.

With an integrated \(pR-tum \) construct in mind, and further seeking a reporter that is integrated as in Dodd and Egan [2002], it remained to adapt the repressor system to a new system with two genes expressed from \(pR \) at chromosomal copy-numbers. One possibility could have been a construct designed to express both the \(tum \) and \(lacZ \) genes from the same \(pR \) transcript. However, given that the Tum–CI interaction had not been well-characterised \textit{in vivo} and also that the strength of the \(p_{95} \) promoter was largely unknown, it was foreseen that some rebalancing may be required. Hence, a modular design was preferred with the reporter construct cloned \textit{in trans} of the \(pR-tum \) construct. In that case, the \(pR-lacZ \) module would act as a proxy reporter for the level of repression of \(pR \) in the \(pR-tum \) module.

As a result, maintaining consistency between the constructs became an important consideration. Having more than one such integrated module was beyond the capacity of the system employed by Dodd and Egan [2002], where \(pR \) activity was assayed using constructs recombined into the \(\lambda RS45\Delta YA \) phage and lysogenised in single copy Dodd et al. [2001]. However, the conditional replication, integration and modular (CRIM) sys-
tem developed by Haldimann and Wanner [2001] takes advantage of phage integration mechanics to allow for integration of plasmid constructs at up to five alternative attachment (att) sites. The CRIM plasmids contain a copy of the phage att site (attP), and using helper plasmids that contain the corresponding phage integrase gene, the whole plasmid can be integrated in the host chromosome at the bacterial att site (attB). The plasmids have a modular design using unique restriction sites to simplify the task of switching the particular attP site or the selection markers (antibiotic resistances), and thus were well-suited for use in the MFL. For recombination work, the plasmids can be maintained in strains that are pir+ since they contain the R6Kγ origin that is dependent on the Π replication factor. By integrating the modules into pir− strains, any unintegrated plasmids will be lost.

Prior to the MFL project, an integratable lacZ reporter chassis had been constructed similar to those used in Dodd and Egan [2002] and Neufing et al. [2001], but based instead on the CRIM system [Ian Dodd, unpublished data]. A map of the important genetic elements of the cloning plasmid, placatt1-ΔlacY-lacZ, is shown in Figure 3.2(a). A particular feature of placatt1-ΔlacY-lacZ is the inclusion of additional terminators surrounding the expression cassette. These help to increase consistency in expression levels between the constructs, by reducing impinging transcription resulting from integration in different chromosomal contexts. Furthermore, placatt1-ΔlacY-lacZ inherits the ribonuclease III (RNaseIII) site from pTL61T, which helps to minimise context-dependent effects on mRNA stability [Linn and St Pierre, 1990]. Finally, placatt1-ΔlacY-lacZ has a deletion across the lacY and lacA genes so that expression of the permease (LacY), in particular, does not feedback on entry of IPTG into the cell.

The MFL constructs were made starting from the placatt1-ΔlacY-lacZ plasmid, by first cloning the pR promoter upstream of the reporter gene (lacZ) and then replacing lacZ with the tum gene. The short pR–pL fragment from the pBC2-MM-pR-pL plasmid was chosen as the template for the promoter sequence, and is the same fragment as in the equivalent pMRR9R-MM-pR-pL plasmid that is described in Dodd and Egan [2002]. It is a minimal wild-type phage 186 sequence that includes the opposing pR and pL promoters and the (mainly intervening) CI binding sites that effect repression at those promoters. Since the promoters oppose each other, transcriptional interference complicates their expression patterns [Callen et al., 2004; Sneppen et al., 2005], but the pR promoter is much stronger than pL so that transcriptional interference on pR due to transcription from pL is low [Sneppen et al., 2005]. The short pR–pL sequence does not include the flanking CI binding sites that enhance repression at pR by DNA looping [Dodd and Egan, 2002]. These flanking sites were excluded, since the pR promoter is still well-repressed without such flanking sites, and accounting for the flanking sites would greatly complicate the modelling [Dodd et al., 2007b] and consequently the synthetic design process.

As illustrated in Figure 3.2(b), the KpnI-pR–pL-SphI fragment from pBC2-MM-pR-pL was cloned into the multiple cloning site of placatt1-ΔlacY-lacZ to produce
Figure 3.2: Sequence maps for the \(pR-lacZ \) and \(pR-tum \) MFL modules. The maps illustrate sequence features (not to scale) for each of the plasmids as indicated, where the CRIM-based plasmids, (a)–(c), are shown linearised at the respective phage attachment (attP) sites as they would appear when integrated in the host chromosome, and the medium-copy plasmid, (d), is shown linearised at the NheI restriction enzyme site; a low-copy variant of this plasmid with the SC101\(^* \) origin was also prepared. Genes are indicated by directed boxes; gene fragments have jagged ends. The \(lacZ \) gene is from the wild-type \(lac \) operon; \(Y \) and \(A \) are \(lacY \) and \(lacA \), also from that operon, but a deletion results in non-functional products from those two genes. The \(tum \) gene has a His\(_6\) tag and contains silent mutations that prevent translation of internal open reading frames 4 and 5. Sp\(^R\) and Cm\(^R\) are spectinomycin and chloramphenicol resistance genes respectively. Plasmids have either the \(pir \)-dependent origin R6K\(^{\gamma} \) or the medium-copy SC101 origin. Promoters are indicated by bent arrows, terminators by stem loops, ribonuclease III (RNaseIII) sites by plain loops as labelled, and ribosome binding sites (RBSs) by offset boxes (RBS: wild-type RBS; pET RBS: strong RBS obtained from the pET plasmids). Restriction enzyme sites are indicated by labelled vertical lines. (a) \(\beta \)-gal reporter chassis and precursor to (b) the integrable \(pR-lacZ \) reporter module, which further served as precursor to (c) the integrable version MFL module; (d) the medium-copy version of the MFL module derived from (c).
pIT-SL-pR-lacZ which could be integrated into the *E. coli* chromosome at the phage λ attachment site. Strong promoters like pR can prove difficult to clone, especially upstream of large reporter genes such as lacZ. For this reason, almost all DNA recombination work involving the pR promoter was performed in strains containing the pZC320-WR-Cl plasmid (without pUHA-1), which provides unrepressed production of CI from the *P_lac* promoter.

The pR-tum module was created from the placatt1-ΔlacY-lacZ plasmid, with the pR–pL fragment introduced only in the last step, again, to avoid the complications of cloning with a strong promoter. First the lacZ gene in placatt1-ΔlacY-lacZ was replaced with the tum4−5−his gene from pET-TumHis6 [Shearwin et al., 1998], via the AvrII and XhoI restriction sites. This C-terminally His6-tagged variant of Tum was chosen since it had been purified and characterised *in vitro*, and provided the most quantitative and definitive data on the Tum–CI interaction at the time, making it most amenable to modelling. The tum gene is unusual in that it has a number of active internal open reading frames (ORFs) [Brumby et al., 1996], and a tum gene variant with silent mutations to inactivate the fourth and fifth ORFs simplified analysis of the purified protein. However, if anything, ORFs 4 and 5 appear to inhibit the ability of the Tum protein to induce the phage [Brumby et al., 1996], so a construct with their removal was also preferred.

For compatibility with the existing integrated pR-lacZ reporter, both the antibiotic resistance gene and attachment site needed changing. The spectinomycin resistance gene was swapped for one providing chloramphenicol resistance using the SpeI and AatII sites. Then the attP site was exchanged from the λ attP to that of bacteriophage HK022 (phage HK) via the NotI and AlwNI sites (refer to Figure 3.2(c)). As explained above, the pR promoter was cloned in last, and used the same pR–pL fragment inserted between the KpnI and SphI restriction sites as for the lacZ reporter. Again, this cloning step was performed in a *pir*+ strain containing the pZC320-WR-Cl plasmid to keep pR repressed.

With the pR-tum and pR-lacZ modules integrated at the λ attB and HK022 attB (HK attB) sites respectively in E4300, the complete MFL strain became E4300 (pIT-SL-pR-lacZ)₇₄ (pIT-CH-pR-tum)+HK pUHA-1 pZC320-WR-ci. Assays of this strain showed no deviation from the curve anticipated for repression of pR by CI alone [Pocock, 2007]; the presence of the pR-tum cassette appeared to have no effect. This implied that the Tum–CI interaction was not strong enough to relieve repression at pR. As already shown in Chapter 2, an effective way to increase the size of the bistable region and the efficacy of Tum is to increase the rate of Tum production.

Having been derived from the high-expression pET plasmids, the tum gene already had a strong RBS. So the easiest way to increase Tum production was to shift the pR-tum module to a multicopy plasmid. This was done by replacing the region between the NotI and NheI restriction sites, which contains the R6Kγ origin and HK022 attP (HK attP) site, with either the SC101 or SC101+ origins derived from the pSC101 plasmid [Xia et al., 1991],
or the ColE1 origin, which have copy numbers of 3–4, 10–12 or 50–70 respectively [Lutz and Bujard, 1997]. The resulting chloramphenicol-resistant plasmids (the variant with SC101 is depicted in Figure 3.2(d)) were transformed into MFL strains as described above, but without the integrated \((\text{pIT-CH-pR-tum}^+)\text{HK}\) cassette. Hysteresis assays for these strains were also attempted, although strains containing the high-copy \(pR\text{-tum}\) plasmid with the ColE1 origin grew too slowly to be reliable in a LacZ assay. However, when the two other variants (with SC101 and SC101\(^\ast\)) were assayed, they did display a limited degree of hysteresis. It was from this point that I took over work on the Tum\(^{-}\)CI MFL.

3.1.2 Introducing a fluorescence-based reporter module

The hysteresis curves obtained from the early strains as described in the previous section, were ill-defined and further showed unexpected discrepancies with the modelling predictions that required further investigation. Though a number of explanations for the observed discrepancies could have been posited, experimentally distinguishing those would have been difficult in the MFL strains as detailed so far. Far more information could be extracted, however, by adding a fluorescent reporter to expand the available assay options. Many of the synthetic gene circuits studied in \(E. coli\) have employed fluorescent reporters for quantitation by flow cytometry [Gardner et al., 2000; Isaacs et al., 2003], or microscopy [Elowitz and Leibler, 2000; Becskei and Serrano, 2000; Stricker et al., 2008], though assay by \(\beta\text{-gal}\) has still been used in some cases [Atkinson et al., 2003]. It has also become an essential tool in studying genetic circuits in the context of the \textit{in vivo} intracellular environment, since such circuits are well known to exhibit a substantial degree of stochasticity, or ‘noisiness’ [Elowitz et al., 2002; Cai et al., 2006]. Two major advantages of fluorescent proteins as reporters are the ability to easily make \textit{in vivo} measurements in growing cells so that time-course measurements can be made, and, more importantly here, enabling single-cell measurements so that cell-to-cell heterogeneity can be resolved.

In contrast, a typical LacZ assay quantifies promoter activities as a population average, losing information about cell to cell variation\(^1\). However, this does not make the LacZ assay redundant: LacZ assay results in this system are comparable to a large body of existing data and hence more easily complement the modelling. It is also easier to obtain more sensitive measurements of promoter activity by LacZ assay. So whilst single-molecule sensitivity is indeed possible with fluorescent protein-based reporters by using total internal reflection fluorescence microscopy [Yu et al., 2006], this would require specialist equipment and significant modifications of the standard assay protocols, including a shift to minimal media, which would mean further deviating from current models of bacteriophage 186 that are optimised for protocols that have been performed in Lennox Luria broth (LB) [Dodd and Egan, 2002; Dodd et al., 2007b]. For these reasons, and given the

\(^1\) With the aid of microfluidics and a fluorescence-based assay of \(\beta\text{-gal}\) activity, single-cell measurements with single-molecule sensitivity are still possible, albeit technically more challenging [Cai et al., 2006].
modular flexibility afforded by the CRIM system, the \(pR-lacZ \) reporter was retained and a ‘dual reporter’ strain cloned, which included an additional fluorescence reporter cassette.

Numerous different fluorescent reporter proteins are available with excitation and emission spectra that cover different regions of the spectrum [Shaner et al., 2005]. Choosing a fluorescent reporter that maximises measurement sensitivity requires both choosing operating wavelengths that minimise background fluorescence from the growth medium and cell constituents, and matching the spectra of each given fluorescent protein to the excitation wavelengths and emission filters available for the target instrument. In this instance, the target instrument was a flow cytometer fitted with argon and helium-neon lasers that excite at wavelengths of 488 nm or 633 nm. The enhanced green fluorescent protein (GFP) includes mutations from the wild-type GFP that move the excitation maximum closer to 488 nm and increase brightness [Patterson et al., 1997]. Another set of mutations of wild-type GFP, the cycle 3 mutations, produce better folding of the protein in \(E. coli \), keeping it in the soluble fraction, since the chromophore does not become activated in the insoluble fraction [Crameri et al., 1996]. The fluorescent protein chosen for the MFL was ‘folding reporter GFP’, which combines the cycle 3 mutations and enhanced GFP mutations [Waldo et al., 1999], but was designed to be a fusion protein to report on protein folding of the fusion.

To maintain consistency with the \(pR-tum \) module, the \(pR-gfp \) cassette was cloned by replacing the \(tum \) gene of \(pIT-CH-pR-tum^+ \) with folding reporter GFP between the NdeI and BsiWI sites (see Figures 3.3(a) and 3.3(b)). Since the folding reporter GFP template was designed for use as a fusion protein, an initiation codon and valine codon were prepended as part of the cloning, so that the gene would be independently translated and match the beginning of wild-type GFP (see Materials and Methods (Chapter 8) for specific cloning details). As done for the single-copy \(pR-tum \) version of the MFL, this construct was integrated in single-copy at the phage HK attachment site, keeping the \(pR-lacZ \) reporter in the phage \(\lambda \) attachment site. The base dual reporter strain is E4300 (\(pIT-SL-pR-lacZ \))\(\lambda \) (\(pIT-CH-pR-gfp \))\(HK \) pUHA-1, but will be referred to as E4300DR for brevity. Note that since the pUHA-1 plasmid (supplying \(lac \) repressor) is a component of all MFL strains using this induction system, the dual reporters were integrated into E4300 pUHA-1, so that the dual reporter strain (E4300DR) also contains the pUHA-1 plasmid.

Even with just a single copy of the chloramphenicol selection marker gene (designated \(Cm^R \) in the figures), the dual reporter strains could compromise maintenance of the chloramphenicol-resistant \(pMCS-pR-tum^+ \) plasmid. So in addition to creating a new reporter construct, the two \(pR-tum \) plasmids (that is, both medium- and low-copy variants) were revised by replacing the \(Cm^R \) gene in \(pMCS-pR-tum^+ \) (see Figure 3.3(c)) with one providing tetracycline resistance (\(Tc^R \)) between the SpeI and AatII sites to produce \(pMTS-pR-tum^+ \) (see Figure 3.3(d)). The presence of an additional SpeI site in both the SC101 and SC101* origins meant that three-fragment ligations were necessary in both cases, and the
Figure 3.3: Sequence maps of the plasmids used for adding a fluorescent reporter to the MFL. The maps illustrate sequence features (not to scale) for each of the plasmids as indicated, where the CRIM-based plasmids, (a)–(b), are shown linearised at the HK022 attP (HK attP) sites as they would appear when integrated in the host chromosome, and the medium-copy plasmids, (c)–(e), are shown linearised at the NheI restriction enzyme site; low-copy variants of these plasmids with the SC101\(^\ast\) origin were also prepared. Features are as described in Figure 3.2 with the additions that \(gfp\) is the gene for folding reporter green fluorescent protein and \(Tc^R\) is a gene conferring tetracycline resistance. (a) Precursor to (b) the integrable \(pR\)-\(gfp\) reporter module; (c) precursor to (d) the tetracycline resistant version of the MFL plasmid and precursor to (e) the \(tum^\ast\) control plasmid.
3.1 Designing and cloning the MFL strains

Figure 3.4: Sequence maps of the CI expression plasmids. The maps illustrate sequence features (not to scale) around the multiple cloning site of the pZC320 plasmid; a majority of the plasmid is taken up by the genes required for plasmid maintenance at close to chromosomal copy-numbers. Features are as described in Figure 3.2 with the additions that cl is the wild-type 186 repressor gene, with either the wild-type RBS (wRBS) or enhanced RBS (eRBS), and ApR is a gene conferring ampicillin resistance. The operators O1 and O3 are the sites where lac repressor binds to repress the Plac promoter; the CAP Binding Site (CBS) enables CAP binding and activation of the Plac promoter.

difficulties faced in this step, including a thorough verification of the identity of each of the final plasmids, are more completely addressed in Section 8.2.9.

Tum− controls were prepared from these plasmids by digesting with XhoI and SalI, which have compatible ends, and religating in conditions favouring loss of the insert. This results in complete loss of the tum gene, RNaseIII site and RBS as shown in Figure 3.3(e).

This final set of four tetracycline-resistant pR-tum plasmids, that is, tum+ and tum− variants for both medium-copy (SC101) and low-copy (SC101∗) versions, were transformed into the dual reporter strain along with the induction plasmid, pZC320-WR-clI.

3.1.3 Shifting the range of CI expression levels

To obtain a complete hysteresis loop like that described in Section 2.4.2, and illustrated in Figure 2.10, both ends of the hysteresis curve should be located in monostable regions. When measuring hysteresis of the MFL with the medium-copy pR-tum plasmid (pMCS-pR-tum+) as a function of CI production rates, Pocock [2007] observed monostability for the lowest levels of induction (i.e., lowest CI production rates), but for the highest levels of induction, the system still appeared to be operating in a bistable region of the hysteresis curve. With the low-copy pR-tum module (pMCS∗-pR-tum+), both ends of the hysteresis curve appeared monostable, but the size of the bistable region was so reduced as to be undetectable within experimental error.

Re-optimising the pR-tum module with a production rate between that of the low- and medium-copy variants could have been tried. However, a simpler alternative was to increase the range of CI production rates accessible to the induction system by replacing the
Figure 3.5: Comparing repression of the pR promoter by CI expression plasmids that utilise alternative cl RBSs. The activity of the pR promoter was measured by LacZ assay for the (single reporter) E4300 (pIT-SL-pR-lacZ), pUHA-1 strain with either the pZC320 (CI−), pZC320-WR-cl (WRBS) or pZC320-ER-cl (ERBS) plasmids, grown in media with a range of IPTG concentrations to induce expression of the CI repressor protein. For the WRBS and ERBS curves, 8 replicates were assayed at each final IPTG concentration, whilst for the CI− control, only 6 replicates were assayed.

weaker wild-type RBS (wRBS) for cl with the stronger RBS of the pET vectors. A cl template with this enhanced RBS (eRBS) was available from the pET3a-cl plasmid [Shearwin and Egan, 1996], and this was used to replace the wRBS and cl gene between the HindIII and BamHI sites (see Figure 3.4).

The increased rate of CI production due to the eRBS was confirmed by observing the increase in repression of pR by LacZ assay in the single reporter strain, E4300 (pIT-SL-pR-lacZ)λ pUHA-1 pZC320-ER-cl (see Figure 3.5). For the same levels of IPTG induction, the reporter strain with the pZC320-ER-cl plasmid produced lower LacZ units than the equivalent strain with the pZC320-WR-cl plasmid, indicating increased repression at pR and implicating increased expression of CI. A CI− control strain with an empty pZC320 plasmid instead, indicated the maximum production rate from pR without repression. This showed that at minimum induction (0 µM IPTG), the wRBS and eRBS variants can both reach levels of CI production low enough that pR production is close to that of the fully unrepressed promoter.

With the addition of these two cl RBS variants, a total of eight different assay strains were prepared: four MFL strains each with a respective tum− control strain. These strains will be described using ‘WR’ and ‘ER’ to refer to wRBS and eRBS CI induction variants, and ‘MC’ and ‘LC’ to refer to low-copy and medium-copy pR-tum module variants. Written out in full, the final four MFL strains are:

WR-MC E4300DR pZC320-WR-cl pMTS-pR-tum+

WR-LC E4300DR pZC320-WR-cl pMTS∗-pR-tum+ (pMTS∗-pR-tum+)

ER-MC E4300DR pZC320-ER-cl pMTS-pR-tum+

ER-LC E4300DR pZC320-ER-cl pMTS∗-pR-tum+.
3.2 Assaying hysteresis in the Tum−CI Mixed Feedback Loop

As introduced in Chapter 2, the assay for studying bistability in the MFL strains is based on the measurement of a hysteresis loop as the production rate of CI is varied. This is easily achieved in the experimental system by suitably varying the concentration of the IPTG inducer in the growth medium over time. By first growing in media with concentrations of IPTG that put the MFL strains into one of the monostable states, and then growing in media with a range of IPTG concentrations that cover the bistable region, different stable states will be favoured depending on which monostable state the strains first occupied. Ideally, for low enough concentrations of IPTG, the repressed P_{lac} promoter with a low production rate of CI sets the MFL in the low CI, high Tum monostable state (the ‘on’ state). Conversely, for high enough concentrations of IPTG, where repression of the P_{lac} promoter is relieved, the consequent high production rate of CI ideally sets the MFL in the high CI, low Tum monostable state (the ‘off’ state). A crucial requirement of this assay of hysteresis is the ability to ‘set the switch’ in both on and off states by changing the concentration of IPTG.

Induction of the P_{lac} promoter by IPTG is sigmoidal [Palmer et al., 2009]; depending on the LacI repressor concentration, there will be leaky production from P_{lac} even in the absence of IPTG, but also saturation towards some maximum production rate where almost all LacI is bound (and inactivated) by IPTG. To maximise the chance of starting in a monostable region, the lowest and highest possible production rates of CI should be chosen. The lowest possible production rate is obtained with no IPTG, but some small rate of production from the repressed promoter should be expected. The production rate of CI saturates for increasing IPTG concentrations, which sets the upper limit for CI production, and for very high concentrations of IPTG, increases in inducer concentration produce minimal gains in production rate. Such high concentrations of IPTG are also more likely to adversely affect cell health, so a moderately high choice for the maximum IPTG concentration is preferred. With these considerations in mind, the minimum and maximum induction levels were set at 0 μM and 300 μM IPTG [Pocock, 2007].

A standard LacZ assay [Dodd et al., 2001; Palmer et al., 2009] involves: (1) growing cultures overnight in LB, each inoculated from independent colonies on a streak plate, (2) normalising these cultures to a common OD_{600} (diluting approximately 1/10 in the process), (3) subculturing 1/50 into LB for growth to log phase (OD_{600} 0.65–0.75 [Palmer et al., 2009]), and (4) assaying the log phase cultures for β-gal activity [Dodd et al., 2001]. To tailor this protocol for measuring hysteresis, Pocock [2007] used overnight (O/N) growth for setting the switch by preparing two cultures from each colony, one with 0 μM IPTG (the low O/N) and the other with 300 μM IPTG (the high O/N). After overnight growth, these cultures could each be independently normalised, and then subcultured into LB broth with a range of IPTG concentrations to assay the effect of hysteresis in the bistable region. With the assay as stated, Pocock found that the time taken for the cultures to reach log
phase did not seem to be sufficient for reaching equilibrium conditions at the new IPTG concentrations.

The importance of the time taken to reach equilibrium, the ‘equilibration time’, has already been highlighted in this thesis in the deterministic modelling of Section 2.4.2. To best judge the boundaries of the bistable region, a longer equilibration time is preferred, though ‘perfect’ boundaries can never be obtained in finite time. It might at first seem that just leaving the cultures growing longer would solve the problem. However, an important consideration is the growth phase of the culture: when the cell density of the growing culture becomes too high, the growth rate slows down until the cells reach stationary phase and stop dividing. The transition to stationary phase is highly complex, and includes the increased expression of an alternative sigma factor for RNA polymerase (RNAP), which radically alters the pattern of gene expression [Battesti et al., 2011]; such gross cellular changes would obfuscate the results and analysis. In contrast, by including an additional step of dilution before subculturing into LB, the cells start at a lower concentration and hence take longer to reach the same cell densities. Pocock [2007] trialled such an approach, and here an additional 1/10 culture dilution step between the normalisation and subculturing steps is chosen as the standard for obtaining a ‘normal’ equilibration time (typically around 6 hours). Without this additional 1/10 dilution, the assay will be referred to as having a ‘short’ equilibration time (typically around 5 hours).

Hence, the primary assay of hysteresis used in this thesis can be summarised:

1. Grow cultures overnight in LB containing either 0 or 300 µM IPTG (low or high O/Ns respectively) to set the switch in one of the monostable regions,
2. Normalise the cultures to a common OD$_{600}$ of 0.15 (diluting approximately 1/10 in the process),
3. Further dilute these normalised cultures 1/10,
4. Subculture 1/50 into intermediate IPTG concentrations in the bistable region and grow to log phase,
5. Measure the production rate from pR by LacZ assay or flow cytometry.

In this version of the assay, log phase growth is started from a culture with an overall dilution of approximately 1/5000 relative to the original overnight culture, compared with a dilution of approximately 1/500 for the version with short equilibration time. For technical details of the protocol, see the Materials and Methods (Chapter 8).

The four dual reporter MFL strains and their respective tum$^-$ controls were each assayed for hysteresis by LacZ assay using a normal equilibration time, and the resulting curves are shown plotted in Figure 3.6. In all cases, there are points of significant separation between the low O/N and high O/N MFL curves, though the magnitude of this separation varies considerably between each case. This is evidence that all the strains are exhibiting some level of hysteresis (history-dependent behaviour), and hence implies that each strain contains a region of bistability at intermediate IPTG concentrations.
3.2 Assaying hysteresis in the Tum−CI Mixed Feedback Loop

Figure 3.6: The Tum−CI MFL displays hysteresis as the production rate of Cl is varied. Hysteresis assays were performed using a normal equilibration time (see text for details), and the activity of the \(pR \) promoter was measured by LacZ assay. The assay was performed for four different MFL strains as labelled; translation of Cl was either from its wild-type RBS (WR) or enhanced RBS (ER), and the \(pR \)-\textit{tum} module was either located on a low-copy plasmid (LC) or medium-copy plasmid (MC). Assays of the respective Tum\(^−\) control strains are also shown. For each strain, LacZ assays were performed on log phase cultures inoculated either with overnight (O/N) cultures grown in the presence of 0 \(\mu \text{M} \) IPTG (low O/N curves), or in the presence of 300 \(\mu \text{M} \) IPTG (High O/N curves). Error bars show 95% confidence limits in the mean; \(n = 6 \) for all data points except for the high overnight Tum\(^+\) curve of the ER-LC strain, which has \(n = 4 \) for all data points.
Further confirmation of hysteretic behaviour is found in the distinct behaviour of the MFL strains compared with the Tum− controls, which should be incapable of supporting bistability. However, in some cases, the controls also show significant separation between low and high O/N curves. This could be mistaken for hysteresis, but is more likely an indication that equilibrium is not yet reached (compare with the predicted separation between the control curves from the modelling in Section 2.4.2). This indicates that even with the additional dilution step, there is still insufficient time for CI and β-gal concentrations to reach their steady-state levels. This implies that the MFL curves have not yet reached equilibrium either, and are probably further from equilibrium than the controls, since the positive feedback loop due to Tum was predicted to slow equilibration in the deterministic model. Modifications to the assay protocol to further extend the equilibration time will be considered in Chapter 4.

The key differences between each of the MFL strains involve changes to the production rates from pR and P\textsubscript{lac}. These bring about changes in the shape of the hysteresis curves with the largest changes being observed between strains with low-copy versus medium-copy pR-tum plasmids. As anticipated from the modelling, increasing the production rate of Tum, in this case by increasing the copy number of the pR-tum plasmid, causes an increase in the size of the bistable region, increasing the point of bifurcation for the low O/N curve in particular (compare with the plot in Figure 2.9(a), Section 2.3.2, of the predicted change in position of bifurcation points for changes to the effective Tum production rate). The result is that the separation between low and high O/N curves is most obvious for the WR-MC and ER-MC strains.

However, it is alarming that for these strains with medium-copy pR-tum plasmids, a complete hysteresis loop is not observed, raising the question of how both halves of the hysteresis loop are accessed. The loop is broken by the apparent absence of a single monostable state with high CI and low Tum at the maximum induction level of 300 µM IPTG. This could simply be a result of the curves remaining out of equilibrium at that point, obscuring an underlying monostable regime. Early attempts at further extending the equilibration time for the WR-MC strain, however, still did not see these two curves brought together at the maximum induction level [Pocock, 2007]. So at least in the case of the WR-MC strain, a more likely explanation could be drawn from the differences in circuit parameters between cultures in log-phase (used to assay the switch) and those in stationary phase (used to set the switch). In stationary phase, the slowing of cell division may result in unbalanced levels of CI and Tum that disproportionately favour high levels of CI. Alternatively, since stationary phase appears to result in much noisier gene expression [Guido et al., 2006], this additional noise may provide a pathway for O/N cultures grown at 300 µM IPTG to reach the low Tum state even if the MFL is bistable at that point. This last explanation presumes that the low Tum state is the more stable one at that level of induction, which could be argued on the basis of how close it appears to be to the region
of monostability.

The enhanced RBS for production of CI was designed to increase the overall production rate of CI at all concentrations of IPTG in an attempt to reach the high CI monostable state in log phase cultures. However, even with this increased production rate, the high CI monostable state was still not apparent in the hysteresis assay shown in Figure 3.6. Nonetheless, the separation was reduced by almost a half, demonstrating that the eRBS had an effect. The effect of the eRBS is easier to see at lower concentrations of IPTG. At 0 µM IPTG, the eRBS strains show significantly lower activity compared with the wRBS strains, indicating that leaky transcription from \(P_{\text{lac}} \) in the absence of induction is also amplified by the stronger RBS, resulting in more CI and hence additional repression of \(pR \) at this level of induction.

Interestingly, the higher levels of CI production also appear to increase the time taken to reach equilibrium, since the Tum\(^-\) control curves show slightly more separation in the eRBS strains compared with the wRBS strains. A potential explanation may be that it takes longer to reach equilibrium when starting from the high levels of CI in the high O/N curves. A deeper understanding of this observation will require better characterisation of the induction module (Sections 3.3 and 3.5.4) and a quantitative comparison with the model (Chapter 4).

In contrast with the hysteresis curves predicted by the modelling, with close to a rectangular shape for the bistable region, the experimental hysteresis curves in Figure 3.6 appear smoothed out or skewed, thereby obscuring the distinct thresholds expected at the points of bifurcation (the IPTG concentrations near which the system transitions between bistability and monostability). This poorly defined shape could indicate a major deficiency in the model, but is more likely a product of inhomogeneity within the cell population. Genetic circuits are inherently noisy [Elowitz et al., 2002] and this stochastic element is likely to impact the results of the MFL assay in a number of ways. One source of inhomogeneity would be variation in the extent of equilibration between cells at the time of assay — the cells in the starting population for the growth to log phase cannot be expected to be synchronised or to each contain equal starting concentrations of CI and Tum. Variations in growth rate between cells during the course of the assay would also decrease equilibration homogeneity. Another source of population inhomogeneity could well be a mixed population of cells in the on state and cells in the off state. In the LacZ assay, this would be measured as an average activity weighted by the number of cells in each population. Distinguishing between these alternative sources of inhomogeneity, or ruling out inhomogeneity as an explanation for the results is beyond the capabilities of the LacZ assay, and will be better addressed by fluorescence-based assays in subsequent chapters.

A number of deficiencies in interpreting these preliminary results within the current framework have been highlighted in this section. Such an outcome is not entirely undesirable, but motivates quantitative characterisation of the constituent circuit components.
Chapter 3. Designing and characterising a bistable MFL

and a rethinking of core design principles, which thus satisfies a major goal of synthetic biology in better understanding gene network design [Sprinzak and Elowitz, 2005; Yeh and Lim, 2007].

3.3 Characterising the CI induction module

The assay curves presented in the previous section showed the hysteretic response of the Tum–CI MFL genetic circuit to changes in the concentration of IPTG in the growth medium. In contrast, the hysteresis curves predicted by the MFL model derived in Chapter 2 were presented in terms of the production rate of CI. The concentration of IPTG affects the rate of production of CI repressor from the P_{lac} promoter by relieving repression due to LacI repressor. The assumption that this production rate from P_{lac} is proportional to the concentration of IPTG is often good enough for a qualitative analysis, like that of the previous section, but such an assumption masks what is actually a nonlinear response. LacI binds cooperatively to P_{lac} as a tetramer [Oehler et al., 1990], and indeed, the production of downstream genes has been observed to display an ultrasensitive dependence on the concentration of IPTG [Palmer et al., 2009]. This nonlinear dependence also arises as a result of the limited number of LacI repressor molecules per cell, such that the rate of CI production saturates as IPTG reaches concentrations that can inactivate the available pool of LacI. Since variations in the production rate of CI are fundamental to the hysteresis assay, better quantifying the dependence of this production rate on the concentration of IPTG would greatly improve comparability between the results and modelling.

The form of the nonlinearity is likely to be strain- and construct-dependent, since changes to growth rate or copy number could affect both the concentration of LacI repressor and the response at the promoter. This means that the dependence of production rate on IPTG concentration should be determined in strains and assays that closely represent the MFL hysteresis curves. One of the most direct measures, and that employed by Palmer et al. [2009], is to quantitate the steady-state concentration of induced protein (that is, CI in the case of the MFL) in the assay strains for a series of IPTG concentrations using a technique such as Western blotting. The pZC320-WR-ci induction curve was previously calibrated for assays of pR and pL activity by Western blot for induction levels between 10 and 100 µM [Dodd and Egan, 2002]. However, whilst direct, Western blotting tends to afford limited sensitivity and less flexibility; ideally the production rate for each IPTG concentration used in the hysteresis assay would be measured. So here instead, an alternative approach is taken, whereby a lacZ reporter gene is used to report on production from P_{lac}. In this approach, production of the β-gal enzyme acts as a proxy for production of CI; this method is less direct, but a LacZ assay affords more sensitivity and enables closer consistency with the hysteresis assay.

In order for the production of β-gal to be valuable as a reporter for the production
3.3 Characterising the CI induction module

of CI, the steps in its production (and even degradation) must be related in a predictable way (preferably by a proportionality) to that of CI in the MFL. Such differences will be discussed in the course of describing the induction reporter strain design. However, more generally there are still a number of potential drawbacks to this approach that are worth bearing in mind. Firstly, since the lacZ gene is already employed in the MFL strains to report on pR activity, an alternative strain design must be used. However, if all plasmids and integrands are kept consistent between the strains, excepting removal of the pR-lacZ reporter and replacement of the cl gene with lacZ, then any differences in strain physiology should be sufficiently minimal. A second drawback is that the use of a LacZ assay does not provide an absolute measure of CI production rate — the desired quantity for comparison with the modelling. Nonetheless, the LacZ assay does provide a relative measure of production rate, which can be used to normalise the IPTG concentrations to a quantity that is proportional to the CI production rate. Then by measuring an absolute CI production rate for one of the IPTG concentrations, the relation can be scaled to reproduce the absolute values. Such a reference absolute production rate will be quantified later in this chapter. Finally, by changing the gene downstream of the Plac promoter, changes to the dynamics of target gene translation, and hence its production rate, are unavoidable. Even the strength of the RBS is impacted by changes in the first 35 base pairs of the translated gene [Kudla et al., 2009]. However, if it is assumed that the rate-limiting step in production of the target gene(s) is transcription initiation, as assumed in the modelling in Section 2.2.3, then the rate of transcription initiation becomes the most important factor in determining the response of protein production to changes in repressor occupancy. This assumption presumes that all intermediate steps of protein production that occur after transcription initiation, whether for CI or β-gal, can be considered first order processes, operating at maximal efficiency for every rate of transcription initiation considered.

The Plac-lacZ reporter construct was designed to minimise sequence differences with the MFL induction plasmid, pZC320-WR-cl, but some modifications were necessary to preserve plasmid integrity and reporter consistency. The pZC320 backbone (see the sequence map in Figure 3.7(b)) contains lacZα, a gene for the β-galα fragment of β-gal. When expressed with its complement, the β-galω fragment, the β-galα fragment can pair to produce a functional β-gal enzyme, making it useful as a cloning marker for distinguishing between clones with and without the fragment [Shi and Biek, 1995]. The CI expression plasmid was cloned without replacement of this lacZα gene (see the sequence map in Figure 3.7(a)). However, since lacZα is identical to the start of the lacZ gene, if it was also retained in the induction reporter plasmid, then the reliability of the reporter construct could be compromised by spurious homologous recombination within the plasmid. To avoid such complications, the first cloning step involved removal of the lacZα fragment from pZC320 before introducing the lacZ gene.

Removal of lacZα was achieved by replacing it with the tonB terminator between
Figure 3.7: Sequence maps illustrating plasmid precursors to the IPTG induction reporter plasmid, in which expression of the β-gal enzyme is used as a proxy for expression of CI, so that the ultrasensitivity of the induction system can be quantitated by LacZ assay. The design attempts to replicate (a) the CI expression plasmid of the MFL as far as possible. However, to avoid the potential loss of the lacZ reporter gene by recombination with the lacZα fragment, this fragment was first replaced in (b) the backbone vector with a terminator to create (c) the pZC320-tonBterm plasmid. (d) The lacZO2− gene, which has a silent mutation to inactivate the internal lac repressor O2 binding site, was then cloned into the multiple cloning site (MCS) to create the induction reporter plasmid pZC320t-lacZ. The maps illustrate sequence features (not to scale) in and around the multiple cloning site of the pZC320 plasmid; a majority of the plasmid is taken up by the genes required for plasmid maintenance at close to chromosomal copy-numbers. Features are as described in Figure 3.2 with the additions that cl is the wild-type 186 repressor gene with its wild-type RBS (wRBS), and ApR is a gene conferring ampicillin resistance. The operators O1 and O3 are the sites where lac repressor binds to repress the P_lac promoter; the CAP Binding Site (CBS) enables CAP binding and activation of the P_lac promoter.
the BamHI and XcmI restriction sites to create the pZC320-\textit{tonBterm} plasmid (see Figure 3.7(c)). The pZC320 plasmid contains no obvious transcriptional terminators downstream of the \textit{lacZ}α promoter, whilst the reporter constructs used elsewhere do typically include a downstream terminator [Simons et al., 1987; Linn and St Pierre, 1990; Dodd and Egan, 2002, and Section 3.1]. Its inclusion should reduce context-dependent effects on mRNA stability resulting from the 3′ end of the transcript [Belasco, 2010], thereby increasing consistency in LacZ units between different reporter constructs. However, it also introduces an additional level of discrepancy with the pZC320-WR-cl plasmid; strong promoters have been known to affect plasmid copy number when incident over the origin [Stueber and Bujard, 1982]. With such a large fraction of the plasmid responsible for copy-number maintenance, and a downstream ampicillin resistance gene in any case, this potentiality was neglected. The transcriptional terminator was introduced in this step to allow for greater freedom in choosing restriction sites to clone \textit{lacZ} upstream.

The wild-type \textit{lacZ} gene contains an internal LacI repressor binding site, O2, which contributes to repressor cooperativity at the \textit{P_{lac}} promoter [Oehler et al., 1990]. Since such a distal LacI binding site is not present in the CI induction module, it was important to choose a \textit{lacZ} reporter gene in which this site had been silently inactivated. The \textit{lacZ} gene in the pIT3-CL-\textit{lacZflip} plasmid\footnote{pIT3-CL-\textit{lacZflip} [Ian Dodd, unpublished data] is similar to the pIT3-HFCL plasmid described in Cui et al. [2013].} contains the O2− mutation of Oehler et al. [1990] and was cloned into pZC320-\textit{tonBterm} between the XhoI and BamHI restriction sites to make the induction reporter plasmid, pZC320t-\textit{lacZ} (see Figure 3.7(d)). To further increase consistency of this reporter construct with other measurements of promoter strength, the chosen \textit{lacZ} fragment also contained an RNaseIII site to ensure that upstream sequences would not contribute to differences in stability of the \textit{lacZ} mRNA or translation of the gene [Linn and St Pierre, 1990].

In order to match the MFL strains as closely as possible, the induction reporter strains were kept as similar as possible to the dual reporter MFL strains. So that the only source of β-gal was from the induction plasmid, the \textit{pR-lacZ} reporter of the MFL, (pIT-SL-\textit{pR-lacZ})\textsubscript{λ}, was replaced with (pIT-SL)\textsubscript{λ}. pIT-SL was created from placatt1-\textDelta{lacY}-\textit{lacZ} (for the sequence map, refer back to Figure 3.2(a)) by digesting with XhoI and Sall, which have compatible ends, and religating under conditions favouring loss of the insert. With this modification of the base strain, two alternative induction reporter strains were cloned:

- E4300 (pIT-SL)\textsubscript{λ} (pIT-CH-\textit{pR-gfp})\textsubscript{HK} pUHA-1 pZC320t-\textit{lacZ} pMTS-\textit{pR-tum}+, and
- E4300 (pIT-SL)\textsubscript{λ} (pIT-CH-\textit{pR-gfp})\textsubscript{HK} pUHA-1 pZC320t-\textit{lacZ} pMTS-\textit{pR-tum}−.

These induction strains were assayed for β-gal activity using the same hysteresis protocol as for the MFL strains (described in Section 3.2). Briefly, cultures were started from
Figure 3.8: Induction of the P_{lac} promoter has an ultrasensitive dependence on the concentration of IPTG inducer in an MFL-like strain. P_{lac} promoter activity was measured by LacZ assay in the induction reporter strains (a) E4300 (pIT-SL)$_{\lambda}$ (pIT-CH-pR-gfp)$_{\text{HK}}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum^+, or (b) E4300 (pIT-SL)$_{\lambda}$ (pIT-CH-pR-gfp)$_{\text{HK}}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum^- The assay was based on the hysteresis assay used for the MFL strains, so alternative curves were obtained for low or high O/Ns (as described in Figure 3.6). The IPTG concentration of each data point has been corrected for the different contributions made when subculturing from each respective O/N broth (see text for details). Repeats are plotted as separate data points; $n = 8$ for each condition in (a), whilst $n = 4$ for each condition in (b). The response of each data set was fit using a four-parameter log-logistic function (solid lines); parameters for the fits are given in Table 3.1. The data was fit after Box-Cox transformation with parameter $\lambda = 1/3$.

either low or high IPTG overnights and the additional 1/10 dilution step required for a normal equilibration time was also employed. The resulting two data sets for the tum^+ and tum^- strains can be seen plotted in Figure 3.8.

An incidental consequence of following the hysteresis protocol was that the final concentration of IPTG in the log phase cultures was notably different depending upon whether they had been inoculated with low or high O/Ns. The discrepancy arises since the overnight cultures are diluted into broth with the same IPTG concentration, so that 2 µL out of the 100 µL of broth for growth to log phase contains IPTG at the concentrations of the overnight cultures. Thus the final IPTG concentration in terms of the intended assay concentration, x, depends upon whether the overnight culture had low (I_L) or high (I_H) IPTG, and can be calculated as:

$$I_L(x) = \frac{2}{100} \times (0 \, \mu\text{M}) + \frac{98}{100} \times (x \, \mu\text{M})$$
$$I_H(x) = \frac{2}{100} \times (300 \, \mu\text{M}) + \frac{98}{100} \times (x \, \mu\text{M})$$

(3.1)

The greatest percentage deviation occurs for the cultures from high IPTG, subcultured into low IPTGs. For example, subculturing into 0 or 10 µM IPTG gives $I_H(0) = 6$ µM and $I_H(10) = 15.8$ µM. In contrast, subculturing from low IPTG overnight cultures has a
maximum deviation at $I_L(500) = 490 \mu M$, which is a much smaller percentage difference. These functions were used in Figure 3.8 to correct the IPTG concentration for each data point and will also be applied for presentation of all subsequent data derived from the hysteresis assay.

With this correction in place, it can be seen from the moderate overlap of the low O/N and high O/N data in Figure 3.8, that production of β-gal has essentially reached its equilibrium point by the time of the assay. β-gal is expected to follow dilution-limited time evolution, thus representing the longest time it would take to reach equilibrium in rapidly dividing cells. So by inference the concentrations of CI in the hysteresis assays of the tum$^{-}$MFL strains would be expected to have reached equilibrium at least some time during the course of the assay with normal equilibrium time. Thus the disequilibrium of the MFL tum$^{-}$ curves in Figure 3.6 (Section 3.2) likely reflect the additional time it takes for a second dilution limited process (production of β-gal from pR) to reach equilibrium.

Curiously, whilst the data from low and high O/Ns present a similar shape, in Figure 3.8(a) in particular, the spread in data points is markedly different for each of the starting conditions. The low O/N data shows far less variation in LacZ units at 0 μM IPTG compared with the high O/N data, and vice-versa for the high O/N data at 300 μM IPTG. This indicates that the further from its initial equilibrium state that the circuit has to travel, the noisier the resulting output, perhaps suggesting substantial variation in equilibrium times, or growth rates between different repeats.

For easier comparison and extrapolation to intermediate values, the data was fit using four-parameter log-logistic curves, also known as Hill curves, given by

$$f(x) = B + \frac{M - B}{1 + \exp \left\{ -H(\log(x) - \log(\varepsilon)) \right\}} = B + \frac{M - B}{1 + (\varepsilon x)^H}$$

(3.2)

where B is the basal value that occurs at $x = 0$, M is the saturation maximum, H is the Hill coefficient and ε is the EC$_{50}$. The drc package [Ritz and Streibig, 2005], written for the R statistical computing environment [R Development Core Team, 2012], includes non-linear least squares regression algorithms for fitting such curves, and was used to fit the data.

An assumption of regression by non-linear least squares is that all observations are normally distributed and have equal variance. For the induction data, this assumption does not hold: a simple visual inspection of the points reveals that the variance for each experimental condition generally tends to increase for points with higher mean values. Such heteroscedasticity is not unsurprising in this kind of experiment given that a major source of error is expected to arise from variations in gene expression, errors that are expected to accumulate over time as the cells divide and grow. Multiplicative errors like that will result in proportional changes which are often better compared after a log transformation of the data.

However, instead of using a log transformation to minimise heteroscedasticity, a more general Box-Cox transformation of the response was considered. The Box-Cox transfor-
Figure 3.9: Heteroscedasticity is reduced by using a Box-Cox transformation prior to fitting the P_{lac} induction reporter assay data with Hill curves. (a) The choice of Box-Cox parameter λ for the transformation was optimised by profiling the log-likelihood for Hill fits of all data sets that P_{lac} activity satisfies a normal error distribution with constant variance over each value of IPTG concentration. The analysis presented here is for the case where the low and high O/N data was treated as an aggregated set in each case. All three relevant data sets can be seen plotted in Figure 3.10. (b) The reduction in heteroscedasticity can be seen by comparing plots of residuals versus fitted values taken from each of the fits for different choices of λ. The upper plot with $\lambda = 1$ shows the case where the data is essentially untransformed, and the lower plot with $\lambda = 1/3$ shows the case the data is essentially transformed by a cube root.

The transformation is:

$$y^{(\lambda)} = \begin{cases}
\frac{y^\lambda - 1}{\lambda}, & \text{if } \lambda \neq 0, \\
\log(y), & \text{if } \lambda = 0.
\end{cases}$$

(3.3)

and the choice of the parameter λ can be optimised for least squares regression by profiling the log-likelihood that the dependent variable (P_{lac} activity) satisfies a normal error distribution with constant variance for each value of the independent variable (IPTG concentration) [Box and Cox, 1964]. Such a transformation can normalise the variance in a response-dependent manner, and is only useful if there is an underlying trend in the variance with the magnitude of the measurement. Thus a single value for λ should be chosen to transform all data that can be expected to have the same sources of measurement error. In this case, it is assumed that the measurement error arising from LacZ assays of either of the induction strains will exhibit a similar dependence on measurement magnitude.

The log-likelihood of a normal error distribution with constant variance for Box-Cox transformed Hill fits of all the induction data, including that shown in Figure 3.8 and also that shown later in Figures 3.10(a) and 3.10(b), was determined for a range of choices of λ. This was done alternately for the case where the data from high and low O/Ns were fit independently, or where data from high and low O/Ns was aggregated for each fit.
3.3 Characterising the CI induction module

Figure 3.10: Comparing \(P_{\text{lac}} \) promoter induction under different assay conditions in MFL-like strains. \(P_{\text{lac}} \) promoter activity was measured as described in Figure 3.8. The \(\text{Tum}^+ \) data from that figure is replicated here in grey for reference, but the high and low O/N data sets have been aggregated. This reference assay, with normal equilibration time (equil.) and the \((pR-\text{tum}^+)\) induction reporter strain, is plotted with (a) the \(pR-\text{tum}^+ \) induction reporter strain with short equil., or (b) the equivalent \(pR-\text{tum}^- \) induction reporter strain with normal equil. Repeats are plotted as separate data points; \(n = 4 \) for each condition in the short equil. and \(\text{Tum}^- \) data sets. The data was fit after Box-Cox transformation with parameter \(\lambda = 1/3 \).

A log-likelihood profile for the latter case (fitting on the aggregated O/N data) is shown in Figure 3.9(a). The maximum occurs at around \(\lambda = 0.35 \), and from this maximum, the likelihood-ratio test can be used to estimate the 95% confidence limits as 0.26 and 0.43. When the high and low O/N data are fit separately, the estimated maximum becomes instead \(\lambda = 0.25 \) with 95% confidence limits of 0.15 and 0.33. Taking both \(\lambda \) estimates into consideration, a common optimum \(\lambda \) was chosen to be 1/3; with \(\lambda = 1/3 \), the Box-Cox transformation is essentially a cube root transformation.

The effect of this transformation on all the data sets can be gauged from the residuals of the fits which can be plotted against the fitted values to visualise any trends in variance about the fit curves. This is shown in Figure 3.9(b) for the case where the O/N data was aggregated for each fit. Where \(\lambda = 1 \), essentially the case where there is no transformation, then the data clearly shows a clear trend of larger spread in the residuals for larger fitted values. Where \(\lambda = 1/3 \), this trend is reduced and the spread in the residuals is more consistent.

The Box-Cox transformation with \(\lambda = 1/3 \) was applied for producing the fitted curves shown in Figures 3.8 and 3.10(a) and also for determining all of the fitted Hill curve parameters listed in Table 3.1. Application of the Box-Cox transformation makes little difference to these fitted parameter values; the differences are primarily manifest in the error estimates on those parameters, with the largest changes occurring for the basal parameters.
Table 3.1: Parameters determined from Hill fits of the P_{lac}-lacZ induction data in MFL-like strains. All data was fit after Box-Cox transformation with $\lambda = 1/3$. The parameter estimates are indicated with 95% confidence limits from the fit.

<table>
<thead>
<tr>
<th>Straina</th>
<th>Equilibration timeb</th>
<th>Historyc</th>
<th>Hill coefficient</th>
<th>EC\textsubscript{50}d</th>
<th>Basale</th>
<th>Maximume</th>
</tr>
</thead>
<tbody>
<tr>
<td>tum+</td>
<td>Normal</td>
<td>Low O/N</td>
<td>1.8 ± 0.3</td>
<td>124 ± 24</td>
<td>24 ± 6</td>
<td>635 ± 82</td>
</tr>
<tr>
<td>tum+</td>
<td>Normal</td>
<td>High O/N</td>
<td>2.1 ± 0.4</td>
<td>104 ± 15</td>
<td>50 ± 12</td>
<td>625 ± 65</td>
</tr>
<tr>
<td>tum+</td>
<td>Short</td>
<td>Low O/N</td>
<td>1.7 ± 0.4</td>
<td>120 ± 34</td>
<td>30 ± 11</td>
<td>679 ± 123</td>
</tr>
<tr>
<td>tum+</td>
<td>Short</td>
<td>High O/N</td>
<td>2.0 ± 0.6</td>
<td>99 ± 23</td>
<td>69 ± 21</td>
<td>634 ± 96</td>
</tr>
<tr>
<td>tum−</td>
<td>Normal</td>
<td>Low O/N</td>
<td>1.6 ± 0.4</td>
<td>184 ± 67</td>
<td>18 ± 8</td>
<td>787 ± 199</td>
</tr>
<tr>
<td>tum−</td>
<td>Normal</td>
<td>High O/N</td>
<td>1.8 ± 0.4</td>
<td>153 ± 46</td>
<td>27 ± 12</td>
<td>728 ± 154</td>
</tr>
<tr>
<td>tum+</td>
<td>Normal</td>
<td>Mixed</td>
<td>1.8 ± 0.3</td>
<td>116 ± 17</td>
<td>32 ± 7</td>
<td>642 ± 62</td>
</tr>
<tr>
<td>tum+</td>
<td>Short</td>
<td>Mixed</td>
<td>1.7 ± 0.4</td>
<td>113 ± 26</td>
<td>41 ± 12</td>
<td>678 ± 98</td>
</tr>
<tr>
<td>tum−</td>
<td>Normal</td>
<td>Mixed</td>
<td>1.6 ± 0.3</td>
<td>170 ± 46</td>
<td>21 ± 7</td>
<td>766 ± 141</td>
</tr>
</tbody>
</table>

aInduction reporter strains were either E4300 (pIT-SL)$_{\lambda}$ (pIT-CH-pR-gfp)$_{HK}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum$^+$, or the tum$^−$ equivalent with the pMTS-pR-tum$^−$ plasmid instead.

bRelative to the short equilibration time assay, the normal equilibration time assay involved an additional 1/10 dilution of the overnight cultures so that the time taken to reach log phase would be longer.

cCultures were initially grown overnight (O/N) in broth with either 0 µM (Low) or 300 µM (High) IPTG; these curves were either fit separately, as indicated, or the fit was for the aggregated dataset (Mixed).

dHalf-maximal effective concentration; listed in µM.

eListed in LacZ units.

Without the Box-Cox transformation, the 95% confidence estimates on the basal parameters were typically on the order of or, in a number of cases, larger than the values of the parameters themselves.

The Hill fits help to make comparisons between the data sets more objective. The high and low O/N curves shown in Figure 3.8 confirm the similar shapes of the two data sets. Furthermore, from the parameter estimates in Table 3.1 it can be seen that, within 95% confidence limits, all parameters but the basal level of production overlap when comparing high and low O/N curves. This applied even when the equilibration time of the assay was short (that is, omitting the extra 1/10 dilution step of the overnight cultures). The significant difference in the basal levels of production between high and low O/Ns for both short and normal equilibration times presumably arises as a result of the effect mentioned earlier that the further from equilibrium that the system has to travel, the noisier the assay seems to become. In particular, the high O/N data shows much more variation at its lowest level of IPTG than the low O/N data does. This also raises the question of why such a discrepancy between high and low O/N curves does not arise as prominently for the value of the maximum parameter, which should apply for the opposing case where higher variance might be expected in the low O/N data at the highest concentrations of IPTG. However, this may merely be a result of such divergent variances being lost amidst increased levels of assay error associated with higher assay units. Another explanation may also be that a small subset of cells from the high O/N divide much more slowly than the others, thus biasing the results towards higher units overall for that curve.
A comparison between the induction assay with normal equilibration time (here averaging at 6.9 hours) and an induction assay with short equilibration time (5.4 hours) can be found in Figure 3.10(a). High and low O/N data has been aggregated in this case, but clearly the two data sets overlap well. Perhaps surprisingly, even the magnitudes of variance at the lowest concentrations of IPTG appear to be similar, suggesting that the additional variance observed for the high O/N is not just an artefact of limited equilibration. The time difference between the two assays is at least twice as long as the typical doubling time for *E. coli* (30 minutes), so should have been sufficient additional time to at least reduce such discrepancies. So since the differences in variances between low and high O/Ns appeared to have low association with equilibration, it was assumed that such asymmetries in assay error could potentially lead to overestimates of the ‘true’ mean for a hypothetical ideal assay. For this reason, the aggregated data set including data from both high and low O/Ns was preferred for application in the modelling and in normalising the hysteresis curves.

The induction reporter strain with the pMTS-pR-tum plasmid was also assayed using the hysteresis assay with normal equilibration time, and that data is shown plotted in Figure 3.10(b). On first glance, the Hill fit of that data appears to have quite a different shape compared with that for the pMTS-pR-tum+ plasmid. However, the parameters determined for each fit, as listed in Table 3.1, reveal that, within the 95% confidence limits, there is no significant difference between the two curves. Nonetheless, the range of \(P_{lac} \) activities covered by the Tum\(^-\) curve is larger, with a noticeably lower basal parameter and higher maximum parameter than the other fits. Furthermore, its \(EC_{50} \) is also noticeably larger than those for the other fits. By visual inspection of the data, it could be argued that this may result from the Tum\(^-\) data showing a somewhat reduced level of the asymmetric variances observed to result from the history of each data set in the Tum\(^+\) strains. An explanation for this is unclear at this stage, and more repeats would be required to show that it is a real difference in any case. However, if it were the case, the Tum\(^-\) data would likely serve as the best representative for the steady-state concentrations of CI in the MFL strains.

The Hill curve fits indicate that the nominal choice of 300 \(\mu \)M IPTG as the maximum induction level in the hysteresis assay is a reasonable choice. The fits most closely representing the conditions in the MFL strains, that is, those shown in Figure 3.10(a), reveal that little additional \(P_{lac} \) promoter activity is to be gained by almost doubling the inducer concentration to 500 \(\mu \)M. By 300 \(\mu \)M, the curves have well started approaching saturation. The MFL hysteresis curves in Figure 3.6 of the previous section, appeared to indicate that the maximum level of induction was not high enough to reach the high CI monostable state, even with an enhanced RBS for CI production. In this latter case, there is a chance that the slight additional activity afforded by 500 \(\mu \)M could help to tip this end of the MFL into monostability. However, the apparent bistability at that maximum induction level will be
Figure 3.11: Scaling the P_{lac} induction curves measured by LacZ assay to the equivalent steady-state CI concentrations. (a) The mean activity of the P_{lac} promoter from the low O/N assay of the Tum$^{-}$ strain (Figure 3.8(b)) is plot versus measurements of CI concentration per cell [Dodd and Egan, 2002] for induction of P_{lac} from pZC320-WR-cl using 10, 20, 40, 60 and 100 µM IPTG. The data was fit by linear regression either including (black solid line) or excluding (grey dashed line) the maximum point. Dotted lines indicate 95% confidence limits on the regression line including all points. (b) The linear fit can be used to scale the Hill curve fits of the P_{lac} induction data to the number of CI monomers per cell. Shown is the scaled low O/N Tum$^{-}$ Hill curve from Figure 3.8(b) plotted with the measurements of CI concentration per cell from Dodd and Egan [2002]. Dotted lines indicate 95% confidence limits for the fitted Hill curve.

reconciled in other ways later.

The P_{lac}-lacZ induction curves have been measured in LacZ units, but for comparison with the modelling, relating these curves to a measure of CI concentration would be more useful. Steady-state CI concentrations had been measured by Western blotting for this induction system previously [Dodd and Egan, 2002], though for a more limited selection of IPTG concentrations. Furthermore, those results were also obtained for a strain (E4300 (ARS45ΔYA-pMRR9-HS-Fl$^{+}$pL$^{+}$pR$^{+}$Fr$^{+}$) pUHA-1 pZC320-WR-cl) whose accompanying reporters and plasmids were somewhat different to those of the MFL. Nonetheless, a comparison of this data with the LacZ assay data would provide a good estimate for the scaling necessary to convert between the two measurements.

Out of the induction reporter strains presented here, the one most closely matching that from Dodd and Egan [2002] would be the tum$^{-}$ variant, since there is no tum gene present in that strain. Further, the assay protocol in that paper more closely matches that done for the low O/N. A plot of the low O/N induction Tum$^{-}$ induction data versus the number of CI monomers per cell as reported in Dodd and Egan [2002], matched up according to IPTG concentration, is shown in Figure 3.11(a). The units of CI concentration are kept as monomers per cell since this avoids the introduction of cell volume estimates, which will be discussed in Section 3.4.4. The two alternative measurements of induction
from the P_{lac} promoter are well matched by a linear model with $R^2 = 0.98$. The fit has a nonzero y-intercept indicating that there is likely to be some background level of β-gal production that is present irrespective of the level of repression of the P_{lac} promoter. That may indicate that there is an unidentified but weak promoter somewhere downstream of P_{lac} that was introduced along with the lacZ gene.

As a brief aside to be returned to later, an alternative fit of the two different sets of induction measurements excluding the maximum data point (for induction at 100 μM IPTG) produces an $R^2 > 0.99$. Blindly excluding such a point without further experimental validation would be highly questionable, but data obtained later in Section 3.5.4 makes use of the extra flexibility such an exclusion affords. The alternative fit lies within the 95% confidence limits of the original in any case. If it were an outlier, the deviation could possibly be explained by a saturation of sensitivity in the Western blotting measurements for its comparatively high level of induction.

The linear model shown in Figure 3.11(a) can be used to scale any of the induction curves measured by LacZ assay to the number of CI monomers per cell. As an example and basic test of this conversion, the model has been used to scale the low O/N Tum$^-$ Hill curve fit from the P_{lac}-lacZ data of Figure 3.8(b) to CI monomers per cell. This is displayed along with the measurements of CI from Dodd and Egan [2002] in Figure 3.11(b). The Western blotting measurements of CI concentration all fall within the 95% confidence limits of the Hill curve derived from LacZ assay data. This correspondence of the LacZ assay and Western blotting data will be returned to in Section 3.5.4, where direct measurements in the MFL strains of steady-state CI concentrations are presented.

3.4 Host strain characteristics

The host organism for all the gene networks in this thesis is the well-studied bacterium $E. coli$, and much of the modelling and its predictions relies on the reproducibility and consistency that typically characterise growing cultures of $E. coli$. However, factors such as strain genotype, growth medium and growth temperature can all affect the ‘standard’ behaviour of $E. coli$. The growth rate is an important indicator for such broad scale changes; changes to the growth rate implicate wide-ranging effects including changes to the rates of loss of dilution limited proteins and even promoter strengths. This section is primarily concerned with the measurement of growth rates for the strains used in this thesis and the consequences that these growth rates have on the modelling, in particular, in setting dilution limited rates of loss and also in determining cell volumes.

3.4.1 Optical density measurements

For measurements of growth rate and also derivations of per cell parameters from bulk culture measurements, a measure of cell concentration is required. The turbidity of a cul-
The OD\textsubscript{600}, as measured by the absorbance, varies with the cell mass of the culture, and whilst the relationship is non-linear [Bipatnath et al., 1998], for sufficiently low absorbances a linear approximation is valid. This measure of cell mass, known as the OD\textsubscript{600}, is typically reported as absorbance at 600 nm using a path length of 1 cm. The cell mass is in turn proportional to the concentration of cells in the culture, but it is important to bear in mind that the constant of proportionality depends on the average mass of each cell in the culture, which may vary between strains and even has a power law dependence on growth rate [Donachie and Robinson, 1987]. Thus where absolute (as opposed to relative) concentrations of cells are required, these need to be calibrated to the OD\textsubscript{600} by cell counts for each particular assay.

Most of the assays in this thesis are performed with cultures grown in 96-well plates, and measurements of their OD\textsubscript{600} made using Multiskan Ascent plate readers produced by the Thermo electron corporation3. The readers do not have a filter for measuring absorbance at 600 nm, the closest being a filter for 620 nm. The different wavelength affects the effective extinction coefficient, but not the proportionality to cell mass. So with this difference in mind and given that the path length of the measurement is dependent on culture volume in 96-well plates, an empirically-determined linear correction for relating absorbance measurements (absorbance at 620 nm (A\textsubscript{620})) to OD\textsubscript{600}s was opted for.

For cells grown in LB this linear correction has already been characterised for 100 µL of culture per well as OD\textsubscript{600} = (A\textsubscript{620} − 0.0394875) / 0.155 [Ian Dodd, unpublished data]. For cells grown in M9 minimal media the linear correction was characterised using cultures of E4643 (pITM-\textit{pR}-\textit{gfp}\textsuperscript{\textit{Flp}})\textsubscript{186} (pIT3-SH-\textit{lacI})\textsubscript{HK} (pITM-\textit{CT}-\textit{P}_{\textit{LL5}}-\textit{lacZ})\textsubscript{\textit{ϕ}21} with either pMTS-\textit{pR}-\textit{tum}+ or pMTS-\textit{pR}-\textit{tum}− plasmids (for the details of these strains, see Chapter 7). Three independent colonies of each strain were grown to stationary-phase in M9 minimal

3One of the readers is in fact an older version produced by Labsystems.
media with 20 mM glucose and 4 µg/mL tetracycline, subcultured into the same media and then grown to log-phase. OD₆₀₀s of the cultures were measured in triplicate using the Ultrospec 10 Cell Density Meter produced by Amersham Biosciences as a standard reference. In particular, measurements were made for the log-phase cultures at an OD₆₀₀ around 0.6, but also for one in five dilutions of the stationary- and log-phase cultures. All these samples were synchronously measured in 96-well plates by pipetting 4 × 100 µL aliquots of each culture into the wells of the plates.

The resulting data was fit using linear regression (see Figure 3.12) to give \(\text{OD}_{600} = (A_{620} - 0.0358) / 0.147 \) for 100 µL aliquots of cultures grown in M9 minimal media. It was also noted that any systematic error observed between the two readers was insignificant in comparison with the random errors introduced elsewhere (like those introduced by pipetting, which affects the path length). Likewise, systematic errors arising between 96-well plates were found to be insignificant.

3.4.2 Growth rate

The growth rate of the cells in a culture has a broad impact on cell morphology and phenotype, affecting properties such as the average cell volume [Donachie and Robinson, 1987], promoter strengths [Liang et al., 1999] and gene copy numbers [Bipatnath et al., 1998]. The effects of growth rate on gene expression in the context of synthetic networks, in particular bistable networks, is considered by Klumpp et al. [2009]. Growth rate modulation by circuit components themselves can even be the cause of bistability in networks with non-cooperative feedback [Tan et al., 2009]. Nonetheless, the impact of growth rate on gene networks and the factors impacting growth rate are still not well understood. Hence, the primary concern here is to control for changes to the growth rate. This can be challenging since the growth rate itself is modulated by cell stresses like the maintenance of high copy or strong promoters (of particular relevance here is the impact of the plasmid-bound pR promoter), or additional stresses imposed by antibiotics used for plasmid maintenance. As a result, for the parameter measurements in this chapter, great care is taken to replicate the genotypes and experimental conditions of the assays as closely as possible.

Basic growth rate measurements can be used to track consistency between assays, but an accurate measure of the growth rate also helps to define certain parameters of interest in the modelling. For example, the rate of loss of stable proteins is ‘dilution limited’, that is, loss occurs primarily as a function of dilution arising from the increase in cell mass/volume of growing cultures. Growth of *E. coli* in LB proceeds exponentially until an OD₆₀₀ of around 0.3 [Sezonov et al., 2007], after which, the rate of growth gradually asymptotes towards a maximum OD₆₀₀ that is characteristic for the given strain and media. However, providing assays are restricted to log-phase (i.e., exponential) growth with growth rate \(\gamma \), the rate of loss of a dilution limited protein \(A \) can be modelled simply as \(\frac{dA}{dt} = -\gamma A \). Since growth of a culture represents the process of many dividing cells, this parameter is
Chapter 3. Designing and characterising a bistable MFL

reported as the time it takes for the cell mass to double in size — the doubling time. This is inversely related to the growth rate as determined for exponential growth with base 2 (i.e., doubling time = \(\log(2) / \gamma \)).

Measurements of growth rate can be made by following the increase in OD\(_{600} \) over time of growing cultures using the instruments outlined in Section 3.4.1 and then the growth rate extracted by fitting the resulting curves. Exponential growth is most easily characterised as the rate of fold change of the OD\(_{600} \), so that the slope of the log-transformed OD\(_{600} \) versus time gives the growth rate at any instant. Where this rate stays constant (i.e., during purely exponential growth), linear regression of the log-transformed data can provide a complete description of the growth rate. However, as mentioned above for cultures growing in LB medium, the rate of growth starts to asymptote above OD\(_{600} \) 0.3 and is also normally preceded by a lag time, during which the sensitivity of the instrument is too low to detect the growing cells. Accurately accounting for such effects will require a more sophisticated model of growth.

Zwietering et al. [1990] found that one of the most reliable models for bacterial growth is the Gompertz model and re-formulated this model in terms of parameters with a biological meaning. A detailed description of this model and how it is applied to fit the growth curves in this thesis can be found in Appendix A, but for the purposes here, it is enough to know that the Gompertz model contains a term to account for saturation and another to account for some lag time before growth is observed. The growth rate in the Gompertz model represents the maximum rate of growth, which can be determined as the largest slope occurring within the time course of log-transformed OD\(_{600} \)s. Three- and four-parameter variants of the Gompertz model are available. With fewer parameters, the three-parameter version is typically preferred, but depending on the number of data points measured inside the lag period, the data may be more accurately modelled by the four-parameter description, which can additionally account for errors in setting background levels of optical density (see Appendix A for a more detailed description).

An example set of time course measurements, in which the optical densities of growing cultures of E4300DR pZC320-ER-cI pMTS-pR-tum\(^+ \) were followed, can be found in Figure 3.13. The cultures were grown in 96-well plates, so as mentioned previously in Section 3.4.1, they were first measured as \(A_{620} \)s and have been converted to OD\(_{600} \)s for the figure. However, since the well-to-well variation measured at the zero time point\(^4 \) typically persists over time (see Appendix A), the \(A_{620} \) measurement taken at the zero time point has been used as a per-well background reading for the duration of the experiment. This is used instead of the generic background \(A_{620} \) reading listed in Section 3.4.1 since it produces a more reliable measure of the relative increases in cell density at low OD\(_{600} \)s, but the slope from the empirically-derived correlation between \(A_{620} \) and OD\(_{600} \) is still used to scale the offset data into an OD\(_{600} \). Such per-well systematic errors are presumably pri-

\(^4 \) The zero time point measurement is that taken directly after subculturing for log-phase growth.
3.4 Host strain characteristics

Figure 3.13: Growth curves can be fit (a) with a log-linear model by truncating the data using an upper threshold, or (b) with a 3 parameter Gompertz model that also accounts for saturation of exponential growth. The A_{620} was followed over time for cultures of E4300DR pZC320-ER-cl pMTS-pR-tum$^+$ grown in LB with 0 µM IPTG in 96-well plates, but has been converted to an OD$_{600}$ using the empirically derived scaling factor specified in Section 3.4.1. These cultures were started from either low overnight (Low O/N) or high overnight (High O/N) cultures as indicated.

Figure 3.13: Growth curves can be fit (a) with a log-linear model by truncating the data using an upper threshold, or (b) with a 3 parameter Gompertz model that also accounts for saturation of exponential growth. The A_{620} was followed over time for cultures of E4300DR pZC320-ER-cl pMTS-pR-tum$^+$ grown in LB with 0 µM IPTG in 96-well plates, but has been converted to an OD$_{600}$ using the empirically derived scaling factor specified in Section 3.4.1. These cultures were started from either low overnight (Low O/N) or high overnight (High O/N) cultures as indicated.

Another consequence of pipetting errors would be small differences in the absolute number of cells added to each well of the plate at the zero time point. Whilst such differences are amplified exponentially over the course of the assay, they will not affect growth rate determinations since it is the rate of relative change that is important and such differences are expected to be correlated over time in each well. However, this makes it necessary to fit growth curves for each well separately; statistical aggregation can then be performed on these derived growth rates.

To compare the different models of growth, the same example set of growth curves has been fit alternatively using log-linear (Figure 3.13(a)) or Gompertz (Figure 3.13(b)) models. Each of the fits have been transformed back to the original scale and are shown overlaid on the untransformed data. Since the rate of growth slows from purely exponential growth to some saturation point and since the sensitivity of the instrument sets a lower bound on detecting growth, only those data points with OD$_{600}$s between 0.005 and 0.3 were used in the log-linear fit (the use of these particular thresholds is further discussed and validated in Appendix A). With these bounds in place, it can be seen in Figure 3.13(a) that growth of the cultures deviates quite obviously from the model of pure exponential growth for points with OD$_{600}$s above 0.4. In contrast, the Gompertz model can well match the slowing rate of growth as seen in Figure 3.13(b). In spite of the significant differences between the two models, the two methods result in very similar doubling time estimates for the curves shown of 30 ± 3 min for the log-linear model and 29 ± 2 min for the Gompertz model. However, growth rates determined using the Gompertz model tend to be more consistent, with reduced variance (see Appendix A). On the whole, log-linear models tend to produce overestimates of the doubling time, since any slowing of growth for OD$_{600}$s below 0.3 will
Chapter 3. Designing and characterising a bistable MFL

Table 3.2: Doubling times measured for notable strains within the present thesis. Growth was followed by monitoring the A_{620} and the resulting curves were fit mainly with 3 parameter Gompertz models as described in the text.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Antibiotics</th>
<th>Doubling time</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4300 pUHA-1</td>
<td>K_n^{50}</td>
<td>28 ± 2</td>
<td>4</td>
</tr>
<tr>
<td>E4300DR</td>
<td>K_n^{50}</td>
<td>26 ± 1</td>
<td>8</td>
</tr>
<tr>
<td>E4300 (pIT-SL-pR-lacZ)$_\lambda$ pUHA-1 pZC320-ER-cI</td>
<td>$K_n^{50}A_p^{30}$</td>
<td>28 ± 4</td>
<td>4</td>
</tr>
<tr>
<td>E4300DR pZC320-ER-cI</td>
<td>$K_n^{50}A_p^{30}$</td>
<td>27 ± 4</td>
<td>4</td>
</tr>
<tr>
<td>Induction reporter strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4300 (pIT-SL)${\lambda}$ (pIT-CH-pR-gfp)${HK}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum$^+$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.2 ± 0.3</td>
<td>95</td>
</tr>
<tr>
<td>E4300 (pIT-SL)${\lambda}$ (pIT-CH-pR-gfp)${HK}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum$^-$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.9 ± 0.5</td>
<td>96</td>
</tr>
<tr>
<td>MFL strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4300DR pZC320-ER-cI pMTS-pR-tum$^+$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.1 ± 0.6</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-ER-cI pMTS-pR-tum$^-$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.2 ± 0.5</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-ER-cI pMTS$^+$pR-tum$^+$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>29.5 ± 0.5</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-ER-cI pMTS$^+$pR-tum$^-$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>27.9 ± 0.3</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-WR-cI pMTS-pR-tum$^+$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.3 ± 0.2</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-WR-cI pMTS-pR-tum$^-$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>28.2 ± 0.3</td>
<td>95</td>
</tr>
<tr>
<td>E4300DR pZC320-WR-cI pMTS$^+$pR-tum$^+$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>29.0 ± 0.4</td>
<td>96</td>
</tr>
<tr>
<td>E4300DR pZC320-WR-cI pMTS$^+$pR-tum$^-$</td>
<td>$K_n^{50}A_p^{30}T_c^{4}$</td>
<td>29.6 ± 0.4</td>
<td>96</td>
</tr>
</tbody>
</table>

aKn50: 50 µg/mL kanamycin; Ap30: 30 µg/mL ampicillin; Tc4: 4 µg/mL tetracycline.

bMean doubling time listed in minutes with 95% confidence limits estimated from the set of repeats.

cThe number of growth curves that were independently measured and fit.

dIn this group, each growth curve consisted of 7 time points.

eE4300 (pIT-SL-pR-lacZ)$_{\lambda}$ (pIT-CH-pR-gfp)$_{HK}$ pUHA-1.

fIn this group, each growth curve consisted of 10 time points.

gIn this group, each growth curve consisted of 7–10 time points.

Bias the linear fitting towards a reduced slope (reduced growth rate) and hence increased doubling time.

Growth curves were measured for a number of important strains in this thesis, and each curve fit using one of the Gompertz models. The resulting doubling times are listed in Table 3.2. Given the small number of data points in the growth curves (7–10 time points as indicated in the table), growth rates were determined, with one exception5, from fits

5 The exception was for one of the two 96-well plate growth rate assays of the WR-MC MFL strains, where a 4 parameter Gompertz model was preferred. The Gompertz models are fit to relative OD_{600} that
using the 3 parameter Gompertz model.

The list of basic strains in Table 3.2 includes a selection of precursor strains used to build the final MFL strains. Growth of those strains was followed in LB without added IPTG, but with different antibiotics depending on the plasmids contained in each strain. This was designed for measuring the extra burden on cell growth that was imparted by each additional plasmid and antibiotic. With such a small number of growth curves measured for each of those strains, the confidence limits are quite wide and there were no significant differences observed between these strains.

Growth curves for the induction reporter and MFL strains were obtained during the course of the hysteresis assay. As shown in Appendix A.4, the rate of growth of the MFL strains did not show any clear dependence on the concentration of IPTG or the assay conditions used. Hence, those results were aggregated for each strain and the confidence limits shown in Table 3.2 are based on the aggregated data sets. This revealed a significant difference in doubling times between the base dual reporter strain (E4300DR) and all of the induction reporter and MFL strains; presumably the faster growth of E4300DR can be accounted for by the reduced number of plasmids and antibiotics required to maintain them.

There was no significant difference in doubling time between the two induction reporter strains, and indeed, for all but one of the MFL strains, no significant difference in doubling time was observed between matching pairs of tum^+ and tum^- strains. This validates a direct comparison between experimental and control strains. Curiously, the MFL strains with the low-copy variant of the pR-tum plasmid, that is, those with the SC101* origin, generally appeared to grow slower than those with the medium-copy SC101 origin. With one exception, direct comparisons between matching strains (i.e., when matching tum^\pm and c1 RBS strength) all show a significant difference between the SC101 and SC101* variants. This is further reflected in the fact that the doubling time of the tum^+ induction reporter strain most closely matches the doubling times of the SC101 strains. These results appear to indicate that, given the same concentration of tetracycline, the cells with a higher copy-number of the resistance gene can more effectively cope with the stress placed on cells by the antibiotic and are hence able to grow marginally quicker.

The one exception in both the cases mentioned above was due to the ER-LC tum^- strain, which had the lowest doubling time out of all those grown with tetracycline. It is unknown why this strain behaved so differently, or whether the result is biased by a poor selection of time points. To validate or rule out this exception, additional growth curves with a larger number of time points would need to be measured for this strain.

are calculated by normalising to the earliest (non-zero) measurement taken after time $t = 0$. For the plate in question, that early measurement was taken later than for the other plates and resulted in a statistically significant bias in the estimation of growth rate. Thus in spite of the low number (7) of data points in that assay, the 4 parameter model was used since the additional term specifically compensates for deviation of this early time point from its normalised value of 1. The resulting growth rates and fitted growth curves for this plate were more consistent with those obtained for the other plates as shown in Appendix A.3.
In spite of the significant differences observed, it is also important to realise that for all of the strains grown in media with tetracycline, the observed standard deviation was in the range of 1.1-2.7 minutes. It is impossible to say whether the standard deviation reflects errors in fitting, in measurement or in the growth rates of the cells themselves, but in any case, it means that the estimated doubling times are highly variable and a guide to the underlying rate of cell growth at best. With this in mind and for the sake of simplicity, two common doubling times were chosen to represent the MFL strains for subsequent modelling and analysis: the mean of all of the SC101 strains, 28.2 ± 0.2 minutes (95% confidence), and the mean of all of the SC101* strains, 29.0 ± 0.2 minutes.

Recall that in assays with a ‘normal’ equilibration time, late log phase cultures (i.e., those used in LacZ assays) are reached 5.9 ± 0.4 hours (standard deviation) after subculturing on average, whilst with a ‘short’ equilibration time, late log phase is reached after approximately 4.8 hours. Using either of the MFL doubling times, this means that 12 ± 2 doublings (standard deviation) can occur before reaching late log phase for a normal equilibration time, or about 10 doublings can occur for a short equilibration time.

Note that no correlation was observed between the growth rates of given wells and the final OD_{600} reached at the time of assay. The variation in final OD_{600} is probably due in large part to variations in the absolute number of cells added to each well in the subculturing step for growth to log phase. Any deviation at that step would then be exponentially amplified with each cell doubling; with each additional doubling the final OD_{600} become more and more inhomogeneous. Minimising pipetting errors in that initial subculturing step would help to improve consistency of the final OD_{600}. This also means that concomitant with increases to equilibration times will be increases in the variance of the final OD_{600}; given the use of the final OD_{600} in calculating LacZ units, measurements of pR activity in the MFL are also implicated.

3.4.3 Growth rates in alternative media

Since the growth rate impacts parameters that are relevant to the behaviour of the MFL (see the introduction to the previous section), this raises the possibility of optimising the MFL by modifying the growth rate. A particularly important factor in setting growth rates is the choice of growth medium, and the impacts on growth rate resulting from a selection of alternative liquid media formulations were measured for the WR-LC MFL strain. The growth curves can be found in Figure 3.14 and the doubling times derived from 4-parameter Gompertz fits of that data are listed in Table 3.3. The utility of the Gompertz model over and above the log-linear model becomes particularly evident in these curves, since measurements of cell density clearly reached saturation in a number of cases. Furthermore, with a much greater number of points in each time course, use of the 4-parameter Gompertz model is more easily justified and helps to reduce fitting biases at the earliest time points.
3.4 Host strain characteristics

Figure 3.14: Growth curves for the MFL strain E4300DR pZC320-WR-cl pMTS*-pR-tum+ grown in alternative growth media. The A_{620} was followed over time and has been converted to an OD$_{600}$ using empirical calibration curves, which differed depending on whether the medium was based on rich (LB) or minimal (M9) broth. These media were variously supplemented with 0.2% glucose (gluc.), 0.2% glycerol (glyc.), 0.2% casamino acids (CAA), or 1 μg/mL thiamine (B1) as indicated. Growth trajectories were followed in triplicate for each medium; individual trajectories are differentiated by alternative shading. Each trajectory was fit by a 4-parameter Gompertz model (dotted lines).

Table 3.3: Growth rates determined for E4300DR pZC320-WR-cl pMTS*-pR-tum+ in alternative growth media. All media were supplemented with 50 μg/mL kanamycin, 30 μg/mL ampicillin and 4 μg/mL tetracycline.

<table>
<thead>
<tr>
<th>Media</th>
<th>Doubling timea</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9 minimal, 0.2% glycerol, 0.2% CAA, 1 μg/mL thiamine</td>
<td>83 \pm 17</td>
</tr>
<tr>
<td>M9 minimal, 0.2% glucose</td>
<td>77 \pm 1</td>
</tr>
<tr>
<td>M9 minimal, 0.2% glucose, 0.2% CAA</td>
<td>45 \pm 6</td>
</tr>
<tr>
<td>M9 minimal, 0.2% glucose, 0.2% CAA, 1 μg/mL thiamine</td>
<td>44 \pm 2</td>
</tr>
<tr>
<td>LB</td>
<td>29 \pm 3</td>
</tr>
<tr>
<td>LB, 0.2% glucose</td>
<td>29.4 \pm 0.4</td>
</tr>
</tbody>
</table>

aMean doubling time listed in minutes with 95% confidence limits estimated from each set of repeats ($n = 3$); each repeat was derived from a 4-parameter Gompertz fit of a 21 point time course assay.

bCAA: Casamino Acids.

The medium used for the measuring hysteresis in the MFL strains was based on the rich broth, LB. In spite of the large confidence limits, the mean doubling time measured in this assay matched well with the equivalent measurement listed in Table 3.2. Surprisingly, the addition of extra glucose to the broth did not further increase the rate of growth; if anything, the doubling time was *increased* over that of the original formulation. Evidently there was already an overabundance of nutrients and sugars in plain LB.

In contrast, when grown in M9 minimal medium [Miller et al., 1972, and the Materials and Methods (Chapter 8)], the doubling time for this MFL strain was significantly slowed. The most basic medium (M9 minimal with 0.2% glucose) produced especially slow growth with a doubling time of over an hour. Suspecting some metabolic deficiency for the base E4300 strain, minimal media supplemented with casamino acids (hydrolysed casein protein containing almost all the essential amino acids) and additionally the vitamin thiamine...
were also trialled. The presence or absence of thiamine, initially thought to be a necessary for the E4300 strain, made no apparent difference to the rate of growth. However, supplementing the base M9 medium with amino acids resulted in a doubling time almost half that of the original. Growth in minimal media also showed sensitivity to the choice of carbon source. Changing from glucose to glycerol, even with all the additional supplements, reduced the rate of growth essentially to that of the base minimal medium without casamino acids.

3.4.4 Cell volume

The cell volume is an important factor used to convert between numbers of molecules per cell and intracellular molecular concentrations. Such conversions are highly relevant since binding constants for equilibrium reactions, such as the Tum$^{-}$Cl or Cl$^{-}$pR interactions, are typically derived in units of molar concentration, whilst steady-state quantitation of intracellular moieties is most easily derived in terms of a number of molecules per cell. Here formulæ are presented for estimating cell volumes from growth rates and useful conversion factors are derived. These conversion factors will be useful both for quantitation of steady-state protein levels, but also later in Chapter 6, where a stochastic model of the MFL is considered.

Following the analysis in the supplementary material of Palmer et al. [2009], the most relevant volume to consider is that of the cytoplasm (i.e. the volume of the cell minus the volume due to membranes and periplasm). The lengths, widths and volumes of *E. coli* cells can be related to the growth rate [Donachie and Robinson, 1987], with the length of K-12 given by:

\[
\text{Mean cell length} = 2.0 \times 2^{(\mu/3)} \, \mu\text{m},
\]

where μ is the number of doublings per hour. Donachie and Robinson [1987] report that the same cells have a length to width ratio of around 4.9, so for a doubling time of 28.2 minutes, the average cell length would be $\sim 3.3 \, \mu\text{m}$ with a width (diameter) of $\sim 0.67 \, \mu\text{m}$. The periplasmic space\(^6\) has a width of around 13 nm for K-12 *E. coli* [Graham et al., 1991], the outer membrane a width of around 13 nm [Bayer, 1991], and the inner membrane a slightly smaller width (set to 8 nm here). Hence, the width of the shell encapsulating the cytoplasmic volume sums to $\sim 34 \, \text{nm}$, implying that the cytoplasm (using the dimensions listed above) would have a length of $\sim 3.2 \, \mu\text{m}$ with radius $\sim 0.30 \, \mu\text{m}$. Assuming a cylindrical volume, this leaves a cytoplasmic volume of $0.90 \, \mu\text{m}^3$. Using that cytoplasmic volume and Avogadro’s constant, the effective concentration of one molecule per cell can be calculated as 1.8 nM.

\(^6\)The periplasmic space is the space between inner and outer membranes in gram-negative bacteria.
3.5 Balancing the MFL module

Rates of production and loss of regulatory proteins are of fundamental importance in modelling the dynamics of genetic circuits. Determining the nature and rate of each of these two processes for Tum and CI in the MFL will provide a grounding first step into understanding the behaviour of this synthetic switch. This section starts with a description of the techniques used to quantify specific proteins of interest \textit{in vivo}, and then moves on to consider the degradation rates of Tum and CI. The estimates for rates of loss are then used to estimate promoter production rates from \textit{in vivo} steady-state measurements of Tum and CI concentrations.

3.5.1 Quantitating intracellular proteins

A measure of \textit{in vivo} protein concentrations for specific targets is necessary for determining both degradation and production rates of that target. Here we use Western blots of cell extracts in combination with Tum- or CI-specific antibodies to quantify each of the proteins by comparison with known concentrations of purified protein.

Purified stocks of both TumHis$_6$ [Shearwin et al., 1998] and CI [Shearwin and Egan, 1996] have been obtained and quantified previously, and rabbit polyclonal antibodies have been raised against both of these stocks. For Western blotting, whole cell extracts of defined OD$_{600}$ and volume are separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene fluoride (PVDF) membranes; the primary α-TumHis$_6$ or α-CI antibodies and fluorescently tagged secondary antibodies then allow relative quantification of TumHis$_6$ or CI respectively from the intensities of the protein-specific bands. Further details on the α-TumHis$_6$ and α-CI antibodies and detailed protocols for preparation of cell extracts and for Western blotting can be found in the Materials and Methods (Chapter 8).

By including reference concentrations of TumHis$_6$ or CI on each blot using the purified stocks, per-blot calibration curves can be derived; an example of a TumHis$_6$ calibration curve is shown in Figure 3.15. The response of band intensity to mass of protein loaded in the lane is sigmoidal, indicating that sensitivity is lowered at the extrema. The curve is well-fit by a three parameter log-logistic (i.e., Hill) curve as shown. Background noise reduces sensitivity at low concentrations, whilst reduced capacity for transfer at high Tum concentrations is the most likely cause for loss of sensitivity at the highest intensities. As will be seen in Sections 3.5.3 and 3.5.4, the protein gels used to preparing the Western blots have limited lane space, reducing the number of calibration samples per blot to four. As such, the basal parameter in the four parameter log-logistic fit is fixed to zero to reduce the number of regression parameters.

Ideally such calibration samples would be included on each Western blot, and a calibration curve calculated to represent each blot individually. This would account for blot-to-
Chapter 3. Designing and characterising a bistable MFL

Figure 3.15: Fitting the sigmoidal response of band intensity to TumHis$_6$ mass. Band intensities measured for Western blots of known quantities of TumHis$_6$ reveal a sigmoidal response on TumHis$_6$ mass that is well fit by a four parameter log-logistic function with basal parameter fixed to zero. TumHis$_6$ mass is shown on a log-axis for easier visualisation of the smaller masses. The dashed lines illustrate quantitation of TumHis$_6$ from a base two dilution series of an in vivo extract of a strain with the tum$4^{-5^{-}}$his gene; given the log scaling, equal spacing between the serial dilutions is anticipated.

Figure 3.16: Using Box-Cox transformation of Western blot band intensities to derive a quantity with linear dependence on Tum mass. The TumHis$_6$ calibration curves taken from Western blots in Section 3.5.3 were first normalised against the minimum intensity band for a more convenient scale, subject to Box-Cox transformation with $\lambda = 1.5$ and then plotted versus the known Tum mass.

Blot variation resulting, for example, from differences in transfer efficiency and incubation times with primary and secondary antibodies. However, it was not always possible to fit such extracts on all blots, so a more generic transformation of band intensities was sought. The Box-Cox transformation introduced in Section 3.3 can again be applied here to find a transformation of all the calibration data sets that maximises the likelihood of a linear fit of the data. When such a transformation is applied to raw band intensities, it should produce a quantity that has a linear dependence on the mass of protein present in that band. This was needed for the TumHis$_6$ blots only, so for all of the available TumHis$_6$ calibration data (shown in Section 3.5.3) the log-likelihood of a linear model incorporating Box-Cox transformation of the data was profiled to give an optimum $\lambda = 1.5$. The application of this transformation to the calibration curves is shown in Figure 3.16 to demonstrate the (limited) efficacy of this linearisation scheme.

In summary, for quantitation of TumHis$_6$ levels by Western blot, Hill curve fits of calibration samples will be used to calibrate blots where available, otherwise the raw band intensities will be normalised using the Box-Cox method.
3.5.2 Degradation rates of Tum and CI

The *in vivo* half-lives of regulatory proteins are essential for determining the dynamics of gene networks. At steady-state, the rate of loss of a protein, either by dilution or active degradation, balances the rate of production and together these rates determine steady-state concentrations. Indeed, proteolysis plays important roles in gene regulation with significant numbers of key regulatory genes having very short half-lives [Gottesman and Maurizi, 1992]. These fast degradation rates enable quicker responses to changes in production rate. In contrast, slow degradation rates result in increased time-averaging of the input signal, where the undegraded protein essentially acts as a buffer for fluctuations in the production rate.

In *E. coli*, most proteins are quite stable, with the dominant mechanism for protein loss occurring through the dilution that results from cell division; the growth rate is an important measure of half-life for such proteins. We have previously observed that the CI protein of phage 186 is stable *in vivo* [Keith Shearwin (KS), unpublished data], but had little *a priori* reason to suspect that Tum would be actively degraded. Nonetheless, for completeness the half-lives of both Tum and CI in strains resembling those of the MFL were determined.

To enable optimisation of Tum concentration for the degradation assay, a strain with an inducible level of Tum was chosen. The Tum activity assay strain, E4300 (ARS45 pR-lacZΔYA) (pAH144-P_{bla}-cI)_{HK} pUHA-1 pZE15-tum4−5−his, can be used to report on Tum relief of CI repression of pR by LacZ assay, and such assays along with further strain details can be found in Chapter 9. However, for the purposes here, the Tum activity strain is merely a convenient (and decoupled) source of both Tum and CI. Importantly, unlike the MFL strains, it does not have any chloramphenicol resistance, which is likely to bias the assay itself given the use of chloramphenicol to halt protein production (discussed below). The strain also has a source of CI, which is produced constitutively from the medium-strength P_{bla} promoter in single copy. Whilst the level of CI thus produced would be low, it should still be possible to observe the putative absence of degradation.

Degradation of CI or Tum may be influenced by the presence or absence of the binding partner. As such, sibling strains without a source of CI were cloned with the integrated but empty (pAH144)_{HK} module replacing (pAH144-P_{bla}-cI)_{HK}, and tum− strains were prepared by using the empty pZE15 plasmid instead of pZE15-tum4−5−his. This produced four alternative assay strains with all combinations of $tum^{±}$ and $cI^{±}$. In order to maximise comparability with the MFL strains, the pMTS-pR-tum− plasmid was additionally transformed into each of the assay strains. This meant that the antibiotics used during growth could be the same as in the MFL strains, with the exception that a higher concentration of ampicillin was required (Ap^{100}) due to the high copy origin (ColE1) of the pZE15 backbone.

To measure protein half-lives, protein production in log-phase cultures was stopped
by the addition of chloramphenicol, and a time course series of extracts then prepared from these cultures. In theory, given the absence of protein production and the consequent halting of cell growth, changes to protein concentration should only occur as a result of the existing host degradation machinery. Chloramphenicol is an antibiotic that targets the 50S ribosomal subunit of elongating ribosomes in *E. coli* and is considered to be bacteriostatic. Unfortunately, it does in fact decrease cell viability and cause limited cell lysis within about 30 minutes. However, with the addition of 50 mM MgSO$_4$, cell wall integrity is seemingly stabilised and this effect is abated [Gupta, 1975]. It has also been observed that addition of just MgSO$_4$ to the medium slows growth [David Priest, unpublished data], and this would only serve to aid the bacteriostatic effect. Given the time-sensitive nature of the assay and that protein half-lives can be on the order of minutes, culture samples were first aliquoted into much larger volumes of ice-cold Phosphate-Buffered Saline (PBS) to quickly ‘freeze’ the cell states prior to extract preparation. Further details on the preparation of degradation extracts can be found in the Materials and Methods (Chapter 8).

Western blots of such extracts are presented in Figure 3.17 for two different inducer concentrations. These blots demonstrate that TumHis$_6$ is indeed degraded in E4300, but the extent of degradation is vastly reduced in the presence of even the small amount of CI produced from single-copy $P$$_{bla}$. Furthermore, loss of Tum appears to have stopped by about 20 minutes, but relative to the equivalent Tum$^-$ extracts, a fixed level of Tum protein appears to persist for at least 60 minutes.

α-Tum blots of the degradation extracts in Figure 3.17, and equivalent α-CI blots of time-course extracts for both of the CI$^+$ strains (data not shown), were quantitated as per Section 3.5.1 and the Materials and Methods (Chapter 8). The resulting time course curves are shown plotted in Figure 3.18 on the next page. There was little to no active degradation of CI in either of the CI$^+$ strains over the course of the assay, as can be seen in Figure 3.18(a). Thus, as anticipated, CI appears stable for at least a typical generation time. This confirms

![Figure 3.17: Tum is degraded as observed by Western blot with an α-Tum antibody.](image)

Note that for optimised printing, the grayscale levels of all of the blot images in this and the following figures have been adjusted; analysis is always performed on the unaltered images, however.
that the dominant mechanism for loss of CI is via the dilution that results from cell growth, and the parameter for loss of CI is best calculated from the growth rate as described in Section 3.4.2. Given that this result is the same whether Tum is present or not, it is clear that inactivation of CI by Tum does not occur by targeting CI for degradation.

Whilst Tum is certainly degraded, the degradation appears to be limited to a subset of the total Tum mass. Possible reasons for the unexpected non-zero asymptote will be discussed below, but by including an offset term in the fitting procedure, estimates for Tum half lives in the different strains can still be made. Due to the additional offset, non-

Figure 3.18: Measuring degradation of Tum and CI in E4300 (λRS45 pR-lacZΔYA) (pAH144-P_{bla-Cl})_{HK} pUHA-1 pMTS-pR-tum− pZE15-tum4−5−his. (a) Within a typical cell generation time, there is no evidence for active degradation of CI whether in the presence of Tum or not. Plotted are the quantitated CI-specific bands of degradation extracts of cultures grown with 20 µM IPTG. In the Tum− strain, pZE15-tum4−5−his is substituted with empty pZE15. (b) Measuring Tum degradation for cultures grown with 10 or 20 µM IPTG. Plotted are the quantitated Tum-specific bands of Figure 3.17, which were additionally normalised using the Box-Cox transformation (see Figure 3.16), and fit using a non-linear model of exponential decay using a offset term to account for the non-zero asymptote. Half-lives from the fits are indicated with 95% confidence limits. In the CI− strain (pAH144-P_{bla-Cl})_{HK} is substituted with (pAH144)_{HK}.
linear regression of the intensity (I) against time (t) was performed using the following model of exponential decay:

$$I = Ae^{-\frac{\log(2)}{h}t} + B, \quad (3.5)$$

where B is the offset, $A + B$ is the intensity at $t = 0$ and h is the half life. The half-life is consistent across all the assays; degradation seems especially quick with half lives of around 2–3 minutes. Given the low number of samples taken in the time interval of greatest change (around 0–10 minutes), some of the estimates have low confidence, especially in the Cl^+ strains where the amount of Tum available for degradation seems reduced relative to the Cl^- strains. The lower intensity seen at time zero for the degradation extract at 20 μM versus 10 μM IPTG induction, is likely a result of some small delay in taking the sample after addition of chloramphenicol; given the short half-life, even small delays could mean large differences in intensity. Further work needs to be done to take additional samples at the early time points so that confidence in the shapes of the degradation curves and derived rates can be increased.

The fraction of Tum still left at the end of the time courses could conceivably be explained either by short half lives of the proteases involved in Tum degradation, or by a subset of Tum that is protease-inaccessible. In attempts at purifying Tum, it was found that over-expression causes some fraction of Tum to become insoluble. Thus to assess whether this insoluble fraction may somehow be protected from degradation, trial degradation assays were run as before, except that samples were only collected at the $t = 0'$ and $t = 60'$ time points and cell extracts from those samples were split into insoluble and soluble frac-
3.5 Balancing the MFL module

Figure 3.20: The degradation-resistant fraction of Tum appears to be a subset of the insoluble fraction. Cultures of E4300 (λRS45 pr-lacZΔYA) (Pbla-cl)HK pUHA-1 pMTS-pR-tum− pZE15-tum4−5−his were grown with induction at 10, 20 or 40 μM IPTG to log phase. Protein production was stopped by the addition of chloramphenicol and cell extracts of samples taken at 0 and 60 minutes after addition of chloramphenicol were split into soluble (S) and insoluble (I) fractions and quantitated by Western blot. Shown are the Tum-specific band intensities after Box-Cox transformation, as described in Figure 3.16, and normalisation by the OD$_{600}$s measured just prior to addition of MgSO$_4$ (i.e., 10 minutes before addition of chloramphenicol). The CI$^-$ strains had (pAH144)HK instead of (Pbla-cl)HK.

To also gauge the levels of Tum present at each of the different levels of induction, calibration extracts were also prepared by adding known concentrations of purified TumHis$_6$ to extracts prepared from Tum$^-$ cultures (E4300DR pZC320 pMTS-pR-tum$^-$). Western blots of these extracts are shown in Figure 3.19. Like for the previous observations made from Tum expression vectors, a substantial portion of Tum was observed to lie in the insoluble fraction even at low induction levels. From the side-by-side comparisons in Figures 3.19(c) and 3.19(d), in particular, it can also be seen that, whilst almost all of the soluble fraction appears lost by $t = 60$, the levels of Tum in each of the insoluble fractions at the same time point are still clearly visible.

For a more objective analysis, the band intensities from all of the blots in Figure 3.19 were quantified and the Box-Cox transformation described in Section 3.5.1 applied to increase comparability. These estimates were also normalised using the OD$_{600}$ measurement made just prior7 to addition of MgSO$_4$ to account for differences in the densities of cells loaded into each lane. The resulting normalised intensities are depicted in Figure 3.20 to reveal that the soluble fractions do indeed all start with non-zero levels of Tum at time $t = 0$, but which are all then reduced to zero by time $t = 60'$. In contrast, whilst substantially reduced, the insoluble fractions are all still clearly non-zero by $t = 60'$. This would

7It was noted that the addition of MgSO$_4$ appeared to reduce the OD$_{600}$ more than would be anticipated simply by dilution due to the additional volume. As such, the prior OD$_{600}$ was assumed to better compare with OD$_{600}$ measured elsewhere in spite of the additional growth that may have occurred during the 10 minute incubation.
The fraction of soluble Tum present at steady state appears to saturate as the production rate is increased. Time $t = 0$ extracts from degradation assays of strains including an IPTG-inducible level of Tum were split into soluble and insoluble fractions and probed by Western blot alongside known quantities of purified Tum (see Figures 3.19(a) and 3.19(b)). The masses of Tum in each extract could then be calculated via fits of these calibration samples as described in Section 3.5.1. The mass estimates were normalised to the mass expected for 135 μL of culture at $OD_{600} 0.6$ by using the OD_{600} measurement just prior to addition of MgSO$_4$ in the degradation assays. For comparison, plotted in the background in grey are the results of a LacZ assay measuring pR activity of the CI$^+$ strain (as described in Figure 3.19 but without pMTS-pR-tum$^-$); in that strain, pR activity acts as a proxy to report on Tum antirepressor activity.

Interestingly, the proportion of Tum in the insoluble fraction relative to that in the soluble fraction appeared to increase with the level of induction. This is made more apparent in Figure 3.21 where the extracts blotted alongside calibration samples are shown quantified as mass estimates. These estimates were also normalised using the OD_{600} measurement made just prior to addition of MgSO$_4$, but for comparison with subsequent measurements of steady-state Tum concentrations (Section 3.5.3), the normalisation was also designed to represent the mass in 135 μL of culture with $OD_{600} 0.6$ (note that in the present samples, the equivalent of 120 μL of culture was loaded per well). Only the $t = 0$ samples were analysed in this way, since these approximate the distribution between soluble and insoluble fractions at steady state. With such a limited data set it is hard to draw conclusions about the two fractions, and certainly more experiments will be required to understand the roles of each Tum fraction and their impact on Tum activity. However, the trends in the data do seem to indicate that as the production rate of Tum is increased, the level of Tum in the insoluble fraction continues to increase, whilst the level of Tum in the soluble

suggest that at least a portion of the insoluble fraction of Tum is protease-inaccessible. Further, if the insoluble fraction is in slow equilibrium with the soluble fraction, the entire insoluble fraction could be considered degradation resistant; as soluble Tum is degraded, the equilibrium may shift to release insoluble Tum into the soluble fraction.
fraction reaches a saturation point. Curiously, this saturation point appears to correspond with the saturation in Tum activity observed in LacZ assays of the original Tum activity assay strain (i.e., without the pMTS-\(pR\)-\(tum\)^− plasmid). Here this is tentatively taken as an indication that the soluble fraction is the active fraction.

From the degradation curves in Figure 3.18, it is clear that a fraction of Tum is degraded with a very short half life (around 2–3 minutes), with a degradation-resistant fraction that is lost by cell division. Then from the analysis of the soluble and insoluble fractions in Figure 3.20, it also seems that the degradation-resistant fraction is at least a subset of the insoluble fraction. Furthermore, the trends of each fraction shown in Figure 3.21 suggest that the equilibrium between the two fractions reaches a saturation point in terms of the soluble fraction. To add to the complexity, it can also be seen that on the whole, the CI^- strains seem to have more soluble Tum than the CI^+ strains do at \(t = 0\)' though, at this point it is too difficult to say what role CI may play in disrupting the balance between the two fractions. Taken together these results present a rather complicated model for the state of Tum, its degradation and its activity. So to keep the model as simple as possible given the limited data, it is presumed that only the soluble fraction of Tum is active and that this fraction is produced from \(pR\) at a rate that is directly proportional to the repression of \(pR\). This means that only the evolution of soluble Tum need be considered, with a degradation rate as determined from the degradation curves and a production rate chosen to match the steady-state level of soluble Tum. This would clearly be a poor approximation for large production rates, but as will be seen later, the unpressed \(pR\) promoter produces Tum at a rate less than that seen here for production from \(P_{lac}\) induced using 20 \(\mu\)M IPTG. For production rates below 20 \(\mu\)M saturation of the soluble fraction does not appear to have been reached, so the linear approximation as described may well be good enough for modelling the MFL.

3.5.3 Production rate from \(pR\)

Protein production in *E. coli* involves a complex series of steps, from binding of the closed RNAP complex at the promoter site and isomerisation to its transcriptionally active open complex, through transcription of the operon into mRNA and subsequent translation by bound ribosomes, to folding of the nascent peptide into an active protein. Matters are further complicated by a cohort of regulatory mechanisms that have been found to occur at each step along the pathway. In spite of this complexity, simple models for the entire production process can still capture behaviours that are relevant on the time-scales of gene-networks [Sneppen et al., 2010].

For the phage λ switch, the rate-limiting step in the production of repressor and Cro proteins was found to be the transition of RNAP from the closed to the open complex [Shea and Ackers, 1985]. This motivated a one-step model of production, where the protein production rate was simply the rate of isomerisation weighted by the statistical thermo-
dynamic occupancy of the promoter by RNAP. Elsewhere, models of gene networks often employ a two-step description of protein production, where the mRNA transcript becomes an intermediate in the model [Hlavacek and Savageau, 1996]. This additional level of complexity is primarily used for timing-sensitive circuits such as oscillators [Elowitz and Leibler, 2000], or in stochastic models that account for the additional noise generated at this step [McAdams and Arkin, 1997]. The MFL model employed in François and Hakim [2005] emphasised the importance of the mRNA intermediate in the dynamics of an oscillating MFL.

Here mRNA dynamics are ignored and the one-step model is employed, which gives a rate equation for the evolution of protein A in the absence of transcriptional regulation as \(\frac{dA}{dt} = p + \delta A \), where \(p \) is the representative rate of production, and \(\delta \) is the rate of degradation of the protein. Note that the short Tum half-life (2–3 minutes) found in the previous section could be cause for concern given that the mean mRNA half-life in \(E. coli \) is 5.2 minutes [Bernstein et al., 2002]. However, in the absence of any data regarding specific in vivo mRNA half-lives for any of the MFL transcripts, mRNA dynamics are ignored regardless. This assumption may be justified in part by the anticipated steady-state behaviour of the bistable circuit; the primary error in making the assumption would be an overestimate of the time taken for Tum to reach steady state. This has no direct consequence for a purely steady-state description, and given that loss of CI and the two reporters (GFP and \(\beta \)-gal) is dilution limited with half-lives on the order of the cell doubling time (much longer than 5.2 minutes), the evolution of those products remains the primary delay for reaching steady state.

At steady state, production rates are exactly balanced by degradation rates: in the one-step model, \(\frac{dA}{dt} = 0 \), so \(A = \frac{p}{\delta} \). Hence, by using the degradation rates determined in the previous section, production rates for the two MFL promoters, \(pR \) and \(P_{lac} \), can be determined by measuring the steady-state levels of their gene products, Tum and CI respectively. To best inform the modelling some care should be taken to ensure that measurements are indeed made at steady state, and that the states of each promoter are well defined and unchanging. For these reasons, the MFL interactions are decoupled by making minor simplifications of the strains before taking steady-state measurements.

In the MFL, the rate of production from \(pR \) is further weighted by the proportion of CI bound at the promoter, but the extent of this repression can easily be described by a Hill curve that scales production relative to some maximum rate as described mathematically in Section 2.2.1. As a result, here the activity of unrepressed \(pR \) is calculated by measuring the steady-state TumHis\(_6\) levels that are produced in an MFL-equivalent strain without a source of CI. This parameter is measured only for the pMTS-pR-tum\(^+\) plasmid with an SC101 origin, and not for the low-copy version with an SC101\(^\ast\) origin, but by scaling according to the difference in copy numbers a value for the low-copy plasmid can be derived.
3.5 Balancing the MFL module

Quantitative extracts of log-phase cultures grown from six independent colonies of E4300DR pZC320 pMTS-pR-tum" were prepared for subsequent analysis. Since Tum protein production and the state of the pR promoter are decoupled from the MFL circuit in this strain, there was no reason to anticipate a lengthy time to reach steady state from the stationary-phase O/N cultures. As such, O/N cultures were diluted for growth to log phase according to the short equilibration time protocol. Once grown to an OD$_{600}$ of approximately 0.6, the volumes used for preparing the extracts were normalised so that each sample contained the equivalent of 900 µL of culture with OD$_{600}$ 0.6. For preparing the calibration extracts and diluting the tum" extracts, an extract of the equivalent pMTS-pR-tum" strain was also prepared using the large scale protocol; see the Materials and Methods (Chapter 8) for further technical details.

Western blots of the resultant cell extracts probed with the α-Tum antibody are shown in Figure 3.22. As alluded to earlier, four of the ten lanes were reserved for a dilution series of the calibration sample (purified and quantified TumHis$_6$ made up in the Tum" extract), with the other six lanes reserved for a dilution series of the Tum" experimental extracts (also diluting in Tum" extract). As shown in Figure 3.23, calibration curves were

Figure 3.22: Western blots for quantitating steady-state production of Tum from pR in E4300DR pZC320 pMTS-pR-tum". The wedge indicates increasing dilution factors for the calibration samples; these were all prepared from master stocks of either 16 ng/12 µL (blots A and B) or 32 ng/12 µL (blots C–F) of purified TumHis$_6$ made up in Tum" cell extracts. The (serial) dilutions made from these calibration samples included 1, 2, and 8 times for all blots, but added 32 times dilution for blots A and B, 16 times for blots C and D, and 4 times for blots E and F.

Figure 3.23: Calibrating Tum-specific band intensities on Western blots with Tum mass. The data shown is derived from blots A and B in Figure 3.22, and the solid lines are four-parameter log-logistic fits of the calibration data (with the basal parameter fixed at zero). The dotted lines indicate the Tum-specific band intensities of the dilution series of extract 2 and the corresponding estimates of mass as determined by the calibration fit.
Figure 3.24: Quantifying Tum mass in an MFL-equivalent strain with the pMTS-pR-tum+ plasmid but without the cI gene. Plotted are estimates of Tum mass in 135 µL samples of log-phase cultures with OD600 0.6. The points are individual estimates taken from each sample band in the blots in Figure 3.22. (a) Whilst the estimates are highly variable, the means of these estimates are independent of the dilution factor used, giving greater confidence in the form of the calibration curve. (b) Mean estimates of Tum mass grouped by extract ID. These means are then averaged to give the final estimate listed in Table 3.4.

fit for each blot and the mass of each extract quantified. After scaling the estimates to their undiluted values, they then represent the mass of TumHis6 in 135 µL of log-phase culture\(^8\) with OD600 0.6. Bar graphs summarising these scaled estimates are presented in Figure 3.24.

The non-linear form of the calibration curves appears to be a good choice judging by a few cross-checks. The curves generally match up the estimated masses of identical samples run on different blots very well (Figure 3.23). Further, similar mean values are observed for estimates of Tum mass when the estimates are split according to their dilution factor (Figure 3.24(a)). The main source of variation thus appears to originate from that occurring between the extracts themselves (Figure 3.24(b)), and for this reason, the combined estimate of Tum mass with 95% confidence limits (listed in Table 3.4 on the next page) was derived from these correlated means.

To generalise the mass estimate to a value per cell, the concentration of cells in log-phase cultures of E4300DR pZC320 pMTS-pR-tum+ was quantified. This was performed by counting colonies on plates spread with dilution series (chosen to obtain approximately 20, 100 and 200 colonies per plate) of triplicate log-phase cultures all normalised to

\(^8\)As per the Materials and Methods (Chapter 8), the 900 µL culture samples are resuspended in 80 µL of lysis solution/loading buffer, and 12 µL of that preparation is loaded per lane, resulting in the volume as reported.
Table 3.4: Tabulating the strengths of the pR and P_{lac} promoters in the MFL strains as calculated from steady-state measurements of the gene products (TumHis$_6$ and Cl respectively). Measurement of pR activity was for expression from the medium-copy pMTS- pR-tum$^+$ plasmid in a strain matching the MFL strains but without the cl gene; measurement of P_{lac} activity was for expression from the single-copy plasmids pZC320-WR- cl or pZC320-ER- cl in strains matching the MFL but without the tum gene, and induced using 300 µM IPTG. For generality, the measurements are converted to molecules (mol.) per cell. Reported errors are 95% confidence limits on the mean.

<table>
<thead>
<tr>
<th>Promoter</th>
<th>RBSa</th>
<th>Steady-state mass (ng)b</th>
<th>Cell count (c.f.u./mL)c</th>
<th>Mol. per cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>pR</td>
<td>–</td>
<td>17 ± 3</td>
<td>(1.7 ± 0.2) × 10b</td>
<td>(2.5 ± 0.7) × 104</td>
</tr>
<tr>
<td>P_{lac}</td>
<td>W</td>
<td>13 ± 3</td>
<td>(2.2 ± 0.3) × 10b</td>
<td>(1.3 ± 0.5) × 104</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>33 ± 10</td>
<td>(2.0 ± 0.3) × 10b</td>
<td>(3.5 ± 1.6) × 104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promoter</th>
<th>RBS</th>
<th>Half-life (min)</th>
<th>Production rate (mol/min)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>pR</td>
<td>–</td>
<td>2.7 ± 0.2</td>
<td>(2.1 ± 0.8) × 103</td>
</tr>
<tr>
<td>P_{lac}</td>
<td>W</td>
<td>28.2 ± 0.2</td>
<td>(3.3 ± 1.2) × 102</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>28.2 ± 0.2</td>
<td>(8.6 ± 3.9) × 102</td>
</tr>
</tbody>
</table>

aRibosome binding sites differed for the P_{lac} measurements only and are either wild-type (W) or enhanced (E).
bThe steady-state mass was measured for 135 µL of log-phase culture with OD$_{600}$ 0.6.
cCounts of colony forming units (c.f.u.) are derived from colony counts of diluted cultures calibrated to be equivalent to 1 mL of culture with OD$_{600}$ 0.6.
dThe estimate for pR production rate assumes that only 33% of the steady-state Tum is in the soluble (presumed active) fraction.

OD$_{600}$ 0.6. The colony forming units (c.f.u.) were counted and linear regression of these counts versus the relative concentration factors was used to estimate the concentration of cells in the undiluted cultures. The resulting estimate of cell concentration is again listed in Table 3.4. This concentration of cells was used to normalise the estimated mass of Tum to a measurement per cell. By using the known molecular weight of TumHis$_6$ (17958 Da), the steady-state concentration of Tum produced from pMTS- pR-tum$^+$ can be calculated in molecules per cell, and this value is also listed in Table 3.4. A steady-state concentration of 25000 proteins per cell is well within the range of steady-state levels observed in a large-scale assessment of absolute protein concentrations in E. coli [Lu et al., 2007].

In theory, the production rate of Tum from pR could be estimated directly from its steady-state concentration using $p = A \log(2)/h$, where h is the half-life and A the concentration of Tum. However, given the observed presence of both degradation-resistant and degradation-sensitive fractions of Tum, the model of Tum evolution needs to be treated more carefully. The simple model suggested in Section 3.5.2 was to assume that the soluble fraction is both the degradation-sensitive and the active fraction and is produced directly in proportion to the promoter firing rate. This means that the time evolution of the soluble and insoluble fractions can be treated independently. By this model, the production rate of soluble Tum could be estimated using the proportion of Tum that is soluble in the steady-state measurement of Tum. To settle on a number, an estimate of the ratio
of soluble to insoluble Tum at a similar production rate to pR was made using the data presented previously in Figure 3.21. By extrapolating linearly, it was possible to calculate the required level of IPTG such that the total mass of Tum in the CI$^{-}$ degradation assay strain would match the 17 ng observed for the steady-state pR measurement. At that level of IPTG (\sim12 μM), the proportion of soluble Tum was about 33% of the total amount of Tum. By this estimate, then, the steady-state level of soluble Tum produced from unrepressed pR in the MFL strains becomes 8.3×10^3 molecules per cell. Then, using the short half-life of just the degradation-sensitive fraction, the production rate of the soluble fraction can be calculated as 2.1×10^3 molecules per minute, as listed in Table 3.4. Applying the converse analysis for the insoluble fraction would result in an effective production rate for that fraction of 403.6 molecules per minute.

For reference, a rate of production of Tum is also derived for the low-copy variant, pMTS*-pR-tum^+, based on the measurement for the medium-copy version. Plasmids derived from pSC101 have been variously reported with 6 [Xia et al., 1991], or 10–12 copies per chromosome unit [Lutz and Bujard, 1997]. For a doubling time of around 30 minutes, locus copy numbers per cell of between 1.5 for genes near the chromosomal termini, and 4.7 for genes near the origin are anticipated [Bremer and Dennis, 1996; Bipatnath et al., 1998]. With this consideration in mind, 20 copies per cell is taken as a representative figure for the copy number of pMTS-pR-tum^+, which then also represents the number of pR-tum modules per cell. For the pMTS*-pR-tum^+ plasmid with the SC101$^+$ origin, the literature reports copy numbers of around 25–40% of that of plasmids derived from pSC101 [Manen et al., 1994; Lutz and Bujard, 1997]; 30% is taken as a representative value giving 6 copies per cell for the SC101$^+$ origin. Using that estimate the unrepressed rate of production of soluble Tum from the pMCS*-pR-tum^+ plasmid can be estimated as 630 molecules per minute.

To judge the feasibility of the estimated production rates, the values given here in Table 3.4 are compared with the estimated firing rate of pR of 0.055 transcripts.s$^{-1}$ Dodd et al. [2007b]. For the medium-copy plasmid there are around 20 copies of pR per cell, implying a combined pR firing rate of 66 transcripts.min$^{-1}$. Without any measurement of the half-life for these pR transcripts, the mean mRNA half-life of 5.2 minutes for *E. coli* [Bernstein et al., 2002] is assumed here so that there are an estimated 8.8 transcripts at steady state. Using the predicted steady-state concentration of soluble Tum, this means that approximately 900 proteins are present per transcript. This is greater than the median level of proteins per transcript observed by Lu et al. [2007] for *E. coli*, but still fits well within the log-normal distribution of such levels.

In the previous chapter (Chapter 2), a crude estimate of 7400 nM was assumed for steady-state production of Tum from from unrepressed pR; using the conversion factor derived in Section 3.4.4, that becomes \sim4100 monomers per cell. That estimate was derived assuming a chromosomal copy number for the pR-tum cassette and also a degra-
3.5 Balancing the MFL module

The medium-copy pMTS-pR-tum\(^+\) plasmid has a copy number about 10–12 times that of the chromosome, but since the degradation rate of Tum is also 10 times faster than that of CI, the crude estimate can be compared ‘as is’ with the medium-copy measurement made here. The measurement of total Tum at steady-state (2.5 \(\times\) 10\(^4\) monomers per cell) is within ballpark range of the crude estimate. However, a fairer comparison may indeed be with the estimated 8300 monomers of soluble Tum, since that is the fraction thought to be degraded at the faster rate. That value compares much more favourably with the initial crude estimate of the production rate; given the moderate match between the modelling and experimental curves this lends some additional credence to the assumption of an active soluble fraction.

3.5.4 Production rate from \(P\)\(_{lac}\)

The \(P\)\(_{lac}\) promoter in the MFL serves to provide an IPTG inducible source of CI. To characterise steady-state concentrations of CI produced at each inducer concentration, the steady-state concentration for a single fixed concentration of IPTG is measured, and then this value is extrapolated to alternative concentrations of IPTG using the Hill curve fits of the induction reporter strains described in Section 3.3.

Since two alternative RBSs were used to access different ranges of CI concentration in the MFL strains, that is, the wild-type RBS (wRBS) in the pZC320-WR-ci plasmid, or the stronger pET plasmid-derived enhanced RBS (eRBS) in the pZC320-ER-ci plasmid, the steady-state level of CI for both of these plasmids needed to be measured. In both cases, the maximum level of induction used in the hysteresis assays (300 \(\mu\)M IPTG) was chosen as the reference concentration. Measuring the highest relevant \textit{in vivo} CI concentration provided scope for optimising Western blot band intensities by diluting extracts into the most sensitive parts of the calibration curves. Without a clear understanding of the impact of the Tum–CI interaction on steady-state levels of CI, measurements of CI production were only made in the Tum\(^-\) control strains.

Western blots of CI in cell extracts of the WR-MC and ER-MC Tum\(^-\) MFL control strains were prepared alongside calibration extracts and are shown in Figure 3.25 along with example calibration curves. As described for pR production in Section 3.5.3, estimates of CI mass were made for each band using the calibration curves. Hill fits of the calibration curves generally fit quite well, but in two of the blots (blots A and B for the wRBS strain) there appeared to be an outlier in the calibration samples. In those cases, robust regression was used to objectively account for the possibility of outliers, and this resulted in better calibration as judged by improvements in internal consistency between each of the serial dilutions. The collection of mass estimates is shown plotted in Figure 3.26. Again, the greatest source of variation appeared to occur between cell extracts, so the confidence limits and values reported in Table 3.4 were derived from the mean estimates obtained for each extract.
Figure 3.25: Quantitating steady-state CI production from P_{lac} by Western blot for induction at 300 μM IPTG. Cell extracts of log-phase cultures, diluted as indicated in equivalent CI$^-$ extracts, and known amounts of purified CI were separated by SDS-PAGE, and transferred by Western for probing with α-CI antibodies (shown in (a) and (c)). 12μL of each sample was loaded per lane. The blots were quantitated and steady-state CI mass in the cell extracts determined from a four parameter log-logistic fit (with basal parameter fixed to zero) of the calibration samples (examples shown in (b) and (d)). (a) & (b) Quantitating CI in cultures of E4300DR pZC320-WR-cl pMTS-pR-tum$^-$. (c) & (d) Quantitating CI in cultures of E4300DR pZC320-ER-cl pMTS-pR-tum$^-$. In (a) and (c), wedges indicate increasing dilution factors of the calibration samples, which were prepared from a master stock of 32 ng/12 μL of purified CI (made up in CI$^-$ cell extracts), which was serially diluted to 1, 2, 8 or 32 times. In the example calibration curve fits, the dotted lines indicate the CI-specific band intensities of the dilution series of extract 3 (b) or extract 6 (d), and their corresponding mass estimates as determined by the fits.
Figure 3.26: Estimates of the mass of CI in the wild-type RBS (WR) and enhanced RBS (ER) extracts using the calibration curves. The points show the individual estimates from each band of the blots. (a) Whilst the estimates are highly variable, the means of these estimates at each dilution indicate little trend in the data, giving greater confidence in the form of the calibration curve. (b) The mean estimates calculated for each extract. These values seem to cluster in pairs according to the groupings on the blots (see Figures 3.25(a) and 3.25(c)).

Cell concentrations at OD$_{600}$ 0.6 were also measured for each of the strains, as was done for determining the Tum production rate (Section 3.5.3), and these are also listed in Table 3.4. Using these measurements and the known molecular weight of CI (21160 Da), the steady-state level of CI per cell for both the wRBS and eRBS variants could be derived. This revealed that with the eRBS, production of CI must be about 2.7 times stronger than for the wRBS. Since in Section 3.5.2 CI was not seen to be actively degraded, it is assumed to be lost only with cell division and growth. As determined in Section 3.4.2, this occurs with a doubling time (half-life) of 28.2 minutes for the tum$^-$ strains. Then in this case, by directly applying the steady-state formula for the production rate ($p = A \log(2)/h$), the production rates as listed in Table 3.4 can also be calculated.

For pZC320-WR-clI, steady-state levels of CI had also been previously measured by Western blot for induction levels ranging between 10 and 100 μM [Dodd and Egan, 2002]. At an induction level of 100 μM IPTG, 2390 monomers per cell were measured; the value measured here for production from pZC320-WR-clI, induced using only three times as much inducer (300 μM IPTG), is over five times higher than that. Even more alarmingly, production from P_{lac} has an ultrasensitive dependence on IPTG concentration and as seen in Section 3.3 has already started to saturate by 300 μM IPTG. Nonetheless, recall that the measurements made by Dodd and Egan [2002] were used earlier in Figure 3.11 to scale the P_{lac}-lacZ induction reporter curves to units of CI monomers per cell. By similar extrapolation...
Figure 3.27: Comparing steady-state estimates of CI concentration for the MFL strains with those previously obtained for the same induction system. Shown plotted versus the concentration of IPTG inducer are steady-state measurements of CI concentration in cells with the pZC320-WR-cl and pUHA-1 plasmid induction system [Dodd and Egan, 2002] (filled black circles); plotted alongside is the estimate obtained here for the WR-MC tum^- MFL strain induced using 300 μM IPTG with 95% confidence limits (open square). Overlaid on this data is the Hill curve fit obtained for the low O/N tum^- induction reporter assay from Figure 3.8(b). Dotted lines indicate 95% confidence limits for the fitted Hill curve.

Using the induction reporter Hill curve fits, a comparison can be drawn between the estimates of CI levels obtained by Dodd and Egan [2002] and those obtained here. Using the correlation between the Western and LacZ assay data which ignored the maximum data point (see Figure 3.11(a)) and taking 95% confidence limits into account, it can be seen in Figure 3.27 that the apparently large discrepancy between the two assays may not be significant. Furthermore, the strain used by Dodd and Egan [2002] did not contain the additional tetracycline resistant MFL plasmid that the MFL strains have. So, as discussed in Section 3.4.2, the rate of growth would be likely to be slower in the MFL strains. Then since loss of CI is dilution limited, the relative increase in the observed steady-state level of CI would come as less of a surprise.

3.6 Chapter summary

By cloning the Tum–CI MFL regulatory network in *E. coli* using a modular design, an iterative optimisation of the synthetic circuit was possible. Then using a process of elimination, a set of four candidate strains was obtained and assays of those strains revealed that the system can exhibit the predicted bistability. However, the degree of hysteresis seemed small in comparison with the modelling predictions, and in some cases was an incomplete loop. The divergence prompted a closer look at the behaviour of some of the components involved in the circuit, including the form of dependence of the P_{lac} promoter on the concentration of its inducer, the growth rates of the strains and the production and degradation rates of Tum and CI. By making use of the greater understanding such analysis brings, the behaviour of the MFL can be reassessed and optimised. In the coming chapters, this data will become invaluable in better matching the experimental observations of the Tum–CI MFL to an evolving mathematical model that describes this bistable circuit.
The MFL displays only weak bistability when measured over a whole population

Using a modular and flexible circuit design, four synthetic Tum−CI MFL gene circuits that were promising candidates of bistable behaviour were cloned in E. coli. A hysteresis assay of these circuits was chosen as the primary test for bistability, since it would enable both analysis of stability and efficient optimisation of a critical parameter to expedite the search for a parameter regime supporting bistability. However, unlike the hysteresis curves predicted from the model developed in Chapter 2, the experimental hysteresis curves did not show any clear boundaries between monostable and bistable regions, thus limiting the power of the assay to definitively assess bistability. In this chapter, by making use of the additional conceptual and quantitative constraints provided by the characterisation of system components in Chapter 3, the whole-population assays of hysteresis are analysed and extended so that a reliable assessment of bistability can be made by direct comparison between the experiment and model.

Since the hysteresis assay is used here as the key indicator of bistability, the first part of the chapter is devoted to a discussion of the experimental factors that affect the accuracy and resolving power of the assay itself. Then, whilst the control curves are expected to display some hysteretic behaviour (refer back to Sections 2.4.1 and 2.4.2), the separation of both the controls and MFL curves at high CI production rates prompts a deeper investigation into the persistence of hysteresis: a bistable system should exhibit hysteresis that persists over time. The chapter concludes by exploring the extent to which the deterministic model can describe the data observed.

4.1 Experimental limitations of the hysteretic LacZ assay

Although the preliminary experimental results revealed significant separation between the hysteresis curves of the MFL strains, there were two factors, in particular, that obscured clear judgement of bistability in the MFL: (1) a larger than normal variance in the measured LacZ units, and (2) a poorly defined shape of the hysteresis curves. This section explores the extent to which these obscuring factors can be explained as technical artefacts of the assay. The first of the points will be addressed by analysing the data obtained from the
hysteresis assays to show that LacZ units have a nontrivial dependence on the final OD$_{600}$. For the hysteresis assays, there is an increased variability in cell densities measured at the time of assay that makes this effect more significant. The dependence of LacZ units on OD$_{600}$ can be corrected for by approximating the trend and these corrections explain much of the increased assay variability.

The second point is addressed by drawing upon the efforts made in Chapter 3 to characterise the P_{lac} induction circuit and the corresponding production and degradation rates of CI. By expressing the hysteretic variable in terms of the calibrated production rate of CI, the added nonlinearity due to the induction circuit is removed. This makes for a much fairer comparison with the models introduced in Chapter 2, and results in a clearer picture of the region of bistability.

4.1.1 Variations in optical density bias LacZ assay measurements

To be confident in the separation between two curves, the assay used to measure such curves needs to have sufficient discrimination power. In the hysteresis assays of the MFL strains, excessive experimental noise could obscure an underlying hysteresis cycle if the variance in measurement of pR activity becomes too large. Larger than expected variation of LacZ units was found for the MFL strains measured at the normal equilibration time and, as the limits of this assay are pushed to optimise the time for equilibration, the resolving power of the LacZ assay could (and does) become an issue. Identifying and reducing sources of experimental noise will increase the value and usability of the assay for judging bistability.

As a population assay, the LacZ assay relies on an accurate measurement of cell density to ensure consistency of results. For practicality, the OD$_{600}$ of the assay cultures is used as the measure of cell density and, in calculating LacZ units, the β-gal enzyme activity measured for the culture is divided by the OD$_{600}$. For moderate variations in final culture OD$_{600}$ this has proven to be a suitable correction, but in the hysteresis assay, variation in final OD$_{600}$ was found to be larger than typical. This is presumed to arise as a result of accumulated pipetting errors due to the additional dilution step required to get the normal (as opposed to the short) equilibration time. This increased variability in final OD$_{600}$ revealed an unanticipated trend for samples with a low OD$_{600}$ to produce higher LacZ units on average than samples with a high OD$_{600}$. This trend may well be due in part to the nonlinear relationship of cell mass density with the OD$_{600}$ Bipatnath et al. [1998].

To characterise and confirm the result, the LacZ units measured within each experimental factor of the MFL hysteresis assays were plotted against the OD$_{600}$. The dependence of LacZ units on OD$_{600}$ was approximately linear, but the slope of each model seemed to have a nontrivial dependence on the magnitude of the activities. The trend is described in more detail in Box 4.1 along with a method for correcting for the deviation. By correcting for this effect, the LacZ units are made more consistent, both within each
Box 4.1: Correcting for the dependence of LacZ units on OD\textsubscript{600} reduces variability and increases separation between the hysteresis curves. By examining the relationship between LacZ units and OD\textsubscript{600} for each factor of the hysteresis assays, higher OD\textsubscript{600}s are found to produce lower LacZ units, as exemplified in Panel A. The dependence on OD\textsubscript{600} is a nontrivial function of the intrinsic reporter activity, but generally shows a stronger effect at higher activities (Panel B). A linear approximation of this trend allows estimation of the typical dependence on OD\textsubscript{600} for each LacZ measurement, enabling transformation of the raw data to values predicted for an OD\textsubscript{600} of 0.6, as shown applied in Panel C.

A LacZ units measured from hysteresis assays of the ER-MC MFL strain are shown plotted against their respective OD\textsubscript{600}s. Data from the Tum− control strains and Tum+ MFL strains are shown separately. Data from the low or high O/Ns are distinguished as indicated, and the IPTG concentrations are coded by colour as per the labels. Linear regression was performed individually for each experimental condition in the assay to produce the lines of best fit.

B Regression lines like those in Panel A were derived for all hysteresis assays in this chapter and their slopes are plotted here versus their values at OD\textsubscript{600} 0.6. The standard errors of these fitted slopes were used as weights for weighted linear regression of the data (solid red line; dotted lines indicate 95% confidence intervals). The points are shaded in grey according to the weights with lighter shades having lower weights/larger errors. The dashed black line marks a slope of zero.

C The raw hysteresis data obtained for the ER-MC strains (dotted lines and error bars) is shown compared with the same data after correction for the dependence of LacZ units on OD\textsubscript{600} (solid lines and error bars). The correction slope for each LacZ measurement was estimated from the regression line in Panel B and that slope used with the respective final OD\textsubscript{600} reading to estimate the LacZ value at OD\textsubscript{600} 0.6. Error bars indicate 95% confidence limits.
experimental condition, but also across different experimental conditions, as judged by stabilisation of the mean values with respect to general data trends\(^1\). The correction also increases the separation between the hysteresis curves in two ways: firstly by decreasing sample variance, hence increasing significance, secondly, and unexpectedly, by shifting the mean values further apart. The trend of LacZ units with the OD\(_{600}\) will be corrected for in a number of assays in this thesis; where the correction is applied, the resulting data will be referred as having ‘Corrected LacZ units’.

4.1.2 Normalising \(P_{\text{lac}}\) induction levels to production rates improves but does not complete the picture of hysteresis

The concentration of IPTG in the culture controls the rate of production of CI in the MFL strains, and the hysteresis assay described in Section 3.2 is based on controlling this production rate by adjusting the IPTG concentrations over time. However, whilst IPTG concentration is a quantitative measure, it does not translate directly into a parameter of the deterministic MFL model described in Chapter 2. As seen using \(P_{\text{lac}}\)-lacZ assays in Section 3.3, intracellular concentrations of the \(P_{\text{lac}}\) promoter’s gene product have an ultrasensitive dependence on IPTG, attributed to cooperative binding of the LacI repressor. This nonlinear relationship is likely to directly affect the interpreted locations of the bifurcation boundaries by introducing complex changes in curve shape. By utilising the induction curves and other parameter determination experiments of Chapter 3, these shape-changing effects can be corrected for and the data expressed in terms of a variable that relates directly to the modelling: the CI production rate.

The conversion from each experimental condition (i.e., idealised final IPTG) to CI production rate is calculated in a number of steps, making use of many of the measurements reported in Chapter 3:

1. The final concentration of IPTG is corrected using Equation (3.1) (Section 3.3) to account for the IPTG concentrations contributed by the subcultured O/Ns.
2. The Hill fits of the \(P_{\text{lac}}\)-lacZ induction curves are used to normalise these concentrations to LacZ activity (a linear measure of the rate of production from \(P_{\text{lac}}\)), taking the Hill parameters from Table 3.1 for the ‘Mixed’ data sets (i.e., those for which low and high O/N data sets were aggregated).
3. These relative production rates are scaled to absolute CI production rates in dimers per minute using the experimentally determined CI production rates listed in Table 3.4 for growth in media with 300 \(\mu\)M IPTG\(^2\).

\(^1\) This latter improvement was less obvious for the example given in Box 4.1, Panel C than it was for the long equilibration time assays to be introduced later in Section 4.2.2.

\(^2\) Note that in this case, the final IPTG concentration is exact since log growth cultures were subcultured from high O/Ns in the steady-state measurements of CI concentration. As such, the induction curves are scaled to give the listed production rates at exactly 300 \(\mu\)M IPTG.
4.1 Experimental limitations of the hysteretic LacZ assay

Note that the above process results in a different normalisation depending on the strain, since the Hill parameters differ between \textit{tum}^+ and \textit{tum}^- strains and the CI production rates differ between wRBS and eRBS strains.

Applying this induction normalisation to each of the normal equilibration time hysteresis curves (previously shown in Figure 3.6), results in curves whose shapes now better emphasise the putative regions of bistability (see Figure 4.1). This is made manifest in a couple of ways. Firstly, the separation between the MFL curves and the control curves is greater, making the putative monostable region at low CI production rates more evident. Secondly, the regions with the greatest separation between high and low O/N MFL curves now occupy a greater fraction of the hysteretic variable domain. This is especially obvious for the strains with medium-copy \textit{pR-tum} plasmids. In the strains with low-copy \textit{pR-tum} plasmids this effect is far less pronounced, highlighting instead the collapse of those curves towards an average value. This makes it hard to propose a region of bistability for the low-copy MFL circuits, casting in doubt whether they are in fact bistable. Relative to the deterministic model curves, the medium-copy MFL assays also show some collapsing towards the mean, but are far more likely to contain a region of bistability. The remaining discussion will focus on these curves.

For the medium-copy MFL, a significant separation was observed between the high and low O/N hysteresis curves at high production rates, and normalising to a CI production rate does not change this. However, the normalised curves do appear to compare more favourably with the deterministic MFL model. In the model, the low O/N curve asymptotes towards the high O/N curve at high CI production rates to form the high monostable state (see Figure 2.12). The raw IPTG response curves were at odds with this, seemingly asymptoting towards the significantly different value occurring at maximum induction. After normalisation to the CI production rate, these curves instead appear more as if truncated within the bistable region, leaving scope for a return to the high O/N curve if higher CI production rates were reached. Nonetheless, even if such a trend were to be found, it remains an anomaly that the high CI monostable state seems to be missing from these hysteresis curves. Without that monostable state, the model is incapable of explaining how the ‘off’ curve (i.e., high O/N curve) can be accessed. Instead, an explanation in terms of the physiological differences between stationary phase (O/N) and log phase cultures must be resorted to. An alternative explanation may be that at maximum induction, the medium-copy MFL is actually in a monostable region, but slow equilibration at that end has prevented the curves from coinciding; such an explanation is more likely for the ER-MC strain.

The \textit{Tum}^- control curves are useful in providing a sense of how far from equilibrium each system is, and it was noted for the IPTG response curves that these controls showed hysteretic behaviour by not yet reaching equilibrium. Normalisation reveals that these \textit{Tum}^- curves overlap better than previously realised, particularly for the wRBS strains.
where it appears as if equilibrium has been reached. The slower equilibration of the eRBS strains is not unexpected since the larger concentrations of CI result in longer times for reaching steady state. Perhaps more curiously, the control strains with low-copy MFL plasmids appeared further from equilibrium than those with the medium-copy MFL plasmids. The low-copy strains generally showed longer doubling times (see Table 3.2), so perhaps in these strains equilibration takes longer for the dilution-limited CI and β-gal proteins. Nonetheless, the significant separation of the ER-MC control curves suggests that in the MFL strains, more equilibration time may be necessary to see closure to a monostable state at high CI.
Figure 4.1: Expressing the normal equilibration time hysteresis curves in terms of CI production rate reveals a wider putative region of bistability. The raw data from Figure 3.6 is reproduced here with corrections to the LacZ units for trends with OD600 as described in Box 4.1 and calibration of IPTG concentrations to CI production rates as described in the text. Normal equilibration time hysteresis assays were performed for four different MFL strains as labelled; translation of CI was either from its wild-type RBS (WR) or an enhanced RBS (ER), and the pr-tum module was either located on a low-copy plasmid (LC) or medium-copy plasmid (MC). Assays of the respective tum− control strains are also shown. In the hysteresis assay, assay cultures are inoculated either from overnight (O/N) cultures grown in the presence of 0 µM IPTG (low O/N curves), or 300 µM IPTG (High O/N curves). Error bars show 95% confidence limits in the mean; n = 6 for all data points except for the high overnight tum+ curve of the ER-LC strain, which has n = 4 for all data points.
4.2 Extending the hysteresis assay equilibration time

After setting the MFL in either of its two initial states, a certain amount of equilibration time must be allowed for the system to settle towards its steady state. The importance of such equilibration time is clear from the predicted and observed behaviour of the monostable controls: hysteresis assays of these Tum\(^{-}\) controls do show history-dependent behaviour. However, when sufficient time is allowed, a monostable system should get close enough to steady state that the two hysteresis curves become indistinguishable. So to show bistability for the MFL strains, enough time should be allowed to be confident that separation of the hysteresis curves is persistent.

Ultimately the choice of how much equilibration time to allow is somewhat arbitrary, especially considering that the time taken to reach steady state near the bifurcation boundaries is predicted to extend indefinitely (see Section 2.4.2). However, in a more practical sense, the equilibration time should at least be long enough to distinguish between hysteretic behaviour within the bistable region and the anticipated non-hysteretic behaviour in the monostable regions located to either side. Such a contrast was not obvious for the normal equilibration time curves shown in Figure 4.1, where it was unclear if the strains with the low-copy \(pR\)-tum plasmid showed a bistable region, or if the strains with the medium-copy \(pR\)-tum plasmid showed a high CI monostable state. By further increasing the time for equilibration such uncertainties can be tested.

Since the Tum\(^{-}\) control strains provide some measure of the time it takes for an equivalent monostable system to resolve to steady state, this section starts by exploring different equilibration times for hysteresis assays of the control strains. The long equilibration time from those trials is chosen as a good balance between overlapping monostable control curves and a practical time frame. When applied to the MFL strains, a different picture of hysteresis and its persistence emerges. The low-copy MFL strains no longer show a region of bistability and this region all but disappears for the medium-copy \(pR\)-tum plasmids. Whilst this result might imply that none of the circuits show bistable behaviour, some unresolved discrepancies provoke an explanation favouring some limited level of bistability.

4.2.1 Extending the time for equilibration brings the control strains to steady state

The Tum\(^{-}\) control strains include no means for positive feedback and are thus monostable systems representative of each respective MFL variant. As monostable circuits, these control strains are not expected to show persistent hysteresis. Instead their hysteresis curves should tend towards a single steady state. However, in the experimental hysteresis curves shown in Figure 4.1, the controls still show significant separation in some cases. In particular, the control strains using the eRBS for CI production showed more separation than their wRBS counterparts. Since the MFL strains with medium-copy \(pR\)-tum plasmids
were more promising candidates for bistability, the ER-MC Tum\(^{-}\) control strain was thus chosen as a model system to test how much equilibration time would be necessary to reach an equilibrium result in a monostable circuit similar to the MFL.

As previously introduced in Section 3.2, the equilibration time for the standard LacZ assay can be extended by increasing the time taken for the cultures to reach the target OD\(_{600}\) 0.6 for the LacZ assay. The normal equilibration time assay adds an extra 1/10 dilution of the O/N cultures before the final subculturing step to increase the number of

Figure 4.2: Extending the time for equilibration allows the control curves to reach equilibrium. Hysteresis assays were performed for cultures of E4300DR pZC320-ER-cI pMTS-pR-tum\(^{-}\) with either short (no additional dilution), normal (with additional 1/10 dilution), long (no additional dilution but subcultured twice), or very long (with additional 1/10 dilution and subcultured twice) equilibration times. The normal equilibration time data is taken from Figure 4.1. The time of measurement is listed at the top right of each panel. Each point represents an individual measurement; lines follow the averages. The LacZ units have been corrected as per Box 4.1 and the final IPTG concentrations normalised to production rates of CI as per Section 4.1.2.
cell doublings required to reach log phase. To further extend the equilibration time, larger dilutions were trialled (1/20 and 1/40), but this approach was rejected on the basis of much noisier assay results, presumably by amplified pipetting errors and culture inhomogeneity. Instead, an alternative approach was trialled on the model ER-MC Tum control strain, whereby subculturing of the hysteresis assay cultures was repeated midway through the growth to log phase. This additional subculturing step involved a 1/50 dilution of all log growth cultures into a duplicate log growth plate once an average OD\textsubscript{600} of approximately 0.06 was reached. This approach was trialled alternately to log growth cultures started with or without the extra 1/10 dilution of the O/N cultures, with these new protocols being named ‘very long’ or ‘long’ equilibration time assays respectively.

Short, normal, long and very long equilibration time hysteresis assays were carried out for the ER-MC Tum control strain and the results are shown in Figure 4.2. As anticipated, the time taken for cultures to reach the target OD\textsubscript{600} increased with increasing dilution factors. The additional subculturing step of the long equilibration time assay extended the time of assay by almost 2 hours\(^3\) compared with the normal equilibration time assay; in both normal and very long equilibration time assays, the additional dilution of the overnight cultures extended the time of assay by over an hour.

With longer equilibration times, the control curves get closer to their expected steady state values. The short equilibration time assay leaves the control curves clearly separated, and whilst this separation is greatly reduced for the normal equilibration time curves, significant separation between the two curves still remains. The deterministic model predicted that the greatest separation would be observed for the lowest CI production rates, but curiously separation in these curves appears greatest at intermediate CI production rates. Possible explanations may be the increased experimental error at high pR activities, or the closer proximity of CI production rates at this point\(^4\). In any case, by the measurement time of the long equilibration time assay, the two curves are overlapping, and by the measurement time of the very long assay the high O/N curve is above the low O/N curve. This seeming overshoot of equilibration could just be experimental error, but may also suggest that corrections in the normalisation to CI production rates could more accurately portray that assay\(^5\). The very long equilibration time assay is still taken to be the most equilibrated.

The time to equilibration of the control strains is limited primarily by the degradation rates of CI and β-gal, whereas equilibration of the MFL strains is additionally limited by the degradation rate of Tum (refer back to Section 2.4.2 for details). This means that the minimum equilibration time needed for the controls is only a lower bound on the time.

\(^3\)With only one replicate for each assay type, the indicated timings are only rough estimates since there is some variation in the average final OD\textsubscript{600} of each experimental set.

\(^4\)Another explanation may be some nonlinear dependence of LacZ units on activity for high LacZ units.

\(^5\)In the assays with an additional subculturing step, the absolute concentration of IPTG changes slightly during the course of the assay, since subculturing the log growth cultures into fresh assay media further dilutes the relative offsets produced by the IPTG concentrations of the O/N cultures.
required to demonstrate bistability of the MFL. Nonetheless, since the long equilibration
time assay produced control curves that are indistinguishable, that assay was chosen as
the most practical and appropriate next candidate.

4.2.2 Complete hysteresis is observed with a long equilibration time

The MFL strains exhibited a degree of hysteresis when assayed using a normal equili-
bration time, but the existence of a bistable region was left in question by a number of
disequilibrium artefacts. By assaying these strains at a longer equilibration time, the per-
sistence of hysteresis can be assessed which should further enable a better rationalisa-
tion of the steady states and regions of bistability and monostability. As discussed in the
previous section, the long equilibration time was sufficient to show monostability for the
ER-MC Tum− control curves, so this time point should also be a good reference point for
a qualitative assessment of separation between the MFL hysteresis curves. Based on the
long equilibration assay trial, hysteresis assays of the MFL strains were performed which
also incorporated an extra subculturing step partway through growth to log phase. For
improved consistency, this second subculture step was always performed 4 hours after
subculturing from the overnight cultures; by 4 hours cultures had an average OD\textsubscript{600} 0.2.
The results of those assays for the four candidate MFL strains are shown in Figure 4.3.

As previously observed in Section 4.2.1, the long equilibration time is sufficient to bring
all of the Tum− control curves in Figure 4.3 to a single monostable steady state. More im-
portantly, the longer equilibration reveals that at the highest CI production rates for the
ER-MC MFL strain, the low O/N curve does close to the high O/N curve. Thus assays
of the ER-MC MFL include both the low CI and high CI monostable regions, so that com-
plete traversal of the hysteresis loop can be observed in that strain. In contrast, and as
predicted for even longer equilibration times found from preliminary hysteresis assays of
a similar MFL strain [Pocock, 2007], the WR-MC MFL strain continues to show signifi-
cant separation at its highest CI production rate. The most likely explanation is that the
WR-MC MFL strain is indeed still bistable at the highest levels of CI that can be accessed
in log phase growth. However, the change to stationary phase in the O/N cultures must
enable still higher concentrations of CI that are then able to set the switch in the putative
high CI monostable state. Nonetheless, all hysteresis loops do show signs of better equili-
bration and the only unclosed loop is that of the WR-MC strain. In spite of this, the more
striking (and alarming) result from the long equilibration time assays is a greatly reduced
separation between low and high O/N curves in all MFL strains.

Separation of the hysteresis curves is somewhat more favourable for the MFL strains
with medium-copy \textit{pR-tum} plasmids than for those with low-copy ones, but the clear sep-
oration previously seen for the normal equilibration time point is no longer apparent. A
visual inspection of error in the WR-MC hysteresis curves indicates significant separation
of the high and low O/N curves, but a similar inspection of the ER-MC curves indicates
Chapter 4. The MFL displays only weak bistability when measured over a whole population

Figure 4.3: Complete hysteresis is observed when using the long equilibration time assay at the cost of loop collapse. Hysteresis assays were performed with a long equilibration time as described in Figure 4.2 for the candidate MFL strains described in Figure 4.1. Data normalisation is also as described in those figures. Error bars show 95% confidence limits in the mean; \(n = 6 \) for all data points.

separation is statistically nonsignificant. To consequently draw the conclusion that the WR-MC MFL has a region of bistability, where the ER-MC MFL does not, would, however, conflict with the assumptions of the deterministic model. In terms of the steady-state model, the only differences expected from a change in CI RBS strength are rescaled CI production rates. Such a change should only affect which portion of the steady-state curve is visible to the assay; the absolute CI production rates at which the system is in bistable or monostable regimes should not change. When out of steady state, the system will be head over time towards the nearest steady state. Hence, after assuming that the initial states for all strains are situated in opposing monostable regions (an assumption supported by the experiments), then the CI production rates at which the WR-MC MFL is bistable should
show similarly persistent bistable behaviour in the ER-MC MFL. The preferred conclusion is thus that the ER-MC MFL is capable of bistability, but that experimental errors or unidentified sources of additional intrinsic noise mask the bistable region of this strain.

The strains with low-copy \textit{pR-tum} plasmids no longer show any identifiable separation. In fact, the high and low O/N curves for the WR-LC MFL appear flipped with respect to their expected locations. This shows that cultures of the low-copy \textit{pR-tum} MFLs cannot, as an entire population at least, stably maintain the initial state — there is no region of bistability apparent in these strains. The trajectory towards this effective monostable steady state in these MFL strains is still slower than for the Tum− controls, but the apparent hysteresis loop does not persist that much longer than the time taken for the controls to reach equilibrium. Nonetheless, an unusually large concomitant increase in culture-to-culture variation for the low-copy \textit{pR-tum} MFL strains gives reason for further investigation before bistability is conclusively rejected in these cases. The increase in error does not seem to be experimental in origin since assays are performed as a complete set in 96-well plates, and the control curves do not show the same increase. However, if not experimental then the additional noise must be heritable over a number of generations since it must be apparent at a whole population level. One explanation may be an unstable inheritance or copy-number of the low-copy \textit{pR-tum} plasmid. In any case, persistent hysteresis for the low-copy MFL strains does not occur over this time scale; in these strains, the rate of production of Tum from \textit{pR} is presumed insufficiently strong to outcompete the levels of CI.

The results of the long equilibration time hysteresis assay reveal that persistence of hysteresis in the four MFL strains is much weaker than realised from the normal equilibration time hysteresis assays. The strains with low-copy \textit{pR-tum} plasmids no longer show any hysteresis, whilst the strains with medium-copy \textit{pR-tum} plasmids show limited hysteresis, though it seems that noise or error obscures this for the ER-MC MFL. The collapsed shapes of these latter hysteresis curves are, however, distinct from the simple deterministic model curves seen in Section 2.4.2 for assumed parameters. An important next step towards understanding the nature of bistability in the medium-copy strains will be to update the model and its parameters to better reflect the experimental curves.

\footnote{Clearly when judging CI production rate by the axis labels in Figure 4.3, there are significant discrepancies in curve shape and value between WR-MC and ER-MC strains. However, since the mismatch also pertains to the Tum− controls, the more likely deficit is the significant error in the experimental estimates of CI production rates. Corrections to the relative scaling of these production rates will be considered when modelling the curves in Section 4.3.}
4.3 The deterministic model does not capture the behaviour of the MFL

The experimental curves seen in Figure 4.1 for the normal equilibration time and in Figure 4.3 for the long equilibration time do not bear an obvious relationship to the model curves characterised in Chapter 2. This seeming deviation from the model makes it hard to draw definitive conclusions about the existence and/or locations of the putative regions of bistability in the experimental MFLs. The model curves were generated using a set of parameters, many of which had to be estimated or were determined with considerable measurement error. These uncertainties leave scope for parameter variability and permit a degree of flexibility in the shape and form of the resulting model curves. In this section, the capacity of the current deterministic model to explain the available experimental data through such parameter variation is assessed. The section begins by developing methods for exploring parameter variability in the deterministic Tum−CI MFL model and assessing the model against the available data. These methods are then applied to find optimum parameters that best fit the deterministic model to the data obtained for the WR-MC MFL and control strains. By making use of that preliminary fit, the data obtained for both the WR-MC and ER-MC strains can then be reconciled and an optimum parameter set found that best fits the model to this combined data set. This extensive analysis reveals that parameter variation in and of itself is insufficient to accurately describe the behaviour of the Tum−CI MFL, and calls for a rethinking of the model itself.

4.3.1 Searching the parameter space of the deterministic MFL model

Obtaining reliable estimates for model parameters is a common challenge faced in the quantitative modelling of gene networks [Karlebach and Shamir, 2008]. In the case of the deterministic Tum−CI MFL model, a simple substitution of the parameters estimated from the literature in Chapter 2 with the more realistic experimental measurements of parameters that were reported in Chapter 3 does not improve the match between experiment and model. This does not come as a great surprise: large uncertainties of 30–50% were found for a number of parameters, whilst other parameters (those for the Tum−CI equilibrium) still needed to be derived from in vitro measurements, which could well differ in vivo. An attractive alternative is to infer the parameters by fitting the model to suitable data. Such model-driven parameter estimation has been used for studying many gene networks, from the regulation of lysis and lysogeny in phage λ [Shea and Ackers, 1985; Dodd et al., 2004] and phage 186 [Dodd et al., 2007b], through synthetic networks constructed in E. coli [Guido et al., 2006] and yeast [Ellis et al., 2009b], to receptor-mediated apoptosis in human cells [Eydgahi et al., 2013]. Fitting the deterministic Tum−CI MFL model to the LacZ assay hysteresis data will provide refined parameter estimates and, more importantly, a thorough test of model suitability. The parameter estimates of Chapter 3 remain
4.3 The deterministic model does not capture the behaviour of the MFL

useful as ‘sign posts’ for setting initial guesses and reasonable parameter bounds.

With the additional goal here of also testing the suitability of the model, a reasonably
thorough search of the parameter space is desirable to ensure that good fits of the data are
not missed. However, even for the simple steady-state model of the Tum−CI MFL with
only 7 parameters, it is a nontrivial exercise to search the resulting 7-dimensional param-
eter space for values that might produce fits of the experimental data. Separately analysing
the effect of each parameter (as was done for the steady-state bifurcation boundaries in
Section 2.3.2) will leave a majority of the parameter space out of the analysis, whereas
checking all possible parameter combinations is impractical and even computationally un-
feasible. To make the problem more tractable, the divergence of the model from the data is
described by a ‘cost function’ — a function that scores how well the model fits the data for
any given parameter set, typically a sum of squared residuals — and then well-established
optimisation routines can be employed to intelligently navigate this function’s landscape
to find the global minimum. The set of parameters producing this global minimum would
mark the best match of the model to the data; better matches should in theory only be
possible by modifying the model.

Unfortunately, cost functions typically have very complicated landscapes with numer-
ous local minima that make it hard to find the global minimum. To maximise the extent of
the search without exceeding manageable computation times, a pseudo-random search of
the parameter space is used to search the cost function landscape. The analysis here is facil-
itated by the R package FME [Soetaert and Petzoldt, 2010], which provides a framework for
constructing the cost function and implementing the search algorithm. The package makes
a number of parameter optimisation routines available, but the pseudo-random search al-
gorithm of Price, as described in Soetaert and Herman [2009], is the favoured method for
good sampling of the parameter space. The algorithm requires specification of upper and
lower limits for each parameter, and starts by randomly generating a population of around
50 candidate sets of model parameters between these limits. It then takes a biased random
walk in the ‘vicinity’ of this population, iteratively updating the population as parameters
that reduce the residuals are found. The algorithm terminates either when variation in the
cost function amongst the population is reduced below some threshold, or when it reaches
10000 iterations.

For the Tum−CI MFL hysteresis data, a weighted least-squares cost function was chosen,
since larger LacZ units tend to be accompanied by increased standard deviations. In
other words, the results with higher activities should have less influence on the fit, that
is, they should be weighted less heavily. Often the weight of each residual is set to the
inverse of the standard deviation. However, with only 6 data points per experimental
factor in the Tum−CI assays, the sample standard deviations (SDs) are a biased choice.
Instead, a log-log regression of SD versus sample mean was found to serve as a better in-
The MFL displays only weak bistability when measured over a whole population.

Figure 4.4: The steady-state model of bistability does not compare well with the long equilibration time assays. The low and high O/N Tum$^+$ LacZ assay curves from the WR-MC panel in Figure 4.3 are reproduced here overlaid with a steady-state curve derived from the Tum$^-$CI MFL model. The model curve is essentially as previously depicted in Figure 2.7(b), but the model parameters were manually adjusted to improve consistency with the data.

![Figure 4.4](image_url)

An assumption of the least-squares approach to regression is that residuals share the same variance (standard deviation) and fit a normal distribution, hence the use of normal probability plots.

indicator of the true SD, as judged by normal probability plots7 of the weighted residuals from the sample means. This analysis was limited to the MFL strains with medium-copy pR-tum plasmids, since those with low-copy plasmids did not show persistent hysteresis, were hence less informative, and so will not be considered in the context of fitting parameters. As will be described below, alternative cost functions were employed to suit different purposes, but all functions involved collation of residuals across multiple data sets. In particular, the complete hysteresis assay — both Tum$^+$ and Tum$^-$ variants, each having low and high O/N data sets — was always scored as a unit, thus requiring calls to both repressor and MFL models in order to calculate the cost. In this way, the best parameters would maximise the fit to all relevant data sets simultaneously.

Ideally, the steady-state model of the Tum$^-$CI MFL would be used for fitting the data since it has the least number of parameters. The data of choice would then be confined to the long equilibration time hysteresis assays, since the normal equilibration time assays are clearly further from steady state. A comparison of the WR-MC long equilibration time hysteresis assay data with a typical steady-state curve is shown in Figure 4.4. Whilst the model parameters in the figure were manually chosen, so do not represent an optimised fit of the data, the qualitative differences between the steady-state model and data are still apparent. The long equilibration time WR-MC MFL hysteresis assay (and also the ER-MC assay), bears a shape that appears ‘collapsed’ relative to that of the steady-state model. It is difficult to see how the bistable region of the steady-state model might fit inside the experimental hysteresis curves. Even reducing the vertical span of the unstable states (dotted line) to zero would not allow the steady-state model to encompass all of the apparently stabilised data points (recall that the low and high O/N curves of the WR-MC MFL strain remain separated at the highest rate of production for longer equilibration

7An assumption of the least-squares approach to regression is that residuals share the same variance (standard deviation) and fit a normal distribution, hence the use of normal probability plots.
4.3 The deterministic model does not capture the behaviour of the MFL

times still).

So if the deterministic model as described is indeed suitable for describing the Tum−CI MFL hysteresis assays, the additional flexibility in curve shape afforded by time course simulations of the deterministic free species model may well be necessary to explain the observed collapsed hysteresis loops. Unfortunately, shifting to such a model necessitates additional parameters, specification of initial species concentrations, and choice of simulation times for each assay. However, in spite of the increased size of the parameter space, this model does still offer a couple of important advantages: (1) non-equilibrium behaviour can be captured, which means that both normal and long equilibration time data sets can be simultaneously fit; and (2) solutions calculated using this model are more robust to parameter variation than those of the steady-state model. One major disadvantage is the additional computation time such simulations require. With both normal and long equilibration time assays and also assays of the Tum− controls, each of the ER-MC and WR-MC data sets contain 64 experimental factors for which residuals must be calculated. Since each of these experimental factors requires its own deterministic simulation to calculate the cost, and this cost may need to be recalculated up to 10000 times in the search algorithm, a number of code optimisations were incorporated into the model simulation routines to minimise computation time. The model implementation, fitting routines and optimisations are further described in Appendix C.

In order to limit the size of the parameter space, a few assumptions will be made to fix some parameters. However, since the aim here is to test whether the model can fit the data, the number of fixed parameters will be kept to a minimum to maximise model flexibility. The free species MFL ODEs (refer back to Equation (2.17) in Section 2.2.3) are defined in terms of 11 parameters, with an additional 2 parameters required to describe the evolution of the reporter gene product, β-gal. Of these 13 parameters, 5 can be eliminated since (1) the CI production rate (pC) is set in the assay according to the normalisation described in Section 4.1.2, (2) the degradation rates of CI and β-gal (δC and δZ) are assumed dilution limited, so can be set equal to the dilution rate (γ), (3) the dissociation constant for the Tum−CI equilibrium (k−S) only needs to be large enough that the Tum−CI reaction can occur on a different timescale, making the estimate from Chapter 2 sufficient, and (4) the degradation rate of the Tum−CI complex (δS) is left set to zero, since there is no evidence for such degradation and the parameter plays a similar role to εS in affecting curve shape. The remaining 8 parameters are the EC50s and Hill coefficients of the Tum−CI and CI−pR equilibria, the production rates of Tum and β-gal from pR, the degradation rate of Tum and the dilution rate. To maximise the flexibility of the model all of these parameters will be allowed to vary, though some minor changes to the parameterisation will prove useful.

Since a biased random walk is employed to search the parameter space, the implicit correlation of production and degradation terms may result in futile cycles of variation in which these parameters change at cross purposes to each other. To minimise such redun-
dancy in the sampling, the maximum steady-state values of Tum and β-gal (M_T and M_Z respectively) are varied instead, and then for simulation, the respective production rates are derived from these steady-state values and the given degradation terms. Analogously, since the measurements of CI production rate as used in Section 4.1.2 were derived via the measured dilution rate, which is here allowed to vary, the level of induction of P_{lac} is fixed instead using the steady-state CI concentrations (M_C). Then for the simulation, all relevant CI production rates are derived from these steady-state concentrations. Finally, in order to limit the degradation rate of Tum so that it cannot be slower than the dilution rate, a parameter that specifies the ratio of Tum degradation to dilution is instead varied. Setting a lower limit of 1 on this scaling factor will prevent the Tum degradation rate from becoming slower than the dilution rate. This modified set of 8 parameters are the core determinants of MFL circuit behaviour, but there are still a number of additional parameters that are needed to describe the hysteresis assay.

When modelling hysteresis by a time-course simulation, the initial species concentrations and timing of the simulation can also impact the shape of the resulting curves. For the hysteresis assay described here, it is assumed that overnight growth of the cultures brings the circuit to steady-state at each end of the hysteresis curve. With that assumption, initial species concentrations can be derived using steady-state considerations. However, as highlighted in Section 4.2.2 to explain the stable separation of the WR-MC MFL curves at the highest CI production rate, the simulation parameters of a stationary phase culture are likely to differ from those of log phase cultures. To capture such a discrepancy without introducing too many additional parameters, two scaling factors are introduced that independently adjust the assumed CI production rates of the low and high O/N cultures. Initial species concentrations are then determined by equilibrating the circuit to steady-state according to the log phase parameters, but at these scaled CI production rates. With the initial effective CI production rates no longer restricted to those at the boundaries of the log phase assay, the simulation is able (with a suitable choice of parameters) to reproduce the observation of stable separation at the maximum level of induction that was seen for the WR-MC MFL. The use of these two initial scaling factors partly obviates the need for optimisation of the simulation times, since the scaling factors also affect how far the initial states are from their final equilibrium points. As such, simulation times for modelling of the normal and long equilibration data will be left set to the experimental averages.

4.3.2 Fitting the WR-MC data set alone

The deterministic model was tested first against the data of the WR-MC MFL. The fit to both normal and long equilibration time data sets was optimised simultaneously, since such time-dependent data would help to better constrain the kinetic parameters, notably the degradation and dilution rates. All 10 parameters as described were allowed to vary during the pseudo-random search, with parameter bounds set according to the confidence
Figure 4.5: The deterministic Tum−CI MFL model cannot match all features of the experimental WR-MC MFL hysteresis assays. The model curves as shown were found via an extensive search of the parameter space using a pseudo-random search algorithm, and represent the best combined fit of the normal and long equilibration time hysteresis assay data for the WR-MC MFL strains (the original data is shown in Figures 4.1 and 4.3). Colour is used to distinguish Tum+ and Tum− strains and the initial O/N cultures (low or high) according to the previous figures. The error bars indicate standard deviations (SDs) used for weighting the sums of squared residuals during fitting; these are not the individual sample SDs, but were derived from a log-log regression of SD versus sample mean.

In the experimental parameter estimates. These bounds were iteratively enlarged according to some initial trials in which the parameters of best fit were close to the provided limits. The curves of best fit are shown overlaid on the data in Figure 4.5.

Whilst the long and normal equilibration time data sets do bear some notable inconsistencies with each other, the ‘optimal’ model fit clearly misses a number of important experimental data points. It captures the skewed shape of the collapsed experimental hysteresis loop to some extent, especially at the normal equilibration time point, but it fails to match the degree of skew seen experimentally. The most obvious deviation from the data is evident at high CI production rates, where the experimental data continues to show significant separation between low and high O/N curves, whilst the model curves quickly equilibrate to a single low pR activity monostable state. Hence, in spite of the introduction of stationary phase CI production scaling factors that can enable bistable separation at the highest CI production rate, the best fit of the data is obtained when the region of bistability sits within the region of largest separation between high and low O/N curves (around 50–80 CI dimers/min). The model cannot simultaneously capture both the separation of hysteresis at high CI production rates and the significant skew of the hysteresis data. It cannot even match the rapid change of the high CI, low O/N Tum+ data between the normal and long equilibration time points. There are certainly discrepancies between these data sets, and this could be partly to blame for such insufficiencies, but with the obvious discrepancies being located around the lowest CI production rates with the highest pR activities, this cannot be the primary source of deviation from the model. So, as was also expected of the steady-state model, the deterministic model does not explain the unusual ‘collapsed’ shape of the hysteresis curves or the apparent existence of bistability at
the highest CI production rate.

The Tum− control data shows fewer discrepancies between normal and long equilibration time data, and supports the earlier statement that the biggest discrepancies between the two data sets are at the lowest CI production rates. This data describes a much simpler gene network primarily consisting of the effect of CI repression at \(pR \), but even so, the fit of the model control curves to this data set were not as good as expected. Firstly, about the half maximal activity point, the model curves overestimate the activity at lower CI production rates and underestimate it at higher CI production rates. Secondly, maximum \(pR \) activity should occur in the absence of CI, but the model curve seems to approach a maximum that is well below the mean activities of the (non-zero) minimum CI production rate data points. These deviations are reflected in the optimised parameters: the Hill coefficient for CI repression (\(H_R \)) is estimated unusually high at around 3, and the maximum \(pR \) activity (\(M_Z \)) is grossly underestimated at around 715 LacZ units. Fits of the control curves by themselves produced more plausible models of CI repression of \(pR \) (data not shown), so the apparently poor fit shown in Figure 4.5 is presumed to be a consequence of the additional constraints imposed by simultaneously fitting the MFL data. This further highlights the deficits in the MFL model, since the poorly fitting MFL data also compromises the fit of the control curves.

4.3.3 Fitting the combined data sets

Whilst the WR-MC MFL strain produced the best separation between high and low O/N hysteresis curves, modelling of that strain was complicated by the fact that the hysteresis loop was incomplete. In contrast, the ER-MC MFL strain, which has the same theoretical steady-state behaviour as the WR-MC strain, produced a complete hysteresis loop since it can access higher CI production rates during log phase growth. With the additional information provided by the ER-MC strain, it may be possible to better constrain the search of the parameter space and find more likely fits of the data. However, to make use of this additional data it becomes necessary to draw a more quantitative comparison between the ER-MC and WR-MC data sets.

When close to steady-state, the ER-MC and WR-MC Tum− control strains should give similar \(pR \) activities at points where the production rate of CI is induced to the same level. However, by comparing the \(x \)-axes of the experimental curves in Figure 4.3, it can clearly be seen that the CI production rates assigned to the eRBS strains conflict with those assigned to the wRBS strains. This was not an unexpected discrepancy since the scaling of CI production rates was based on experimental measurements of steady-state CI concentrations, as described in Section 4.1.2, and those measurements were associated with high levels of uncertainty. Whilst such production rate measurements could be introduced as additional variable model parameters, it is preferable that they remain fixed when searching the parameter space, since these steady-state CI concentrations set the positions of the
4.3 The deterministic model does not capture the behaviour of the MFL

Figure 4.6: The whole-population WR-MC and ER-MC data sets can be matched up, but the additional data does not improve the model fit. The upper panels show the combined data of all hysteresis assays for the WR-MC and ER-MC strains at both normal and long equilibration (equil.) time points after scaling the CI production rates ER-MC data set to align that data with the WR-MC data set. The alignment was determined by optimising a single parameter, effectively the relative increase in strength of the enhanced RBS (ER) over the wild-type RBS (WR), to fit a reference model (defined by parameters optimised to fit the WR-MC data) to the ER-MC data set. The lower panels show the same data as the upper panel, but overlaid instead with model curves that were obtained by optimising 10 parameters (as described in Section 4.3.1) using a pseudo-random search algorithm to explore the parameter space. Error bars indicate the SDs used for weighting the sums of squared residuals as described in Figure 4.5.
data points and thus serve as key reference measures. By leaving them fixed, any errors
in the scale of such parameters are instead compensated for during fitting by correlated
adjustments to other parameters such as the EC$_{50}$ of CI−pR binding (ε_R), or the dilution
rate (γ). Since the measurements of CI production rate appear to be substantially different
for each RBS, a single parameter set could not simultaneously describe both the WR-MC
and ER-MC data. A way to reconcile the ER-MC data set to the WR-MC data set is needed.

To obtain a consistent combined data set, the CI production rates of the ER-MC data
set were scaled to align that data with the WR-MC data. This was achieved by optimising
a scaling factor for CI production rates to fit the ER-MC data set with a reference model,
derived from the optimised parameters of the WR-MC data set. Since only this scaling
factor was optimised, a shorter non-random optimisation algorithm was employed. Ap-
plication of this optimised scaling factor (with a final value of 0.57) to the ER-MC data set
produces a remarkably good overlap between the ER-MC and WR-MC data sets, as shown
in the upper panels of Figure 4.6. This is particularly evident for the Tum$^-$ control curves,
but considering the sizes of the confidence limits on the MFL data points shown in Fig-
ures 4.1 and 4.3, there also seems to be good agreement between the ER-MC and WR-MC
MFL curves. In spite of the scaling, the adjusted eRBS CI steady-state concentrations still
fall within the experimental limits. The measurements of CI steady-state concentration
reported in Section 3.5.4 are listed in Table 4.1 along with the corresponding scaled CI
steady-state concentration for the eRBS. Whilst close to the lower limit, the scaled value
does lie within the confidence limits of the experimental measurement. Thus, it is likely
that the eRBS makes a smaller difference to the CI production rate than initially thought.

With the data sets aligned in this way, the 8 core model parameters and 2 O/N scal-
ing factors were optimised using the pseudo-random search algorithm as described pre-
viously for the WR-MC data set, but now for a combined cost function that would si-
multaneously fit both the WR-MC and ER-MC data sets. As seen in the lower panels of
Figure 4.6, the optimum set of parameters produced model curves not unlike those found
by fitting the WR-MC data set alone. The gentle descent of the low O/N MFL curve re-
mains poorly fit, so like before, the bistable region defined by the model curves is not large
enough to include the seemingly stable separation seen at the highest CI production rates
of the WR-MC strain. It is now quite clear that the deterministic model cannot account for
the collapse of the hysteresis curves.

The inadequacy of this model for describing the whole-population data sets is further
compounded by some of the extreme parameter values that were needed to produce even
poorly-fitting model curves. The optimised set of parameters is listed in Table 4.1, and
whilst some of the parameters fall near the estimates obtained experimentally or derived
from the literature, notably the unrepressed steady-state level of Tum (M_T), the majority
did not. Of particular concern were the high Hill coefficient for the CI−pR equilibrium, the
low Hill coefficient for the Tum−CI equilibrium and the long cell doubling time and Tum
4.3 The deterministic model does not capture the behaviour of the MFL

Table 4.1: Comparing parameters measured experimentally or obtained from the literature with those determined by fitting the deterministic model to the normal and long equilibration time ER-MC and WR-MC hysteresis assays. The upper section lists the parameters used to set CI production rates; the lower section lists the 10 parameters that were optimised to obtain the curves in Figure 4.6. Unless otherwise indicated, limits specify 95% confidence intervals.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental*</th>
<th>Literature</th>
<th>Model fit**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{wRBS}}^\text{tot}) (CI dimers/cell)†</td>
<td>((7 ± 2) \times 10^3)</td>
<td>((3 ± 1) \times 10^3) ‡</td>
<td>–</td>
</tr>
<tr>
<td>(C_{\text{eRBS}}^\text{tot}) (CI dimers/cell)†</td>
<td>((1.7 ± 0.8) \times 10^4)</td>
<td>–</td>
<td>((9.9 ± 0.2) \times 10^3)</td>
</tr>
<tr>
<td>Low O/N scaling parameter</td>
<td>–</td>
<td>–</td>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td>High O/N scaling parameter</td>
<td>–</td>
<td>–</td>
<td>4.9 ± 0.1</td>
</tr>
<tr>
<td>(\varepsilon_R) (CI dimers/cell)</td>
<td>–</td>
<td>((2.5 ± 0.8) \times 10^2) §</td>
<td>((1.43 ± 0.09) \times 10^3)</td>
</tr>
<tr>
<td>(H_R)</td>
<td>–</td>
<td>2.2 ± 0.2 §</td>
<td>3.0 ± 0.1</td>
</tr>
<tr>
<td>(\varepsilon_S) (Tum monomers/cell)</td>
<td>–</td>
<td>((1.28 ± 0.04) \times 10^3) ¶</td>
<td>((7 ± 3) \times 10^3)</td>
</tr>
<tr>
<td>(H_S)</td>
<td>–</td>
<td>4.6 ± 0.6 ¶</td>
<td>1.00 ± 0.02</td>
</tr>
<tr>
<td>(M_Z) (LacZ units)</td>
<td>–</td>
<td>800–1200 #</td>
<td>714 ± 61</td>
</tr>
<tr>
<td>Doubling time (min.)</td>
<td>28.2 ± 0.2 ††</td>
<td>–</td>
<td>40 ± 3</td>
</tr>
<tr>
<td>Tum half life (min.)</td>
<td>2.7 ± 0.2</td>
<td>–</td>
<td>39 ± 4</td>
</tr>
<tr>
<td>(M_T) (Tum monomers/cell)</td>
<td>((2.5 ± 0.7) \times 10^4)</td>
<td>–</td>
<td>((3 ± 1) \times 10^4)</td>
</tr>
</tbody>
</table>

* Parameters determined experimentally in this thesis.
** Parameters determined by fitting hysteresis data with the deterministic model.
† Steady-state levels of total CI dimers measured for the wild-type RBS (wRBS) or enhanced RBS (eRBS) with induction by 300 µM IPTG.
‡ Extrapolated from Western blotting data of Dodd and Egan [2002] as described in Figure 3.11, Section 3.3.
§ Parameters as fit by Dodd et al. [2007b]; limits indicate ‘acceptable ranges’.
¶ Obtained by fitting in vitro gel shift data of Shearwin et al. [1998] to the model described in Section 2.2.2; \(\varepsilon_S \) was further converted to a number of monomers per cell using the scaling factor from Section 3.4.4.
Range estimated from LacZ assays of various MFL-like CI− control strains in Pocock [2007].
†† The mean doubling time of all MFL strains (Tum+ and Tum−) with a medium copy pR-tum plasmid.

half life. All of those parameters encroached on the chosen boundaries for the parameter space, so marked significant departures from the expected values. The high Hill coefficient of the CI−pR equilibrium is again responsible for the poor fit of the control curves. So, considering that the fitted model also argues for no Tum−CI cooperativity, the indication is that a fundamentally different mechanism would be required to explain the action of Tum on CI in vivo. Alternatively, some other perturbation of the data may have forced these parameters into explaining an unrelated phenomenon.

Though deterministic models have often been successfully employed to describe the behaviour of genetic circuits [Gardner et al., 2000; Elowitz and Leibler, 2000; Karlebach and Shamir, 2008], gene networks are intrinsically noisy [Raj and van Oudenaarden, 2008] and can exhibit phenotypes that are products of such stochasticity [Cağatay et al., 2009; To and Maheshri, 2010]. The ‘collapse’ of hysteresis in the MFL strain could well be ex-
explained as a stochastic and not a deterministic phenomenon: if the \(pR \) activity recorded at each IPTG concentration is the average over a population of cells with heterogeneous final CI concentrations, the sharp bifurcation boundaries of the deterministic model could be significantly blurred. Conceivably, this source of noise alone could be the origin of the skewed hysteresis curves if the stochastic expression of CI were noisy enough. However, it is likely that other sources of intrinsic noise also arise in this gene network. Such explanations for the collapse of hysteresis will be explored in subsequent chapters.

4.4 Chapter summary

The experimental hysteresis assays of the Tum–CI MFL strains that were first reported in Chapter 3 did not compare well with the predictions of the deterministic model. Correcting for the dependence of LacZ units on \(OD_{600} \) and normalising the culture IPTG concentrations to corresponding CI production rates, helped to allay concerns that this could have had an experimental origin. Nonetheless, these corrections did still increase the apparent separation between the hysteresis curves and also facilitated cursory comparisons with the model. These considerations brought into attention the possibility for non-equilibrium behaviour to obscure such comparisons. This motivated modifications of the hysteresis assay that extended the time of equilibration, and a set of long equilibration time hysteresis curves were measured. These new curves revealed a collapsing hysteresis loop, showing no bistability for the MFL strains with low-copy \(pR\text{-tum} \) plasmids, and only weak bistability for the MFL strains with medium-copy \(pR\text{-tum} \) plasmids. The shapes of the hysteresis curves were unexpected, so attempts were made to fit the deterministic model to the combined data set of all medium-copy \(pR\text{-tum} \) strains. After an extensive search of parameter space, it was decided that whilst the deterministic model could approximate the data sets, it was unable to account for a number of important features. These unexplained perturbations will be addressed in the following chapters.
Hysteresis of the Tum−CI MFL is obscured by stochastic switching between two semi-stable states

Hysteresis assays of the Tum−CI MFL by LacZ assay provided evidence for bistability that was based on the observation of history-dependent curves. The limited persistence of these hysteresis curves, however, left in question the value of the assay for assessing regions of bistability in the MFL. Parameter variation in the model alone could not account for the observed skew of the hysteresis cycle, and it was instead hypothesised that the anticipated boundaries had been blurred by sources of noise that were invisible to the population averages obtained by LacZ assay. With sufficient cell-to-cell variation, averaging of the MFL reporter activity could result in a biased measure relative to the deterministic model. Cell-to-cell variation is not without precedent: noise in protein abundance is generated both intrinsically through gene expression and extrinsically through variation in other cellular factors [Elowitz et al., 2002]. Stochastic variation in protein abundance can give rise to alternative phenotypes that are dependent on noise characteristics [Maamar et al., 2007; Çağatay et al., 2009], can extend effective bifurcation boundaries relative to deterministic predictions [Kepler and Elston, 2001], or can even produce bimodal behaviour in networks without deterministic bistability [To and Maheshri, 2010]. In order to determine whether such stochastic effects might result in the limited bistability observed by LacZ assay, a measurement technique is required that can record reporter gene levels in individual cells. Whilst single-cell gene activity measurements can indeed be made using a lacZ reporter gene [Cai et al., 2006], it is far simpler and more common to make use of fluorescent reporters, measuring cell fluorescence by microscopy [Becskei and Serrano, 2000; Elowitz et al., 2002; Yu et al., 2006] or flow cytometry [Gardner et al., 2000; Isaacs et al., 2003].

In this chapter, robust automated protocols are developed for measuring and analysing Tum−CI MFL cell samples from hysteresis assays by flow cytometry. The chapter begins with a description of the flow cytometric method and details data preparation methods that improve the relationship between fluorescence data and internal cell state. A preliminary look at the resulting curated fluorescence distributions suggests that samples in the putative regions of bistability are in fact mixtures of two fluorescence populations. A
definitive analysis is unfortunately obscured by poor separation between the populations, which then prompts a more rigorous quantitation of the reporter distributions. An empirically constrained mixture model analysis provides high-confidence confirmation for the presence of two cell sub-populations in many of the samples. Using summary statistics to describe each fitted sub-population, a new picture of hysteresis emerges. The long equilibration time assays of each of the Tum−CI MFL strains now clearly reveal a region supporting two semi-stable states that compares favourably with the steady-state model of the MFL. A similar analysis for single-cell measurements of the ER-MC MFL for different equilibration shows that switching between these semi-stable states occurs on a timescale similar to the length of the hysteresis assay.

5.1 Relating single-cell and whole-population measures of promoter activity

Given the typical magnitudes of gene expression noise seen in *E. coli* [Taniguchi et al., 2010], single-cell measurements need to be obtained for relatively large populations of cells in order to accurately sample the distribution of activities. Using flow cytometry, the fluorescence of many thousands of cells can be measured for a single culture; this set of fluorescence measurements is a representative sample of the ‘true’ fluorescence distribution. In the hysteresis assay, such distributions will be sampled over multiple experimental conditions, and reliable automated protocols that maximise the relationship of fluorescence intensity to protein levels form an important part of the analysis. This section describes methods for filtering and normalising single-cell measurements made by flow cytometry. The average intensities of the curated data sets are used to confirm that these methods produce results that are consistent with those obtained by LacZ assay.

5.1.1 Assaying gene circuit hysteresis by flow cytometry

To maximise consistency with the previous assays, methods for growing and preparing cells for measurement by flow cytometry were kept as close as possible to those developed for the LacZ assay. As described in Section 3.1.2, all of the Tum−CI MFL strains used in this thesis were designed with a dual reporting system in which separate *pR-lacZ* and *pR-gfp* reporter modules allow for measurement of the same culture by either LacZ assay or flow cytometry. Hence, the protocols for hysteretic growth of the MFL and *tum−* control strains remain unchanged except for the final assay step. Whereas in the LacZ assay, cells in the culture are lysed once the chosen OD_{600} is reached, in the flow cytometric assay, cells at the chosen OD_{600} are instead resuspended in Phosphate-Buffered Saline (PBS) prior to measurement in the flow cytometer. This means that the different assay types mentioned in Chapter 4 (i.e., short, normal and long equilibration time assays) are all still applicable in the single-cell experiments. By taking single-cell measurements, flow
cytometry removes the direct dependence on the OD$_{600}$ that was needed for calculating LacZ units. Nonetheless, similar OD$_{600}$s are maintained to ensure that cells are measured at comparable growth phases and equilibration times.

Measurements obtained using the flow cytometer provide a much more comprehensive picture of the state of the culture than the LacZ assay. Most importantly, the flow cytometer can record a large number of single-cell measurements. By making use of a specialised fluidics system, a flow cytometer can focus a flowing cell suspension so that cells pass through a laser beam one at a time. The laser beam excites any fluorophores present in a given cell, which then fluoresce at wavelengths longer than that of the laser. Different fluorophores emit at different wavelengths, and an array of detectors and optical filters located at 90° to the beam can be used to quantitate the fluorescence emitted by different fluorophores simultaneously. As described in Section 3.1.2, the folding reporter GFP was chosen since its fluorophore maximises overlap of the excitation and emission spectra with the laser light wavelength and filters of the available flow cytometer.

The flow cytometer also measures laser light that gets scattered by the cells. The forward scatter (FSC) detector (in the path of the beam) measures small-angle scattering of the laser beam due to a given cell, and is related to cell volume [Koch et al., 1996]. The side scatter (SSC) is a measure of the laser light that is scattered 90° to the beam, and is affected by the internal complexity/granularity of each given cell. As a cell traverses the beam, each of these detectors sees a pulse of light, and the intensity is measured as both a pulse area and peak height. So, in a configuration with just one fluorescence detector active (i.e., the configuration for the Tum−CI MFL), the flow cytometer returns 7 different channels of data (including the relative measurement time of each event). However, unless otherwise specified, standard practice is followed throughout this thesis by using only the FSC peak height channel (FSC-H), the SSC pulse area channel (SSC-A), and fluorescence pulse area channel.

In a manageable time frame (considering the number of cultures involved in a typical hysteresis assay), such measurements can be obtained for between 30,000 and 100,000 cells for each culture1. Sources of experimental variation that are extrinsic to a given culture, such as technical variation, are not captured in the cell-to-cell variation of a single culture. However, given the size of the hysteresis assay and the extra time required for flow cytometric measurements, such technical repeats were not made. In the LacZ assay, technical repeats were especially helpful, given the close dependence of the measurement on culture OD$_{600}$; this source of variation is less influential on the flow cytometry results, improving consistency between technical repeats, but ideally such technical repeats would be made. In their raw form, these large data sets contain factors that obscure an accurate analysis, so some curation must be performed before interpreting the results. This includes data transformation, filtering out non-cellular debris, and normalising the fluorescence according to

1Note that LacZ assay measurements capture the average activity of around 2×10^6 cells.
cell morphology; each of these factors will be addressed in the coming sections.

5.1.2 Choosing an appropriate data transformation

Flow cytometry data has commonly been visualised on a logarithmic scale, since this tends to produce intensity distributions that are more normally distributed, and facilitates the visualisation of data that can be spread over several orders of magnitude. For samples with low or no fluorescence, instrumental background correction can result in measurements that are less than or equal to zero, and these cannot, therefore, be displayed on a logarithmic scale. The ‘Logicle’ display method [Herzenberg et al., 2006; Parks et al., 2006] overcomes this deficiency by taking a biexponential transformation of the data that is close to logarithmic for large intensities, but approximately linear for measurements around zero. Using this method, zero and negative measurements can still be displayed and analysed. Parameters for the logicle transformation function are chosen according to the protocol specified in Parks et al. [2006] for a 4.5 decade display, and the transformation implemented using the flow cytometry packages from the Bioconductor collection of R packages for the biosciences [Gentleman et al., 2004; Ellis et al., 2009a]. As described in Parks et al. [2006], the fifth percentile of the negative values is chosen as the negative range reference value for determining the width parameter. To maintain a consistent transformation over an entire assay (to within each dimension/channel), these parameters are derived using the aggregated negative values of all samples in that assay, and determine an assay-specific Logicle transformation. A number of subsequent analyses make use of the Logicle-transformed fluorescence intensities since this simplifies the choice of statistical distributions; where transformed data is specified, the assay-specific Logicle transformation is assumed. Whilst FSC and SSC channels typically contain no negative values, where these are more appropriately treated using a logarithmic scale, the Logicle transformation is still applied for consistency and also so that no quantitative information is lost in transformation.

5.1.3 An automated filter for selecting cell populations

An unavoidable component of any cell suspension is a level of contamination resulting from dust particles, dead cells, and other non-cellular debris. The FSC and SSC channels can be used to filter out most of these unwanted data points, since healthy cells tend to cluster according to size and subcellular composition. In order to automate this process, the clustering functions of the flowClust package [Lo et al., 2009] were used to select the primary population of cells using an elliptical gating strategy. The ellipse is chosen so that 95% of the data points are included. Whilst such a liberal inclusion rate is not typical, a morphology normalisation strategy will be later applied in order to maximise cell homogeneity, removing the disadvantages of retaining such heterogeneity. An example application of a 95% elliptical filter is shown in Figure 5.1, where it can be seen that the
5.1 Relating single-cell and whole-population measures of promoter activity

Figure 5.1: The main bacterial cell population is easily identified using the forward scatter (FSC) and side scatter (SSC) intensities. Shown plotted are the SSC intensities (recorded as peak area) versus the FSC intensities (recorded as peak height) as measured by flow cytometry for a sample of ER-MC MFL cells grown according to the normal equilibration time assay with 60 µM IPTG, starting from a low O/N culture. The intensities are shown plotted using a Logicle display, which is effectively logarithmic at these high intensities. To assist visualisation, points are coloured by density. The black ellipse shows the 95% cutoff as determined by a clustering algorithm for a single cell population. Out of 31,770 events, 30,619 lie within the ellipse and are kept for further analysis.

majority of events recorded by the flow cytometer cluster close to the primary cell population. This is highly representative of all FSC/SSC plots regardless of strain or assay. After filtering, the remaining events are presumed to be the cells of interest.

The efficacy of such filtering can be verified in part by comparing how the resulting fluorescence distributions compare with the activity expected for the pR promoter. The upper panels of Figure 5.2 show histograms of the recorded fluorescence intensity for selected cell samples of a hysteresis assay. At the highest induction level (300 µM IPTG), the pR promoter is expected to be close to fully repressed, and the cell population reflects this with a relatively low fluorescence that represents the background fluorescence (or autofluorescence) of the cells. In contrast, at the lowest induction level (0 µM IPTG), the pR promoter is expected to be close to fully active, and the significantly higher fluorescence of that population reflects this. Very few events lie outside this high fluorescence population (less than 0.5% of the events have intensities outside 2×10^3–2.5×10^4), indicating that the vast majority are behaving as expected for the bacterial cell population.

The histogram for the intermediate induction level (60 µM IPTG) reveals that populations in the putative region of bistability have a more complicated probability structure. Nonetheless, by comparing this sample with the others, it seems feasible to suggest that this sample might be a mixture of low and high fluorescence populations.

5.1.4 Morphology normalisation refines the distribution of fluorescence

The apparent mixing of high and low fluorescence populations in the intermediate induction sample of Figure 5.2 highlights the poor separation between the minimum (300 µM IPTG) and maximum (0 µM IPTG) fluorescence populations. Whilst the peaks in the intermediate sample do not precisely overlap with the minimum and maximum peaks, an inspection of the peak widths (using the axis labels as a reference) makes it clear that a mix-
Chapter 5. Hysteresis is obscured by stochastic switching between semi-stable states

Figure 5.2: The resolution between low and high fluorescence populations is poor. Shown are histograms of fluorescence intensity for cell populations of the ER-MC MFL strain grown according to the normal equilibration time hysteresis assays for the initial and final IPTG concentrations as indicated. Included in the histograms are only those events which passed the filter as described in Figure 5.1. The histograms are displayed on a Logicle scale (see Section 5.1.2); the approximate limits of the linear region about 0 are indicated. Histograms in the upper panels are of the raw fluorescence intensity, whilst those in the lower panels are of the fluorescence intensity after normalisation according to morphology. The solid black line in each histogram is the kernel density estimate.

ture of low and high fluorescent populations would nevertheless suffer a significant level of overlap. This poor resolution prompts a closer look at variables which may obscure an accurate measure of pR activity. Such deficiencies in resolution may merely reflect the intrinsic level of noise produced by the genetic network, but other sources of variation/error are also likely. These could include instrumental measurement errors, poor fluorescence sensitivity over the cellular autofluorescence background, or variations in protein number resulting from cell cycle-dependent differences.

Without resorting to changes in the strain or experimental procedure, the simplest source of additional variation to address is the latter. That is, the natural correlation of protein number with cell size: a cell that has just undergone division is expected to have roughly half the number of proteins (and hence half the fluorescence) of a cell just before division. Correcting for such an effect makes sense in terms of the deterministic model as well, since state variables are most easily treated as constant-volume concentrations, where the concentration of each species relative to the genome copy-number is the relevant quantity. For data obtained by flow cytometry, normalisation by cell morphology is a real possibility since the FSC and SSC intensities are indicators of cell size and complex-
5.1 Relating single-cell and whole-population measures of promoter activity

Such normalisation has seen successful application in *S. cerevisiae* [Knijnenburg et al., 2011], and is likely to have a similar, but perhaps less pronounced effect in *E. coli*.

Here, morphology normalisation is applied essentially as described by Knijnenburg et al. [2011], though using custom R scripts instead of Matlab scripts to perform the analysis (see Appendix B). Briefly, the normalisation protocol estimates for each sample the general trend of fluorescence intensity with both FSC and SSC, makes relative corrections for this trend within the sample, and finally restores absolute fluorescence intensities according to a model FSC/SSC density. The general trend of fluorescence intensity is characterised as a strictly increasing regression surface, defined over FSC and SSC space (with terms as specified in the paper), that is fit to the (filtered) data for each sample\(^2\). The residuals from this regression surface are kept as the corrected deviation of the population from the fluorescence mean. The mean fluorescence is then calculated from the surface as the expected fluorescence over a representative FSC/SSC density. The choice of this representative density will be returned to later.

Application of the morphology normalisation to Tum–CI MFL cell samples provides a marginal improvement in resolution between high and low fluorescence populations. Referring back to Figure 5.2, the effect of morphology normalisation can be seen by comparing selected samples before (upper panels) and after (lower panels) normalisation\(^3\). There is a small but definite increase in resolution that is especially evident as a deeper trough between the putative high and low fluorescence peaks of the intermediate induction sample, but is also evident as a sharpening of the peaks in the other two samples. Whilst these differences may appear inconsequential at this point, the normalisation deconvolutes hidden variables from the samples and hence better reveals the underlying model-related probability distributions, as will be confirmed later.

As a validation of the normalisation method, it is useful to consider the mean fluorescence intensity of each sample. The mean fluorescence intensity should in theory show a linear relationship with the equivalent results obtained by LacZ assay. Note that it is the untransformed fluorescence intensity that is proportional to the level of fluorescent protein (promoter activity), and not the Logicle-transformed intensity. Morphology normalisation is calculated using the Logicle-transformed data, so whenever population statistics are calculated in this thesis, the inverse Logicle transformation is always applied to the normalised data prior to deriving that statistic. In Figure 5.3(a), the mean fluorescence of morphology normalised data for a long equilibration time assay of the ER-MC strain is shown overlaid with LacZ assay results for comparison\(^4\). Since the units of each measurement

\(^2\) To best match the method of Knijnenburg et al. [2011], the regressors are the untransformed FSC and SSC channels, whilst the response variable (fluorescence intensity) is treated logarithmically; here, though, the Logicle transformation is used in preference to the log transformation.

\(^3\) Note that the normalisation applied in Figure 5.2 makes use of a minor conditional amendment to the protocol that will be introduced later.

\(^4\) Note that to maximise comparability, the cell suspensions for these flow cytometry measurements were sampled directly from the same cultures as one of the repeats of the long equilibration time ER-MC LacZ assay.
Chapter 5. Hysteresis is obscured by stochastic switching between semi-stable states

Figure 5.3: The mean fluorescence of the cell populations overlaps well with the mean pR activity measured by LacZ assay to within an offset and scaling factor. The population mean fluorescence intensities calculated for ER-MC MFL strains grown according to the long equilibration time hysteresis assay and measured using flow cytometry, are shown plotted against the normalised CI production rate, and are displayed with the equivalent results obtained by LacZ assay for comparison. Data from the LacZ assay is plotted according to the left axis; data from the flow cytometry assay is plotted according to the right axis, which has been scaled to maximise overlap between the two different data sets. The flow cytometry data is displayed for two variations on the morphology normalisation protocol: (a) normalisation where the average cell density is uniformly applied to determine the expected fluorescence for each sample, or (b) normalisation where the expected fluorescence for each sample is determined using a sample-specific cell density.

The representative cell density in FSC/SSC space specified by Knijnenburg et al. [2011] worked well for morphology normalisation of most samples. This is evident from the overlap of the mean fluorescence activities with LacZ activities as shown in Figure 5.3(a). However, the high intensity samples showed some biases that were found to be due to the choice of representative cell density. By modifying the protocol to use sample-specific cell densities, overlap for the high intensity samples was improved, as can be seen in Figure 5.3(b). This revised protocol was used instead of the original for these flow cytometry samples. A set of high quality assays that will be introduced later in Section 5.4 did not

assays reported in Section 4.2.2 and, as such, the LacZ assay data is taken directly from the ER-MC panel of Figure 4.3.
5.1 Relating single-cell and whole-population measures of promoter activity

Figure 5.4: Viewed as cell populations, hysteresis in the Tum−CI MFL is manifest as a history-dependent broadening of fluorescence. Scatter plots of fluorescence versus FSC are plotted (using a Logicle display) for cell samples from a normal equilibration time hysteresis assay of the ER-MC MFL strain. The FSC has been offset and scaled to centre each plot at the rate of CI production that it was measured for. Cell populations starting from the low O/N are shown in blue and those from the high O/N are in red; points are shaded according to density.

5.1.5 The curated data is suggestive of population mixing

In spite of transformation, filtering and normalisation, the curated fluorescence data remains difficult to interpret due to the low resolution between the maximum and minimum intensity distributions. A comparison of the curated fluorescence distributions across an entire assay is shown in Figure 5.4 for a normal equilibration time hysteresis assay of the ER-MC MFL Tum+ strain. To aid visualisation, the data for each sample has been separated according to FSC and shaded according to density. The low resolution limits interpretability, but a couple of interesting features are nonetheless apparent in the data without further analysis.

Firstly, asymmetry between the two alternative hysteresis curves is most obviously seen as a difference in distribution spread. The greatest spread in fluorescence intensity for the low O/N samples occurs at a higher production rate (around 130 CI dimers/min) than for the high O/N samples (somewhere between 50–100 CI dimers/min). This history-
dependent spreading of the fluorescence distributions cannot be seen using population averages alone (i.e., by LacZ assay), but represents a likely origin for the lack of sharp boundaries in the whole-population results.

Secondly, the presence of two sub-populations, as was suggested for the intermediate induction sample in Figure 5.2, appears to be consistently reproduced for a number of samples in the assay. By focussing on the regions of highest intensity (darkest shading), there appear to be two alternative populations of cells that share common average intensities, independent of initial condition or CI production rate, but that vary in relative abundance from sample to sample. The centres of these putative sub-populations line up with the centres of the minimum and maximum intensity distributions that bookend the hysteresis assay.

For a strongly bistable system, one would expect that cell populations set in monostable regions of the hysteresis curve would produce unimodal populations in the bistable region until the bifurcation threshold is reached. However, if the system were only weakly bistable, so that noise in the circuit could cause stochastic transitions between the two zones of stability, one might instead expect a mixture of two populations — a bimodal population — with some number of cells potentially ‘in transition’ from one state to the next.

5.2 MFL samples within the bistable region are a mixture of two cell populations

By inspecting the histograms and density maps of cell population fluorescence shown in the previous section, it seems likely that samples within the putative bistable region consist of two sub-populations. However, especially given the poor resolution between the two populations, a suitable statistical description of such populations will allow quantitative assessment and treatment of the sub-populations, facilitating interpretation of the data in light of the model. In this section, the skew-t distribution is demonstrated to fit the unimodal control populations very well. Then, using the fits of the controls as training sets, it becomes possible to define a sub-family of skew-t distributions that match the unimodal control samples. By fitting two-component mixtures of these constrained skew-t distributions to hysteresis samples of the MFL strains, two sub-populations can be identified for many of the intermediate induction samples. Such a description of the data enables calculation of informative population statistics that can accurately summarise the data for visualisation and modelling.

A major application of flow cytometry is in the identification of sub-populations of cells from biological samples, and in recent years, much effort has gone into automating this process [Bashashati and Brinkman, 2009; Robinson et al., 2012; Ho et al., 2012; Le Meur, 2013]. Such samples can potentially contain dozens of different cell phenotypes and are
5.2 MFL samples within the bistable region are a mixture of two cell populations typically probed using a large cohort of fluorophores; the challenge in such instances is in correctly classifying and interpreting a large, high-dimensional data set [Qiu et al., 2011]. The prevalence of such methods provides a strong foundation for analysing the far simpler Tum–CI MFL data. However, the contrasting challenge for the Tum–CI data set is in its low dimensionality: the data suffers from poor resolution. Whereas standard algorithms for studying sub-populations, like k-means clustering, work well for samples with well separated sub-populations, here a little more care is required.

The issue of resolving overlapping sub-populations in flow cytometry data was considered some time ago by Lampariello and Aiello [1998]. By characterising the form of a negative control population, Lampariello and Aiello were able to improve the identifiability of a positive control population in spite of significant overlap. Here, a similar approach is followed but with a few modifications and additions that make the analysis more suitable in a quantitative context. These include updating the choice of distribution for describing the data, treating the problem within the more general mixture modelling framework, and generalising the fixed negative control to a family of control distributions whose shape is parameterised as a function of median fluorescence.

Even after Logicle transformation and normalisation, data obtained by flow cytometry tends to have an asymmetric and heavy-tailed distribution that is not well fit by the standard Gaussian (normal) distribution. Whilst the transformation of the data could be further optimised to maximise ‘normality’ [Finak et al., 2010], an indiscriminate transformation of the data would be unable to account for sample-dependent asymmetries. For example, in *E. coli* the noise in protein expression is typically Gamma distributed [Friedman et al., 2006; Taniguchi et al., 2010] and a Logicle or power transformation of such distributions are not in general well fit by a Gaussian. A more flexible approach is to model the data using a distribution that can account for asymmetry. The Gamma distribution is unlikely to have sufficient flexibility to model all of the Tum–CI MFL data, since instrumental noise and circuit ultrasensitivity would both distort this ideal distribution. The Johnson SU family of distributions, as chosen by Lampariello and Aiello [1998], includes parameters to introduce asymmetry and fits flow cytometry data well, but its moments (mean, variance, skew, etc.) have a complicated dependence on the parameters. More recently, the skew-t distribution has also been identified as particularly suitable for modelling flow cytometry data [Pyne et al., 2009], and is of particular interest here since it introduces skew into the heavy-tailed t distribution in a natural way, giving rise to well behaved statistical properties [Azzalini and Capitanio, 2003]. Like the t distribution, the skew-t distribution has parameters for location (akin to the mean), scale (akin to the variance) and the degrees of freedom, but it additionally includes a shape parameter that can be used to adjust the skew in a positive or negative direction. More information on the skew-t distribution can be found in Box 5.1.

An important test of the suitability of the skew-t distribution for modelling the Tum–CI
Box 5.1: The skew-t distribution. Instructive examples of the skew-t distribution shown in Panel A illustrate how the skewness parameter causes the skew-t distribution to deviate from the heavy-tailed t-distribution (the case where $\lambda = 0$). A definition of the skew-t distribution is provided in Panel B.

A random variable X follows the skew-t distribution if

$$X = \mu + \sigma \frac{Y}{\sqrt{\tau}}$$

where Y is a random variable from the standard skew normal distribution with skewness parameter λ and τ is a random variable from the gamma distribution with shape parameter $\nu/2$ and rate parameter $\nu/2$.

The standard skew normal distribution has a probability distribution function given by

$$f(y) = 2\phi(y)\Phi(\lambda y),$$

where $\phi(y)$ and $\Phi(y)$ are respectively the probability density function and cumulative distribution function of the standard normal distribution.

A Examples of the skew-t distribution for different shape parameters (λ). The other parameters are not varied, setting the location parameter $\mu = 4$, scale parameter $\sigma^2 = 1$ and degrees of freedom $\nu = 3$.

B Defining the skew-t distribution with location parameter μ, scale parameter σ^2, skewness parameter λ and degrees of freedom ν. This (non-rigorous) formulation is adapted from the rigorous definition in Lin et al. [2007].
5.2 MFL samples within the bistable region are a mixture of two cell populations

Figure 5.5: The skew-t distribution provides a good fit of population fluorescence for the MFL control strains. Shown are histograms of fluorescence intensity measured for ER-MC Tum− cells grown according to the normal hysteresis assay for a range of initial and final induction conditions as indicated by concentration of IPTG. Fluorescence intensities were normalised according to cell morphology (Section 5.1.4) and are visualised using a Logicle display. The solid black lines are skew-t curves that were fit to the Logicle transformed data by Expectation-Maximisation, using the routine provided in the mixsmsn R package [Prates et al., 2013].

MFL fluorescence data is how well it fits the MFL control data. Since the control strains lack Tum, they are monostable and hence serve as a useful prototype of the unimodal distribution of fluorescence produced from the pR promoter. To this end, skew-t distributions were fit to all the control populations measured by flow cytometry using an expectation-maximisation routine from the mixsmsn R package [Prates et al., 2013]. The skew-t distribution fit all the data remarkably well, and a representative selection of these fits are shown in Figure 5.5 for a range of induction levels. The examples include both minimum and maximum possible expression levels from pR, but also intermediate examples starting from both low and high O/N cultures, and together demonstrate the utility of the distribution over the full spectrum of potential pR activities. To emphasise the need for a good model of the unimodal populations, it is worth highlighting again that mixtures of the pictured distributions would show significant overlap. In particular, even a mixture of the minimum (300 → 300 µM IPTG) and maximum (0 → 0 µM IPTG) intensity distributions would overlap.

The skew-t distribution provides a good fit of the unimodal data, but without additional constraints, it unfortunately still proves to be too flexible for reliably resolving the
Figure 5.6: The interquartile range (IQR) of intensity for the MFL control distributions varies as a function of the median intensity. Shown plotted against each other are the IQR and median of the normalised and transformed fluorescence for cell samples taken from the normal equilibration hysteresis assay of the ER-MC Tum\(^-\) control strain. The solid black line was determined by quadratic regression.

overlapping peaks in the bimodal data sets. An unconstrained fit of the bimodal data can be made using a mixture model of skew-\(t\) distributions. In statistics, mixture models are used to describe data that has been sampled from a mixture of component distributions, but for which the identity of the component distribution for each observation is unknown. For the Tum\(^-\)CI MFL, a two-component mixture model of skew-\(t\) distributions is thus a natural choice. Whilst methods for modelling mixtures of Gaussian distributions have been known for some time, methods for modelling mixtures of skew-\(t\) distributions have only been developed more recently [Lin et al., 2007]. Mixture modelling is also implemented using the mixsmsn \(R\) package [Basso et al., 2010; Prates et al., 2013], which treats the skew-\(t\) distribution as a member of the family of scale mixtures of skew normal distributions, fitting the data using an expectation-maximisation algorithm as in the unimodal case. When applied to the fluorescence data of the Tum\(^-\)CI MFL, this method of fitting worked well in obvious cases, such as the intermediate case depicted back in Figure 5.2. However, in less obvious cases, to be seen later, it was difficult to determine whether fits represented true bimodality, or if the data was non-identifiable and had merely been overfitted. In some cases, overfitting was clear: samples at the extremes of the hysteresis curve and even control curves often had an improved fit using a two-component mixture. In other cases, non-identifiability was clear: some samples produced markedly different results depending on the initial parameter values chosen. In both cases, the component distributions tended to assume shapes deviating from those seen in the unimodal controls and in cases with obvious bimodality, thus prompting a closer look at the form of the component distributions.

By inspection of the MFL control distributions in Figure 5.5, it can be seen that (in this scale) the spread of intensities tends to be wider for samples with overall low intensity and narrower for samples with overall high intensity. To robustly assess this trend, the
interquartile range (IQR)5 and median fluorescence of Tum− control samples were plotted against each other. The result for the normal equilibration time hysteresis assay of the ER-MC Tum− strain is shown in Figure 5.6. Though nonlinear, the trend is quite striking, particularly for samples with higher intensities; the more abundant low intensity samples are likely to be adversely affected by background instrumental noise. Controls from all other strains and assays showed similarly predictable trends, suggesting that the shapes of the fluorescence distributions might be well-defined functions of promoter activity.

Using median fluorescence as a robust indicator of relative promoter activity, the parameters from skew-\textit{t} fits of the MFL control distributions were indeed found to vary in a predictable way. As exemplified in Figure 5.7, the location parameter showed a linear dependence on median fluorescence, whilst the scale and shape parameters showed quadratic dependences on the IQR of fluorescence, which, as seen previously in Figure 5.6, is in turn quadratically dependent on median fluorescence. The degrees of freedom6 parameter (\(\nu\)) was much more variable: it did not show any obvious trends in terms of either median fluorescence or the IQR of fluorescence. When plotted versus the estimated value of the scale parameter, weak associations were observed and the gross trend approximated by a quadratic. This poor result for \(\nu\) was not entirely unexpected, since \(\nu\) primarily affects how heavy-tailed the skew-\textit{t} distributions are, and is thus mostly constrained by data in the tails --- a considerably smaller fraction of the data set. However, the converse to this poor result is that \(\nu\) has only a minor impact on distribution shape. In spite of the weak trend observed for the \(nu\) parameter, skew-\textit{t} distributions that are defined according to parameters estimated from the regression curves in Figures 5.6 and 5.7 describe the data essentially as well as the original distributions with freely-optimised parameters.

So by using the controls as a training set, a family of assay-specific skew-\textit{t} distributions could be defined in terms of a single parameter, the median fluorescence. With such a constraint, the two-component skew-\textit{t} mixture model would be greatly simplified. Instead of 9 parameters, only three would be required: the relative abundance of each sub-population and two location parameters (i.e., the effective median fluorescence values of each sub-population). This amounts to the re-parameterisation of a two-component skew-\textit{t} mixture model according to five assay-specific regression models (based on those shown in Figures 5.6 and 5.7) as derived from unimodal skew-\textit{t} fits of the Tum− control samples. Such two-component constrained skew-\textit{t} mixture models (and also an analogous one-component model) were implemented using custom \texttt{R} code that could automate the process of deriving parameter regression models from control data, and then calculate the requisite skew-\textit{t} parameters from these regression models. These mixture models were de-

5The IQR is the difference between the values of the first and third quartiles (i.e., the 25\% and 75\% percentiles) of a sample. Unlike the mean and SD, which are sensitive to outliers, the median and IQR are robust measures of location and scale, respectively.

6Fractional degrees of freedom (\(\nu\)) are atypical, but still defined for the skew-\textit{t} distribution. In this context, where the distribution is simply used as a suitably flexible model for data with unknown degrees of freedom, it is left to freely vary.
Chapter 5. Hysteresis is obscured by stochastic switching between semi-stable states

![Graphs showing fitted skew-t parameters as functions of median and interquartile range of intensity.](image)

Figure 5.7: The fitted skew-t parameters of the MFL controls vary as functions of the median and the interquartile range (IQR) of the intensity. The normalised and transformed fluorescence intensities of cell samples taken from hysteresis assays of the ER-MC Tum- control strain were fit with skew-t distributions. From the resulting set of fits, the four parameters defining the skew-t distribution (location (μ), scale (σ^2), shape/skew (λ) and degrees of freedom (ν)) are shown plotted versus either the median or IQR of the samples’ fluorescence intensities. In the case of the degrees of freedom parameter (ν), a somewhat more visible trend was observed with the predicted value of the scale parameter (σ^2), so that is shown instead. Regression lines are shown for each plot: the location parameter was fit using linear regression; all other parameters were fit with an additional quadratic term.
5.2 MFL samples within the bistable region are a mixture of two cell populations

Figure 5.8: MFL distributions in the bistable region are a bimodal mixture of control-like sub-populations. Shown using a Logicle display are histograms of the normalised fluorescence obtained for samples with a range of initial conditions and IPTG induction levels (as indicated) from the normal equilibration time hysteresis assay of the ER-MC Tum\(^+\) MFL strain. The fluorescence distributions were fit by two-component mixture models made up of constrained skew-\(t\) distributions; constraints were imposed using a set of regression models, as described in the text, to restrict the skew-\(t\) distribution to shapes matching the same assay’s Tum\(^-\) control distributions. The density for each fitted mixture model is shown overlaid on its respective histogram as a solid black line; the dotted red and blue lines indicate the low- and high-intensity component distributions respectively.

fined according to the controls for each flow cytometry hysteresis assay, and then one- and two-component models were fit to all the Tum\(^+\) MFL sample data using maximum likelihood estimation. To further control the parameter space, the median for the high intensity component distribution was written as a fold ratio of the lower. Constrained maximisation of the likelihood could then be employed to restrict this ratio to a value greater than one and also restrict the relative proportion of the components to a value between 0 and 1. In spite of the reduced number of parameters and the additional constraints, this new mixture model still matched all of the Tum\(^-\)CI MFL fluorescence distributions surprisingly well.

The constrained skew-\(t\) mixture model offers sufficient flexibility to accurately describe all of the Tum\(^-\)CI MFL distributions. Examples of two-component mixture model fits of fluorescence data obtained for normal equilibration time hysteresis assays of the ER-MC MFL strain are shown in Figure 5.8. For some samples, bimodality is clear (e.g., \(0 \rightarrow 60 \mu\text{M IPTG}\) and \(300 \rightarrow 40 \mu\text{M IPTG}\)) and the locations of the two component distributions appear well-defined. Conversely, for samples where a unimodal distribution would seem
more appropriate (e.g., $0 \rightarrow 20 \mu M$ IPTG and $300 \rightarrow 60 \mu M$ IPTG), the two-component model is only able to fit the data using essentially overlapping component distributions. In these cases, the component distributions have reduced identifiability, indicating that the one-component model would be preferred. These extreme cases illustrate how the constrained mixture model might be used to robustly assess the number and location of component sub-populations.

Fringe cases, however, are better handled using a formal analysis of goodness of fit. Such cases are exemplified in Figure 5.8 by the $0 \rightarrow 40 \mu M$ IPTG and $300 \rightarrow 20 \mu M$ IPTG samples. It is instructive to start by considering how the two-component and one-component models compare. Since adjusting the median location is the only way to adjust peak shape in the constrained skew-t distributions, the optimal fit for a one-component model will be very similar to whichever component is dominant. In the stated examples, this dominant component distribution is the high intensity one (dotted blue lines in the figure), and this component accounts for most of the fluorescence. However, the less abundant distribution clearly makes a small but significant difference in each case. A more rigorous evaluation of peak fit can be made using a log-likelihood ratio test between the one- and two-component models. For this test, the null model is the one-component model, since it is a subset of the two-component model. A useful result on the corresponding test statistic (the log-likelihood ratio) is that its null distribution tends to a χ^2 distribution in the limit of large sample sizes (see Rice [2007, sect. 9.4]). By assuming this result for the mixture models here, p-values were calculated to compare the significance of one- and two-component models for the maximum likelihood estimates of the Tum$^+$ MFL fluorescence distributions.

The constrained skew-t mixture model provides high-confidence confirmation for the presence of two sub-populations in the bistable region of the MFL strains. Most of the known and presumed unimodal populations (i.e., controls and ends of the hysteresis loop) presented with p-values greater than 0.001 (in fact, with p-values often indistinguishable from 1), indicating non-significance for the two-component model. In contrast, populations displaying bimodality, including the fringe cases, all presented with very low p-values (less than 1×10^{-16}), indicating high significance for the two-component model in these cases. However, direct use of the p-value as a threshold would result in more type II errors than desired (i.e., where the one-component model would be rejected when it should not be), as judged by the test results for the (unimodal) control distributions. Much better discrimination was achieved by setting a more conservative threshold directly on the computed log-likelihood ratio7. This threshold was set to a value that would avoid

7 This approach to assessing goodness of fit is very similar to the use of the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), except that no penalty is applied for overfitting as the number of parameters is increased. Here the penalties of the AIC or BIC are not applied, since (1) the number of parameters is very small in comparison with the size of the data set, so the corrections are minor (particularly for the AIC), and (2) the distributions under consideration (skew-t) are not from the exponential family (breaking an assumption of the BIC).
any type II errors for the control distributions; taking the 0.0001 quantile for a Gaussian
fit of the control ratios was generally sufficient. The need for such a conservative thresh-
old was due to both the large number of events sampled for each experimental condition
(tens of thousands), and a handful of distributions (mostly at the extremes of the fluores-
cence intensity spectrum) that were not fit by the constrained skew-t distribution quite as
well. However, since these anomalous outliers were avoided by using a stricter thresh-
old, the constrained skew-t mixture model was nonetheless a high-confidence predictor
for bimodality.

As a brief aside, the morphology normalisation procedure introduced in Section 5.1.4
was essential to the robust behaviour of the constrained skew-t mixture models. Without
normalisation, the trends of fitted skew-t parameters with median fluorescence and IQR
(i.e., from the equivalent plots to those in Figure 5.7) became much more variable. This
greatly decreased the efficacy of the subsequent two-component model, which could no
longer replicate the close match of this model to the bimodal distributions that was seen
for the normalised data. Accuracy and confidence in the fits were much reduced, empha-
sising the importance of the normalisation for rendering the data amenable to predictable
statistical analysis in terms of the well-defined skew-t distribution.

Given that location is the only parameter required to specify the constrained skew-t
distribution, fits of bimodal data sets using the two-component model produce a highly
sensitive quantitative measure of the location of each sub-population. Since these con-
strained skew-t densities are also characteristic of a monostable distribution, the close
match of such models to the data strongly indicates that the two sub-populations are dis-
tinct. That is, each sub-population arises in a separate zone of stability of the gene network,
and only a small number of cells are ‘in transition’ between these two zones. How might
such a mixture of populations arise? The deterministic model would predict a unimodal
population of cells with a history-dependent location, so clearly there must also be some
level of stochasticity that enables transitions between the two stable zones. That is, the
synthetic Tum−CI MFL is not strictly bistable, but is instead comprised of two semi-stable
sub-populations.

5.3 The mixed population model reveals the stable states predicted
for the MFL strains

Assays of the Tum−CI MFL strains by flow cytometry have now revealed that many of the
hysteresis cultures were in fact made up of a mixture of two sub-populations. Systematic
variation in the presence and size of these sub-populations as a function of CI production
rate was already evident in the curated flow cytometry data presented in Section 5.1.5,
but without quantitative tools for describing the sub-populations, it was difficult to draw
concrete conclusions. This prompted the development of the constrained skew-t mixture
model in Section 5.2, which was fitted to the data to enable both robust identification of sample modality (i.e., unimodal or bimodal), and precise, high-confidence estimates of the locations and relative proportions of each sub-population. In this section, the quantitative insights made possible through such a detailed statistical model are exploited to search for identifiable trends in the sub-populations across the hysteresis loop. With a view towards reconciling the data with the already established deterministic model of hysteresis, the section begins by briefly considering the conditions under which it is suitable to make a deterministic approximation to a stochastic process. This lays the groundwork for interpreting the constrained skew-t mixture model as the projection of stochastic data onto deterministic components, thus motivating a natural experimental state descriptor: the expected fluorescence intensity of each component distribution. When applied to the long equilibration time hysteresis assays of each of the Tum$^{-}$CI MFL strains, this deterministic projection helps to paint a much more informative picture of stability in the hysteresis assay than the whole-population average results could. The mixed population long equilibration time hysteresis curves expose the stable states in the Tum$^{-}$CI MFL strains, making it possible to interpret their behaviour in terms of the steady-state MFL model developed in Section 2.3.

Deterministic models approximate a full stochastic process by considering only the time evolution of the expected or ‘average’ values of that process [Kaern et al., 2005; Wilkinson, 2006]. Such an approximation forms the basis for comparing deterministic models directly with LacZ assay measurements, which are implicitly whole-population average activities. In flow cytometry, however, promoter activities are measured for each cell in a culture, and each measurement can be considered (roughly speaking) to be an independent realisation of a ‘noisy’ or stochastic process. Stochastic processes cannot in general be described by a purely deterministic model, but when considered near macroscopic (i.e., deterministic) stable states, valid approximations for the shape of the stochastic distribution can be made by series expansion around the deterministic solution [Thattai and van Oudenaarden, 2001; Elf and Ehrenberg, 2003; van Kampen, 2007]. In this way, a deterministic model can remain useful for local analyses of behaviour and noise, provided the system under consideration has well-behaved steady-state solutions and is close to equilibrium.

The Tum$^{-}$ control strains have a single steady-state solution and are well suited to deterministic modelling. Indeed, deterministic models of CI$-pR$ repression have proven effective in the past [Shearwin and Egan, 1996; Dodd et al., 2007b] and even the behaviour outside steady state is relatively well explained by the deterministic model (see Section 4.3). As such, the fluorescence distributions of the Tum$^{-}$ control strains could be considered a prototype for the stochastic spread of an otherwise ‘deterministic’ population. By charac-

\footnote{A well-behaved steady-state solution means that it must be stable in all dimensions, excluding saddle point solutions for example.}
The mixed population model reveals the stable states predicted for the MFL strains. The MFL samples are effectively split into putative deterministic components. Since two stable states are predicted for the Tum−Cl MFL according to the steady-state deterministic model, it stands to reason that this gene network is suited to such a localised analysis. The goodness of fit of the bimodal mixture models to the Tum−Cl MFL samples further validates a local deterministic interpretation of each sub-population, even if stochastic mechanisms must describe the presence of a second population.

For the long equilibration time MFL samples, each component of the fitted mixture model of constrained skew-\(t \) distributions can be treated as a local estimate of the noise distribution near each deterministic steady state. The expected value (weighted average) of each component distribution then provides a good approximation for its respective deterministic steady-state solution. This expected fluorescence intensity can be calculated directly for each sub-population from the fitted constrained skew-\(t \) distributions. The constrained skew-\(t \) distributions are specified in terms of a single parameter representing the expected median fluorescence for each sub-population. The median fluorescence is a useful measure of location for sampled data since it is robust to outliers, but for the fitted distributions, the expected fluorescence is calculated since it is more in keeping with a deterministic approximation of the stochastic data set. Since cellular fluorescence is measured on an untransformed scale, whilst the distributions are fitted on a Logicle scale, the expected fluorescence should be calculated as the expected value of the Logicle function over the skew-\(t \) distribution of interest. The Logicle function \((\mathcal{L} : X \rightarrow I)\) gives the fluorescence intensity \((I)\) as a function of the transformed data \(X\). So if the sub-population is described by a skew-\(t \) distribution with probability density function \(\rho(x)\), then the expected fluorescence intensity is given by:

\[
E[I] = \int_{-\infty}^{\infty} \mathcal{L}(x)\rho(x)dx
\]

The skew-\(t \) probability density, \(\rho(x)\), is population-specific and specified using parameters drawn from the control curve regression models (see Section 5.2). The Logicle function is assay-specific, and defined according to an optimised width parameter (see Section 5.1.2). The mathematical expressions for the skew-\(t \) probability density and Logicle function make analytical integration of Equation (5.1) nontrivial, so numerical integration (implemented in \(R\); see Appendix B) is used for calculating the expected fluorescence intensity. The resulting expected fluorescence value is a natural deterministic representation of each sub-population, comparable with the \(pR\) activities that might be reported by LacZ assay.

\(^9\) This declaration of the Logicle function (i.e., a function giving the dependence of data units on display units) is as defined by Parks et al. [2006]. Note, however, that it is the inverse of the Logicle function that is used to perform a ‘Logicle transform’. This misnomer is in common usage since the inverse of the Logicle function cannot be expressed analytically.
A given hysteresis sample can now be completely specified from its fitted mixture model as an optimal number of mixing components (i.e., one or two), the fractional occupancy of each sub-population relative to the whole, and the expected fluorescence (pR activity) of each component. As described in Section 5.2, the log-likelihood ratio is used to decide whether a sample is unimodal or bimodal. For unimodal samples, there is only one component with an occupancy fraction of 1; in this case, the expected fluorescence of the underlying skew-t distribution represents that of the whole population. For bimodal samples, there are two components, each present as a fitted fraction of the whole population, and each with a distinct location given by the expected fluorescence intensity of the respective skew-t distribution.

These state descriptors are shown plotted against the hysteretic variable (CI production rate) in Figure 5.9 for samples coming from long equilibration time hysteresis assays of each of the candidate Tum$^{-}$CI MFL strains (i.e., the WR-LC, WR-MC, ER-LC and ER-MC strains). Dotted lines are used to approximately indicate the CI production rates over which samples are expected to transition from a bimodal to a unimodal structure. Because of day-to-day variation in flow cytometer performance, the units of fluorescence are consistent within each assay, but are not comparable across different assays. Furthermore, the fluorescence measurements introduce a nonzero offset resulting from cellular autofluorescence and, to a lesser degree, from the background noise of the optics. However, as was shown previously in Figure 5.3, the fluorescence units match the LacZ assay units to within an offset and scaling factor.

The high intensity populations appear to show greater variability in intensity, which is presumably compounded by the way in which the constrained skew-t distributions are constructed and transformed. Since the constrained skew-t distributions are defined in terms of the controls, the lower abundance of high intensity control samples means that the regression models provide lower confidence estimates of the skew-t parameters at those intensities. Furthermore, since the distributions are fit to data in the Logicle scale, any errors in the fitted population locations will be amplified by the transformation back to the original scale. Confidence in the expected intensity of a sub-population is also lower for those occupying a smaller fraction of the sample. In spite of all these potential sources of error, the Tum$^{-}$ control data are remarkably well-formed for a single replicate, and the MFL data display convincing trends on the whole.

Each of the MFL strains exhibits a region of CI production rates in which bimodal cell populations can be found. As can be seen in Figure 5.9, these bimodal regions are (for the most part) flanked to either side by unimodal samples. For the bimodal samples, the separation in activity between low and high fluorescence sub-populations is comparable to the separation in activity between the flanking unimodal populations. This is a striking contrast with the separation seen previously between the low and high O/N long equilibration time LacZ assay curves in Figure 4.3 of the previous chapter. A cursory inspection
5.3 The mixed population model reveals the stable states predicted for the MFL strains

Figure 5.9: Bimodal cell populations are found in each of the Tum−CI MFL strains. Long equilibration time hysteresis assays were performed for each of the MFL strains (WR-LC, WR-MC, ER-LC and ER-MC) and the pR activity of these samples measured by flow cytometry for 10,000–30,000 cells. These population fluorescence measurements were curated as described in Chapter 5 and fit with mixture models of constrained skew-t distributions. Shown plotted are the expected values of the component distributions versus the final CI production rates (normalised from the final IPTGs as per Section 3.3). Values for samples originating from high or low overnights (O/Ns), and experimental (Tum+) or control (Tum−) strains can be distinguished by colour according to the legend. Samples were categorised as unimodal or bimodal using a threshold on the log-likelihood ratio between the alternative models; for each CI production rate, unimodal samples are plotted as a single expected fluorescence value, whilst bimodal samples are plotted with two. Dotted lines mark the transitions between unimodal and bimodal descriptions of the samples. The area of each point is proportional to the fraction of that sample that belongs to the respective component distribution. Note: for reasons described in the text, the identity of the ER-LC strain used for this assay came into question so the results shown here for that strain should be treated accordingly.
Figure 5.10: The results obtained by flow cytometry can be interpreted in terms of the steady-state deterministic model. The low and high O/N Tum⁺ sub-population location data from long equilibration time ER-MC hysteresis assays are reproduced here overlaid with a steady-state curve derived from the Tum−CI MFL model. The model curve is essentially as previously depicted in Figure 2.7(b), but the model parameters were manually adjusted to improve consistency with the data ($\epsilon_R = 1.2 \times 10^3$ dimers/cell; $H_R = 2.0$; $\epsilon_S = 1.1 \times 10^4$ monomers/cell; $H_S = 1.8$; $M_T = 7.5 \times 10^4$ monomers/cell). Due to day-to-day variation and nonzero autofluorescence, the model curves have assay-specific maximum fluorescence parameters and assay-specific offset parameters. (a) Data obtained from ER-MC panel in Figure 5.9 ($M_Z = 3.6 \times 10^3$; Offset = 1.5×10^3). (b) Higher quality data to be presented later in Figure 5.11 ($M_Z = 8.0 \times 10^3$; Offset = 2.0×10^3).

of the shapes outlined by the sub-populations also suggests much more favourable comparison with the hysteresis curves modelled deterministically in Section 2.4.2.

The deterministic model cannot explain how bimodal populations arise in the hysteresis assay, but it can still serve as a useful framework for interpreting the behaviour of each sub-population separately. A steady-state analysis of the Tum−CI MFL network (Section 2.3.1) revealed how it could support two stable states in the bistable region. When out of equilibrium in the region of bistability, whether by an extrinsic change to CI production rate or by the effects of intrinsic noise, the positive feedback loop acts to bring the system towards the ‘nearest’ stable state. This reveals how the Tum−CI MFL circuit might maintain a bimodal population, since even with the presence of noisy gene expression, the stable states would act as competing basins of attraction that increase the probability of cells occupying states near the stable ones. A comparison of the steady-state model and two independent long equilibration time hysteresis assays of the ER-MC strain are shown in Figure 5.10, demonstrating how the two sub-populations might co-locate with each stable state in the bimodal region. The data shown in Figure 5.10(a) is from Figure 5.9, whilst the data in Figure 5.10(b) is from a higher quality assay that will be introduced later in Section 5.4 and includes measurements at more CI production rates and with higher
5.3 The mixed population model reveals the stable states predicted for the MFL strains

The mixed population model reveals the stable states predicted for the MFL strains cell counts per sample. For the figure, the parameters chosen for the original steady-state model in Section 2.3.1 were manually adjusted to improve the match between model and data. Apart from scaling (via the M_Z parameter) and offset parameters, the model curves are identical for each assay. Though not a fitted model, the good match between the model and data shows that the steady-state structure of the MFL is now better revealed after projection of the stochastic results onto prototypical deterministic components.

When the rate of stochastic switching between the two zones of stability is equal, the sizes of the sub-populations are an indication of the relative stability of each stable state [van Kampen, 2007]. For both low and high O/N cultures, the high intensity sub-populations consistently become smaller as they near and extend beyond the right-most bifurcation boundary, whilst the low intensity sub-populations consistently become smaller as they approach the left-most bifurcation boundary. By referring back to the steady-state analogy depicted in Figure 5.10, feasible explanations for these observed decreases in stability near the bifurcation boundaries include (1) a decreased vertical distance to the unstable state (dotted line), making it easier to cross into the alternative basin of attraction, or (2) horizontal proximity to the monostable region, making it easier to cross into the alternative monostable state. Both mechanisms are likely to contribute to the observed behaviour to varying degrees. A stochastic model of the MFL circuit will be introduced in the following chapter to assess how noise in the vertical (Tum production) or horizontal (CI production) directions might affect stability in the Tum–CI MFL.

Differences between the hysteresis assays for each of the strains can also be rationalised in terms of the steady-state model. As previously realised for the LacZ assay results, the difference between the WRBS and eRBS strains is primarily a different scale of CI production rates on the x-axis. Where the WRBS should reveal more detail for lower production rates, the eRBS should extend the hysteresis curve to higher production rates. This can be seen when comparing the WR-MC and ER-MC strains: the WR-MC hysteresis curve is a ‘magnified’ version of the ER-MC hysteresis curve. Doubts over the identity of the ER-LC strain preclude a similar comparison with the WR-LC strain. The effect of pR-tum plasmid copy-number can be seen by comparing the WR-LC and WR-MC assays: the low-copy pR-tum plasmid produces a much smaller region of bimodality. This corresponds well with the predictions of the steady-state model where a reduction in the unrepressed level of Tum (M_T) was shown to decrease the size of the bistable region in the model (Figure 2.9(a)). The region of bistability was also predicted to shift to lower CI production rates, and this is consistent with the data. These results further highlight how the projec-

10 Note that since the CI production rates in the figure have been scaled according to low confidence results obtained by western blot, it is not surprising that the eRBS and wRBS production rates appear inconsistent.

11 The surprising similarity between the ER-LC and ER-MC results, and the larger bimodal region of the ER-LC strain compared with the WR-LC strain, brought into question its identity in this assay. Further investigation suggested that whether by contamination or experimenter error, it is likely that the strain being assayed was the ER-MC strain. The ER-LC assay will be ignored in the discussion; it is left in the figure for completeness.
tion of stochastic data onto deterministic components can facilitate analysis in terms of a steady-state deterministic model.

The semi-deterministic interpretation of Tum−CI MFL bistability corresponds well with the basic trends of the hysteresis data shown in Figure 5.9, but the treatment of the samples as pure two-component mixture models is limited. The two-component model is clearly a simplification of the full stochastic model, which must further account for some level of cells that are stochastically ‘switching’ between the sub-populations. Though the bimodal distributions present as remarkably good fits of the data, the close overlap of the peaks could easily obscure an intermediate population of cells. If the size of this intermediate population was comparable with the sizes of the steady-state populations, the mixture model components would be forced to compensate for the intermediate population. In that case, the expected intensity of each population would tend to become more centralised. There is evidence that such compensation may have occurred for certain samples in the hysteresis assays. This is particularly obvious for the high fluorescence sub-populations in the WR-MC low O/N samples of Figure 5.9, where the sub-populations in the middle of the bimodal region appear to ‘pinch’ together. It would be difficult to correct for this centralising bias\(^{12}\), but it is important to keep it in mind when interpreting the results.

Before moving on to a more involved stochastic treatment of the data, it is worth exploring an additional dimension of the deterministic model that has not yet been considered: the equilibration time. In the following section, the different equilibration time assays will be used to study the dynamic evolution of the Tum−CI MFL. For this more detailed analysis only one strain will be considered. The WR-LC and (presumably) the ER-LC strains both have smaller regions of bimodality, making them harder to study quantitatively. In contrast, the bimodal region of the WR-MC strain is so large that the hysteresis curve is truncated at the highest CI production rate; the fitted components of this strain also showed particularly pronounced pinching. As such, the ER-MC strain stands as the most suitable for further investigation and time course measurements of that strain will be analysed and discussed in the coming section.

5.4 Noisy switching between sub-populations occurs throughout the hysteresis assay

Flow cytometry measurements of the Tum−CI MFL at the long equilibration time point revealed a bimodal population structure for hysteresis samples in the bistable region. Under the equilibrium assumption, the long equilibration time assays could be interpreted

\(^{12}\) In theory, the bias could be corrected for by adding a third component to the mixture model to account for these intermediate cells. However, its shape would be unlikely to conform to the constrained skew-\(t\) model, and, being located between two closely overlapping fluorescence distributions, it would also be hard to resolve with satisfactory confidence.
in terms of the steady-state deterministic model to show how the sub-populations might co-locate with the stable states. However, without measurements at other time points, it is not possible to judge how close the MFL samples are to equilibrium, so the quality of the steady-state comparison remains in doubt. In this section, flow cytometry measurements of the short, medium and long equilibration time hysteresis assays of the ER-MC Tum−CI MFL are used to investigate the approach to equilibrium. The mixture model components reveal a much slower rate of change in pR activity than seen using the LacZ assay. The sub-population sizes further indicate that active stochastic switching between the stable states occurs throughout the time course, which augments the apparent rate of equilibration. A majority of the state switching in the low O/N samples appears to occur before the short equilibration time, whereas the high O/N samples show substantial switching between the times assayed.

Different equilibration time points of the hysteresis assay were previously measured by LacZ assay by modifying the protocol for log-phase growth. Whilst measurement by flow cytometry removes the need to maintain consistent culture OD$_{600}$S, the same approach was employed here to maximise comparability with the original whole-population assays. For simplicity, only the ER-MC strain was considered in this more extensive analysis. Using the data analysis methods developed earlier in the chapter, the measured populations are projected onto deterministic components to reveal bimodal populations at all equilibration time points. The data further reveals that switching between the constituent sub-populations occurs throughout the observed time period, particularly for the high O/N samples.

Two independent sets of equilibration time assays were measured by flow cytometry. In the first set, short and normal equilibration time hysteresis assays were performed for the ER-MC strain to complement the long equilibration time assay shown in Figure 5.9. These assays were analysed as described in Section 5.3 and are shown in the upper panels of Figure 5.11. For the second assay set, two minor modifications were made to the protocol to improve data quality. Firstly, to obtain greater detail in the bimodal region of the MFL curves, additional intermediate induction levels were included for the Tum$^+$ samples at the expense of fewer induction levels for the Tum$^-$ controls. Secondly, to improve the quality of the morphology normalisation, the number of cells recorded per sample was substantially increased and greater care taken to ensure FSC/SSC stability during the course of measurement. These changes meant that the average cell density could be reliably applied in the normalisation protocol (as previously noted in Section 5.1.4; also see Appendix B), which both increased consistency for the expected intensities of the normalised samples and, perhaps more importantly, increased the quality of the regression models used to define the constrained skew-t mixture model. The analysed data from the resulting second set of short, medium and long equilibration time assays is shown in the lower panels of Figure 5.11. Whilst the high cell count assay set (lower panels) is of higher
Chapter 5. Hysteresis is obscured by stochastic switching between semi-stable states

Figure 5.11: Bimodal populations are found at all the equilibration time points tested by hysteresis assay for the ER-MC Tum−CI MFL. Continued on following page.
quality, it is still complemented by the low cell count assay set (upper panels), and both
sets will be analysed together.

From a deterministic perspective, equilibration of the samples is judged by changes
in mean activity over time. Crudely speaking, the mean activities of the sub-populations
might be expected to follow something akin to a deterministic trajectory, and, to a limited
degree, such equilibration behaviour appears to occur for the ER-MC MFL. Clearly, the
unimodal Tum− controls equilibrate quickly, being already quite close to equilibrium at
the normal equilibration time point. The dynamic trajectories of the MFL sub-populations
are harder to interpret, but starting from relatively flat lines at the short equilibration time,
they do progressively fold towards the presumptive steady-state curve by the long equili-
bration time. The rate of collapse of these sub-populations is slower than was observed by
whole population assay, and it seems likely that some additional equilibration time might
help to further tighten the shape. If so, then the example steady-state curve overlaid on the
long equilibration time assays back in Figure 5.10 may be slightly too broad. In any case,
with stochastic mechanisms clearly contributing to MFL behaviour, it is unlikely that the
dynamic deterministic trajectory can be accurately matched to the sub-population means13
and it becomes equally important to consider the rate of stochastic switching between the
zones of stability.

As is evident from Figure 5.11, bimodal populations are found at all equilibration time
points measured for the ER-MC MFL. At the short equilibration time point, the low O/N
samples are bimodal at all but the lowest CI production rates, indicating that much of the
split into two populations must occur before this time. In contrast, the high O/N sam-
pleS at this time point only show bimodality at the lowest CI production rates. The CI
production rates at which bimodality is observed then change gradually at subsequent
equilibration times. For the low O/N samples, bimodal populations are lost at the high-
est CI production rates, with no obvious changes at lower CI production rates. For the
high O/N samples, the location of the bimodal populations shifts to higher CI production
rates over time. This sets a clear contrast between the alternative O/Ns: whereas most
of the low intensity sub-populations of the low O/N samples are already present by the
short equilibration time point, most of the high intensity sub-populations of the high O/N
samples are only observed after the short equilibration time. The implication is that, in
general, the high intensity sub-populations are less stable than the low intensity ones.

With regards to relative sub-population size, comparisons between the low and high
cell count assay sets are inconsistent, presumably since smaller populations are more eas-
ily resolved in the high cell count assay set. However, by considering the trends within
each assay set, it can be seen that changes in sub-population size over time are generally
less pronounced for the low O/N samples than they are for the high O/N samples. This
is evident, in particular, from the low O/N samples in the centre of the bimodal region

13This will be explained in more detail in the following chapter.
Figure 5.11 (Continued): Two sets of short, normal and long equilibration time hysteresis assays of the ER-MC strain were measured by flow cytometry: the first set (upper panels) were measured for lower cell counts (10,000–35,000), and the second set (lower panels) were measured for higher cell counts (78,000–92,000). Indicated in italic text for each assay is the equilibration type (short, normal or long) and the recorded number of hours of equilibration time. The fluorescence distributions were curated as described in Figure 5.9 and the sub-populations are also plotted as described in that figure. The area of each point is proportional to the fraction of that sample that belongs to the respective component distribution. As in previous figures, colour is used to distinguish history (low/high overnight (O/N)) and presence or absence of Tum (Tum$^+$/Tum$^-$). Dotted lines mark the transitions between unimodal and bimodal descriptions of the samples.

where changes in sub-population size are comparatively static. For these samples, stochastic switching is likely to be close to equilibrium at the long equilibration time point, which further implicates sub-population size in those samples as a measure of the relative stability of each semi-stable state. In contrast, changes in sub-population sizes for the bimodal high O/N samples are much larger over time, and it is unlikely that stochastic switching in those samples has reached equilibrium by the long equilibration time point. As expected, the largest changes in population size (for both low and high O/Ns) are found for samples with CI production rates furthest from their initial states, indicating that those samples are located well outside the region of bistability.

5.5 Chapter Summary

Measurements of the Tum$^-$CI MFL strains by flow cytometry provided a richer picture of its bistable behaviour than was obtained by LacZ assay. After filtering and normalisation for morphological differences, single-cell measurements of pR activity clearly revealed a bimodal population structure for samples in the presumptive bistable region of the MFL. In spite of substantial overlap of the sub-populations, a rigorous method for fitting a two-component mixture model to the data was devised to enable a quantitative analysis. The approach made use of the Tum$^-$ control distributions to construct a family of prototypical unimodal distributions based on empirically constrained skew-t distributions. These constrained skew-t distributions fitted the data extremely well and provided robust discrimination between unimodal and bimodal samples. The expected activity of each mixture model component compared favourably with the steady-state deterministic model for the long equilibration time hysteresis curves, and a semi-deterministic interpretation could be invoked to explain some basic trends in the data. Flow cytometry measurements made at multiple equilibration times further revealed that stochastic switching between the two stable states is an active process throughout the assay. In the coming chapter, a stochastic model of the MFL will be developed to enable a deeper investigation into the origins of this stochastic switching.
Investigating noisy switching in the Tum–CI MFL by stochastic modelling

The deterministic model of the Tum–CI MFL provided a simple analytical framework that indicated the potential for bistability in this gene circuit and motivated the hysteresis assay as an informative experimental test of its stability. Initial results obtained by LacZ assay presented only limited evidence for hysteresis of a whole population of cells. However, single-cell measurements by flow cytometry revealed that hysteresis had been obscured by noisy switching between two alternative stable states. Cell populations were in fact composed of two sub-populations, each with mean fluorescence intensities that appeared consistent with the steady-state deterministic model. Moreover, time-course measurements provided evidence for active switching between the two stable states over the course of the hysteresis assay. These results argued strongly for the generation of a significant level of noise at the single-cell level.

An important source of noise in bacterial gene networks is the stochasticity intrinsic to gene expression [McAdams and Arkin, 1997; Elowitz et al., 2002; Golding et al., 2005; Cai et al., 2006]. Such intrinsic noise arises in consequence of the random timing of biochemical reactions at the molecular scale and the finite, low copy numbers of network components such as promoter elements and mRNA [Ozbudak et al., 2002; Golding et al., 2005; Cai et al., 2006]. This results in ‘noisy’ protein production with significant cell-to-cell variation, which can cause average cell behaviour to deviate significantly from the equivalent deterministic trajectory. Indeed, gene networks that are analogous from a deterministic standpoint can exhibit distinct phenotypes dependent on their noise characteristics [Cağatay et al., 2009]. Far from being a hindrance, noise in gene networks has been observed to enable complex emergent behaviours like probabilistic sampling of alternative states [Losick and Desplan, 2008; Kittisopikul and Süel, 2010], adaptation on non-evolutionary timescales [Tsuru et al., 2011], and even bimodal cell populations [To and Maheshri, 2010]. A quantitative understanding of such behaviours requires stochastic modelling. Stochastic models recognise that molecules are most accurately represented as discrete quantities, not continuous concentrations, and that the seemingly random diffusion of molecules according to Brownian motion results in the random timing of molecular collisions and reactions [Gillespie, 1977]. As such, stochastic models of biochemical reac-
tion networks are necessarily probabilistic [McAdams and Arkin, 1997], characterising the time evolution of the probability distributions of each discrete species [Gillespie, 1992; Kepler and Elston, 2001].

This chapter begins with a brief introduction to these and other basic concepts of stochastic modelling and simulation. By considering the conditions under which a deterministic model is an appropriate approximation for a stochastic model, a hybrid stochastic/deterministic model is proposed for the Tum−CI MFL that is designed to capture the most important sources of noise. The model is deliberately kept simple to restrict focus to critical mechanisms and minimise the number of parameters. The hybrid model bears a number of parallels with the original deterministic model, and this is used to facilitate parameter estimation from the sub-population location data of the previous chapter. Parameters specific to the stochastic model are, however, chosen heuristically. The resulting model enables an exploratory analysis into the origins and roles of the noise generated in the Tum−CI MFL. Model simulations suggest that noise in CI production has a similar effect on the stability of low and high fluorescence populations, whilst noise in Tum production affects only the high fluorescence state. In order to reproduce the broad semi-stable region observed for the low O/N, the stochastic model requires large fluctuations in Tum production. These fluctuations are larger than would be expected simply from transcription and translation, implying that an important slow stochastic reaction, such as the partitioning of plasmids at cell division, is missing in the model.

6.1 Stochastic modelling of gene networks

Whilst more complex than their deterministic counterparts, stochastic models provide a more realistic description of gene network behaviour. Whereas a deterministic approach treats each species using continuous concentration variables whose time evolution is wholly predictable, the stochastic approach recognises that molecules and reactions are discrete and that the timing of reaction events is effectively random at the molecular scale. As such, stochastic models demand a probabilistic description: the time evolution of a species is modelled not as a representative average concentration, but as a time-dependent probability distribution that specifies probabilities for observing every possible state (i.e., every possible number of molecules). Like the ODEs that are specified for a deterministic model, a system of stochastic differential equations could, in theory, be specified for the time evolution of a joint probability distribution that simultaneously describes the probabilities for all possible states of all species in the network under consideration. Such a Chemical Master Equation (CME) can be rigorously derived using the fundamental principles of molecular kinetics [Gillespie, 1992], but its complexity prohibits exact solutions for any but the simplest cases. Instead, stochastic gene networks are typically studied by simulating trajectories that are consistent with the CME [Rao et al., 2002]. Inferences about
the probability distributions of the state variables are then derived by calculating statistics over multiple trajectories (typically 1000s).

The theoretical framework for simulating systems of stochastic reactions has been studied for many decades. However, on the back of experiments confirming and characterising the generation of noise in gene expression [Elowitz et al., 2002; Golding et al., 2005; Cai et al., 2006; Taniguchi et al., 2010], interest in stochastic modelling of gene networks has exploded over the last 15 years [Rao et al., 2002; Kaern et al., 2005; Paulsson, 2005; Wilkinson, 2009]. Many alternative stochastic simulation algorithms have been formulated to deal with the peculiarities of modelling gene networks; the most relevant are introduced and compared in the text by Wilkinson [2006]. However, by and large, these algorithms are all adaptations of the algorithm formulated by Gillespie [1977] and a basic understanding of Gillespie’s algorithm is a useful prelude to the hybrid deterministic/stochastic model that is later introduced for modelling the Tum−Cl MFL.

Gillespie’s algorithm [Gillespie, 1977] is the canonical algorithm for simulating stochastic trajectories. The algorithm prescribes a Monte Carlo simulation method that generates exact realisations of the Markov process defined by the CME [Gillespie, 1992]. The foundation for the algorithm is a statistical mechanical argument (made precise in Gillespie [1992]) that, in a well mixed and thermally equilibrated container, the probability per unit time for a reaction between two freely diffusing molecules is constant in time. Put mathematically, the probability for that reaction to occur in some infinitesimal time interval \(dt \) can be written as \(\lambda dt \), where critically, the reaction ‘hazard’ \(\lambda \) has no probabilistic time dependence. Such a property is symptomatic of a homogeneous Poisson process — a memoryless process where the number of events counted over a time interval \(t \) follows a Poisson distribution \(\text{Pois}(\lambda t) \). However, the occurrence of the reaction events themselves make the overall stochastic process non-Poisson in general, since most reactions consume reagents or effect changes in reagent numbers for downstream reactions. Such events introduce a conditional (probabilistic) time dependence into the hazards. Gillespie’s method circumvents this complexity by instead framing the problem step-wise in terms of times between events, which for a Poisson process are exponentially distributed. The algorithm proceeds iteratively over three steps: (1) randomly sampling a time to the first event using the combined hazard for all possible reactions, (2) randomly choosing which particular reaction will next occur as weighted by the individual reaction hazards, and (3) updating the state according to that reaction’s stoichiometry and recalculating the hazards for the new state. In this way, the algorithm ensures that each probabilistic step involves no time-varying hazards by simply stepping forwards one reaction at a time, only updating the reaction hazards step-by-step. By repeatedly sampling the next reaction and stepping the system forwards, the desired simulation time can be reached.

To make the Gillespie algorithm more concrete, consider the hypothetical reaction \(A + B \rightarrow C \). An example trajectory for this reaction is shown in Figure 6.1. Given \(N_A \)
molecules of A and N_B molecules of B, the probability of any reaction occurring can be calculated by summing up the probability for a reaction between each A-B pair. Using basic combinatorics, the combined hazard can be derived, giving $\lambda = cN_A N_B$, where c is some reaction-specific rate constant that encapsulates both the probability for two molecules colliding and also the likelihood of that reaction given a collision. If this were a Poisson process, λ would be the average number of reactions occurring per unit time and times between events could be simulated by sampling from the exponential distribution, $\text{Exp}(\lambda)$. An exponentially distributed random variable T, written $T \sim \text{Exp}(\lambda)$, has cumulative distribution function (CDF) $F_T(t) = 1 - e^{-\lambda t}$. The CDFs for different hazards, λ, are shown in the lower panels of Figure 6.1. Times are sampled from these CDFs by mapping random numbers drawn from $X \sim U(0, 1)$ — the unit uniform distribution — to the inverse of the CDF, $T \sim F_T^{-1}(X)$. That is, the time to the next reaction can be calculated.
as \[t = -\log(u) / \lambda, \]
where \(u \) is randomly sampled from \(U(0, 1) \) so that the distribution of \(u \) is equivalent to \(1 - u \). Since by design, no other reactions can occur in this time step, the time is sampled exactly. After the reaction, however, the number of A and B molecules has decreased by one, and the new hazard becomes \(\lambda = c(N_A - 1)(N_B - 1) \). With this new hazard, the time to the next event can now be generated randomly and the simulation again stepped forwards. Where there is more than one type of reaction, the time to the next event needs to be generated using the combined hazard for any reaction to occur.

Gillespie’s algorithm, whilst exact, still demands too much detail to make for practical simulation of gene networks. The algorithm calls for the simulation of all fundamental diffusion-limited reactions, which would be a formidable task if each of the base pair transcription reactions, amino acid translation reactions or protein multimerisation steps were included. Such detailed models can be formulated, and have been for systems as complex as the phage lambda lysis-lysogeny decision [Arkin et al., 1998], but numerous parameter estimates are required and simulations consume significant compute time. It is more valuable in this context to keep the model simple and efficient. By capturing just the primary stochastic sources and approximating the details, parameter identifiability is maximised and simulation times greatly reduced. Though model integrity is lost, as long as the assumptions behind a simple model are well-understood, informative predictions and insights can still be made. To this end, the coming paragraphs discuss various approximations that can be made for stochastic models of gene networks. Firstly, conditions under which the discrete process can be treated as continuous are considered. Reactions best suited to the discrete regime should be maintained as such in the Gillespie algorithm, whereas a continuous process can, in many cases, be approximated deterministically. The processes of transcription and translation are identified as important sources of noise, and a simplified model of stochastic protein production is then introduced. Finally, an accurate way for incorporating deterministic reactions in the stochastic simulation algorithm is introduced.

A notable assumption of the deterministic model is that species can be treated as continuous concentrations. This greatly simplifies the mathematics, and motivates approximating the discrete stochastic process by a continuous one. The CME, or equivalently the Gillespie algorithm, requires a discrete formulation, but it can be shown that under certain conditions it can be approximated as a Chemical Langevin Equation (CLE)—a system of stochastic differential equations involving linear combinations of deterministic terms and (Gaussian) white noise terms [Gillespie, 2000; Rao et al., 2002; Wilkinson, 2009]. The CLE evolves as a continuous stochastic process, so that instead of jumping discretely, molecule numbers effectively diffuse over time. The CLE is a valid approximation when both (1) the rates of each reaction change slowly enough, and (2) the number of all stochastic reactions is sufficiently large on that time scale [Gillespie, 2000; Kaern et al., 2005]. These conditions

1Here, log is the natural logarithm; the base 10 logarithm is notated in this thesis as \(\log_{10} \).
are typically satisfied when the counts of all involved molecules are high, though the CLE can provide accurate results for counts as low as tens of molecules [Grima et al., 2011]. Importantly, these conditions are satisfied for many of the high frequency reactions that might otherwise consume much simulation time.

Even more simplifications can be made where the mean behaviour of the CLE can be approximated as a deterministic trajectory. The CLE reduces exactly to a deterministic ODE when the variance of the noise terms is set to zero. However, if the variance relative to the mean is small but nonzero, the average behaviour of the system will often follow the deterministic trajectory. A well-known result is that the relative size of downstream fluctuations scales approximately as the inverse square root of the reactant populations [Gillespie, 2000], so deterministic behaviour is again favoured when population numbers are high. If the CLE contains only linear terms, it will follow the deterministic trajectory exactly [Wilkinson, 2006]. Since the noise terms are embedded in the CLE, however, for highly nonlinear systems the mean behaviour of the continuous stochastic process can diverge significantly from the deterministic trajectory, even for low levels of noise. This is most obviously the case when there are multiple stable states in the deterministic equations, since the system may with some (though perhaps low) probability switch into an alternative stable state [Gillespie, 2000]. In other cases, nonlinearity results in only minor deviations, and the simplicity brought by the deterministic equilibrium formulation makes it an attractive option even where some accuracy is lost. The high frequency and relatively fast dynamics of protein-DNA and protein-protein binding mean that such reactions can often be approximated as deterministic using equilibrium statistical mechanics [McAdams and Arkin, 1997]. Note that high molecule numbers alone do not guarantee the suitability of the approximation: slow rates of transcription factor unbinding could give rise to stochastic bimodality [Kaern et al., 2005].

Reactions dependent on species with low counts (e.g., promoters or mRNA) are likely to generate large relative fluctuations, so reactions like transcription and translation are typically best modelled stochastically [Thattai and van Oudenaarden, 2001; Ozbudak et al., 2002; Kaern et al., 2005]. Whilst there are many steps in the transcription and translation of a gene, it is the low-frequency rate-limiting steps that are the most influential in a stochastic model. A two-stage model of protein production has proven successful and popular in prokaryotes [Ozbudak et al., 2002; Swain et al., 2002; Friedman et al., 2006]. This simple model treats the transcription of mRNA as a single effective reaction, and the translation of protein as a first order reaction in the number of transcripts. Both mRNA and protein are also degraded in first order, so that the production of protein is dependent on the lifetime of the mRNA. If the half-life of the mRNA is shorter than the half-life of the proteins, stochastic gene expression can be further approximated as a single effective reaction in which proteins are produced in stochastic bursts that are exponentially distributed in time and geometrically distributed in size [Friedman et al., 2006; Shahrezaei and Swain, 2008].
The one-step protein production approximation relies on time-averaging over the fluctuations of the short-lived intermediate mRNA species, so that mRNA dynamics can be subsumed into an effective overall reaction. In spite of its simplicity, this one-step model has been shown to capture much of the essential variability intrinsic to gene expression in prokaryotes [Cai et al., 2006; Yu et al., 2006; Taniguchi et al., 2010]. By ignoring mRNA dynamics, this simple model produces simulations marked by instantaneous bursts of protein production. The size of the burst is geometrically distributed as a result of the exponentially distributed lifetime of an mRNA: assuming a constant rate of translation, the number of proteins produced from each transcript will be proportional to its lifetime, and the exponential distribution is the continuous equivalent of the discrete geometric distribution.

The one-step protein production reaction can be parameterised by a hazard, \(\lambda \), that characterises the average rate of promoter firing, and a burst size, \(b \), that gives the average number proteins produced per transcript. In relation to an overall rate of protein production, \(p \), the hazard can be expressed as \(\lambda = p / b \). This hazard can be used as per the Gillespie algorithm to simulate a time, \(\Delta t \), to the next promoter firing event. Unlike in the Gillespie algorithm, however, the stoichiometry of the reaction is determined by randomly sampling a burst size from a geometric distribution. The total number of proteins, \(N(t) \), then gets updated according to this sampled burst size:

\[
N(t + \Delta t) = N(t) + \Delta N
\]

where \(\Delta N \) is sampled from \(\text{Geom}(1/b) \), the geometric distribution with average burst size of \(b \). This parameterisation has the added benefit that the burst size parameter, \(b \), sets the magnitude of noise [Paulsson and Ehrenberg, 2000; Thattai and van Oudenaarden, 2001; Friedman et al., 2006]. This means that the burst size, \(b \), can be chosen to produce the expected level of intrinsic noise for the production of a given protein. The rate of promoter firing, \(\lambda \), is then determined using this burst size and the overall rate of production, \(p \), which is closely related to deterministic production rates. Since transcription factor dynamics at the promoter are typically fast, it is possible to link the fractional occupancy of a transcription factor at its promoter to the rate of transcription, simply by scaling the hazard in the one-step protein production reaction. Note that even if transcription factor dynamics operate on the same timescale as mRNA, providing that the transcription factor off-rate is faster than protein decay, time-averaging can again be invoked to show that the one-step model continues to be appropriate\(^2\) [Shahrezaei and Swain, 2008].

It can now be seen that most gene networks will consist of a number of important stochastic reactions, but also many reactions that could be treated more effectively as deterministic. This motivates a hybrid modelling approach where stochastic simulation is

\(^2\)Note, however, that if one were instead following the distribution of mRNA, it would still be necessary to explicitly model the promoter state, as in Zong et al. [2010], since the timescale of transcription factor binding can be similar to the mRNA lifetime.
performed for selected reactions, with the others simulated by concurrently solving the (time-evolving) deterministic equations [Kiehl et al., 2004]. More accurate hybrid models can also simulate the additional noise that is produced from the high frequency equations by numerically simulating from their CLE [Salis and Kaznessis, 2005]. However, the simpler hybrid stochastic/deterministic model can still be used to accurately model the lysis/lysogeny decision in phage lambda [Kiehl et al., 2004], and is likely to remain suitable for studying stability in other bistable gene networks.

Two important extensions to the Gillespie algorithm are required for the hybrid stochastic/deterministic model: (1) maintaining well-synchronised discrete and continuous versions of each state variable, and (2) numerically integrating the deterministic equations between each stochastic event. The former can be addressed through a careful numerical implementation. The latter, however, deserves additional attention since the evolving deterministic equations can result in time dependent hazards [Haseltine and Rawlings, 2002; Alfonsi et al., 2005]. The introduction of a (deterministic) time-dependence into the hazards means that the stochastic reactions must be modelled according to an inhomogeneous Poisson process. To illustrate this in terms of the example reaction $A + B \rightarrow C$, consider the case where that reaction occurs inside a cell in an exponentially dividing culture. Cells in such a culture grow in volume, and this increase in volume can essentially be treated as continuous (see Wilkinson [2006] for a more thorough discussion of this example). In this case, the hazard $\lambda(t)$ now has a (deterministic) time dependence: $\lambda(t) = cN_A N_B / V(t)$ for some time-varying volume $V(t)$. By treating the hazard as constant over each infinitesimal increment dt, then the number of events in that interval is approximately $\text{Pois}(\lambda(t)dt)$. Since the sum of Poisson distributions is also Poisson, this can be integrated to obtain a cumulative hazard $\Lambda(t)$:

$$\Lambda(t) = \int_0^t \lambda(s)ds$$ \hspace{1cm} (6.2)

where s is an integration variable. The number of events N_t occurring in time t is then given by the inhomogeneous Poisson process $N_t \sim \text{Pois}(\Lambda(t))$. The time to the next reaction can be randomly sampled, by analogy with the sampling method for $\text{Exp}(\lambda)$, as:

$$t = \Lambda^{-1}(-\log(u))$$ \hspace{1cm} (6.3)

where u is randomly generated from $U(0,1)$. Where a convenient analytical expression for the cumulative hazard $\Lambda(t)$ can be formed, the inverse can be directly calculated to obtain the above expression exactly. However, in more complex cases the integral must be numerically approximated to determine the time between steps. In that case, it is more convenient to calculate $\Lambda(t)$ directly and numerically integrate until it has a value matching $-\log(u)$. This method of numerical integration will be used for the stochastic model of the Tum−CI MFL that is introduced next.
In order to investigate noisy switching between stable states in the Tum−\text{CI} MFL, a stochastic model must be derived. For the bistable lac operon, noisy switching during hysteresis has also been observed experimentally [Ozbudak et al., 2004], and in that case, a model based on the well-established deterministic equations, but including additional stochastic terms was sufficient to explain how the reporter distributions evolved over time [Mettetal et al., 2006]. By maintaining strong parallels with the deterministic model, Mettetal et al. were able to construct a simple but effective model where many of the required parameters were already known or could be easily derived from steady-state distributions. Given that the behaviour of CI\texttextsuperscript{−}p\texttextsuperscript{R} repression and much of the behaviour of the Tum−\text{CI} MFL can also be identified with the deterministic model, a similar approach to developing a stochastic model of the Tum−\text{CI} MFL is taken here. By identifying likely sources of internal noise in the Tum−\text{CI} MFL, a hybrid stochastic/deterministic model of the Tum−\text{CI} MFL is developed based on the deterministic model of Chapter 2. However, unlike the lac operon model, the hybrid model of the Tum−\text{CI} MFL used here includes time-varying hazards that require a more rigorous hybrid modelling approach. This section concludes with some example simulation time courses illustrating the main features of the model.

Like for the deterministic model, separation of reaction timescales can be exploited to reduce the stochastic model. As was mentioned back in Section 2.2.3, the rate of loss of a species effectively sets its timescale. The rates of loss of CI and GFP are likely to be amongst the slowest, and these are also particularly influential in setting the state of the switch. Loss of both these species is dilution limited, making these rates on the order of the cell generation time (around 30 minutes). In contrast, the rates of loss of mRNA and the dissociation rates of transcription factors are typically at least an order of magnitude faster. The rate of loss of mRNAs in the Tum−\text{CI} MFL is unknown, but in \textit{E. coli}, mRNA half-lives are typically 3–8 minutes [Bernstein et al., 2002]. The lac repressor controls expression from the P\textsubscript{lac} promoter with an average dissociation time of around 5 minutes [Hammar et al., 2014]. The CI repressor controls expression from the p\textsubscript{R} promoter, and since the \textit{in vitro} binding strength of CI to its promoter (28 nM) [Dodd and Egan, 1996; Shearwin et al., 1998] is approximately three orders of magnitude weaker than that for the lac repressor [Bintu et al., 2005], dynamics of CI at the p\textsubscript{R} promoter are likely to be faster still. This means that fluctuations in promoter state and mRNA are fast relative to the dilution rate, and will make only time-averaged contributions to the distributions of CI and GFP. Such fast reactions can be treated under a quasi-steady-state approximation [Rao and Arkin, 2003] and subsumed into effective reactions [Shahrezaei and Swain, 2008]. This means that production of CI from P\textsubscript{lac} and of GFP from p\textsubscript{R} can be simulated according to the one-step model introduced in the previous section, with equilibrium models used to scale the rates of promoter firing as in the deterministic model. The distributions of fluorescence activities in the Tum− control strains support such approximations, since they are unimodal.
and their mean activities compare well with the deterministic model.

The rate of loss of Tum is less well defined, making it more difficult to choose an appropriate model for Tum production. Recall from the degradation rate measurements in Section 3.5.2 that a fraction of the available Tum protein is lost quickly with a half-life of 2–3 minutes, with the remainder seemingly lost only by dilution. Depending on whether the degradation-sensitive or degradation-resistant fraction is considered the active fraction, the timescale for Tum evolution could be close to that of mRNA/repressor binding, or alternatively dilution limited, as it is for CI and GFP. Interestingly, deterministic fits of the time-course LacZ assay data (Section 4.3.3) and also of the sub-populations determined by flow cytometry (to be introduced in Section 6.3.1) prefer a long half-life for Tum. Though this may be an artefact of fitting stochastic data with a deterministic model, it is tempting to assume in the first instance that Tum is lost only by dilution since it greatly simplifies the model. If active Tum does in fact equilibrate quickly, then both transcription factor binding dynamics and mRNA dynamics may need to be explicitly modelled, especially since stochastic reactions could be amplified through the feedback loop. On the other hand, since the pR-tum module is located on a multi-copy plasmid, averaging over the promoter states may, to some degree, compensate for such effects [Loinger and Biham, 2009]. To avoid these complexities at this stage, active Tum is assumed to be lost by dilution.

By making the assumption that Tum is dilution limited, the number of discrete species simulated in the stochastic model of the Tum−CI MFL can be limited to just the total levels of CI, Tum and GFP proteins. Transcription factor binding and mRNA levels can be treated under the quasi-steady-state approximation, as can formation and dissociation of the Tum−CI complex (recall from Section 2.4.1 that dissociation of the Tum−CI complex is likely to be fast). As such, the stochastic model should closely parallel a deterministic ODE specified in terms of total CI (C_{tot}), total Tum (T_{tot}), and total GFP (Z) concentrations, like that first introduced in Section 2.2.4:

\[
\frac{dC_{tot}}{dt} = p_C - \gamma C_{tot} \tag{6.4a}
\]

\[
\frac{dT_{tot}}{dt} = \frac{p_T}{1 + \left(\frac{C_{tot}}{C_{eq}} \right) H_T} - \gamma T_{tot} \tag{6.4b}
\]

\[
\frac{dZ}{dt} = \frac{p_Z}{1 + \left(\frac{C_{tot}}{C_{eq}} \right) H_Z} - \gamma Z \tag{6.4c}
\]

Here targeted degradation of the complex has been neglected, and the rates of loss of all species have been set to the dilution rate. The analogous stochastic model has just three stochastic reactions corresponding to each of the production rate terms. Recall that the Tum−CI and CI−pR equilibria are encapsulated within the Tum and GFP production terms, which depend on both C_{tot} and T_{tot} via the concentration of free CI according to the
constraint equation:

\[
C_{\text{tot}} = C + C \left(\frac{T_{\text{tot}} - 2C_{\text{tot}} + 2C}{\varepsilon_S} \right)^H_S
\]

(6.5)

This equation can be solved for \(C \) using numerical root finding routines.

The dilution terms in Equation (6.4) will be modelled both continuously, with species concentrations reduced according to the expanding volume of the cell, but also stochastically, with species partitioned binomially upon cell division. Continuous volume expansion affects only species concentrations; discrete molecule numbers continue to increase until cell division. Species concentrations can be calculated at any given instant from the number of molecules of that species and the cell volume. Since volume expansion due to cell growth is linear [Kubitschek, 1990], it is treated as a continuous function of time relative to division and given by \(V(t) = t/\tau_{\text{dbl}} + 1 \), where \(\tau_{\text{dbl}} \) is the cell doubling time and volumes are normalised to the cell volume just after division. When the relative time reaches \(\tau_{\text{dbl}} \), molecule numbers are randomly reduced according to a binomial distribution and the relative time is reset to 0.

Since the deterministic model was defined according to a constant-volume process, the time-averaged production rates specified in that model do not correspond directly to the hazards of the variable-volume stochastic model. Take, for example, a standard production/dilution process specified as \(\frac{dC}{dt} = p - \gamma C \) in the constant-volume formulation. The equivalent variable-volume rate equation can be split into an equation specifying the rate of increase in the average number of molecules, \(\frac{dN}{dt} = \lambda b \), and an equation specifying how the concentration decreases with increasing volume, \(C(t) = N(t)/V(t) \). Using the quotient rule, the rate of change of the concentration can be expanded:

\[
\frac{dC}{dt} = V \frac{dN}{dt} - N \frac{dV}{dt} = \frac{\lambda b}{V} - \frac{N}{V} = \frac{\lambda b}{V} - \frac{C}{\tau_{\text{dbl}}V}
\]

In order to reconcile the two formulations, the coefficients of \(C \) in the constant-volume equation must match to those in the variable-volume equation. Since cell volume changes periodically according to cell division, it is sufficient to ensure that the coefficients match over the period of one doubling time. For the production term:

\[
p = \left(\frac{\lambda b}{V} \right)_{\tau_{\text{dbl}}} = \frac{\lambda b}{\tau_{\text{dbl}}} \int_0^{\tau_{\text{dbl}}} \frac{1}{V} dt = \lambda b \int_1^2 \frac{1}{V} dV = \lambda b \log(2)
\]

where the angular brackets denote a time average over the doubling period. The factor of \(\log(2) \) gives the correct scaling between the two formulations. This means that in the stochastic model, the hazard for CI production can be expressed as \(\lambda_C = p_C/b_C \log(2) \), where \(p_C \) is the rate of CI production in the deterministic model, and \(b_C \) is the average number of proteins produced per mRNA transcript. A notable omission in this formulation is gene replication, which may well stand as another important source of stochasticity. It would be relatively straightforward to add replication events for each of the genes in...
Chapter 6. Investigating noisy switching in the Tum–CI MFL by stochastic modelling

Table 6.1: Stochastic reactions in the Tum–CI MFL model. The cumulative hazards are used to simulate the time to the next reaction. The stoichiometries specify how species counts change as a result of that reaction. Here, each reaction produces a randomly-sized burst of protein.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Cumulative Hazard</th>
<th>Stoichiometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$∅ \rightarrow CI_2$</td>
<td>$\frac{p_C t}{b_C \log(2)}$</td>
<td>$\Delta C_{tot} \sim \text{Geom}(1/b_C)$</td>
</tr>
<tr>
<td>$∅ \rightarrow GFP$</td>
<td>$\frac{p_Z}{b_Z \log(2)} \int_0^t \frac{1}{1 + \left(\frac{C}{\epsilon R}\right)^{H_R}} dt$</td>
<td>$\Delta Z \sim \text{Geom}(1/b_Z)$</td>
</tr>
<tr>
<td>$∅ \rightarrow Tum$</td>
<td>$\frac{p_T}{b_T \log(2)} \int_0^t \frac{1}{1 + \left(\frac{C}{\epsilon R}\right)^{H_R}} dt$</td>
<td>$\Delta T_{tot} \sim \text{Geom}(1/b_T)$</td>
</tr>
</tbody>
</table>

The cumulative hazards for one-step stochastic production of each species can now be completely specified and are given in Table 6.1. These reactions are specified in terms of burst sizes, b_C, b_T and b_Z, and deterministic protein production rates, p_C, p_T and p_Z, for CI, Tum and GFP respectively. Since the hazard for production of CI includes no time dependence, it is a standard Gillespie reaction and the cumulative hazard (as specified in the table) increases linearly with time. The hazards for production of Tum and GFP, however, need to be treated according to an inhomogeneous Poisson process, since the level of repression changes over time according to the continuous loss of CI and Tum by dilution. Those cumulative hazards must be numerically integrated since the shared repression factor is dependent on the level of free CI, which is itself determined by numerical solutions to the constraint equation, Equation (6.5). As per the one-step model of production, the result of any of these stochastic reactions is to increase protein levels according to a geometric distribution with mean given by the respective burst size parameters.

Custom software was written in C++ to implement the hybrid stochastic/deterministic model of the Tum–CI MFL (and similarly a model of the Tum– controls). The hybrid simulator uses the Next Reaction variant [Gibson and Bruck, 2000] of the Gillespie algorithm and is based on algorithms described elsewhere [Kiehl et al., 2004; Alfonsi et al., 2005], with hazards integrated according to an Euler time step. The state of the system can be completely characterised from the current time, t, the current volume, V, and three continuous state variables giving the total concentrations of Tum, CI and GFP. Protein numbers can be calculated using the product of concentration and volume and are made discrete by rounding down to the nearest integer. Only the three burst size parameters are specific to the stochastic model; the remaining parameters relate directly to the deterministic
A hybrid stochastic/deterministic model of the Tum−CI MFL model. Further details of the stochastic model and excerpts of the code are provided in Appendix D.

To illustrate key features of the stochastic model and simulation method, some sample time courses from the Tum− control model are shown in Figure 6.2. The Tum− model is identical to that of the Tum+ strain except that all Tum evolution terms are omitted. The activity of the P_{lac} promoter (p_C), shown in the lowermost plots, is set to mimic the hysteresis assay. Time courses start from either a simulated low O/N (left) or high O/N (right) culture, and then at time $t = 0$ the activity of P_{lac} is set to an intermediate level of induction and simulation continued for the desired equilibration time. In the figure, the final induction levels were chosen to be far from initial levels to show the effect of a large change in induction conditions. Since the stochastic model produces Monte Carlo simulations, five samples of each trajectory are shown. An additional random time of simulation in O/N conditions is performed prior to collecting data to ensure that the timing of cell division is different for each trajectory. Species concentrations are favoured over protein numbers, because concentrations are measured in the pR activity assays3 and concentration measurements are easier to relate to the deterministic model. For reference, deterministic trajectories are shown overlaid on the stochastic ones. Since the Tum− controls have a single stable state, and since large relative changes in protein levels require many promoter firing events, it is not surprising that the average behaviour of the stochastic trajectories tends to follow the deterministic curves. Individual stochastic trajectories can, however, diverge significantly from the deterministic one, and this indicates the level of noise around the average trajectory.

The combined effects of stochastic one-step protein production and continuous dilution can be seen in the individual stochastic trajectories. The one-step model of production results in instantaneous bursts of protein production, which is particularly obvious for the large bursts. These randomly-sized bursts are immediately followed by hyperbolic loss in species concentrations according to the rate of increase in cell volume. This bursting is symptomatic of the one-step model of production, since it is assumed that mRNA is very short-lived — effectively lost as soon as it is produced — so that the dynamics of protein concentrations are dominated by promoter firing and dilution. The hyperbolic decrease in protein concentrations due to dilution becomes exponential as a result of cell division. This effect can be seen particularly in the decay of GFP protein from the high activity state (left panel), and to a lesser degree in the decay of CI protein from the high induction state (right panel).

The behaviour of the stochastic model is better resolved when considering many thousands of trajectories. The histograms in the upper panels of Figure 6.2 show the distribution of pR activities at time $t = 200$ minutes for 5000 sample trajectories. Consistent

3 Normalisation by morphology (Section 5.1.4) in the flow cytometry assays effectively turns the measured absolute level of fluorescence into a level of fluorescence per the average cell.
Figure 6.2: Noisiness in the hybrid stochastic/deterministic model of the Tum− control strain. Two conditions are tested: the left panels show simulations of the transition from a low O/N culture to a high CI production rate; the right panels show instead the transition from a high O/N culture to a low CI production rate. The variation over time of P_{lac} promoter activity (p_C), total CI concentration (C_{tot}) and pR activity are shown in the lower plots: five individual stochastic trajectories are shown for each initial condition and are distinguished by shading; thick solid lines show the average of 5000 stochastic trajectories; thin black lines show the corresponding deterministic trajectory. In the plot of P_{lac}, thick black dashed lines indicate the activities ascribed to low and high O/N cultures. The upper plots show histograms for the distribution of simulated pR activities of 5000 trajectories measured at time $t = 200$; insets show the same distribution on a logarithmic scale to facilitate comparisons with the flow cytometry results; vertical dotted lines show the value predicted deterministically. Parameters for the models are as listed in the ‘Simple fit’ column of Table 6.2, with the burst sizes of CI and GFP defined to be 300 dimers and 20 arbitrary units (a.u.) respectively.
with theory [Gillespie, 2000], noise levels (the widths of the distributions) increase with increasing protein levels (activity). For the burst-size parameters used in this example, the distribution with high activity (right panel) has a width that is comparable with those of the flow cytometry samples (compare the logarithmic inset with the histograms in Figure 5.5, for example). The activity predicted according to the deterministic model does not necessarily overlap with the average behaviour. In the low activity state, the line marking the deterministic activity is close to the centre of the distribution, whereas it is off-centre for the high activity state. This likely reflects how the propagation of noise through the nonlinear CI$-pR$ equilibrium distorts the macroscopic trajectory relative to the deterministic model.

6.3 Establishing a parameter regime for the hybrid stochastic/deterministic model

The hybrid stochastic/deterministic model of the Tum$-CI$ MFL introduces only three additional parameters compared with the deterministic model. These additional parameters are the burst sizes for production of each of the MFL proteins (CI, Tum and GFP), and can be used to tune the level of intrinsic noise generated in the circuit. Direct measurements of these parameters are unavailable at this time so suitable estimates will need to be made. Estimates for the deterministic parameters also need to be revised. Though many of these were measured experimentally as reported in Chapter 3, the measurements were weakly constrained and result in model curves giving a poor match to the flow cytometry data sets. Additionally, the parameters determined in Section 4.3 by fitting the deterministic model to LacZ assay data are unlikely to be accurate, since the flow cytometry results show that the average trajectory of pR activity is biased by stochastic switching between the stable states. Ideally, the deterministic and stochastic parameters would now be determined by fitting the hybrid stochastic/deterministic model to the flow cytometry data. Unfortunately, stochastic models pose additional analytical challenges: not only do they involve more parameters, but solutions are substantially more difficult and time consuming to obtain, putting model-based statistical inference out of reach in many cases\(^4\). Instead, the task of parameter estimation is split into an improved method for statistical inference of the deterministic parameters using the deterministic model, and a heuristic search for suitable stochastic parameters using the stochastic model.

6.3.1 Fitting the dynamic deterministic model to a stochastic data set

In spite of the inherent stochasticity of the Tum$-CI$ MFL, it was previously maintained in Section 5.3 that a mixture model analysis of the flow cytometry data provided a means

\(^4\) The necessary groundwork for fitting stochastic models to data is, however, in active development. See Wilkinson [2009]; Henderson et al. [2009]; Munsky et al. [2012]; Neuert et al. [2013].
for recovering deterministic behaviours. Fitted sub-populations were interpreted as the projection of a bimodal population onto deterministic components, and these were found to compare more favourably with the steady-state deterministic model. Such a deconvolution of the data opens the possibility for estimating the deterministic parameters from the data independently of the stochastic model. The manual choice of parameters for the steadystate model seen previously in Figure 5.10 stands as a promising starting point. However, with time-course data also available, an extension to the dynamic regime and an automated method for fitting the parameters would be preferable. In this section, by first revisiting the conditions under which deterministic approximations to stochastic models are accurate, a rudimentary method is proposed for reducing the time-course data to a presumptive deterministic trajectory. The deterministic model can fit this trajectory very well, but only if unrealistic parameters are allowed. By appealing to a stochastic explanation for that concession, a revision of the trajectory is proposed. More realistic parameters are then obtained by using a simplified parameterisation and favouring the long equilibration time assay.

The Tum− strains show monostable behaviour that is reasonably well-described by the deterministic model. As became evident from the sample trajectories in Figure 6.2, the stochastic trajectories of the Tum− controls by and large follow the deterministic one. This makes sense from a theoretical point of view: the Tum− control circuit stands as good candidate for modelling by the CLE (a continuous stochastic process), bringing it closer to the deterministic trajectory. Recall that a CLE approximation to the discrete stochastic process requires that the least frequent reactions remain frequent enough that appreciable changes in reaction propensities require many reactions. Here, where the dilution rate sets the speed of equilibration of both CI and GFP, the P_{lac} and pR promoters only need to fire many times each cell division. This is likely to be the case except where either of the promoters are close to fully repressed. Discrete production of GFP from a repressed pR promoter can be ignored, since it has no downstream effects and produces fluorescence indistinguishable from the background. Discrete production of CI, however, deserves some attention.

The ultrasensitive CI−pR equilibrium partially protects against discrete effects due to low molecule numbers, but concomitantly reduces the efficacy of the deterministic approximation. When CI numbers are low, that is, in uninduced cultures where P_{lac} is fully repressed, the CLE approximation would typically fall short. However, in this case, a crude argument can still be made for the approximation: low numbers of CI are buffered by the CI−pR equilibrium, such that appreciable changes in downstream reaction propensities (i.e., in the rate of pR firing) only occur for higher levels of CI. Unfortunately, the nonlinearity also means that a further approximation of the continuous stochastic process as a deterministic one suffers reduced accuracy. Nonlinear propagation of noise through the CI−pR equilibrium will asymmetrically bias the average behaviour. This means that a
fitted Hill coefficient will be a biased estimate that does not relate directly to the noise-free Hill parameter that is shared between the controls and the MFL. This effect is evident in the right panel of Figure 6.2, where the mean stochastic trajectory and deterministic trajectory are seen to diverge. Here this discrepancy is assumed to be sufficiently negligible that core behaviour is nonetheless retained.

In the full Tum−CI MFL gene circuit, the Tum−CI and CI−pR equilibria present complementary ultrasensitive hurdles to low levels of Tum or CI, respectively. A rough argument can be used to again validate use of the CLE approximation: in order to overcome the ultrasensitive barrier between the two zones of stability, numerous firings from either the P_{lac} or pR promoters are likely to be required. In other words, ‘appreciable’ changes in system state are likely to require many stochastic reactions. However, a deterministic approximation to such a CLE would be less apt: switching between the two stable regions of the CLE cannot be captured in the deterministic model [Gillespie, 2000]. Nonetheless, if the timescale of switching between the two basins of stability is slower than the rate of equilibration local to each basin, then a local treatment of the CLE (a diffusion process) can be applied within each basin [van Kampen, 2007] and the rate of switching between the two treated as a first exit problem [Aurell and Sneppen, 2002]. The behaviour local to each stable basin can then be followed using the mixture model fitted to each fluorescence distribution. The fact that the Tum− controls at each time point provide apt templates for the local fluorescence distributions can be attributed to the difference between the two circuits being essentially just the addition of high frequency reactions from the Tum−CI equilibrium. Such high frequency reactions contribute relatively little additional noise, so that the shapes of the local distributions are still largely determined by the noise characteristics of production from P_{lac} and pR. This means that, like in Section 5.3, it can be assumed that the family of skew-t distributions defined by the Tum− control distributions give the prototypical stochastic spread of the regulated pR promoter around some deterministic trajectory. The fitted mixture model components of the Tum+ MFL samples can then be interpreted as independent sub-populations with a locally valid deterministic average value.

It is well established that stochastic gene network models can extend effective bifurcation boundaries beyond those of their deterministic counterparts [Kepler and Elston, 2001]. In terms of the low O/N MFL samples, this effect might be understood as identifying the high intensity sub-populations at high levels of induction as stochastic — trapped in the high intensity stable state according to some stochastic trajectory. In that case, the point of bifurcation for the equivalent deterministic model would occur at some point in

5 It is assumed that the production of Tum from the pMTS-pR-tum+ plasmid has noise characteristics that satisfy the conditions of a continuous stochastic process like the output of the (pIT-CH-pr-gfp)HIC module seemed to. With more copies of the pR-tum module, more frequent firing of the pR promoter is expected; the unknown is how the stochastic copy-number of the plasmids might affect the resulting distribution. This will be further discussed alongside the results of the stochastic model presented later in the chapter.
Chapter 6. Investigating noisy switching in the Tum−CI MFL by stochastic modelling

Table 6.2: A comparison of experimental parameter estimates and the deterministic parameters fitted to the time-course flow cytometry data measured for the ER-MCTum−CI MFL. The upper block contains the core MFL parameters; the middle block contains the initial condition scaling parameters; the lower block contains the timing parameters. Unless otherwise indicated, limits specify 95% confidence intervals.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental*</th>
<th>Full fit**</th>
<th>Simple fit†</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_R (CI dimers/cell)</td>
<td>$(2.5 \pm 0.8) \times 10^2$ ‡</td>
<td>9.39×10^2</td>
<td>9.74×10^2</td>
</tr>
<tr>
<td>H_R</td>
<td>2.2 ± 0.2 †</td>
<td>3.05</td>
<td>3.01</td>
</tr>
<tr>
<td>ε_S (Tum monomers/cell)</td>
<td>$(1.28 \pm 0.04) \times 10^3$ §</td>
<td>7.98×10^3</td>
<td>2.67×10^3</td>
</tr>
<tr>
<td>H_S</td>
<td>4.6 ± 0.6 §</td>
<td>1.19</td>
<td>1.04</td>
</tr>
<tr>
<td>M_T (Tum monomers/cell)</td>
<td>$(2.5 \pm 0.7) \times 10^4$ §</td>
<td>3.19×10^4</td>
<td>3.18×10^4</td>
</tr>
<tr>
<td>Doubling time (min.)</td>
<td>28.2 ± 0.2 †</td>
<td>27.1</td>
<td>32.4</td>
</tr>
<tr>
<td>Tum half life (min.)</td>
<td>2.7 ± 0.2 †</td>
<td>153.5</td>
<td>32.4</td>
</tr>
<tr>
<td>Low O/N scaling</td>
<td>–</td>
<td>4.49</td>
<td>–</td>
</tr>
<tr>
<td>High O/N scaling</td>
<td>–</td>
<td>1.67</td>
<td>–</td>
</tr>
<tr>
<td>Initial Tum scaling</td>
<td>–</td>
<td>7.86</td>
<td>–</td>
</tr>
<tr>
<td>Assay time (hours)#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC, short equil.</td>
<td>4.9</td>
<td>2.4</td>
<td>–</td>
</tr>
<tr>
<td>LCC, normal equil.</td>
<td>6.2</td>
<td>3.7</td>
<td>–</td>
</tr>
<tr>
<td>LCC, long equil.</td>
<td>7.2</td>
<td>4.7</td>
<td>–</td>
</tr>
<tr>
<td>HCC, short equil.</td>
<td>4.1</td>
<td>3.0</td>
<td>–</td>
</tr>
<tr>
<td>HCC, normal equil.</td>
<td>5.6</td>
<td>4.5</td>
<td>–</td>
</tr>
<tr>
<td>HCC, long equil.</td>
<td>6.6</td>
<td>5.6</td>
<td>5.0</td>
</tr>
</tbody>
</table>

* Parameters determined experimentally in this thesis or derived from the literature.
** Parameters from the model shown in Figure 5.11 fitting all available parameters to match the time-course data.
† Parameters from the model shown in Figure 6.3 fitted to match a single long equilibration time assay with a simplified parameter scheme.
‡ Parameters as fit by Dodd et al. [2007b]; limits indicate ‘acceptable ranges’.
§ Obtained by fitting in vitro gel shift data of Shearwin et al. [1998] to the model described in Section 2.2.2; ε_S was further converted to a number of monomers per cell using the scaling factor from Section 3.4.4.
¶ The mean doubling time of all MFL strains (Tum+ and Tum−) with a medium copy pr-tum plasmid.
The period of log phase growth attributed to each of the Low Cell Count (LCC) and High Cell Count (HCC) short, normal and long equilibration time (equil.) assays.
Figure 6.3: The deterministic model matches the long equilibration time data in spite of a simplified parameter set. The high cell count long equilibration time data was fit using a conservative set of parameters as described in the text. The data is the same as that in the lower rightmost panel of Figure 5.11, but, prompted by concerns that sub-populations near the bimodal/unimodal boundaries represented stochastic trapping in the initial state, two high intensity sub-populations in the low O/N Tum\(^+\) samples were additionally excluded. Shown overlaid are the simulated deterministic time-course hysteresis curves for both strains. The equivalent steady-state curve for the Tum\(^+\) strain is also shown; solid lines indicate stable states and dotted lines indicate the unstable states.

the middle of the bimodal samples, as would the turning point for the dynamic deterministic trajectory. The deterministic model does not account for such a stochastic effect, so in fitting the bimodal data with a deterministic model, there remains a source of uncertainty in identifying which of the sub-populations is more closely linked with the deterministic trajectory versus those better linked to stochastic switching. To this end, an a priori assignment of presumed deterministic sub-populations was trialled. This trial is presented in more detail in Appendix C.3, and though surprisingly good matches to the data could be found, attempts to simultaneously fit the complete data collection (i.e., all equilibration times and both low and high cell count data sets) consistently produced parameters that were unphysical. The best set of fitted parameters from this trial are shown in the ‘Full fit’ column of Table 6.2. As can be seen from the table, the good match of the data came at the cost of permitting the Tum half-life to be over five times longer than the fitted cell doubling time. It was found that this unphysical value was necessary to accommodate the slow decline of the low O/N hysteresis curve. One remedy would be to revise the assignments of the sub-populations. However, given the ambiguity in this decision, an alternative approach was pursued.

The limitations of the deterministic model are more apparent at earlier time points, when the system is further from equilibrium. The long equilibration time assays are the closest to steady-state, which also makes a deterministic description of these assays more likely to be reliable. As such, the model parameters from the ‘Full fit’ column of Table 6.2 were further optimised to fit just the high cell count long equilibration time assay, which is shown with the fitted model in Figure 6.3. Given that populations near the switching boundaries were likely to be stochastically trapped near the initial state and not actually deterministic populations, a few additional data points at the outer boundaries of the bimodal region were excluded; points excluded from the fit are indicated by open circles in the figure. Though the starting parameters for this final optimisation run were those
from the ‘Full fit’ column of Table 6.2, a number of additional parameter constraints were imposed to simplify the model. These simplifications were made under the premise that any extensions to the model that had been made to improve fits to the data were likely compensating for what were in fact stochastic effects. So the three O/N scaling parameters that were introduced to account for some perceived lag time were all set to one in favour of a slightly reduced equilibration time (5 hours), and the rate of loss of Tum was constrained to match the dilution rate like for CI and GFP. The optimised parameters can be found in the ‘Simple fit’ column of Table 6.2. Most of the core parameters are very similar to the starting parameters, with the notable exceptions being the doubling time, Tum half life and EC\(_{50}\) for the Tum−CI equilibrium (\(\epsilon_S\)). With the deterministic model still fitting most of the sub-population data very well, and with all parameters now within realistic ranges, the ‘Simple fit’ parameters stand as the most suitable candidates to define the deterministic component of the hybrid stochastic model.

6.3.2 Optimising the magnitude of noise to reproduce observed rates of stochastic switching

With the deterministic parameters now constrained through fits of the sub-population means, it remains to estimate values for the stochastic parameters of the hybrid stochastic/deterministic model. These parameters are the average burst sizes for production of CI, Tum and GFP. The average burst size derives from the rate of protein translation and the average lifetime of the mRNA. None of these parameters have been measured for transcripts in the Tum−CI MFL, and extrapolation from measurements obtained elsewhere would give rough agreement with the experimental results at best. However, with only three parameters, a limited heuristic search of the parameter space is feasible. In this section, simulations using a range of burst sizes are presented and compared, and the final parameters chosen to optimise rates of stochastic switching and to give qualitative agreement with the distribution shapes observed by flow cytometry.

The choice of average burst size for protein production has a direct effect on the variance of the resulting protein distribution. A burst size parameter, \(b\), sets the variance in protein numbers, \(\sigma^2\), according to

\[
\sigma^2 \simeq \mu(b + 1)
\]

where \(\mu\) is the mean number of proteins at steady state [Paulsson and Ehrenberg, 2000; Thattai and van Oudenaarden, 2001]. In this way, the average burst size scales the magnitude of intrinsic noise for some given \(\mu\) as determined by the rate of production. The widths of the unimodal Tum\(^{-}\) control distributions measured by flow cytometry give some indication of the intrinsic noise of GFP production. Preliminary simulations of the Tum\(^{-}\) control circuit revealed that the burst size of CI had only a small effect on the resulting downstream variance in the GFP distribution. So the burst size for production of
GFP could be independently optimised to match observed distribution widths. Relative to the nominal maximum reporter activity of $M_Z = 1000$ arbitrary units, a burst size of 20 units per transcript was found to produce simulated distributions that would compare well with the experimental distributions across a range of activity levels.

The burst sizes for production of CI and Tum were chosen based on how each parameter affected rates of stochastic switching. Average burst sizes in *E. coli* can range from one protein to many hundreds of proteins per mRNA transcript [Taniguchi et al., 2010]. A selection of burst sizes chosen from within this range were trialled in simulations of the Tum−CI MFL. The resulting distributions of reporter activities at 220 minutes of simulation time were examined for two alternative points in the hysteresis curve and are shown in Figure 6.4. These alternative simulation points were chosen to be at P_{lac} induction levels where stochastic switching was likely to occur, but to still be located within the region of deterministic bistability. Since protein distribution widths, i.e., their standard deviations, have a square root dependence on the burst size, the selection of burst sizes was varied by order of magnitude (i.e., 30, 300, or 3000 dimers or monomers per mRNA).

As can be seen in Figure 6.4(a), increasing the magnitude of noise in CI production reduces stability of both low and high fluorescence stable states. The upper plot shows that simulations starting near the low fluorescence stable state produce a unimodal peak centered over the initial state when the burst size is small ($b_C = 30$ dimers). However, when the burst size increases to $b_C = 300$ dimers, a bimodal distribution is observed, indicating that many of the stochastic trajectories have switched to a high intensity stable state. The upper plot shows the converse case: simulations starting near the high intensity stable state produce a sharp unimodal peak when $b_C = 30$ dimers, but as burst sizes increase to $b_C = 3000$ dimers, a lower intensity sub-population starts to appear. At least for the two hysteresis conditions shown, the burst size of CI production seems to have a much greater effect on the relative stability of the low intensity stable state.

As can be seen in Figure 6.4(b), increasing the magnitude of noise in Tum production reduces stability of the Tum−CI MFL only for the high fluorescence state. In the upper plot, the effects of Tum burst size on the high intensity stable state are shown. An increase in the number of low-fluorescence trajectories is only evident with the (overly) high burst size of $b_T = 3000$ monomers. However, this increase in switching was larger than that observed for the equivalent increase in CI burst size. In contrast, the lower plot shows that, regardless of Tum burst size, essentially no change in the extent of switching from low- to high-fluorescence states occurs.

These simulations reveal that the relative stabilities of each stable state can be independently optimised using the CI and Tum burst size parameters. The CI burst size can be increased to favour switching primarily out of the low fluorescence stable state, whereas the Tum burst size can be increased to favour switching out of only the high fluorescence stable state.
Figure 6.4: The level of noise in CI production affects rates of stochastic switching differently to that for Tum production. (a) Increasing the burst size for CI production decreases stability of both the low and high fluorescence sub-populations. (b) Increasing the burst size for Tum production decreases stability of only the high fluorescence sub-populations. Shown are kernel density estimates of the population statistics for 10000 trajectories of the Tum–CI MFL stochastic model at 220 minutes. Insets indicate history and final CI production rates (68.48 dimers/s for the low O/N cultures; 98.5 dimers/s for the high O/N cultures) on the deterministic time-course and steady-state curves from Figure 6.3. Deterministic parameters are as listed in the ‘Simple fit’ column of Table 6.2. Stochastic parameters default to $b_C = 300$ dimers, $b_T = 300$ monomers and $b_Z = 20$ units for CI, Tum and GFP burst sizes respectively; variations from the default are annotated for each curve.
Burst sizes of 3000 proteins per mRNA are outside of the range of measured burst sizes [Taniguchi et al., 2010], but these were included because the smaller burst sizes were unable to replicate the switching observed experimentally. In particular, the low O/N simulations (upper panels of Figure 6.4) did not produce a noticeable low intensity sub-population until the burst sizes were very large. In contrast, the experimental data shown back in Figure 5.8 for a low O/N measured at 60 µM IPTG distinctly shows two sub-populations. Furthermore, that sample is for a CI production rate lower than that simulated in Figure 6.4; that is, switching to the low intensity sub-population in the simulation shown here should be more frequent than that in the given experimental example. In order to replicate this rate of switching and since Tum burst size affects only the stability of the high intensity sub-population, the burst size parameters for CI and Tum were fixed to $b_C = 300$ dimers and $b_T = 3000$ monomers respectively for subsequent simulations. Though this would be an unphysical choice for b_T if it was interpreted literally as an mRNA burst size, it is still used here under the assumption that this parameter also encapsulates some other source of significant stochastic variation. Alternative sources of noise that might explain this requirement will be discussed towards the end of the chapter in Section 6.5.

6.4 A simple stochastic model is sufficient to reproduce salient features of the Tum−CI MFL

Using the parameters determined in Section 6.3, the hybrid stochastic/deterministic model of the Tum−CI MFL can be interrogated both to confirm that it reproduces the salient experimental results, but also to infer mechanism from details not captured in the experiments. In this section, model simulations are used to show that the simple stochastic Tum−CI MFL model that has been described produces bimodal populations at the expected points in the hysteresis curve. By then considering sample time-course trajectories, the stochastic events leading to switching between the states are examined. Finally, simulations ending at different equilibration times are analysed using the mixture modelling methods of Section 5.2. Whilst some discrepancies are clear, most of the qualitative behaviours observed experimentally can also be seen in the modelling results. A comparison of these results with the deterministic model highlights the minor quantitative differences seen between the stochastic model and the interpretation of the sub-populations as deterministic.

To examine the behaviour of the stochastic model around the hysteresis loop, hysteresis simulations were performed using the Tum−CI MFL model for a range of final P_{lac} induction levels. These Monte Carlo simulations were repeated 5000 times for each final level of induction, and the distribution of pR activities recorded at time $t = 220$ minutes after the switch from O/N to final levels of induction. Two examples of these distributions are presented as histograms in the upper panels of Figure 6.5. The examples are for final
Figure 6.5: The hybrid stochastic/deterministic model reproduces the broad regions of bimodality observed experimentally. The distribution of pR activities at time $t = 220$ minutes was recorded for 5000 simulated hysteresis trajectories of the Tum−CI MFL model at a range of final P_{lac} induction levels. The panels on the left show results for simulations starting from a low O/N; those on the right for a high O/N. In the lower panels, the density of trajectories (number of simulated cells) producing given pR activities at final P_{lac} induction levels are displayed as a heat map. Deterministic trajectories are overlaid on each heatmap; the arrow indicates which of the hysteresis curves was simulated in the stochastic model. The upper panels show histograms for two sample conditions as indicated by the vertical lines in the lower panels; insets show the same distributions on a logarithmic scale to facilitate comparisons with the flow cytometry results. Parameters for the models are as listed in the ‘Simple fit’ column of Table 6.2, with the burst sizes of CI, Tum and GFP defined to be $b_C = 300$ dimers, $b_T = 3000$ monomers and $b_Z = 20$ arbitrary units (a.u.) respectively.
A simple stochastic model is sufficient to reproduce salient features of the Tum−CI MFL. However, in both cases (i.e., in both low and high O/N simulations) bimodal distributions are observed. When plotted on a logarithmic axis (see insets), these bimodal histograms are more comparable with those obtained by flow cytometry, and reveal that even without instrumental noise, the low intensity and high intensity sub-populations still overlap.

The complete sets of low and high O/N simulated distributions are summarised using heat maps in the lower panels of Figure 6.5. The example histograms in the upper panels make up a single slice in each heatmap as indicated. These also mark the regions of the hysteresis curve where bimodal populations are found. For reference, both low and high O/N deterministic curves are plotted overlaid on each heatmap. There are broad regions of bimodality around each turning point of the deterministic curve, reflecting how stochastic switching occurs more readily near the deterministic bifurcation boundaries. The region of bimodality for the low O/N curve is much broader than that for the high O/N curve. This is consistent with the experimental results, though the bimodal low O/N distributions seen experimentally seemed to cover a broader range of induction levels still.

In order to investigate how switching from one stable state to the other occurs, the behaviour of individual stochastic trajectories over time was considered. Five sample time-course simulations each of low O/N and high O/N hysteresis trajectories are shown in Figure 6.6. The hysteresis conditions (i.e., the variations in P_{lac}) match those of the distributions shown in Figure 6.4, since they are located within the region of deterministic bistability. This means that reference lines showing the locations of the stable steady-states and also the unstable steady-state can be put in each plot. Trajectories ending near the low intensity stable state and others ending near the high intensity stable state can both be found. Importantly, in both the low O/N and high O/N simulations, a number of trajectories deviate significantly from the deterministic trajectory (thin black lines).

Switching from the high to the low intensity stable state, Figure 6.6(a), primarily relies on bursty production in Tum. With such a large burst size for Tum production ($b_T = 3000$ monomers), the time between bursts of Tum can be quite long even when production rates are high. If these times are long enough that the total Tum concentration drops below the unstable steady state, the system is able to switch to the lower stable state. Without this large Tum burst size, much less switching occurs. This can be seen by comparing the $b_T = 300$ and $b_T = 3000$ density curves in the upper panel of Figure 6.4(b). In contrast, switching from the low to the high intensity stable state, Figure 6.6(b), primarily relies on bursty production in CI. Even if bursty Tum production takes total Tum levels over the unstable state, there need to be sufficient delays in CI production such that the concentration of free CI (C) drops below its unstable state. Larger Tum burst sizes make no difference in this case as can be seen in the lower panel of Figure 6.4(b).

The averages of 5000 stochastic trajectories are also shown in Figure 6.6. These species
The timing of stochastic switching in the hybrid stochastic/deterministic model of the Tum–CI MFL. Two conditions are tested: the left panels show simulations of the transition from a low O/N culture to an intermediate CI production rate near the right bifurcation boundary; the right panels show the transition from a high O/N culture to an intermediate CI production rate near the left bifurcation boundary. The variation over time of p_{lac} promoter activity (p_C), free CI concentration (C), total Tum concentration (T_{tot}) and p_R activity are shown. Five stochastic trajectories distinguished by shading are shown in each case; thick solid lines show the average of 5000 stochastic trajectories; thin black lines show the corresponding deterministic trajectory. In the plot of P_{lac}, thick black dashed lines indicate the activities ascribed to low and high O/N cultures. In the other plots, horizontal dotted lines indicate the stable steady-state values of that variable at the final level of induction, whilst the dot-dash lines indicate the unstable steady-state value. Parameters for the model are as listed in the 'Simple fit' column of Table 6.2, with the burst sizes of CI, Tum and GFP defined to be $b_C = 300$ dimers, $b_T = 3000$ monomers and $b_Z = 20$ arbitrary units (a.u.) respectively.
averages give an indication of the proportion of trajectories that have switched to the alternative stable state. Interestingly, whilst the deterministic trajectories are seen to approach their equilibrium points, the average stochastic trajectories show no sign of slowing to some equilibrium point. In other words, stochastic equilibration between the two stable states occurs much more slowly than deterministic equilibration. This may partly explain why the high intensity sub-populations in the low O/N flow cytometry measurements appeared to equilibrate so slowly.

The simulated results can also be examined for sub-populations, which would reveal if slow equilibration of the high intensity states is also a feature of the model. Furthermore, such an analysis could be used to validate the treatment of the sub-populations as semi-deterministic descriptors of the data, as has been assumed in Section 5.3 for the steady-state model and in Section 6.3.1 for the dynamic deterministic model. Recall that in analysing the flow cytometry measurements, the Tum[−] control distributions were used to formulate an empirical description of noise as a function of median fluorescence (i.e., the constrained skew-<i>t</i> distributions). These constrained skew-<i>t</i> distributions were remarkably robust emulators of the fluorescence probability distribution, providing a simple way to approximate multiple underlying sources of noise, including instrumental noise, extrinsic sources of cellular noise, and, of course, the noise intrinsic to the gene network itself. The empirical description meant that complex models of noise propagation could be avoided when fitting the bimodal populations of the MFL strains. By similarly fitting the simulated stochastic data, a direct comparison of the fitted components can be made with the equivalent deterministic model to discern the effectiveness of such an empirical analysis.

Hysteresis was simulated for three alternative equilibration times, and the simulated fluorescence distributions fitted with mixture models of constrained skew-<i>t</i> distributions. The means of the fitted mixture model components are shown in Figure 6.7 with deterministic curves overlaid for comparison. For this analysis, minor amendments were made to the protocols that are briefly summarised below; technical details can be found in Appendix D. In order to reproduce experimental conditions more realistically, simulated cellular autofluorescence was added to the model data before mixture modelling. Autofluorescence predominates when reporter levels are low, so an ER-MC Tum[−] control flow cytometry distribution at maximum induction levels was used to estimate the magnitude of the background fluorescence. The normalised flow cytometry data in the untransformed scale was well fit by a normal distribution, so the mean and SD of that data were scaled to equivalent model units to define a theoretical distribution of background noise. Autofluorescence was presumed to be an additive source of noise, so simulated pR activities were offset by a random number drawn from the background noise distribution. The estimated burst size for GFP production was also revised to ensure that simulated pR activities were of the same order as the autofluorescence. After correcting for background
Figure 6.7: Sub-populations fitted to the simulated Tum−CI MFL data validate the semi-deterministic interpretation. Simulations of hysteresis for three different equilibration times were performed for both Tum− control and Tum+ MFL models, and the entire set analysed as per the constrained skew-t mixture modelling described in Section 5.2. To better match the experimental results, random levels of background fluorescence, simulated from a normal distribution with mean 286 and SD 214, were added to the final pR activities, and the Logicle transform was applied to all distributions prior to mixture modelling. Populations were designated as unimodal or bimodal according to the log-likelihood ratio. Means for the component skew-t distributions were calculated in the untransformed scale, and are shown plotted versus the final levels of P_{lac} induction. The area of each point is proportional to population size. Deterministic curves are overlaid for reference. Parameters for all models are as listed in the ‘Simple fit’ column of Table 6.2, with burst sizes of CI, Tum and GFP in the stochastic models defined to be $b_C = 300$ dimers, $b_T = 3000$ monomers and $b_Z = 100$ arbitrary units (a.u.) respectively.
fluorescence, the variance and mean fluorescence of an uninduced ER-MC Tum\(^-\) control strain were calculated, and a suitable GFP burst size calculated using Equation (6.6). Simulated fluorescence distributions were generated for both Tum\(^-\) control and Tum\(^+\) MFL models and a Logicle transformation applied for consistency with the experimental analysis. The Tum\(^-\) control simulations were used to calibrate constrained skew-t distributions for mixture modelling of the Tum\(^+\) MFL simulations in the manner previously described in Section 5.2.

Though not a perfect match, the fitted sub-populations shown in Figure 6.7 do reproduce many features of the deterministic model. Clearly there is substantial ambiguity in the location of the deterministic turning points, but elsewhere many sub-populations are observed to lie directly on the deterministic curves, even equilibrating at the same rate. The most noticeable deviation is for the high intensity sub-populations of the low O/N. This deviation is likely to arise through deficiencies in both the mixture model and the deterministic model. The mixture models assume that no population of cells are in transition between the two stable states, whereas the deterministic model does not account for the distorted propagation of population means through nonlinear reaction pathways (i.e., the Tum\(^-\)CI and CI\(^-\)pR equilibria). The latter effect can be observed more directly for the simulated control distributions, where the ultrasensitive CI\(^-\)pR equilibrium causes the stochastic means to diverge from the equivalent deterministic curves. In any case, the sub-population means were useful guides for calibrating the deterministic parameters to the data: the simulated results do compare relatively well to the experimental sub-populations shown in Figure 5.11. Indeed, the slow rate of loss of high intensity populations at high induction levels is also apparent in the simulated results.

6.5 Improving and interpreting the stochastic model

The extent to which parameter variation could be exploited to obtain a better match between model and experiment is an open question. Statistical inference using the present stochastic model would take considerable compute time, since many thousands of simulated trajectories are required to obtain well-formed distributions. Future work in this area could focus on reformulating the hybrid stochastic/deterministic model as a CLE (continuous stochastic model). Solutions to the CLE might then be formulated as mixtures of Gaussian sub-populations to mimic the mixture model analysis. The CLE is an example of a Fokker-Planck equation, and mixture model solutions to that equation have been successfully calculated in other fields [Terejanu et al., 2008; Giza et al., 2009]. To the author’s knowledge, such approaches have not yet been applied in the study of stochastic gene networks. Bayesian estimation of parameters using such solutions to the CLE should prove much more accurate than the deterministic methods of inference presented here and would also enable optimisation of stochastic parameters.
Parameter variation alone is unlikely to provide a satisfactory description of the experimental results. To obtain the degree of stochastic switching seen in this section, an unrealistic burst size for Tum production was required. The largest burst sizes seen in *E. coli* tend to range in the hundreds of proteins [Taniguchi et al., 2010], and at such sizes mRNA half-lives would be so long that the assumption of instantaneous bursts of protein would also be invalid. Indeed, the difference in bursting dynamics between Tum and GFP in Figure 6.6 is enough cause for concern, since both proteins are produced from the same promoter. In fact, the rate of firing of the Tum promoter is expected to be more frequent than that of GFP, since Tum is located on a multi-copy plasmid. Instead, the requirement for such a large burst size suggests that this parameter is acting as a proxy for some other stochastic reaction that operates on a timescale slower than mRNA production (translation bursts).

Likely candidates for such slow stochastic reactions are the replication and partitioning by cell division of the Tum plasmid. Small changes in plasmid copy number can lead to large relative changes in gene output [Mileyko et al., 2008], and changes in plasmid copy number have even been observed to produce qualitative changes in gene circuit behaviour [Anand et al., 2011]. With only 10–12 copies per genome, small changes in the copy number of the pMTS-pR-tum+ MFL plasmid could lead to large relative changes in promoter output, which would then be amplified by translation. To investigate this possibility, the stochastic model would need to be extended to simulate both the replication of promoter elements and binomial partitioning of the plasmid components. Stable plasmid propagation requires regulated replication, and a simple negative feedback mechanism is sufficient to account for this in stochastic models [Paulsson and Ehrenberg, 2001]. Such extensions to the model will be investigated in future work.
The MFL now and going forwards

The MFL is over-represented in natural networks [Yeger-Lotem et al., 2004], and is a paradigm for regulatory motifs that cross between transcriptional and protein-protein interaction networks. In this thesis, a synthetic MFL that displays bistability was constructed in *E. coli* from the Tum and CI proteins of phage 186. These proteins are well-studied [Lamont et al., 1989; Shearwin and Egan, 1996; Shearwin et al., 1998; Dodd and Egan, 2002; Pinkett et al., 2006] and show few interactions with the host *E. coli* network, so presented an ideal choice for testing the functions of the MFL network in isolation.

A deterministic model of the Tum−CI MFL was developed in Chapter 2 using the information available from the literature on the regulatory capacities of Tum and CI. This model showed that a MFL constructed from these proteins was theoretically capable of producing a network that would display bistability. This model also inspired a hysteresis assay that could be implemented experimentally to efficiently balance parameters and locate a bistable configuration. In contrast with the generalised deterministic model of the bistable MFL developed by François and Hakim [2005], the deterministic model developed in Chapter 2 was a more accurate representative of the Tum−CI MFL design. Furthermore, it highlighted a hysteretic variable not considered by François and Hakim: whereas they used the production rate of the transcriptional regulator as a normalisation factor, here that production rate is varied to achieve hysteresis. This hysteresis variable was easily varied by way of a LacI induction system controlling expression of the CI repressor. It also motivated a strain lacking the *tum* gene as a useful control for comparing the hysteresis of the bistable system with a monostable one.

The use of a deterministic model to aid the design of a synthetic circuit is a common pattern in synthetic biology. The first synthetic circuits — the oscillator of Elowitz and Leibler [2000] and the toggle switch of Gardner et al. [2000] — both made use of simple models of gene networks to guide the construction process. Though deterministic models are not as accurate as a complete stochastic model of a network, their simplicity and analytical tractability makes them integral conceptual tools. The deterministic model of the Tum−CI MFL was used throughout this thesis as a standard against which to measure the performance of the MFL. In this way, it guided the experiments towards a more complete understanding of the synthetic circuits. Firstly, the deterministic model helped to identify
a set of core parameters that could set bounds on how the results could be interpreted. Experimental measurements of these parameters were reported in Chapter 3. Then, based on the performance of the controls, it was found that longer equilibration times were needed, and the hysteresis protocol was modified to accommodate this as reported in Chapter 4. Direct comparison of the deterministic model with the results of whole-population hysteresis measured by LacZ assay prompted measurements of the distribution of reporter activities in single cells. These distributions were measured by flow cytometry in Chapter 5, and a method was devised for splitting the observed bimodal populations into effective deterministic components. These components compared favourably with the deterministic model, underscoring how such models can still be relevant in a stochastic system. Finally, by comparing the deterministic model with a hybrid stochastic/deterministic model of the Tum−CI MFL developed in Chapter 6, the limits of the deterministic model could be assessed. Though it failed to capture minor deviations due to noise propagation through a nonlinear network, the deterministic model matched the general trends of the data surprisingly well.

Another common theme found throughout the thesis was the normalisation of experimental data in order to better capture the underlying behaviour of the MFL. Prime examples of this included normalisation of the ultrasensitivity present in the induction system, morphology normalisation of the flow cytometry data sets and the constrained skew-t mixture modelling. By measuring the ultrasensitivity present in the relief of LacI repression of P_{lac} by IPTG in Section 3.3, all future measurements of hysteresis could be normalised to a linear scale in the hysteresis variable. Such a normalisation method was previously used to more accurately measure downstream ultrasensitivity of an activator [Palmer et al., 2009], and in this thesis it made for better alignment of the data with both deterministic and stochastic models. A wealth of data is captured in processing cell cultures by flow cytometry, and this makes it possible to correct for noise due to variation in cell morphology [Knijnenburg et al., 2011]. By applying morphology normalisation to the Tum−CI MFL data sets, the distribution of fluorescence activities became distributions for an ‘average’ cell. This improved resolution of the bimodal samples, and facilitated the interpretation of these distributions in terms of deterministic components, since deterministic models reduce complexity by assuming a constant cell volume. The constrained skew-t mixture model developed in Section 5.2 then provided the means for precise determination of sub-population locations and proportions. By building on the pR distribution template provided by the tum− control strains, the constrained skew-t distributions were apt proxies for the unimodal distributions that would be expected of a deterministic trajectory. This ultimately enabled direct comparison of an obfuscated mixed distribution with the simple deterministic model.

Regulatory networks bearing similarities with the bistable MFL have been studied in recent years. The regulatory network for galactose metabolism in $S. cerevisiae$ contains a
Chapter 7. The MFL now and going forwards

MFL with overall negative feedback involving the Gal4p activator which gets inactivated by the Gal80p protein by a protein-protein interaction [Smidtetas et al., 2006]. This would normally imply a MFL in the oscillatory regime, but two additional positive feedback loops make the overall network behave as a bistable system. These positive feedback loops involve the sequestration of Gal80p by Gal3p and Gal1p, which makes each of these three-component feedback loops similar to the MFL motif, but with an additional intervening protein-protein interaction. The bistable configuration of these three-component circuits has been shown to produce hysteresis as a function of galactose concentration [Venturelli et al., 2012], and, like for the Tum−CI MFL, bimodal populations were observed throughout the bistable region of the hysteresis curve.

A simple synthetic switch involving the sequestration of a sigma factor by its anti-sigma factor has also been constructed in *E. coli* [Chen and Arkin, 2012]. In this case, the sigma factor itself forms an overall positive feedback loop by activating its own production; the anti-sigma factor acts to adjust the strength of positive feedback by sequestration of the sigma factor. Chen and Arkin observe hysteresis in this synthetic bistable switch, but again a bimodal population structure is found in the bistable region. Importantly, this synthetic circuit is not an example of the MFL, in which the transcriptional regulator acts to control expression of the protein interaction partner. Instead the sigma/anti-sigma circuit constitutes an overall transcriptional-based positive feedback loop that is modulated by sequestration.

These examples and the Tum−CI MFL all produce bimodal populations in cycling the hysteresis loop. The Tum−CI MFL, in particular, has very closely overlapping populations that are difficult to resolve with basic mixture modelling. Is such noisy switching a feature of these sequestration-based circuits, or is it possible to construct a robust bistable circuit with the MFL motif? To begin addressing this question, some modifications to the design of the Tum−CI MFL were proposed. As found previously in Section 6.3.2, noise in CI production plays a prominent role in stochastic switching near the bifurcation boundaries, and even a moderate reduction of noise in this parameter could have a significant impact on switch robustness. On this basis, an improved P_{lac}-CI induction module was designed using the Lac repressor looping constructs described by Priest et al. [2014]. By maintaining both the source of Lac repressor and also the P_{lac} induction module in the chromosome, the copy-number of these elements should be better linked to cell growth, rather than to the stochastic copy-number variation typical of plasmids [Paulsson and Ehrenberg, 2001]. Furthermore, in order to enable estimation of the intrinsic stochasticity of the integrated P_{lac} module, a P_{lac}-gfp reporter construct was designed. The other pR promoter reporter modules were also redesigned to make use of an improved integration chassis, the OSIP (One-Step Integration Plasmid) system [St-Pierre et al., 2013], and to replace the folding reporter GFP with the brighter superfolder GFP [Pédelacq et al., 2006] to increase the sensitivity of the fluorescence assays. I have cloned and integrated most of these new con-
Chapter 7. The MFL now and going forwards

structs into an improved induction and reporter strain. However, a complete MFL strain has not yet been constructed, so the details of these strains and the pending assays will be reported elsewhere.

These proposed improvements to the Tum−CI MFL still do not address what could be the most important source of noise: copy-number variation of the \(pR-tum \) plasmid. Integration of this module would limit such variation, but recall that an integrated \(pR-tum \) module is not strong enough to produce discernable hysteresis [Pocock, 2007]. Even if the strength of the \(P_{lac} \) promoter could be lowered to the point where CI and Tum production were balanced, it is likely that the lower rate of promoter firing would give rise to larger relative fluctuations that would increase stochastic switching in any case. Solutions may instead include either increasing the degradation rate of CI by appending a degradation tag to the C-terminal end of the protein [McGinness et al., 2006], or increasing the degradation rate of the mRNA using small RNAs [Shimoni et al., 2007]. In these cases, high rates of promoter firing could be maintained for reduced steady-state levels of CI repressor. This may allow integration of the \(pR-tum \) module without concomitantly increasing noise in CI expression.

There remains much to learn about the MFL. Though robust bistability from this motif has not yet been observed, this may not be its primary function. Indeed, having a bimodal phenotype in a bacterial population may improve the chances of survival, as exemplified by bacterial persister cells [Balaban et al., 2004]. In Drosophila, random segregation into bimodal populations is responsible for the differentiation of photoreceptor cells into two different types [Mikeladze-Dvali et al., 2005]. Though the choice is random for any given cell, the relative fraction of each cell type is well defined. Alternatively, the MFL motif may be important in some as-yet-unidentified signal processing role. Such features are unlikely to be visible from the relatively static picture of the MFL obtained here by LacZ assay or flow cytometry. Instead, full time-course measurements of single cells and their responses to transient signals would be required. A microfluidics platform in combination with fluorescence-based reporting, like the systems used to monitor synthetic oscillator circuits [Stricker et al., 2008; Prindle et al., 2012], could provide such experimental flexibility, opening the way to studying dynamic signal propagation and triggering of the switch. Given these open questions, the construction of a functional synthetic Tum−CI MFL, as reported in this thesis, stands as an important first step towards understanding the importance of the MFL motif.
8.1 Reagents

All reagents used in this thesis were of analytical grade or the highest purity available. Standard chemicals are listed in Table 8.1. Standard buffers and media prepared from these chemicals are listed in Table 8.2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General salts, acids and bases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>CaCl₂</td>
<td>Sigma (Sigma Chemical Co.)</td>
<td></td>
</tr>
<tr>
<td>Di-sodium hydrogen orthophosphate</td>
<td>Na₂HPO₄</td>
<td>B.D.H. (B.D.H. Labs, Australia)</td>
<td></td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>HCl</td>
<td>B.D.H.</td>
<td></td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>MgCl₂</td>
<td>Ajax</td>
<td></td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>MgSO₄</td>
<td>Ajax</td>
<td></td>
</tr>
<tr>
<td>Milli-Q water</td>
<td>H₂O</td>
<td>Water purified using Millipore Corporation filters</td>
<td></td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>KCl</td>
<td>B.D.H.</td>
<td></td>
</tr>
<tr>
<td>Monopotassium phosphate</td>
<td>KH₂PO₄</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>NaCl</td>
<td>B.D.H.</td>
<td></td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>NaCl</td>
<td>B.D.H.</td>
<td></td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>NaOH</td>
<td>Ajax</td>
<td></td>
</tr>
<tr>
<td>Tris acetate</td>
<td></td>
<td>B.D.H.</td>
<td></td>
</tr>
</tbody>
</table>

Biochemicals

Continued on next page
Table 8.1: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Log DNA molecular markers</td>
<td>2-log</td>
<td>NEB (New England Biolabs)</td>
<td></td>
</tr>
<tr>
<td>Agarose</td>
<td></td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Bacto-agar</td>
<td></td>
<td>Difco (Difco Laboratories Inc.)</td>
<td></td>
</tr>
<tr>
<td>Bacto-tryptone</td>
<td></td>
<td>Difco</td>
<td></td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>BSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casamino acids</td>
<td></td>
<td>Difco</td>
<td></td>
</tr>
<tr>
<td>Deoxyribonucleoside triphosphates</td>
<td>dNTPs</td>
<td>NEB</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td></td>
<td>Ajax</td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td>B.D.H.</td>
<td></td>
</tr>
<tr>
<td>Yeast extract</td>
<td></td>
<td>Difco</td>
<td></td>
</tr>
</tbody>
</table>

Antibiotics

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Amp</td>
<td>Sigma</td>
<td>Stock solutions (100 mg/mL in H₂O) were Millipore filtered and stored at −20°C.</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Chlor</td>
<td>Sigma</td>
<td>Stock solutions (30 mg/mL in ethanol) were stored at −20°C.</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Kan</td>
<td>Sigma</td>
<td>Stock solutions (50 mg/mL in H₂O) were Millipore filtered and stored at −20°C.</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>Spec</td>
<td>Sigma</td>
<td>Stock solutions (50 mg/mL in H₂O) were Millipore filtered and stored at −20°C.</td>
</tr>
<tr>
<td>Tetracyclin</td>
<td>Tet</td>
<td>Upjohn Pty. Ltd.</td>
<td>Stock solutions (20 mg/mL in ethanol) were stored at −20°C.</td>
</tr>
</tbody>
</table>

Other chemicals and solvents

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-PER® Reagent</td>
<td>Thermo Scientific (Thermo Fisher Scientific Inc.)</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>Crown Scientific</td>
<td>RNase-free</td>
</tr>
</tbody>
</table>
8.1 Reagents

Table 8.1: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylenediaminetetraacetic acid (disodium salt)</td>
<td>EDTA</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td></td>
<td>May and Baker Ltd.</td>
<td></td>
</tr>
<tr>
<td>GelRed</td>
<td></td>
<td>Biotium</td>
<td></td>
</tr>
<tr>
<td>5-bromo-4-chloro-indolyl-β-D-galactopyranoside</td>
<td>X-gal</td>
<td>Sigma</td>
<td>Stock solutions (30 mg/mL in dimethyl formamide) were stored at −20°C.</td>
</tr>
<tr>
<td>Isopropyl-β-D-1-thiogalactopyranoside</td>
<td>IPTG</td>
<td>Sigma</td>
<td>Stock solutions (100 mM in H₂O) were Millipore filtered and stored at −20°C.</td>
</tr>
<tr>
<td>2-mercaptoethanol</td>
<td>β-ME</td>
<td>Sigma</td>
<td>Stored at −20°C.</td>
</tr>
<tr>
<td>ortho-nitrophenyl-β-galactosidase</td>
<td>ONPG</td>
<td>Diagnostic Chemicals Ltd.</td>
<td>Stored as a powder at −20°C. Solutions always made fresh.</td>
</tr>
<tr>
<td>polymixin B sulphate</td>
<td>PMB</td>
<td>Sigma</td>
<td>Stock solutions (20 mg/mL in H₂O) were stored at −20°C.</td>
</tr>
<tr>
<td>Sodium dodecyl sulphate</td>
<td>SDS</td>
<td>Sigma</td>
<td></td>
</tr>
</tbody>
</table>

Enzymes

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Company</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctic Phosphatase</td>
<td></td>
<td>NEB</td>
<td></td>
</tr>
<tr>
<td>Benzonase</td>
<td></td>
<td>Novagen</td>
<td>Stock concentration is 25 U/µL.</td>
</tr>
<tr>
<td>BigDye Version 3.1 Ready Mix</td>
<td></td>
<td>Life Technologies</td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td></td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>T4 DNA ligase</td>
<td></td>
<td>NEB</td>
<td></td>
</tr>
<tr>
<td>Taq DNA polymerase</td>
<td></td>
<td>NEB</td>
<td></td>
</tr>
<tr>
<td>Phusion High-Fidelity DNA polymerase</td>
<td></td>
<td>Finzymes</td>
<td></td>
</tr>
<tr>
<td>Restriction endonucleases</td>
<td></td>
<td>NEB</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.2: Standard buffers and growth media used in this thesis. Buffers were prepared in H₂O unless otherwise specified.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigDye Dilution buffer</td>
<td></td>
<td>200 mM Tris-HCl pH 9.0, 5 mM MgCl₂.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.2: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10× Glycerol Loading Buffer</td>
<td>GLB</td>
<td>50% (v/v) glycerol, 0.4% (w/v) Bromophenol Blue, 0.2% (w/v) Xylene Cyanol, 10 mM EDTA.</td>
</tr>
<tr>
<td>L agar</td>
<td></td>
<td>1.5% Bacto-agar in LB. Autoclaved.</td>
</tr>
<tr>
<td>Lennox Luria broth</td>
<td>LB</td>
<td>1% bacto-tryptone, 1% NaCl, 0.5% yeast extract, pH 7.0. Autoclaved.</td>
</tr>
<tr>
<td>10× M9 salts</td>
<td></td>
<td>128 g/L Na$_2$HPO$_4$, 30 g/L KH$_2$PO$_4$, 10 g/L NH$_4$Cl, 5 g/L NaCl. Autoclaved.</td>
</tr>
<tr>
<td>M9 minimal media</td>
<td></td>
<td>1× M9 salts, 0.1 mM CaCl$_2$, 1 mM MgSO$_4$, 0.2% (w/v) glucose or glycerol, and optionally 0.2% (w/v) casamino acids and/or 1 µg/mL thiamine.</td>
</tr>
<tr>
<td>1× Phosphate Buffered Saline</td>
<td>PBS</td>
<td>137 mM NaCl, 2.7 mM KCl, 10 mM Na$_2$HPO$_4$, 1.8 mM KH$_2$PO$_4$, pH 7.4. Filtered to remove debris.</td>
</tr>
<tr>
<td>SOC media</td>
<td></td>
<td>20 g/L tryptone, 5 g/L yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl$_2$, 10 mM MgSO$_4$. Autoclaved.</td>
</tr>
<tr>
<td>10× TAE</td>
<td></td>
<td>0.4 M Tris-acetate, 0.2 M sodium acetate, 10 mM EDTA, pH 8.2</td>
</tr>
<tr>
<td>TSS</td>
<td></td>
<td>10% (w/v) polyethylene glycol (M.W. 8000), 5% (v/v) dimethyl sulfoxide, 50 mM MgCl$_2$ made up in LB at pH 6.5; either autoclaved or filter sterilised using a 0.2 µm filter. Stored at 4°C in the short term, or −20°C for the long term.</td>
</tr>
<tr>
<td>TZ8</td>
<td></td>
<td>100 mM Tris-HCl pH 8.0, 10 mM KCl, 1 mM MgSO$_4$ in H$_2$O.</td>
</tr>
<tr>
<td>TZ8+</td>
<td></td>
<td>50 µg/mL polymixin B (PMB) and 0.27% (v/v) 2-mercaptoethanol (β-ME) made up in TZ8. Always made fresh.</td>
</tr>
</tbody>
</table>

8.2 General cloning methods

8.2.1 Growth of bacteria

Unless otherwise specified, bacterial cultures and colonies were grown at 37°C. Strains containing the CRIM helper plasmids were grown at 30°C due to the temperature-sensitive replication origin.

Liquid cultures were routinely prepared in sterile Lennox Luria broth (LB) with added antibiotics unless otherwise specified. Single colonies were obtained by streaking or spread-
Table 8.3: Concentrations of antibiotics used in this thesis. Concentrations are specified in µg/mL. The concentration used depended on plasmid copy number; for integration of the CRIM plasmids alternative concentrations were also required. High-copy plasmids were those with either the ColE1, R6Kγ, oriR101 or p15a replication origins. Low-copy plasmids were those with the mini-F, SC101 or SC101\(^*\) replication origins.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>High copy</th>
<th>Low copy</th>
<th>Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>100</td>
<td>30</td>
<td>–</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>30</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>50</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Tetracycllin</td>
<td>20</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Antibiotics were added to growth medium at the concentrations listed in Table 8.3. After successful integration of CRIM plasmids, strains were routinely grown without selection for the integrated plasmid’s antibiotic resistance.

Stationary phase cultures were prepared by innoculating liquid growth medium with a freshly-streaked colony and incubating overnight (O/N) with shaking. Log phase cultures were prepared from stationary phase cultures by diluting 1/200 in liquid growth medium and incubating with shaking until the culture reached an optical density (absorbance at 600 nm) of 0.6 (OD\(_{600}\) 0.6).

Optical densities were routinely measured using a Cary 3-Bio UV-Vis Spectrophotometer (cultures diluted 1/10 in water before measurement). Where more accuracy was required, 100 µL samples of the culture were pipetted into the wells of a flat-bottomed 96-well plate and the absorbance at 620 nm (A\(_{620}\)) was measured using a Multiskan Ascent plate reader (Labsystems). The A\(_{620}\)s were converted to OD\(_{600}\)s using an empirically determined relationship [Dodd et al., 2001].

8.2.2 Storage of bacterial strains

For long-term storage of bacterial strains, 500 µL of an O/N culture was mixed with 500 µL of 80% glycerol and stored at −80°C in sterile 1.5 mL screw-capped tubes. Strains were retrieved by streaking directly from the frozen stocks onto L-plates with relevant antibiotics for growth O/N.

8.2.3 Preparation and purification of DNA

Plasmid DNA was usually obtained using a small-scale preparation. Plasmid DNA was extracted and purified from pelleted 4 mL O/N cultures (4000 rpm, 10’) using the QIAprep
Spin Miniprep Kit (Qiagen), following the protocol as specified. Plasmids were eluted in 50 µL of the provided buffer (10 mM Tris-HCL, pH 8.5) and stored at −20°C.

For cloning into plasmids with the mini-F origin (i.e., those based on pZC320), large-scale preparation of plasmids was performed using the NucleoBond Xtra Midi Plus kit (Macherey-Nagel). The kit’s Low-copy Plasmid Purification protocol was followed for O/N cultures of 400 mL. Plasmids were concentrated with the NucleoBond Finalizer, eluted in 300 µL of 5 mM Tris-HCl, pH 8.5, and stored at −20°C.

8.2.4 Polymerase Chain Reactions

For amplification of DNA for cloning, polymerase chain reactions (PCRs) with the Phusion High-Fidelity DNA polymerase (Finnzymes) were used. Reactions were made up to 20 µL in H2O with 0.5–20 ng of template DNA, 0.2 mM of each dNTP, 1× HF Phusion Buffer, 40 ng of each primer and 0.4 U of polymerase. Temperature cycling was performed using a DNAEngine Thermal Cycler (BioRad) with the cycling protocol set to match the manufacturer’s recommendations for the Phusion polymerase.

For cloning work, products from PCR reactions were purified using either the MoBio UltraClean PCR Cleanup Kit, typically eluting in 50 µL 10 mM Tris-HCl, or the DNA Clean & Concentrator-5 kit (Zymo Research), typically eluting products in 10 µL H2O.

For amplification of DNA to prepare sequencing templates or to screen for clones, PCRs with the Taq DNA polymerase (NEB) were used. Templates for these reactions included both genomic DNA and plasmids, which were included in the reaction either by pipetting from a plasmid prep (to obtain 0.5–20 ng total in the reaction), picking from colonies on L-plates using a sterile wire and stirring into the reaction mix, or by adding 2 µL of a cell suspension prepared by picking colonies on L-plates using yellow tips and resuspending in 100 µL of H2O. Reactions were prepared in thin-walled 0.2 mL PCR tubes and made up to 10 µL (screening) or 20 µL (sequencing) in H2O with template, 0.2 mM of each dNTP, 1× ThermoPol buffer (NEB), 2 ng/µL of each primer, and 0.05 U/µL of Taq polymerase. Temperature cycling was performed using a Rapid Cycler from Idaho Technology. For amplification of products with lengths smaller than 1 k.b., the cycling protocol was set to hold 98°C for 10 seconds, then 30 cycles of (98°C for 10 seconds, 46°C for 10 seconds and 74°C for 15 seconds). For amplification of products with lengths greater than 1 k.b., the extension time at 74°C was increased to 1 minute.

For screening of CRIM plasmid integrants, the protocol for screening colonies was followed, but the four primers were instead combined to be equimolar with final concentrations of 0.5 µM each.

8.2.5 Analysis of DNA

DNA preparations (including plasmid and PCR) were routinely analysed by agarose gel electrophoresis. Gels were prepared by dissolving 1–2% agarose in boiling 1×TAE buffer
and casting this into horizontal minigels. Gels were run at 110 V in a Mini Sub Cell GT (BioRad) electrophoresis device using 1×TAE as running buffer. Typically, 2–4 µL of a mixture of DNA sample and GLB (1×) were loaded into each well; at least one lane contained 500 ng of 2-log DNA molecular markers (NEB) made up in GLB.

DNA gels were visualised by staining with GelRed (Biotium) according to the manufacturers instructions, and photographing under short wavelength UV light. The molecular markers were used to estimate both lengths and concentrations (by comparison of band intensities) of the DNA samples.

8.2.6 DNA recombination work

Restriction endonucleases were obtained from New England Biolabs (NEB) and DNA digests were performed as per the manufacturer’s recommendations in 50 µL reaction volumes with incubation times ranging from 1 hour to overnight. Digestion was confirmed using agarose gel electrophoresis.

To avoid self religation, the ends of linearised plasmid backbones were routinely dephosphorylated using Antarctic Phosphatase (NEB). 5 U of phosphatase and sufficient Antarctic Phosphatase buffer were added to restriction digests with incubation at 37°C for 30 minutes. The enzyme was heat inactivated by incubating at 65°C for 5 minutes.

Prior to ligation, linearised DNA was usually gel extracted to isolate just the intended fragment. Digestion reactions were separated by agarose gel electrophoresis using 1% agarose minigels cast with larger wells. Gels were stained with 50 mL of 1×SYBR Safe DNA gel stain (Life Technologies) made up in TAE for 30 minutes with gentle shaking. Excision of the desired bands was assisted by visualisation using a Safe Imager Blue-Light Transilluminator (Life Technologies). DNA was extracted from gel slices using either the QIAquick Gel Extraction Kit (Qiagen), eluting in 30 µL of 10 mM Tris-HCl, or the Zymoclean Gel DNA recovery Kit (Zymo Research), eluting in 10 µL of H2O.

For ligation of DNA, 10 µL reactions were prepared using 200 U of T4 DNA ligase (NEB), 1 µL ligase buffer (10× stock), with the remaining volume split between insert and vector DNA solutions to achieve an approximate 3:1 ratio of insert to vector. Controls without the insert and without ligase were also prepared to determine the background. Ligation reactions were desalted by pipetting onto MF-Millipore Membrane Filter disks with a 0.025 µm pore size that were floating in H2O. Reactions were removed after 15 minutes and pipetted into clean microcentrifuge tubes.

8.2.7 Competent cells

Electrocompetent transformation. For cloning work, electrocompetent transformation of desalted ligation reactions was used due to the higher transformation efficiency of this method.
Electrocompetent cells were prepared from a 500 mL log phase culture (OD\textsubscript{600} 0.4–0.6). The culture was divided into four equal volumes, the cells pelleted (2500 \times g, 10 minutes, 4°C) and the supernatant removed. Each pellet was resuspended in 125 mL of ice-cold H\textsubscript{2}O before pelleting again (2500 \times g, 10 minutes, 4°C). The supernatant was removed, and each pellet resuspended in 1 mL of ice-cold 10% glycerol and transferred to 1.5 mL microcentrifuge tubes. Cells were again pelleted (6000 \times g, 3 minutes, 4°C) and the supernatant removed. Cells were consolidated into two portions by resuspending in 2 aliquots of 1 mL 10% glycerol. Cells were pelleted a final time (6000 \times g, 3 minutes, 4°C), resuspended in ice-cold 10% glycerol, aliquoted into 250 \mu L portions and stored at −80°C.

For transformation, cells were thawed on ice and a 40 \mu L aliquot mixed with 2 \mu L of ligation mix using chilled pipette tips. This mix was transferred into a chilled electroporation cuvette (1 mm gap) and an electric pulse applied using the Ec1 setting (1.8 kV pulse) of a Bio-Rad Micropulser. 1 mL of SOC with 20 mM glucose was immediately added into the cuvette and used to pipette the cells into 1.5 mL microcentrifuge tubes. Cells were allowed to recover by incubating at 37°C for 1 hour in a rotating drum. Cells were pelleted (6000 \times g) and 850 \mu L of the supernatant discarded. Cells were resuspended in the remaining supernatant, spread onto L-plates with appropriate antibiotics and left to grow overnight at 37°C.

TSS competent transformation. For transformation of plasmids, including integration of the CRIM plasmids, TSS competent cells were prepared [Chung et al., 1989]. A 10 mL early log phase culture (OD\textsubscript{600} 0.3–0.4) was chilled on ice for 30 minutes, and cells then pelleted (4000 rpm, 10 minutes, 4°C, Eppendorf Centrifuge 5810R). Cells were resuspended in 1 mL of TSS buffer, aliquoted into microcentrifuge tubes and stored at −80°C.

For transformation, the competent cells were thawed on ice and 100 \mu L mixed with typically 4 \mu L of plasmid mini prep using chilled pipette tips. After 20 minutes on ice, 900 \mu L of LB with 20 mM glucose was added and cells allowed to recover by incubating at 37°C for 1 hour in a rotating drum. Cells were pelleted, resuspended in a smaller volume and spread onto L-plates as for the electrocompetent transformation.

8.2.8 Sequencing

Sequencing was routinely used to check for the integrity of recombinant DNA constructs that had been prepared using a PCR product. Sanger sequencing reactions were prepared from templates that had first been PCR amplified. Reactions were prepared with 5 \mu L of cleaned PCR template, 7 \mu L of BigDye Dilution buffer, 2 \mu L of the primer (from a 20 ng/\mu L stock) and 1 \mu L of BigDye Version 3.1 Ready Mix, made up to 20 \mu L with H\textsubscript{2}O. Thermal cycling was applied using an Idaho Technology Rapid Cycler (98°C for 20 seconds, then 30 times (96°C for 10 seconds, 47°C for 20 seconds, 57°C for 1 minute)).
Reactions were then cleaned using isopropanol precipitation. Reactions were transferred to microcentrifuge tubes and 80 µL of 75% isopropanol added. This was vortexed and then left to precipitate for 15′ at room temperature. Samples were spun in a marked orientation at 13.2 krpm for 10 minutes at room temperature in an Eppendorf Centrifuge 5415R. The supernatant was removed, the pellet washed in 250 µL 75% isopropanol and the tube vortexed. Samples were spun in same orientation for another 5 minutes and the supernatant again removed. This was repeated for another 2 minutes and any residual supernatant removed. Samples were then dried on a heating block with lids open for 3′ at 75°C before delivering to the Institute of Medical and Veterinary Sciences, South Australia (IMVS) for sequencing. Sequencing chromatographs were visualised using the ApE plasmid editor (http://biologylabs.utah.edu/jorgensen/wayned/ape/).

8.2.9 Changing resistance genes for the pR-tum plasmid

The pR-tum plasmids of the original Tum−CI MFL strain prepared by Pocock [2007] had a chloramphenicol resistance gene. This conflicted with the (single copy) chloramphenicol resistance of the integrated pIT-CH-pR-gfp construct. To avoid this conflict, the resistance gene on the pMCS-pR-tum+ and pMCS+pR-tum+ constructs was changed to a gene conferring tetracycline resistance. Unfortunately, this step required a three fragment ligation reaction due to the presence of an extra SpeI site in the SC101 replication origin. This additional challenge meant that this cloning step required more care than usual, so it is described here in more detail.

The tetracycline resistance was derived from pZE55-λ cI, which was digested with AatII and SpeI and the tetracycline fragment gel extracted. The pMCS-pR-tum+ and pMCS+pR-tum+ constructs were also digested with AatII and SpeI and combined with the tetracycline resistance fragment in the ligation reaction in roughly equimolar amounts. The most successful ligation reactions omitted gel extraction of the two fragments from the pMCS-pR-tum+ and pMCS+pR-tum+ digests, that is, after heat inactivation of the restriction enzymes, the digests were used directly in the ligation reaction. Ligation reactions were transformed into electrocompetent E2878 pZC320-WR-cI, which has a source of CI protein to reduce the chance of promoter or gene mutations due to the strong pR promoter.

Since the secondary SpeI site was in the middle of the replication origin, it was unlikely that plasmids with a flipped SpeI-SpeI fragment could successfully propagate. Nonetheless, a number of diagnostic tests were run to ensure that the plasmids were correct. Mini preps of a selection of pMTS-pR-tum+ and pMTS+pR-tum+ were prepared for diagnostic digests1. An NdeI/XhoI restriction digest reaction was chosen since it produced diagnost-

1NB: the same procedure was also trialled for changing the resistance genes of the original pMCS-pR-tum and pMCS+pR-tum+ plasmids, so diagnostic digests of these plasmids were also performed. However, these clones were later discarded in favour of a more complete deletion of the tum gene from the completed pMTS-pR-tum+ and pMTS+pR-tum+ plasmids as described in Section 8.3.3.
tic fragment lengths that tested how the fragments had ligated together. This digest was performed for all but one of the pMTS-pR-tum\(^+\) clones, which was subject to digestion with AatII, Xhol & Ndel, which would produce the following fragments:

<table>
<thead>
<tr>
<th>Ligation Variants</th>
<th>Expected Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMTS-pR-tum(^+)</td>
<td>3.6 k.b., 1.5 k.b., 0.5 k.b., 0.35 k.b.</td>
</tr>
<tr>
<td>pMTS-pR-tum(^+) (reversed tum fragment)</td>
<td>3.9 k.b., 1.2 k.b., 0.5 k.b., 0.35 k.b.</td>
</tr>
</tbody>
</table>

A gel showing this digestion for Clone 1 (C1) from the pMTS-pR-tum\(^+\) three fragment ligation reaction is shown in Figure 8.1.

For the clones digested only with Ndel and Xhol, the expected fragment sizes depending on how the ligation proceeded would be:
1. 500 ng 2-log ladder
2–5. 3 µL pMTS* -pR-tum+ C1–4 NdeI/XhoI digests
6–9. 3 µL pMTS* -pR-tum− C1–4 NdeI/XhoI digests
10. 500 ng 2-log ladder
11. 500 ng 2-log ladder
12–14. 3 µL pMTS-pR-tum+ C3–5 NdeI/XhoI digests

Figure 8.2: 1.5% agarose gel of diagnostic digest of pR-tum plasmids with NdeI/XhoI.

<table>
<thead>
<tr>
<th>Ligation Variants</th>
<th>Expected Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMTS-pR-tum+ / pMTS* -pR-tum+</td>
<td>3.6 k.b., 1.9 k.b., 0.5 k.b.</td>
</tr>
<tr>
<td>pMTS-pR-tum+ / pMTS* -pR-tum+ (reversed tum fragment)</td>
<td>4.2 k.b., 1.2 k.b., 0.5 k.b.</td>
</tr>
<tr>
<td>pMCS-pR-tum+ / pMCS* -pR-tum+</td>
<td>3.6 k.b., 1.3 k.b., 0.5 k.b.</td>
</tr>
<tr>
<td>pMTS-pR-tum+ / pMTS* -pR-tum+ (double tum fragment)</td>
<td>3.6 k.b., 2.5 k.b., 1.9 k.b., 0.5 k.b.</td>
</tr>
<tr>
<td>pMTS (no tum / tum− fragment)</td>
<td>2.9 k.b.</td>
</tr>
<tr>
<td>pZC320-WR-cI</td>
<td>5.6 k.b., 2.5 k.b.</td>
</tr>
</tbody>
</table>

A gel showing these digestions for clones from the pMTS-pR-tum+ and pMTS* -pR-tum+ three fragment ligation reactions is shown in Figure 8.2. The gel revealed that pMTS-pR-tum+ clones 3 and 4 had a reversed tum fragment. So the clones consistent with the correct order and orientation of the fragments were pMTS-pR-tum+ clones 1&5, and pMTS* -pR-tum+ clones 1&3.

The SC101* contains a BglII site that the SC101 does not contain. This was used as a diagnostic marker for the correct origin on PCRs between primers 189 and 190. A gel showing this reaction for the consistent pMTS-pR-tum+ and pMTS* -pR-tum+ clones is shown in Figure 8.3. All consistent clones had the expected origins.

Sequencing was performed over the pR-tum section of all plasmids (between primers 329 and 457). All final plasmids also had the correct sequence over this region.
Chapter 8. Materials and Methods

1–2. 3 μL digested origin PCRs of pMTS-pr-tum+ C1&5 (expect 703 b.p.)
3–4. 3 μL digested ori PCRs of pMTS-pr-tum− C1&2 (expect 703 b.p.)
5. 500 ng 2-log ladder
6–9. 3 μL digested ori PCRs of pMTS∗-pR-tum+ C1,2,3&4 (expect 475 b.p. & 228 b.p.)

Figure 8.3: 2.0% agarose gel of diagnostic digests to check for the correct origin in the pR-tum plasmids.

8.3 Strains and DNA

8.3.1 Bacterial strains

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Name</th>
<th>Genotype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2878</td>
<td>BW23473</td>
<td>Δ(lacIZYA-argF)U169 rph-1 rpoS396(Am) robA1 creC510 hsdR514 ΔendA9 recA1 uidA(ΔMluI)::pir(wt)</td>
<td>A pir+ strain used for propagating and cloning plasmids with the pir-dependent R6Kγ origin. Obtained from B. Wanner [Haldimann and Wanner, 2001].</td>
</tr>
<tr>
<td>E2879</td>
<td>BW23474</td>
<td>Δ(lacIZYA-argF)U169 rph-1 rpoS396(Am) robA1 creC510 hsdR514 ΔendA9 recA1 uidA(ΔMluI)::pir-116</td>
<td>A pir+ strain used for propagating and cloning plasmids with the pir-dependent R6Kγ origin. The pir-116 mutation permits higher copy numbers. Obtained from B. Wanner [Haldimann and Wanner, 2001].</td>
</tr>
<tr>
<td>E4241</td>
<td>DH5α</td>
<td>endA1 glnV44 thi-1 recA1 relA1 gyrA96(NalR) deoR nupG Δ(lacIZYA-argF)U169 hsdR17(rK mK K−), λ−, F−</td>
<td>General cloning strain (Bethesda Research Laboratories).</td>
</tr>
<tr>
<td>E4300</td>
<td>NK7049</td>
<td>ΔlacY74 galOP308 rpsL su−</td>
<td>A K-12 E. coli strain used as the host for all reporter assays. Obtained from R. Simons [Simons et al., 1987].</td>
</tr>
</tbody>
</table>
8.3.2 Primers

Primers were reconstituted to 1 µg/µL in Tris-EDTA buffer and stored at −20 °C.

Table 8.5: Primers used in the course of this thesis. Sequences are written 5′ to 3′. Capitalisation indicates the intended priming region. Shaded boxes indicate locations of restriction enzyme sites.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>cgggag [CTTAAgT] TTTAAC TTTAAG 25 AAGGAG A</td>
<td>Primes the RBS in pET3a plasmids (HindIII).</td>
</tr>
<tr>
<td>315</td>
<td>GCTA[GA]TATTGC TCAGGG GTGG</td>
<td>Reverse primer over the T7 terminator. It is located downstream of genes in, for example, the pET3a plasmid.</td>
</tr>
<tr>
<td>466</td>
<td>GGCA[TC]ACGGCA ATATA[AC]C</td>
<td>Used with primers 469, 467 & 468 to check for single integrants at the λ attB site.</td>
</tr>
<tr>
<td>467</td>
<td>ACT[AA] CGGCTG ACATGG</td>
<td>Internal primer for the CRIM plasmids. Used to check for single integrants at various attB sites.</td>
</tr>
<tr>
<td>468</td>
<td>ACGAGT ATCGAG ATGGCA</td>
<td>Internal primer for the CRIM plasmids. Used to check for single integrants at various attB sites.</td>
</tr>
<tr>
<td>469</td>
<td>TCTGTG CTGGTA GCAATG</td>
<td>Used with primers 466, 467 & 468 to check for single integrants at the λ attB site.</td>
</tr>
<tr>
<td>585</td>
<td>GG[AA]TC ATGGCC TGAGTG</td>
<td>Used with primers 586, 467 & 468 to check for single integrants at the HK attB site.</td>
</tr>
<tr>
<td>586</td>
<td>GGCA[TC]AAGCCG GAATTTC ACATCC</td>
<td>Used with primers 585, 467 & 468 to check for single integrants at the HK attB site.</td>
</tr>
<tr>
<td>706</td>
<td>gggggc [GGCCGC] CTATTT CTTCCA 25 GAATTGC</td>
<td>Primes upstream of the SC101 or SC101* origins (NotI site).</td>
</tr>
<tr>
<td>707</td>
<td>gggggc [TAGCG] GAATGCC AAGCAC 25 TACGG</td>
<td>Primes downstream of the SC101 or SC101* origins (Nhel site).</td>
</tr>
<tr>
<td>754</td>
<td>gctcat [TCATTC] ggtgAG CAAAGG 25 AGAAGA ACTTTT CACTGG</td>
<td>Primes N-terminal of folding reporter GFP (Ndel site).</td>
</tr>
<tr>
<td>755</td>
<td>gctcat [TGCGT] TATTGG TAGAGC 25 TCATCC ATGGC</td>
<td>Primes C-terminal of folding reporter GFP (BsiWI site).</td>
</tr>
<tr>
<td>813</td>
<td>gaggtg [GATCCG] GTTAAT TAACGG 25 CACCAC G</td>
<td>Primes upstream of the tonB terminator in pIT3-CL-lacZflip (BamHI site).</td>
</tr>
</tbody>
</table>
Table 8.6: \(206\) Plasmids referred to and cloned in the course of this thesis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Resist.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET3a-cI</td>
<td>ColE1</td>
<td>Amp</td>
<td>Source of clI gene with enhanced RBS for pZC320-ER-clI. Obtained from K. Shearwin. Construction is specified in Shearwin and Egan [1996].</td>
</tr>
<tr>
<td>pET-TumHis6</td>
<td>ColE1</td>
<td>Amp</td>
<td>Original source of tum4^{-} 5^{-} his gene for all MFL constructs. Obtained from K. Shearwin. Construction is specified in Shearwin et al. [1998].</td>
</tr>
<tr>
<td>pIT3-CL-lacZflip</td>
<td>R6Kγ</td>
<td>Chlor</td>
<td>Source of tonB terminator for pZC320-tonBterm and lacZO2^{-} for pZC320t-lacZ. Obtained from I. Dodd. The tonB terminator and lacZO2^{-} gene in this plasmid are the same as in the pIT3-HFCL plasmid described in Cui et al. [2013], except that the reporter fragment between the two SphI sites has been flipped.</td>
</tr>
<tr>
<td>pET28-gfp</td>
<td>ColE1</td>
<td>Kan</td>
<td>Source of folding reporter GFP, which includes both the cycle 3 and enhanced GFP mutations, but was designed as a fusion protein to report on protein folding [Waldo et al., 1999]. Obtained from G. Waldo.</td>
</tr>
<tr>
<td>pUHA-1</td>
<td>p15a</td>
<td>Kan</td>
<td>Supplies LacI repressor. Obtained from H. Bujard.</td>
</tr>
<tr>
<td>pZC320</td>
<td>mini-F</td>
<td>Amp</td>
<td>A low-copy plasmid backbone derived from the F plasmid that maintains close to chromosomal copy-numbers [Shi and Biek, 1995].</td>
</tr>
<tr>
<td>pZC320-WR-clI</td>
<td>mini-F</td>
<td>Amp</td>
<td>Supplies Cl from the P_{lac} promoter with a wild-type RBS. Obtained from I. Dodd. This plasmid is identical to pZC320-186cl as specified in Dodd and Egan [2002].</td>
</tr>
</tbody>
</table>
Table 8.6: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Resist.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pZC320-ER-cI</td>
<td>mini-F Amp</td>
<td></td>
<td>Supplies CI from the P_{lac} promoter with an enhanced RBS from the pET3a plasmid. Created by PCR amplifying the pET3a RBS and ci gene from pET3a-ci using primers 164 (adds HindIII site) and 315, and cloning between the HindIII and BamHI sites in pZC320.</td>
</tr>
<tr>
<td>pZC320-tonBterm</td>
<td>mini-F Amp</td>
<td></td>
<td>Precursor to pZC320t-lacZ. Created by PCR amplifying the $tonB$ terminator from pIT3-CL-lacZflip using primers 813 and 814 and cloning between the BamHI and XcmI sites of pZC320, replacing the lacZx fragment.</td>
</tr>
<tr>
<td>pZC320t-lacZ</td>
<td>mini-F Amp</td>
<td></td>
<td>Induction system reporter used to quantify the ultrasensitivity in relieving LacI repression of P_{lac}. Created by cloning the lacZO2$^{-}$ fragment between the XhoI and BamHI sites of pIT3-CL-lacZflip into the same sites of the pZC320-tonBterm plasmid.</td>
</tr>
<tr>
<td>pINT-ts</td>
<td>oriR101 Amp</td>
<td></td>
<td>CRIM helper plasmid for integration at the λ attB site [Haldimann and Wanner, 2001]. Obtained from B. Wanner. Strains with this plasmid must be grown at 30°C due to the temperature-sensitive origin.</td>
</tr>
<tr>
<td>pAH69</td>
<td>oriR101 Amp</td>
<td></td>
<td>CRIM helper plasmid for integration at the HK attB site [Haldimann and Wanner, 2001]. Obtained from B. Wanner. Strains with this plasmid must be grown at 30°C due to the temperature-sensitive origin.</td>
</tr>
<tr>
<td>placatt1-ΔlacY-lacZ</td>
<td>R6Kγ Spec</td>
<td></td>
<td>β-gal reporter chassis that can be integrated at the λ attB site using the CRIM system. Obtained from I. Dodd. Details of its genetic features are given in Section 3.1.1 and Figure 3.2(a).</td>
</tr>
<tr>
<td>pIT-SL-pR-lacZ</td>
<td>R6Kγ Spec</td>
<td></td>
<td>Contains the short pR–pL fragment of phage 186 reading from pR into lacZ. Used to generate pR-lacZ reporter strains by integrating into the λ attB site. Derived from placatt1-ΔlacY-lacZ. Obtained from M. Pocock. Details of its genetic features are given in Section 3.1.1 and Figure 3.2(a).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 8.6: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Resist.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIT-CH-pR-tum(^+)</td>
<td>R6K(\gamma) Chlor</td>
<td>Contains the short (pR)-(pL) fragment of phage 186 reading from (pR) into (\text{tum}^4)(^{-})(\text{his}). Used for cloning pIT-CH-pR-gfp. Obtained from M. Pocock, who derived pIT-CH-pR-tum(^+) from placatt1(\Delta\text{lacY-lacZ}) by first replacing (\text{lacZ}) with (\text{tum}^4)(^{-})(\text{his}) from pET-TumHis(_6), then replacing the Spec resistance gene with a Chlor resistance gene, and finally replacing (\lambda) (\text{attP}) with the HK (\text{attP}) from the pAH144 CRIM plasmid.</td>
<td></td>
</tr>
<tr>
<td>pIT-CH-pR-gfp</td>
<td>R6K(\gamma) Chlor</td>
<td>Contains the (pR) promoter reading into (\text{gfp}). Used to generate (pR)-(\text{gfp}) reporter strains by integrating into the HK (\text{attB}) site. Created from pIT-CH-pR-tum(^+) by amplifying the folding reporter (\text{gfp}) gene from pET28-(\text{gfp}) using primers 754 and 755, and cloning between the NdeI and BsiWI sites of pIT-CH-pR-tum(^+) to replace the (\text{tum}^4)(^{-})(\text{his}) gene. Primer 754 adds an initiation codon and a valine codon to the fusion protein (\text{gfp}) template.</td>
<td></td>
</tr>
<tr>
<td>pMCS-pR-tum(^+)</td>
<td>SC101 Chlor</td>
<td>A medium-copy plasmid with the (pR) promoter reading into (\text{tum}^4)(^{-})(\text{his}). Precursor to pMTS-pR-tum(^+). Obtained from M. Pocock, who derived pMCS-pR-tum(^+) from pIT-CH-pR-tum(^+) by cloning the fragment between the NotI and NheI sites of pSC101 into pIT-CH-pR-gfp, replacing the R6K(\gamma) origin.</td>
<td></td>
</tr>
<tr>
<td>pMCS(^*)-pR-tum(^+)</td>
<td>SC101(^*) Chlor</td>
<td>A low-copy plasmid with the (pR) promoter reading into (\text{tum}^4)(^{-})(\text{his}). Precursor to pMTS(^)-pR-tum(^+). Obtained from M. Pocock, who derived pMCS(^)-pR-tum(^+) from pIT-CH-pR-tum(^+) by cloning the fragment between the NotI and NheI sites of pSC101(^*) into pIT-CH-pR-gfp, replacing the R6K(\gamma) origin.</td>
<td></td>
</tr>
<tr>
<td>pMTS-pR-tum(^+)</td>
<td>SC101 Tet</td>
<td>The medium-copy MFL plasmid with (pR) reading into (\text{tum}^4)(^{-})(\text{his}). Created by three fragment ligation of SpeI/AatII digests of the pMCS-pR-tum(^+) plasmid and the pZE55-(\lambda) cl plasmid. Gel extraction of the required fragments was used to maximise success. Additional details for preparing this clone are given in Section 8.2.9.</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.6: Continued from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>Origin</th>
<th>Resist.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMTS*−pR−tum+</td>
<td>SC101</td>
<td>Tet</td>
<td>The low-copy MFL plasmid with pR reading into tum4−5−his. Created by three fragment ligation of SpeI/AatII digests of the pMCS*−pR−tum+ plasmid and the pZE55-λ cl plasmid. Gel extraction of the required fragments was used to maximise success. Additional details for preparing this clone are given in Section 8.2.9.</td>
</tr>
<tr>
<td>pMTS−pR−tum−</td>
<td>SC101</td>
<td>Tet</td>
<td>The medium-copy tum− MFL control plasmid. Created by digesting pMTS−pR−tum+ with XhoI and SalI, which have compatible ends, and religating a dilute solution of the digest to favour intramolecular ligation.</td>
</tr>
<tr>
<td>pMTS*−pR−tum−</td>
<td>SC101</td>
<td>Tet</td>
<td>The low-copy tum− MFL control plasmid. Created by digesting pMTS+−pR−tum+ with XhoI and SalI, which have compatible ends, and religating a dilute solution of the digest to favour intramolecular ligation.</td>
</tr>
<tr>
<td>pIT-SL</td>
<td>R6Kγ</td>
<td>Spec</td>
<td>Empty integration chassis. Created by digesting placatt1−ΔlacY−lacZ with XhoI and SalI, which have compatible ends, and religating a dilute solution of the digest to favour intramolecular ligation.</td>
</tr>
</tbody>
</table>

8.4 Assays

8.4.1 Preparation of cell extracts

For analysis of cell protein content by Western blot, cell extracts first need to be prepared. The base protocol starts from 2 mL O/N cultures of the required strain, which are subcultured 1/200 into 4 mL of pre-warmed LB and grown to log phase with shaking at 37°C. During growth to log phase, the OD_{600} of the cultures was monitored by taking 100 μL samples into the wells of a 96-well plate, determining optical densities using the plate reader as previously described (Section 8.2.1). Upon reaching OD_{600} 0.6, cultures were placed on ice for 30 minutes. After resuspension, a final reading of OD_{600} was made and used to normalise aliquots of the cultures into 1.5 mL of pre-warmed LB and grown to log phase with shaking at 37°C. These samples were pelleted (10 minutes, 13000 rpm, 4°C, Eppendorf Microcentrifuge 5418R) and the supernatant carefully removed using a drawn-out Pasteur pipette connected to a vacuum source. After re-pelleting (1 minute, 13000 rpm, 4°C) and removing remaining supernatant, pellets were resuspended in 40 μL of Lysis Solution (200 ng/mL lysozyme and 250 U/mL benzonase
made up fresh in B-PER Reagent and kept on ice). Lysis proceeded on ice for 30 minutes, after which 40 µL of 2× Extract Loading Buffer (2× NuPAGE LDS sample buffer (Invitrogen) and 2× NuPAGE sample reducing agent (Invitrogen) made up fresh in H₂O) were added. Finally, samples were heated at 70°C for 10 minutes to denature the protein and pulse spun to recover condensation. These samples were stored at −20°C until required.

The base protocol was used to prepare 1× extracts for quantitation of steady-state protein levels. Variations on the base protocol were used to prepare extracts for serial dilutions, or quantitation of protein degradation or protein solubility. For quantitation of steady-state protein levels, extracts of cells not containing the target protein were used for serial dilutions of the samples and the protein standard. This was done to ensure that any background bands in the Western blots would be consistent between samples. These extracts were prepared in large scale.

Large scale protocol. This is essentially a scaled version of the base protocol. Log phase cultures were instead 50 mL. Final aliquots were normalised to obtain the equivalent of 9 mL of culture with OD₆₀₀ 0.6. Cells were pelleted in 10 mL yellow-capped tubes using an Eppendorf Centrifuge 5810R (15 minutes, 4000 rpm, 4°C in the first spin; 5 minutes in the second). Cells were resuspended in 400 µL of 2× Lysis Solution in the yellow-capped tubes, and were only aliquotted into 1.5 mL screw-capped tubes after mixing with 400 µL of 2× Extract Loading Buffer. Protein denaturation and storage were as for the base protocol.

Degradation extracts. The preparation of extracts to measure protein degradation proceeded similarly to the large scale protocol. Log phase cultures were again 50 mL, however, about 10 minutes before reaching OD₆₀₀ 0.6, MgSO₄ was added to 50 mM from a stock of 1 M to reduce loss of macromolecules and cell lysis when inhibiting translation [Gupta, 1975]. After 10 minutes, protein production was stopped by adding chloramphenicol to 200 µg/mL (from a 100 mg/mL stock made up fresh in ethanol); cultures continued to be maintained at 37°C with shaking. At regular intervals, 1 mL samples of the culture were taken into 5 mL of ice-cold 1× PBS and left on ice for 30 minutes. The chilled samples were pelleted as for the large scale protocol, but after removal of all supernatant, a freeze/thaw step (10 minutes at −80°C) was applied to enhance lysis. Resuspension in Lysis Solution and mixing of Extract Loading Buffer were again performed in the yellow-capped tubes, though for volumes of 40 µL each.

Soluble and insoluble fraction extracts. The preparation of soluble and insoluble fraction extracts proceeded similarly to the base protocol. After pelleting of cells and removal of all supernatant, a freeze/thaw step (10 minutes at −80°C) was applied to enhance lysis. Pellets were resuspended in 100 µL of ice-cold Lysis Solution and left on ice for 30 minutes. 40 µL and 50 µL aliquots were taken into 1.5 mL screw-capped microcentrifuge tubes, the
former being kept aside as the ‘total protein’ sample. The latter was spun for 10 minutes at 13000 rpm and 4°C in an Eppendorf Microcentrifuge 5418R, and 40 µL of the supernatant aliquotted into another tube (the ‘soluble fraction’). The remaining supernatant (S/N) was carefully removed using a drawn-out Pasteur pipette connected to a vacuum source, and the pellet resuspended in another 50 µL of Lysis Solution (the ‘insoluble fraction’). Addition of Extract Loading Buffer, protein denaturation and storage of all samples (total protein and soluble and insoluble fractions) were as for the base protocol.

Pre-adsorption extracts. Pre-adsorption extracts were used to quench any non-specific antibodies present in the primary antibody preparations. These were prepared from 500 mL log phase cultures (OD$_{600}$ 0.6) of cells not containing the target proteins of interest. After pelleting by centrifugation, the culture was resuspended in 5 mL of 10 mM Tris-HCL pH 8.5 and 1 mM MgCl$_2$. The resuspension was sonicated with 2–4 10 second pulses, treated with 5 µL of benzonase (25 U/µL) and left on ice for 30 minutes, then dispensed into 1.5 mL screw-capped tubes for storage at −20°C.

8.4.2 Polyacrylamide gel electrophoresis of proteins and Western blotting

The protein content of cellular extracts was quantified by first separating on the basis of molecular weight by SDS-PAGE, then transferring by Western blot and probing for the protein of interest by antibody staining.

SDS-PAGE was performed using the Xcell Surelock Mini-Cell system with precast Nu-PAGE Novex 12% Bis-Tris 12-well minigels (Invitrogen). Gels were run according to the manufacturer’s specifications at 200 V with the NuPAGE MOPS SDS Running Buffer, loading 12 µL of sample cell extract per well. When needed, ECL Plex Fluorescent Rainbow Markers (Amersham) were added in one or more of the wells to act as a molecular weight standard.

Proteins were transferred from completed gels to Amersham Hybond-LFP membranes (low fluorescence PVDF membranes with a 0.2 µm pore size) using the XCell II Blot Module for the Surelock Mini-Cell system. Transfers were run according to the manufacturers instructions using NuPAGE Transfer Buffer and constant 30 V for 1 hour.

Membranes were blocked overnight in 5% BSA in PBS with shaking at 4°C. Membranes were then rinsed twice in PBS-T (1 × PBS with 0.1% tween), and washed twice in PBS-T for 5 minutes with shaking at room temperature. The membrane is then incubated with 20 mL of pre-adsorbed primary antibody (a 1/500 or 1/1000 dilution of primary antibody in PBS-T incubated with 300 µL of pre-adsorption extract for 30 minutes) for 1.5 hours at room temperature. It is again washed several times with PBS-T before incubating with secondary antibody (20 mL of a 1/5000 dilution of ECL Plex Goat-α-Rabbit IgG-Cy5 (Amersham) in PBS-T) for 1 hour. Finally, membranes were washed several times in PBS-T, then several times in PBS, before being dried between blotting paper for 1 hour at 37°C.
Membranes were scanned on a Typhoon Imager (GE Healthcare) using the 633 nm laser and 670/30 bandpass filter using a low to moderate Photomultiplier Tube (PMT) voltage (∼500 V).

Quantitation of band intensity from the scanned images was performed using the ImageJ application [Rasband, 2011]. After ‘rolling ball’ background subtraction (a method that accounts for local variations in background intensity) the intensity of bands was measured as the total intensity within a rectangular selection encompassing each band.

8.4.3 Quantitating concentrations of cells in culture

To normalise the quantitated levels of protein in cell extracts to a value per cell, the concentration of cells in cultures of OD$_{600}$ 0.6 were measured. To match the cell extract protocol as closely as possible, log phase cultures were grown to around OD$_{600}$ 0.6 and the OD$_{600}$ of 100 µL samples then more precisely measured using the plate reader as previously described (Section 8.2.1). Using these measured OD$_{600}$s, a normalising culture volume was derived to obtain the equivalent of 10 µL of culture with OD$_{600}$ 0.6. This calibrated volume of culture was added to 990 µL of LB and then further serially diluted (by steps no greater than a 1/100 dilution) to obtain countable numbers of cells (final dilution factors were in the range 1×10^6 to 1×10^7). 100 µL of this final dilution was very gently spread onto L-plates with appropriate antibiotics until most of the liquid had been absorbed; the remaining liquid was allowed to absorb without spreading to avoid killing any cells. After growth overnight at 37°C, colonies were manually counted on each plate.

8.4.4 Growth of bacteria for 96-well plate assays

Bacteria grown to log phase in 96-well plates were used for LacZ assays and flow cytometry assays. The methods detailed here are based on ones described in Dodd et al. [2001] and Palmer et al. [2009] for the growth of bacteria for LacZ assays.

Basic assay. Growth was started from colonies on plates freshly streaked from glycerol stocks. Yellow pipette tips were used to pick colonies and suspend them in 98 µL of growth medium in the wells of a 96-well plate. 2 µL of this suspension was then pipetted into new wells containing 98 µL of growth medium for growth overnight at 37°C. To minimise evaporation of the growth medium, ethanol-swabbed rubber-padded lids were used and plates were also sealed with sticky tape.

The following day, log phase cultures were established from the overnight cultures. All dilution steps were performed at 37°C. First, the overnight cultures were diluted 1/5 into 100 µL of growth medium in new wells and the A_{620}s measured using a Multiskan Ascent Plate Reader (Labsystems). The A_{620}s were converted to OD$_{600}$s using an empirically determined relationship [Dodd et al., 2001]. These values were used to calculate normalising volumes of growth media for each culture, to which 50 µL of the diluted overnight culture
could be added to reach an effective final OD$_{600}$ of 0.15 (typically giving an overall 1/10 dilution relative to the original overnight culture). These normalised cultures were then diluted 1/50 into 100 µL of growth medium in the wells of a new 96-well plate. Typically at this point, each normalised culture was used to inoculate multiple wells that differed only by the concentration of IPTG in the growth medium. These cultures were grown to late log phase (A$_{620}$ of 0.13–0.17) in a custom-made rotating drum for 96-well plates. Growth was followed using the plate reader, and for growth assays, these measurements were made at regular intervals. Upon reaching late log phase, cells were ready for assay.

For a given type of assay, stocks of growth media with appropriate antibiotics and a range of IPTG concentrations were prepared in advance and stored in aliquots at −20°C. These were thawed and pre-warmed to 37°C when needed. After thawing, any unused media was disposed of. Unless otherwise specified, the overnight cultures and dilutions thereof were performed in growth media without IPTG. Growth media with a range of IPTG concentrations was typically used only in the final log phase plate.

Hysteresis assays. The short equilibration time hysteresis assay proceeded similarly to the basic assay, however, each colony suspension was used to inoculate two alternative overnight cultures: one with 0 µM IPTG, the ‘low O/N’, and one with 300 µM IPTG, the ‘high O/N’. These were diluted and normalised the following day using media containing consistent IPTG concentrations. After normalisation, 2 µL aliquots of each culture were added to wells of the final log phase plate containing 98 µL of growth medium with a range of different IPTG concentrations.

The normal equilibration time hysteresis assay introduced an additional 1/10 dilution of the overnight cultures (both low and high) in 100 µL of growth media with consistent IPTG concentrations. This step was performed directly after the normalisation step, so the further-diluted cultures were the source of aliquots for the log phase plate.

The long equilibration time hysteresis assay proceeded as for the short equilibration time hysteresis assay, except that once the cultures had reached an OD$_{600}$ 0.3 during growth to log phase, the entire plate was subcultured 1/50 into a new log phase plate with an identical arrangement of growth media.

The very long equilibration time hysteresis assay combined both normal and long equilibration time variations on the short equilibration time assay.

8.4.5 LacZ assay

The LacZ assay protocol was based on that described in Dodd et al. [2001] and Palmer et al. [2009]. Cells were grown to late log phase in 96-well plates as described in Section 8.4.4. Growth was quickly stopped by setting the plate on a pre-chilled metal block in ice for 15 minutes. 20 µL of each culture was then transferred to another 96-well plate, pre-heated to 30°C, and containing 150 µL of TZ8+ buffer and 30 µL of LB per well. After
a 15 minute incubation at 30°C to permit lysis, 40 µL of ONPG solution (4 mg/mL ONPG in TZ8 buffer) was added to each well to start the assay. The rate of cleavage of ONPG by β-gal was followed by measuring the increase in absorption of each well at 414 nm in a Multiskan Ascent plate reader (Labsystems) set to hold the temperature at 28°C. Measurements were made every 2 minutes for 1 hour. LacZ units are calculated from the slope (M, per minute) of this line and the final OD$_{600}$ (O) of the log phase culture using the formula:

$$U = 1000 \times \frac{M \times V_r}{O \times V_c} \quad (8.1)$$

where V_r and V_c are respectively the reaction volume before addition of ONPG (200 µL) and the volume of culture used (20 µL). Due to a short lag time at the beginning of the assay and saturation in absorption for wells with very high activity, some points are systematically omitted before calculating the slope to capture only the window where the increase in absorption is linear.

Calculation of LacZ units and statistical analysis of the data was performed using R [R Development Core Team, 2012].

8.4.6 Flow cytometry

For assay by flow cytometry, cells grown to late log phase as described in Section 8.4.4 were first stopped by setting the plate on a pre-chilled metal block in ice for 15 minutes. 40 µL of each culture was then transferred into the empty wells of a new 96-well plate and the cells pelleted in that plate by centrifugation (1300 × g for 5 minutes at 4°C in an Eppendorf Centrifuge 5810R). The supernatant was removed from each well using a drawn-out Pasteur pipette connected to a vacuum source, and the cells then resuspended in 80 µL of ice-cold 1× PBS using a 30 second shake protocol in the Multiskan Ascent plate reader to facilitate resuspension. The cells were again pelleted (1300 × g for 5 minutes at 4°C), the supernatant was removed and the cells resuspended in 40 µL of ice-cold 1× PBS with shaking. 1/20 dilutions of this cell suspension were made to 300 µL in ice-cold 1× PBS in round-bottom 12 × 75 mm tubes.

These samples were run through a FACSCanto Flow Cytometer (Becton Dickson) according to the manufacturer’s specifications. The cytometer was configured with a Coherent® Sapphire™ Solid State laser for excitation at 488 nm and a 530/30 bandpass filter to record fluorescence emission due to GFP.

For the low cell count assays, around 1×10^4 to 3×10^4 cells were measured at a medium flow rate, giving 500–3000 events per second. PMT voltages were set at 600 V, 600 V and 800 V for FSC, SSC and fluorescence channels respectively. The threshold for recorded events was set so that both FSC and SSC needed to be larger than 2×10^4, which ensured exclusion of debris whilst retaining events from the main bacterial population. Peak area, peak height and peak width were recorded for each channel.
For the high cell count assays, around 8×10^4 to 1×10^5 cells were measured at a medium flow rate, giving 1000–6000 events per second in this case. PMT voltages were set at 350 V, 450 V and 750 V for FSC, SSC and fluorescence channels respectively. The threshold for recorded events was set so that both FSC and SSC needed to be larger than 300. Peak area, peak height and peak width were recorded for each channel.

Basic filtering and analysis was done in R using the flowCore [Ellis et al., 2009a] and flowClust [Lo et al., 2009] packages from BioConductor [Gentleman et al., 2004]. Custom scripts were used for final analysis as described in Appendix B.
Structure-function studies for Tum

With the aim of increasing the utility of the Tum protein as a new module for synthetic biology, a draft manuscript was prepared that presents new work on characterising Tum through a collection of Tum mutants. It was written to be submitted into the journal PLoS Genetics.

I cloned some of the truncation mutants and performed LacZ assays for all of the truncation mutants. I performed the data analysis (including the Hill curve fits of the data, the alignment of Tum homologs, and the structure prediction efforts) and wrote the manuscript.

This draft manuscript has not yet been submitted to any journal.
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Mapping function to structure in the Tum antirepressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>○ Published, ○ Accepted for Publication, ○ Submitted for Publication, ☐ Publication style</td>
</tr>
<tr>
<td>Publication Details</td>
<td>This draft manuscript reports on a number of mutants obtained for the Tum antirepressor of phage 186 and makes use of this data and an increasing wealth of bioinformatic data to make functional and structural predictions regarding this protein.</td>
</tr>
</tbody>
</table>

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate’s thesis.

<table>
<thead>
<tr>
<th>Name of Principal Author (Candidate)</th>
<th>Julian Pietsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Cloned some of the truncation mutants and performed LacZ assays for all of the truncation mutants; performed data analysis, including the Hill curve fits, discovery and alignment of the Tum homologs, and structure prediction; wrote the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date December 17 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Ian Dodd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Designed research; performed research; contributed new reagents/analytic tools.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date December 17 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Keith Shearwin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Designed research; performed research; contributed new reagents/analytic tools.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date December 17 2014</td>
</tr>
</tbody>
</table>
Mapping function to structure in the Tum antirepressor
Julian M. J. Pietsch1, Ian Dodd1, Keith E. Shearwin1,*
1 Department of Biochemistry, University of Adelaide, Adelaide, Australia
* E-mail: keith.shearwin@adelaide.edu.au

Abstract
In an apparent effort to maximise host success and fast colonisation, temperate bacteriophages choose between two modes of development: lytic growth where the host is coerced into mass production of infectious phage particles, or lysogenic growth where the phage chromosome is integrated within its host. During lysogeny, a repressor protein keeps lytic genes silent and the transition from lysogeny to lytic development requires relief of this repression. In many cases, this occurs in response to stress signals such as the host SOS pathway, invoked under conditions of DNA damage. An emerging mechanism of phage sensitivity to this pathway is the upregulation of a phage-borne antirepressor protein that directly inactivates the lytic repressor. Here we develop assays to quantitatively characterise the in vivo antirepressor function of the Tum protein from coliphage 186. We generate libraries of Tum mutants using complementary approaches and screens designed to favour functionally relevant mutations. By combining a detailed analysis of these mutants with sequence features identified for Tum and its homologs, we show that the Tum protein consists of two domains: an amino-terminal domain (NTD) that is responsible for antirepressor activity and is representative of a broad family of little-studied small phage proteins, and a carboxy-terminal domain showing strong homology with DinI-like genes seen in many other phage. The highly ultrasensitive antirepressor activity can be further mapped to two extended α-helices in the NTD. Efforts at experimental structure determination have been unsuccessful so we instead used our mutational data set to assist the ab initio prediction of valuable structural models. These models in turn complement the analysis of the mutation data and provide functional insights into the activity of the antirepressor domain.

Author Summary
As highly mobile vectors for DNA transport, bacteriophage play a significant part in the fast evolution and adaptation of bacterial populations to new environments. In temperate bacteriophage, this spread of genetic information is modulated by the well-studied lysis-lysogeny decision, where the phage choose between two growth modes by a complex integration of host and environmental signals. In lysogeny, the phage genome is integrated within the host’s and a repressor protein typically plays an essential role in keeping the lytic genes silent. Relief of this repression results in lytic development, and numerous pathways exist to effect such development. Small antirepressor proteins are emerging as an widely-used mechanism for such phage induction, often also implicated in trans-phage activation. Here we report on a collection of mutations obtained for the Tum antirepressor of phage 186, and make use of this data and the increasing wealth of bioinformatic data to dissect the function of these powerful but small proteins. By combining the different data sets we have been able to build predictive structural models.

Introduction
Microbial ecosystems thrive on sharing genetic information. Driven by a need for fast evolution and adaptation, numerous mechanisms are employed to modulate and enhance this process [1]. Within this dynamic world, viruses and bacteriophage play a major role as highlighted by the abundant occurrence of genes in the viral metagenome that enhance host fitness [2]. Temperate bacteriophage, in particular, are well suited to mediating genetic transactions given their two distinct life cycles: during lysogeny the
phage genome is integrated as part of the host chromosome, silently replicating with the host, whilst in lytic growth, the phage turns its host towards mass production of phage, inducing cell lysis and the consequent release and spread of more infectious particles. In this part-symbiotic role, temperate phage are often observed to harbour ‘morons’ — genes that have no function in phage development, but are co-transported and often confer competitive advantages to the host [3]. An especially consequential subset are morons that increase host pathogenicity, well-known examples including the phage-derived genes for the cholera [4] and Shiga [5] toxins.

The balance between lysis and lysogeny bears on the proliferation potential of temperate phage, and in consequence the decision between the two growth modes is highly regulated. A classic example is induction of the λ coliphage as a function of the host SOS response, a well-conserved DNA repair pathway. Genes involved in the SOS response are normally held silent by the host LexA repressor, but are derepressed when autocatalytic cleavage of LexA is stimulated by the formation of RecA protein filaments along single-stranded DNA [6]. By utilising a similar RecA-dependent self-cleavage mechanism, the CI repressor that maintains lysogeny in phage λ is also inactivated upon SOS induction [7]. In contrast, a number of other phage respond to this same pathway by harbouring LexA-repressible promoters in their genomes. These promoters may directly control lytic transcripts, as in the phage responsible for cholera [4], or promote lytic development via the induction of intermediates known as ‘antirepressors’: phage proteins which can inactivate the repressors responsible for maintaining lysogeny. This latter mechanism also provides the capacity for target promiscuity, enabling the coordinated induction of disparate phage by the evolution of repressors that respond to the same antirepressor [8]. Ironically though, this mechanism has also seen the phage themselves exploited: Staphylococcal Pathology Islands (SaPIs) respond to phage induction by employing repressors that respond to antirepressors of helper phage. The SaPIs then hijack phage capsid production for the transport of their own large islands of pathogenic genes [9]. These findings have revealed an important new layer in phage interaction and cooperation that is mediated by these antirepressor proteins.

The P2-related bacteriophage 186 stands as one of the first studied examples of phage induction via an antirepressor [10]. In this phage, the CI repressor maintains lysogeny by holding the lytic promoter \(p_R \) off (see Figure 1), but unlike λ CI, the 186 repressor is not sensitive to RecA-facilitated cleavage [11]. Instead, the phage harbours an ‘SOS operon’ that is transcribed from the LexA-repressible promoter \(p_{95} \) and consists of two genes: the antirepressor \(\text{tum} \), which is responsible for derepression of the lytic \(p_R \) promoter and induction of the phage, and \(\text{orf97} \), which is less well-characterised but whose overexpression grants immunity to further infection by 186 virions [12]. The Tum antirepressor acts reversibly against the CI repressor by preventing it from binding to DNA, thereby promoting lytic development [13]. The carboxy-terminal (C-terminal) region of Tum shows homology with \(\text{dinI} \)-like genes found in many other prophage [14], but in these cases, it is an independently translated gene product. Homologs of the amino-terminal (N-terminal) region are similarly found as independently translated genes [15].

Here we define and characterise the region of Tum that is responsible for its antirepressor activity. A bioinformatic assessment of Tum and its homologs strongly suggests a two-domain protein and reveals a family of little-studied homologs with the putative N-terminal domain. Using a quantitative in vivo assay for antirepressor activity to characterise a broad assortment of Tum mutants, we confirm that the Tum protein has two domains with the N-terminal domain being responsible for its antirepressor activity. Truncation mutations reveal that the first 44 amino acids are sufficient for activity and this small modelling region forms the basis for building structural models of Tum that refine our understanding of this class of antirepressor.
Results

Sequence analysis

Bacteriophage 186 is classed as a member of the P2 family, and is most closely related to the PSP3, Fels-2 and SopEΦ phages of *Salmonella* [16]. Each of these phages have 186 *tum* homologs [15–17], but strikingly, the region of *tum* homology in each of the homologs is split into two separately translated genes (see Figure 2). A search of the NCBI’s non-redundant protein sequence database (‘nr’) for homologs spanning the full length of *Tum* resulted in only 10 hits using the PSI-BLAST program [18], all showing high sequence similarity with *Tum* (ranging from 60%–97% identity) and found variously in prophages occupying *Salmonella, Klebsiella, or Enterobacter* strains. More than 200 other hits were identified that were homologous to subregions of *Tum*, and these were clearly split into two groups, one aligning within the first 70 amino acids, and the other aligning with amino acids 71–146. The latter formed the vast majority and were ascribed to the DinI superfamily.

Independently translated DinI-like genes are frequently found within the SOS operons of many phages [14], including the downstream *Tum*-like genes in the PSP3, Fels-2 and SopEΦ phages. Intriguingly, in addition to its full length product, the *tum* gene also produces three alternative translation products from internal translation start sites [12], and the shortest of these, open reading frame 5 (ORF5), exactly matches the C-terminal homology region (see Figure 2). However, none but the full-length ORF are capable of phage induction, suggesting that the antirepressor activity of *Tum* is a function of the N-terminal region. This is supported by preliminary evidence suggesting that the antirepressor activity is associated with the upstream and not the downstream gene in the PSP3 phage [15].

To better characterise the smaller family of N-terminal sequence homologs, a seed alignment of residues 1–70 of *Tum* with its respective PSP3, Fels-2 and SopEΦ homologs was submitted to the HHsenser server [19], searching again over the ‘nr’ database. HHsenser is designed to find diverse homologs by performing a recursive PSI-BLAST search from ‘seed’ sequences outside the standard PSI-BLAST threshold, so that each seed represents a homology group. 56 seed sequences were identified apart from the query sequences, this set of sequences standing representative for a group of about 240 N-terminal *Tum* homologs in the ‘nr’ database. The resulting alignment of those sequences is depicted in Figure 2 for the query sequences only, with the degree of conservation across the entire set summarised by alignment quality.

The regions of high conservation are limited to the two extended N-terminal α-helices as predicted from the HHsenser search. Most of the well-conserved residues are hydrophobic and likely to form the stable hydrophilic core for a putative *Tum* amino-terminal domain (NTD). Of particular note, the negatively charged residues at positions 30 and 40 are highly conserved throughout the family and are indicative of the overall negative charge of this region. Curiously, a cysteine in a putative loop between the two helices was also present in 52 of the 58 seed sequences, an especially high identity compared with the neighbouring residues. For comparison and reference, a search for homologs to the C-terminal region of *Tum* was similarly performed and the resulting alignment with *Escherichia coli* (*E. coli*) DinI and the phage homologs is shown in Figure 2.

Assaying *Tum* activity *in vivo*

The antirepressor activity of *Tum* was previously characterised *in vitro* in a gel shift assay that measured the reduction in CI–DNA binding with increasing *Tum* concentration [13]. We designed an analogous *in vivo* antirepressor activity assay that reports on relief of CI repression at the *pR* promoter by an inducible level of *Tum* (see Figure 3A). Thus antirepressor activity is indirectly measured as the fraction of CI that remains free to repress *pR*. UV-induction of the prophage normally requires *Tum* to operate against a lysogenic level of CI, and this guided our design. A single-copy *Pbla* promoter was used to provide lysogen-like levels of CI, giving 75-fold repression of *pR* compared with 400-fold repression seen with a 186 prophage [20]. *In trans* constitutive production of CI avoids the natural feedback on CI expression...
present in the phage [21]. To measure the fraction of free CI, a relatively large fragment of the phage 186 pr–pl switch region that includes the flanking Fl and Fr CI binding sites was cloned upstream of a lacZ reporter gene. This was chosen to better reproduce the extent of repression found in the prophage, since these flanking sites enhance CI repression of pr [20].

The response of this assay strain to increasing levels of wild-type Tum is shown in Figure 3B. The Tum− control (a parental induction plasmid) shows the repression by production of CI from Fbla. The CI− control shows the maximum rate of production possible from unpressed pr, and also confirms that Tum by itself is unable to modulate pr activity [13]. With sufficient Tum antirepressor, close to complete relief of pr repression can be achieved. A Hill fit of the wild-type response reveals that it is highly ultrasensitive with an apparent Hill coefficient of 8 ± 2 — much higher than that observed in vitro [13].

The in vivo assay system also enabled direct comparison of the antirepressor activities of some tum variants. Silent mutations to the tum gene can be made to inactive both the ORF4 and ORF5 internal ribosome binding sites [13]. This tum4−5− gene produces overlapping antirepressor activity with wild-type tum, showing that products from these alternative ORFs do not interfere with antirepressor activity. Addition of a C-terminal His tag makes no discernable difference to activity either, validating the use of tum4−5−his in the in vitro gel shift assay system [13].

Point mutants are found exclusively in the NTD

Many point mutations that result in complete loss of function are diagnostic for functional regions and critical active site residues of a protein. These are typically hidden amongst a milieu of less informative mutations that effect gross changes to protein stability or translation (for example, mutations to premature stop codons). Here we used a screening strain to select for point mutants of tum that are specifically unable to relieve CI repression, but which are not misfolded, frameshifted or truncated.

We selected for antirepression-deficient Tum mutants by screening a point mutant library (generated by error-prone PCR over the entire tum gene) in trans using a Prophage of Death (POD) strain that contains a 186 lysogen with a non-functional integrase (see Figure 4A). Without an integrase, the prophage cannot excise or produce functional progeny, so induction of the lytic pathway results in cell death [22]. Cells expressing Tum mutants will only survive if they have lost the ability to induce the phage. To exclude mutants that are inactive due to poor folding, frameshifts or truncations, we used a tum4−5− template with a C-terminal fusion to the α-fragment of the lacZ gene (LacZα). In strains containing the complementary LacZω, only those mutants that successfully translate the full length of tum4−5−α and are not grossly misfolding [23] will produce a functional LacZ enzyme and hence the characteristic dark blue on plates containing X-gal.

A total of 50 blue colonies were selected for sequencing over the tum4−5− α gene. All contained point mutations at one of 18 distinct positions in the N-terminal region of Tum between residues 12-22 and residues 30–41, fitting within the two predicted N-terminal α-helices (see Figure 4B).

Four of the point mutants resulted in early stop codons, which were all located upstream of the ORF4 start codon. These truncation mutants will be presented later.

Quantitation of the mutants was done as for the wild-type tum constructs. To simplify comparison, we report antirepressor activity for the mutants as the summed area under each assay curve, shown normalised to the Tumα control in Figure 4B.

All of the point mutants obtained in the screen showed less than 25% the activity of the Tumα control, with most resulting in activities indistinguishable from the Tum− control (note that the two mutations, D2N and T21S, showing full activity were recreated from double mutants with the R19H and D30G mutations respectively). The majority of the mutations occurred at hydrophobic residues with three charge reversal mutations among those at charged and polar residues. The high density of strongly inactivating mutations in such a small region of the protein is good evidence for a structurally-isolated antirepressor function.
The collection of point mutants obtained in this study is complemented by the E12K, A34V and E40K mutations obtained in an earlier study using phage-based screens for loss of UV-inducibility [12]. Point mutations at these residues were also represented in the present screen, though the specific A34V and E40K mutations did not arise.

Mapping structured regions by insertion mutagenesis

Insertions of short stretches of amino acids throughout a protein can be used to map the tolerance of each region to structural disruption. Insertions in highly-structured regions, or buried inside a fold are more likely to disrupt protein function, whilst insertions in linker regions and surface-exposed loops are less likely to disrupt function. We prepared a library of insertions of 15 base pairs throughout tum using an *in vitro* transposase reaction on PCR-amplified tum4−5−his DNA. With an aim to obtaining a collection of insertions in both structured and unstructured regions of the protein we screened this library for mutants with a broad range of activities using an antirepressor activity reporter strain plated on X-gal. Clones within the library were not guaranteed independent insertion events, since an intermediate step involved pooling colonies to remove the antibiotic resistance cassette used for selecting the insertions. As a result, many of the clones were found multiple times.

The insertion event can occur in 6 different frames of the protein (counting forward and reverse orientations of the transposon), and results in insertion of 5 codons, with two of the six frames giving rise to stop codons. This was reflected in the library, where roughly one third of the tum4−5−his insertion mutants were found with introduced stop codons. The results of these truncation mutants will be presented in the following section.

As done for the point mutants, antirepressor activity assays were performed for each of the insertion mutants and the normalised areas calculated for these curves are shown in Figure 5 along with the insertion location and residues inserted. Consistent with the point mutations, insertions in either of the first two α-helices caused complete loss of activity. However, all other insertions retained at least 40% of wild-type activity, including three located between the first two α-helices, suggesting a flexible loop between these helices.

Truncation mutations confine the region sufficient for antirepressor activity

A collection of Tum mutants with premature stop codons arose in the point and insertion mutant screens. We also manually constructed a number of truncation mutants. Antirepressor activity reporter assays of these mutants were performed as before, but since the C-terminal gets truncated in the mutants, the calculated activities were normalised instead to the untagged tum4−5− control (see Figure 6A).

Tum activity matched the Tum− control for truncations terminating at or before residue 40. A low level of Tum activity was detectable for the Tum44V* mutant (the V is inserted after residue 44 in this insertion mutant), after which activity increases with increasing Tum length up to Tum73V. The full activity of Tum71V shows that Tum’s antirepressor activity is wholly contained within the N-terminal domain. The super-activity of the Tum73V mutant indicates that, if anything, the DinI-like domain of Tum limits the antirepressor function of the NTD.

It was shown in an earlier study [12] that the translation product from ORF2 is inactive. We confirmed this result using an N-terminal 9 amino acid truncation of tum4−5− to the ORF2 start site (Tum1−4−5− in Figure 6A), but did not pursue any other N-terminal truncations.

It was originally thought that a minimal active Tum truncation would provide a useful starting point for structural studies. So with a view towards protein purification, a high-resolution series of targetted truncation mutants was made from an N-terminally His6-tagged Tum template (his-tum4−5−). The complete set of these truncation mutants is summarised in Supplementary Figure S2, but the most notable ones were selected for a more detailed analysis shown in Figure 6B. More sensitive comparisons of
antirepressor activity can be drawn from the half maximal effective concentration (EC$_{50}$) values obtained by fitting Hill curves to the assay data.

The most active truncation of the N-terminally His$_6$-tagged Tum mutants was the His$_6$Tum51* construct, which showed even more activity than the His$_6$Tum72* mutant (the closest in length to the most active untagged truncation mutant). Quite in contrast with the untagged truncation mutants, the minimal active truncation, His$_6$Tum44*, was just as active as the His$_6$Tum control. This surprising result suggested that, in this instance, the His$_6$ tag cannot be considered independent of the target structure as it appears to assist in stabilising folding of this short truncation. Activity is nonetheless sharply lost over the next couple of residues: His$_6$Tum43* has an EC$_{50}$ approximately twice that of His$_6$Tum44*, and His$_6$Tum42* showed no activity in our assay.

Directing structure prediction using the results of the mutagenesis studies

In spite of the high activity of some of the short truncation mutants, our attempts at purifying these Tum constructs for structural studies were unsuccessful. None of the Tum variants could be concentrated higher than 0.2 mg/mL before precipitating out of solution. So to make structural sense of the conserved residues of Tum and the various mutants, we turned to a structure prediction/modelling approach.

Given the two domain model for Tum and the independence of these domains, we pursued structural modelling on each domain separately. To begin with, the N- and C-terminal domains of Tum (residues 1–70 and 71–146) were submitted to the I-TASSER server [24], essentially a multi-template homology modelling approach. A single but high confidence candidate for the carboxy-terminal domain (CTD) (C-score of 1.27 and estimated RMSD from native of 1.1 ± 1.1) was returned, and primarily modelled on the solution structure for E. coli DinI (PDB accession 1GHH) [25]. As anticipated, the candidate structure showed significant overlap with the DinI template (see Supplementary Figure 4), but overlap in the C-terminal helix was especially good. A series of negatively charged residues in this helix in DinI have been implicated in mimicking single-stranded DNA [26]. Whilst overlap is good, two of the seven negatively charged residues appear to be absent in Tum.

For the NTD, the performance of I-TASSER was much poorer, with the five alternative candidates all giving low confidence scores. This was not unprecedented since none of the sequence homologs of the Tum NTD have a determined structure at present. Hence for the NTD, we turned to the Rosetta structure prediction suite [27], a more ab initio method based on physically-derived molecular energetics. A Monte Carlo search of the fold space for the global energy minimum produces thousands of ‘decoy’ structures that map the energy landscape; good candidate structures are typified by deep energy wells. Since Tum truncations to 50/51 residues still displayed good activity, we proceeded by characterising this core fold. Decoys were generated for the first 51 residues of Tum, and a high-confidence consensus fold, depicted in Figure 7, was evidenced by obvious funnelling of the energy landscape towards the lowest energy decoy (see Supplementary Figure S5).

This consensus structure contains two extended α-helices packed side-by-side, but offset at a characteristic angle with respect to each other. A set of core hydrophobic residues pin the two helices in this orientation, and those making the largest contributions to the overall low score of this decoy are labelled in Figure 7A. The hydrogen bonds predicted using the Rosetta scoring function are also shown in the figure, and a particularly high-scoring contact was found between the aspartate at residue 30 and the peptide backbone in the loop between the helices.

All of the residues that made the biggest contributions to the low score of the predicted structures also displayed inactivating mutations in the point mutant screen; this both validated the predicted importance of those residues by Rosetta, but also assisted in functionally classing those point mutants apart from the others (see Figure 7C).
Discussion

Our bioinformatics show that 186 Tum is representative of a wide family of antirepressors that is likely to be much larger than presently realised. This family includes previously identified antirepressor genes from the PSP3 and Fels-2 phages, the latter also known to be similarly LexA-sensitive via its tum homolog [15]. In those cases, the region of Tum homology is split into two independently transcribed genes. Here we have shown that 186 Tum is a fusion of these gene products that can instead be split into two functional domains: an N-terminal domain that is exclusively responsible for the antirepressor activity and a C-terminal domain, which is already known to show strong homology with the E. coli DinI protein (DNA-damage inducible protein I) [14]. There is no obvious value in such a fusion or separation, but independent production of the DinI homolog is conserved due to internal translation start sites in the 186 tum gene.

The CTD appears to play no role in derepression of pR; if anything, it reduces the activity of the NTD. Its purpose would appear to be associated with that of the many other such DinI-like proteins found in bacteriophage [14]. These often belong to SOS operons produced from LexA-repressible promoters, revealing a tight integration of such proteins within the SOS response. Nonetheless, the purpose of these DinI-like factors is still unknown, and made more complicated by the fact that the exact role of DinI is still in question. The DinI protein is known to be involved in stabilising RecA filaments as part of the prokaryotic SOS response [28, 29], and is, like 186 Tum, expressed from a LexA-repressible promoter [30]. Given that multiple binding modes have been reported for the E. coli DinI protein in regulating the formation of RecA-DNA filaments [31], it seems likely that some of these DinI-like proteins found in phage might favour one operating mode over another to manipulate the SOS response in favour of virion production. Indeed, the structure predicted for the Tum CTD showed especially good overlap with DinI over the most C-terminal helix, the negatively charged residues of which are implicated in mimicking single-stranded DNA [26]. Whilst the nearest matching residues in Tum do not replicate this string of negative charges quite as well, it seems likely that this domain mimics some function of DinI, and may even play an inhibitory role in 186 induction.

The antirepressor activity of Tum is associated with its NTD. This was most clearly evidenced by a number of Tum truncation mutants shorter than 70 amino acids that still retained full (or in some cases greater-than wild-type) antirepressor activity. Some activity was lost through truncation from 60 to 50 residues, removing the predicted β-strand region as a result, but most of the activity was lost between residues 50 to 46 as the truncation moved into the second predicted α-helix. The antirepressor activity of Tum is captured within these two α-helices, and comparison with the predicted structure showed that the helix boundaries closely matched those predicted directly from the sequence.

The predicted fold of the NTD is well-supported by antirepressor-specific point mutants. Early mutants of Tum were obtained by mutagenising the whole phage genome and screening for those that rendered phage 186 insensitive to SOS induction by DNA-damaging agents like mitomycin C or UV irradiation [10, 11]. Here, to focus on just the antirepressor activity of Tum, we decoupled tum expression from the SOS response and designed an assay strain that reports only on relief of repression at pR. All the point mutants obtained from this targeted screen were located within the first two α-helices of the protein, strong evidence for a small, independently-folding antirepressor domain. The restricted location of these mutants also overlapped well with the region of greatest sequence homology found for this domain. The point mutants were found centred about the loop between the helices, though no point mutations were found within the loop. Thus the co-location of these two clusters of mutants in the predicted structure via a 180° turn at the intervening loop was unsurprising. The co-locating hydrophobic point mutants also showed high sequence conservation, confirming their involvement in core hydrophobic packing of the domain. The insertion mutants found within the loop were only mildly-disruptive, further confirming the importance of the surrounding residues in holding the two helices together. The likely shape-changing T21P and A22P mutations provide evidence that straining the formation of the loop
is deleterious. The aspartate at residue 30 was particularly sensitive to moderate point mutations, the D30E mutation being a case in point, and further noted for its high sequence conservation. This residue may well be critical to folding and positioning of the helices, as evidenced by the high-scoring hydrogen bond it forms with the loop.

The fact that no point mutants were found after the first two α-helices, and that truncation of this region did not effect any substantial loss in activity, left the function of the residues between the end of the second α-helix and the start of the DinI-like domain in question. One possibility is that these residues provide (limited) structural support, and that the stringency of the screening method may have filtered out some mild but structurally-relevant mutations in that region. Indeed, the hydrophobic residues L35 and I38 were both exposed in the Tum51* decoy, but scored highly in the Tum72* decoy, with similar trends observed for the predicted structures of the homologs. Alternatively, these residues might represent an extended flexible linker, and the difficulty in obtaining a predicted structure for those residues supports that hypothesis. Nonetheless, the core Tum51* structure is well-supported by the available experimental data and forms the basis for an understanding of its mode of CI antirepression.

Antirepressors can act by numerous mechanisms, including by disruption of repressor multimerisation [32], by targeting the protein for degradation [33], by inducing non-functional protein conformations [34], or by acting as DNA mimics to mask the DNA-binding site of the repressor protein [35]. With so many available modes of repressor inactivation, the antirepressor-repressor paradigm becomes a likely platform for promiscuous binding and hence interaction between phage and phage-like elements; the extent of such cross-talk is only just being realised [8,9,36]. As for the mechanism of Tum, it was previously noted that mutants of CI resistant to Tum but still able to repress pR were not able to be found [13]. This favoured a mode of operation at function-critical regions, like by disruption of multimerisation or binding at the DNA-binding region of CI. Given the highly cooperative nature of CI binding at pR and the ultrasensitive antirepression curves, disruption of multimerisation previously seemed more likely [13]. Whilst this mechanism still cannot be excluded, here our preferred mechanism is for Tum operating as a DNA mimic. This was prompted by the overall negative charge of the antirepressor domain, the high abundance of negatively charged residues sensitive to point mutation (5 negatively charged residues were found mutated versus one positively charged residue), and a strong hydrophobic core, all common features of DNA mimics [37]. A number of the negatively charged residues were less well-conserved amongst the N-terminal homologs, suggesting a role in providing repressor specificity. The four identified sites of charge reversal (E12K, E15K, E32K & E40K) will be particularly interesting candidates for future complementation studies with CI. The close structural homology with the fourth domain of UvrB added extra support for a model of DNA mimicry, since there is some evidence that this domain acts to partially suppress the DNA-binding capacity of the three much larger catalytic domains of the protein [38]. The UvrB domain crystallised as a dimer with a binding interface across the loop remarkably similar to that of the predicted Tum dimer (the two are shown overlaid in Supplementary Figure S7). We have noted that this mode of dimerisation brings the highly-conserved cysteine residues in the Tum NTD into close proximity, possibly implicating a functional role for this contact.

The in vivo antirepressor activity measured using the assay strain displayed a highly ultrasensitive response, which matches well with previous in vitro results [13]. This sharp threshold occurred at levels of induction that were higher than anticipated; complete derepression was only observed when tum was cloned in a plasmid with the high-copy ColE1 origin [39], with the most sensitive region of the derepression curve occurring at levels of induction that are on par with the strength of the single-copy pR promoter (see Figure 3). The implication is that in order to overcome lysogenic levels of CI, the p95 promoter in the single copy 186 prophage must be quite strong, or alternatively, that Tum’s antirepressor activity may be enhanced by the SOS response.
Materials and Methods

Strains and media

All reporter strains were derived from the K-12 E. coli strain NK7049 (Δlac74 galOP308 rpsL su−) from R. Simons [40]. Propagation and cloning of plasmids with the pir-dependent R6Kγ origin (those derived from pAH144) was done in BW23473 [41], which is pir-116 to permit higher copy numbers. XL1-Blue (Stratagene) was the host for point mutant screening.

Strains were grown in Luria-Bertani broth (LB) with the addition of antibiotics at the following concentrations: either 100 µg/mL carbenicillin or 100 µg/mL ampicillin (for maintaining pZE15-based plasmids), 50 µg/mL kanamycin (for maintaining pUHA-1), 5 µg/mL tetracycline (for maintaining the F' plasmid in XL1-Blue), and 25 µg/mL spectinomycin (to select for colonies with an integrated pAH144 cassette; omitted during the assays). Strains were grown at 37°C, except where otherwise indicated.

Tum activity reporter strains

The in vivo activity of Tum was assayed indirectly by its ability to relieve repression at the pir promoter by CI. The reporter phage pBC2 − HS − F1′ PIR F1′ from [20] was integrated at the λ attachment site of NK7049. This reporter contains both flanking CI binding sites for enhanced repression, and is oriented with pir reading into lacZ (with a ΔYA deletion). The fragment truncates the cl gene and has an amber mutation in apl. Constant production of CI was from a constitutive Pbla promoter. Base pairs −171 to +9 of Pbla (chosen to match [42]) were polymerase chain reaction (PCR) amplified from pTL61T [43] with XbaI and KpnI tails and cloned into the CRIM plasmid pAH144 [44]. The 186 cl gene, including its wild-type ribosome binding site (RBS), was PCR amplified and cloned downstream in the EcoRI site of pZE15 to form pAH144−Pbla−cl. This CI expression module was integrated into the HK022 attachment site in NK7049; for cl controls an empty pAH144 module was integrated. The final antirepressor activity reporter strain () was NK7049 (ARS45−pBC2 − HS − F1′ PIR F1′) (pAH144−Pbla−cl)HK ((Pbla−cl)HK) pUHA-1, where pUHA-1 is a p15a origin plasmid with kanamycin resistance that supplies Lac repressor (obtained from H. Bujard).

Inducible levels of the various tum constructs were supplied by cloning each one downstream of Plac in pZE15 [45]. pZE15−tum4−5′ his was made by PCR amplifying the tum4−5′ his template from pET−Tum His6 [13], including the pET RBS and with a HindIII tail on the upstream primer, digesting with HindIII and partially digesting with BamHI (there is a BamHI site within the tum gene), and cloning into the same sites in pZE15. Plasmid pZE15−tum4−5′ his was made in the same way with a pET3a−tum− intermediate. The His6 tags were removed from pZE15−tum4−5′ his and pZE15−tum4−5′ his by PCR amplifying the tum templates without the His6 tag and introducing a stop codon and AvrII site on the downstream primer tail. These were reintroduced into a pZE15−tum4−5′ his backbone digested with NdeI and AvrII to replace the entire tum4−5′ his sequence. The tum constructs in pZE15 were all transformed into ; empty pZE15 was used as a tum− control.

Generating point mutants of Tum

The screening strain (KES1033) was a 186(cltsp int−) lysogen of XL1-Blue [22], which provides LacZω from an F' plasmid. Due to the temperature sensitive mutation in the CI repressor (cltsp), when screening for Tum mutants, cells must be grown at the permissive temperature of 30°C. However this also provides an effective control to test for continued lethality of the lysogen, since growth at 41°C induces the prophage.

Plasmid pZE15−tum4−5′ α was made by using a PCR-amplified LacZα fragment (LacZ codons 3–42) from pMRR9 [20], with SacII and AvrII tails on the upstream and downstream primers respectively.
and cloned into a SacII/AvrII digest of pZE15-tum4−5−his, thence replacing the histidine tag with the α-fragment.

Point mutations were generated from the pZE15-tum4−5−α template using error-prone PCR between primer 215 and the zalpha AvrII primer. The DNA was first amplified using the proof-reading Pfu polymerase (Stratagene). 1 µL of this reaction was then used as the template for 6 cycles of an error prone PCR with Taq DNA polymerase in the presence of 6 mM MgCl₂. The reaction was transformed into KES1033 and spread on plates with carbenicillin, tetracycline, 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-gal) (40 µg/mL) and Isopropyl-β-D-1-thiogalactopyranoside (IPTG) (50 µM) producing colonies of varied size and blueness at 30°C. Plasmids from all mutants were isolated and transformed into for quantitative assays.

A number of the mutants incorporated errors at two different sites. Where these were not silent mutations or represented elsewhere, the mutations were separated by re-introducing each one into tum4−5−α using the QuikChange Site-Directed Mutagenesis Kit (Stratagene).

Generating insertion mutants of Tum

Linker insertion mutagenesis across the tum4−5−his gene was performed using the Genome Priming System-Linker Scanning (GPS-LS) system (New England BioLabs), which produces 5 codon insertions (6 versions). The insertion library was prepared in three steps: (1) the gel-extracted small fragment of a pZE15-tum4−5−his HindIII/BtgI digest was subject to GPS reaction with the Transprimer-5 donor plasmid (with kanamycin resistance), (2) the reaction was cleaned, religated into the HindIII/BtgI digested backbone and transformed into the screening strain with selection for ampicillin and kanamycin, (3) the resulting colonies were pooled for isolation of the plasmid DNA and removal of the kanamycin resistance cassette by digestion with PmeI and then recircularisation. This library was transformed into the screening strain and plated onto media containing carbenicillin and X-gal (30 µg/µL). The screening strain was NK7049 (ARS45pMRR9 − FspI − cI+ pR₄p₄ apl₄n − lacZYA), a ARS45 recombinant [40] of pMRR9 with a blunt ended FspI digest of phage 186(apl₄n) ligated into the Smal site. The 186 fragment encompasses the switch region from the beginning of int to the beginning of cII and clones with pn reading into lacZ were chosen for this assay. This construct provides both lysogen-like levels of CI and a pR₄-lacZ reporter, giving blue/white screening for active/inactive Tum.

Clones from the library with a range of LacZ activities were selected, sequenced over the tum4−5−his gene and plasmids isolated for those with distinct insertion events. These plasmids were transformed into for quantitative assays. Note that a point mutation (F56L) was discovered in all of the non-truncating insertion mutants except Tum3(CLNKR) and Tum83(CLNKI), and in Tum74V* of the truncating insertions, implying that an error arose during an early cycle of PCR amplification of the tum4−5−his template. This mutation had little impact on activity as judged by the insertion mutants containing this point mutation that matched wild-type activity and for this reason was disregarded.

Cloning the truncation mutants of Tum

Primers designed to add a stop codon and AvrII restriction site after residues 37, 46, 50 and 60 were used to amplify a tum4−5− template, and the products were cloned into an Ndel/AvrII digest of pZE15-tum4−5−α. The N-terminally His₅-tagged tum4−5− truncation series was generated from a pZE15-his-tum4−5− template, prepared by PCR amplifying the N-terminal His₅ tag from pET15b (Novagen), with a HindIII site in the tail of the upstream primer (the same used for amplifying tum4−5−his from pET3a), and cloning into the pZE15-tum4−5− backbone digested with HindIII and Ndel. Truncation mutants were prepared from this template using primers designed to add a stop codon and BamHI site directly following residues 34, 39, 42, 44, 47, 49, 51, 55, 56, 57, 58, 61 and 62, and cloned back into the template backbone digested with Ndel and BamHI. Truncation mutants terminating at residues 63, 67, 68, 69, 70, 72 and 74 were similarly prepared by PCR amplification, but cloned first into pET15b between the Ndel
and XhoI sites, before being transferred into the pZE15-his-tum4−5− template by digestion with NcoI and BamHI.

LacZ assays

LacZ assays were performed essentially as described [45] with some minor amendments. Briefly, Luria-Bertani broth with appropriate antibiotics was inoculated from freshly streaked colonies for overnight growth in 96-well plates with a sealed lid. The following day these were adjusted to an optical density at 600 nm (OD\textsubscript{600}) of 0.3, sub-cultured 1 in 50 into equivalent broth, but with added IPTG to 0, 2, 5, 10, 15, 20, 25, 35, 50, 70, 100 and 200 µM (or a subset thereof), and grown to late log phase (OD\textsubscript{600} 0.6 − 0.8). Cells were chilled, then incubated in Lysis Buffer [45] for 15′ at 30°C before addition of \textit{o}-nitrophenyl-\textit{β}-D galactose (ONPG) and assayed over time at 28°C for increasing absorption at 414 nm in a Multiskan Ascent plate reader. All data analysis was performed in R [46] with four-parameter log-logistic regression (Hill fits) calculated using the ‘drc’ package [47].

Structural modelling

Tum was modelled as two separate domains with domain boundaries chosen as described in the text. \textit{Ab initio} modelling of the NTD was performed using Rosetta version 3.2.1, essentially as described [48]. Briefly, a library of 3- and 9-residue fragments was generated for each protein sequence using the Rosetta server. These were supplied to the ‘abrelax’ protocol that follows the initial coarse-grained fragment-based search with an all-atom energy minimisation ‘relax’ step. The protocol was run with the optional flags as recommended in the Rosetta manual. 20000–30000 decoys were generated for each sequence and the 1000 lowest-scoring decoys submitted to the ‘cluster’ application, which clusters decoys into groups by RMSD. The cut-off was typically set to 2 Å, and additional decoys generated if no sizeable clusters were found. Funneling towards the lowest-energy structure and distinction between multiple local minima was made by plotting the score of the decoys versus their RMSD from the candidate decoy. Hydrogen bonds and per-residue score terms were identified with the aid of PyRosetta [49].

Acknowledgments

Rachel A. Schubert provided the assay strain and raw data for many of the Tum mutants. Linda Shearwin provided a number of the Tum truncation mutants. Adam C. Palmer and Monica O’Shea helped to generate and screen the insertion mutant library. Iain Murchland provided much useful discussion. Computer time was provided by eResearch SA. This work was supported by ARC grants DP0665185 and DP110100824.

References

Figure Legends
Figure 1. Genome organisation of bacteriophage 186 and the SOS operon. The CI repressor maintains lysogeny by repressing the p_R promoter and indirectly activates its own production by limiting transcriptional interference at p_L; the flanking CI binding sites, F_L and F_R, further enhance repression at p_R. Under normal conditions, the host LexA repressor keeps the p_{95} promoter of the prophage silent, but upon DNA damage, autocatalytic cleavage of the LexA repressor is stimulated, resulting in expression of host SOS genes but also the antirepressor Tum. Tum reversibly sequesters the CI repressor, and hence induces lytic development, during which the excisionase apl with the help of the integrase int, excises the phage genome for replication and packaging into phage particles. Upon infection of a host, lysogeny is established by CII which activates the p_E promoter causing integration of the phage via the attachment site attP. In this and the following figures, promoters are depicted by right angled arrows, genes by directed boxes and transcriptional terminators by stem loops. Wavy lines indicate the major transcripts; the frequency is indicative of the basal production rate.
Figure 2. Sequence homologs of the Tum antirepressor. The N-terminal region of Tum is shown aligned with homologs identified in the literature (see the text). Unlike Tum, these presumptive antirepressors are split into two genes by an intervening stop codon. Shown aligned are the upstream genes from these phage. The downstream genes and C-terminal region of Tum are homologs within a superfamily of DinI-like proteins, so the alignment with the well-studied \textit{E. coli} DinI protein is shown. These alignments were each derived from a master alignment of distant homologues identified using the HHsenser algorithm [19], which also produces secondary structure predictions as shown (green arrows for β-strand; red rods for α-helix). The alignment quality is that for each master alignment and is a summed likelihood for all mutation pairs at that position according to the BLOSUM62 matrix. Residues conserved throughout the master alignments are shown coloured according to residue type. The \textit{tum} gene is translated from four alternative open reading frames (ORFs), which are marked by black triangles; ORF5 emphasises the independence of the C-terminal region. This figure was produced with the aid of JalView [50].
Figure 3. Relief of p_R repression by CI due to the antirepressor Tum is highly ultrasensitive in vivo. A. Antirepressor activity is measured in vivo by the extent to which an IPTG-inducible level of Tum can alleviate repression of the p_R promoter by CI. A consistent steady-state level of CI is supplied from a single-copy P_{bla} promoter. This pool of CI is sufficient to keep a single-copy p_R-lacZ reporter construct silent. Tum constructs are cloned downstream of the P_{lac} promoter in the high-copy pZE15 vector. B. Increasing levels of wild-type Tum reduce the available pool of active CI and increase expression from the p_R promoter. The points joined by dashed lines are the mean results of LacZ assays of p_R activity over a range of induction levels of various Tum constructs; error bars represent 95% confidence limits. In the absence of Tum (red line; empty pZE15 vector) p_R stays repressed at all levels of induction. In the absence of CI (grey line; empty cI expression cassette), expression from p_R stays high. Removal of translation from ORFs 4 and 5, or addition of a C-terminal His$_6$ tag makes little difference to Tum activity. Since the nonlinear response of P_{lac} activity to inducer concentration can bias Hill fits, the level of Tum induction has been measured for each IPTG concentration as the equivalent LacZ activity produced from a P_{lac}-lacZ construct in pZE15 (see Supplementary Figure S1 for details). The solid line is a Hill fit of the wild-type data.
Figure 4. The antirepressor activity of Tum is located in the N-terminal domain. A. A library of point mutations across the entire tum4–5–α gene was generated by error-prone PCR and screened using a Prophage of Death (POD) strain in which mutations retaining antirepressor activity would successfully induce an int– prophage. Induction of the int– prophage, being unable to excise from the chromosome, results in cell death. Only mutants that are inactivating for antirepressor activity survive, and these can be further filtered for mutants causing minimal disruptions to folding using the C-terminal α-fragment fusion: successful complementation with the ω-fragment present in XL1-Blue strain produces a functional LacZ enzyme and produces blue colonies on plates with X-gal. This screening step allows for selection against mutants that result in misfolding, frame shifts or truncations. B. The resulting mutants were all contained within the first 41 residues. Activity curves for all the mutants were assayed as described in Figure 3. A summary value for each assay was calculated from the area under each curve using basic trapezoidal numerical integration between the (necessarily consistent) minimum and maximum induction levels. Mutants with reduced activity (high EC_{50}) give smaller areas, since the inflection point shifts closer to the maximum induction level. This summed area is displayed as a percentage of the mean area calculated for the fully-active control (tum4–5–α). Each point is derived from the curve measured for a single colony; most mutants were assayed on four independent repeats. A nominal 25% cutoff (horizontal dotted line) distinguishes active from inactive mutations. Note that both D2N and T21S were originally isolated as double mutants with R19H and D30G respectively. The location of each mutation is further illustrated by triangles that mark a map (to scale) of the N-terminal domain of tum. For reference, the predicted secondary structure (see Figure 2) is also shown.
Figure 5. All regions of Tum but the first two α-helices are tolerant of amino acid insertions. Five amino acid insertions were introduced into an inducible tum\(^{-4}\)\(^{-5}\)\(\) his gene using a transposon mutagenesis approach as described in the text. They are labelled here by the sequence of residues inserted following each indicated position. The insertion mutants were assayed as for the point mutants (see Figure 4), each point representing the summed area under an activity assay curve for a given replicate. Here the area measurement is normalised to the mean area of the tum\(^{-4}\)\(^{-5}\)\(\) his control. A nominal 25% cutoff (horizontal dotted line) distinguishes active from inactive mutations. The location of each mutation is further illustrated by triangles that mark a scale map of the full-length tum gene. For reference, the predicted secondary structure (see Figure 2) is also shown.
Figure 6. The Tum protein can be truncated to 44 residues and still retain function. A. Truncation mutants arising in the point and insertion mutant screens and a selection of targetted truncation mutants all based on the tum4−5− template were assayed in the antirepressor reporter strain. They are labelled here according to the number of residues matching the wild-type sequence; those from the insertion mutant screen only arose mid-insertion, so the non-native residue(s) are appended. Tum1−4−5− is the ORF2 product, an N-terminal truncation. The area under each assay curve was calculated as for the point mutants (see Figure 4), and each replicate was normalised to the mean area of the tum4−5− control. A nominal 25% cutoff (horizontal dotted line) distinguishes active from inactive mutations. Locations of the terminating residues are further illustrated by triangles that mark a scale map of the full-length tum gene. For reference, the predicted secondary structure (see Figure 2) is also shown. B. A systematic series of C-terminal truncation mutants were prepared from an N-terminal his-tum4−5− fusion template and assayed in the antirepressor reporter strain. A selection of these curves measured for the most notable truncation mutants are shown in the lower panel; dotted lines follow the means of the data points. All but the flat response curve of His6Tum42* (dark red) were fit with Hill curves (solid lines) using robust regression and fixed basal and maximum parameters. The mean activity of the Tum− control was used for basal activity and the maximum parameter was set to that obtained for the tum4−5− control. In the panel above the curves are plotted the fitted half-maximal effective concentrations (EC50s) for each fit; dot-dash lines match each bar graph to the respective assay curve. Error bars represent the standard error in the fit.
Figure 7. The set of Tum mutants is complemented by and assists structure prediction efforts. B. and C. De novo structure prediction of the first 51 residues of Tum using Rosetta [48] produced a well-defined fold that fixes the two extended α-helices relative to each other. Dashed lines indicate the hydrogen bonds predicted by Rosetta. Residues identified in the Rosetta scoring function as particularly important to folding are labelled in B. Hydrophilic residues found mutated in the point mutant screen are labelled in C.
Structural homologs of this candidate structure were retrieved using the Protein structure comparison service Fold (PDBeFold) at the European Bioinformatics Institute (EBI) [51]. Around 120 distinct structural homologs were identified, with the best matches as judged by the root-mean-square deviation (RMSD) being synthetic four-helix bundle proteins. Given the small size of the fold, it is likely that many of these are false positive hits. However, a match with the NMR structure of the fourth domain of UvrB, stood out as being derived from E. coli and involved in the SOS response as part of the nucleotide excision repair pathway [52].

With a well-defined core 51-residue structure, we turned to exploring the likely conformations of the remaining residues in the NTD, using this core structure as a starting point. Truncation mutants to 72 residues produced high activities for both His6-tagged and untagged variants, so decoys were generated from a 72-residue sequence with residues 12 to 41 held fixed to the structure of the lowest-scoring 51-residue decoy to reduce the search space. Only moderate funnelling towards the lowest-scoring decoy was observed, possibly indicating that these residues are not as structurally constrained. Decoys were also generated for a selection of the Tum sequence homologs identified in the HHsenser search and the best candidate decoys from these homologs are shown in Supplementary Figure S4 along with the best 72-residue decoy. The homologs were chosen specifically for their divergent homologies, but in spite of the obvious variations, these structures do provide some validation for the Tum72* decoy. The structure of the identified core functional region was similar amongst all the homologs, with a number of the well-conserved residues showing similar positioning. The homolog from Pantoea (Supplementary Figure S4D) showed particularly good clustering, and provides validation for the positioning of the putative β-strand in the Tum72* structure.

We previously found that Tum is predominantly dimeric at a concentration of 9.5 µM [13], and also that the ORF5 product is monomeric (unpublished data). From this we inferred that dimerisation is likely to be a function of the NTD, and explored this possibility using the Tum51* structure as the input for the Rosetta protein-protein docking protocol [53]. The lowest-scoring decoy produced an unusual elongated structure with the dimerisation interface located at the loop between the α-helices, as shown in Supplementary Figure S5.

Supplementary Table S8

Primers used in the course of this paper.

- Amplifying the cl gene with wild-type RBS and EcoRI ends:

 - ggaattcTGAATAGGTTTTATCG (108),

 - ggtgaattcTCATTAGTTAACCTCGCT (295)

- Amplifying the P_{bla} promoter from base pairs -171 to +9 (chosen according to [42, 54]) with XbaI and KpnI ends:

 - tatctagaCAATTCTTGAAGACGAAAGGG (684),

 - taggtaccGCATTTATCAGGGTTATTGTCTC (685); the template was pTL61T [43].

- Amplifying tum4−5−his/tum+his genes from pET3a using ‘B-PET HindIII’ (164) and ‘T7-rev/terminator’ (315) primers; digested with HindIII and BamHI to clone into pZE15:
- cggaagcttaagTTTAACTTTAAGAAGGAGA (164),
- GCTAGTTATTGCTCAGCGGTGG (315)

Remove pET3a-derived His\textsubscript{6} tags using primers 215 (T7) and 686 (below), digesting with NdeI and AvrII to replace \textit{tum}^{4−5−}\textit{his} in the pZE15-\textit{tum}^{4−5−}\textit{his} vector: tacctaggTTAAGCCGCTCTCATCTTCCAC (686)

Rachel Schubert’s (RS) zalpha AvrII and zalpha SacII primers: add downstream \textit{lacZ}α fusion to \textit{tum}^{4−5−} by cloning into pZE15-\textit{tum}^{4−5−}\textit{his} cut with SacII/AvrII, replacing His\textsubscript{6} tag starting from inside the thrombin cleavage tag. (NB: removes rgnB terminator by using the AvrII site)

- ttccgccgctATGATTACGGATTCACTGG (Upstream \textit{lacZ}α SacII)
- gcgcctaggtaTTGCTATTACGCCACGT (Downstream \textit{lacZ}α AvrII)

Generate \textit{tum}^{4−5−} truncation mutants using the following primers, which append a stop codon and AvrII site, in combination with primer 215 for cloning into NdeI/AvrII digested pZE15-\textit{tum}^{4−5−}\textit{α}:

- Tum37: atcctagtttaTAGATTCAATGCAGATTCACG (680)
- Tum46: atcctagtttaTAGGTTGCCGCGTGCTATTTC (681)
- Tum50: atcctagtttaATTATTTTTATTAGTGCGGC (682)
- Tum60: atcctagtttaAGCCGGTGCGGGAAAAAAACG (683)

To generate the N-terminal truncation, pZE15-\textit{tum}^{1−4−5−}, use the following primer with the \textit{tum}^{4−5−} primer (686) and clone into NdeI/AvrII digest of pZE15-\textit{tum}^{4−5−}\textit{α}:

- 687 Tum2 5’ NdeI: tggtggcatatgATTGAGCGGGTCGAAATG
Supplementary Figures

Julian Pietsch
Supervisors: Ian Dodd & Keith Shearwin
School of Molecular & Biomedical Science, The University of Adelaide, Australia

14th February, 2013

Figure 1: Measuring the production rate from P_{lac} in pZE15 as a function of inducer concentration.

A lacZOD$^{-}$ gene (which includes a silent mutation to inactivate the internal lac repressor binding site and is ΔYA) with an upstream RNaseIII site [Linn and St Pierre, 1990] was cloned downstream of P_{lac} in the pZE15 plasmid, transformed into NK7049 with pUHA-1, and the β-gal activity measured at selected concentrations of IPTG [E. Cutts and K. E. Shearwin, manuscript in preparation]. A Hill curve (or log-logistic) fit was used to extrapolate to the IPTG concentrations used in this work and the fit parameters (Hill coef.: Hill coefficient; Max: maximum; EC50: half-maximal effective concentration) are indicated on the plot with 95% confidence limits. For pZE15, very little induction ultrasensitivity was observed compared with previous observations for pZS45 [Palmer et al., 2009], though given the high basal production rate it would appear that the curve lies well outside the normal region of ultrasensitivity in any case. The high basal production rate is not unexpected for such a high-copy plasmid (around 50–70 copies per cell [Lutz and Bujard, 1997]) when compared with the basal P_{lac}-lacZ production rates we have observed for comparable single-copy plasmids.
Figure 2: With an N-terminal His-tag, Tum can be truncated to 44 amino acids without losing its antirepressor activity. A series of N-terminally His-tagged Tum truncation constructs were cloned into pZEl5 and assayed in the antirepressor assay strain. The area under each Tum assay curve was calculated as described in the main text and is shown normalised to the value obtained for the His₆Tum control measured on the same day. The unexpectedly low area seen for His₆Tum70*, His₆Tum72* and His₆Tum74* is partially a result of the observed suppression of antirepressor function as induction of the mutant becomes saturated.
Figure 3: The full sequence of Tum annotated with all the mutations found in the paper. ‘Inactive’ mutations were those that showed no difference from the activity of a Tum\(^{-}\) control, ‘Less active’ mutations were those that showed less activity than the wild-type control but more than the Tum\(^{-}\) control, and ‘Active’ mutations were those that showed equal to or greater activity than the relevant wild-type control.
Figure 4: A homology model of the *tum* ORF5 product — the CTD of *Tum*— shows that it overlaps well with the experimental *E. coli* DinI structure. The structural model of the *Tum* CTD obtained using I-TASSER Roy et al. [2010] is shown in black, and the closest matching DinI conformer from the NMR ensemble (PDB ID: 1GHH Ramirez et al. [2000]) is shown overlaid in orange. The side chains of the seven negatively charged residues thought to be involved in mimicking single-stranded DNA Voloshin et al. [2001]; Casjens et al. [2004] are displayed on the DinI structure in orange and the corresponding best matches from the *Tum* CTD are shown highlighted in green.
Figure 5: The validity of the predicted Tum51* structure is confirmed by funnelling of the energy landscape. The Rosetta score for each of the top 1000 Tum51* decoys is plotted versus the RMSD of that decoy from the lowest scoring decoy.
Figure 6: The ubiquitous presence of two helices separated by a loop in Tum and its homologs validates that core structure. Shown are the best scoring decoys predicted for some selected homologs of the 186 Tum N-terminal domain (NTD). A. the Tum72* truncation (NTD of 186 Tum). B. Fels-2 TumA (NCBI accession: YP_001718752). C. PSP3 TumA (NCBI accession: NP_958094). D. a Tum homolog found in Pantoea (NCBI accession: ZP_09512655). E. a hypothetical protein from Dickeya (NCBI accession: YP_002987696). A, B, and C are confirmed antirepressors; D and E are putative antirepressors. The Pantoea homolog gave the best clustering of low-scoring decoys. The Dickeya homolog was the most distant of those chosen. Highlighted in green are some of the best-conserved hydrophilic residues (see Figure 2 in the main text) and also the highly conserved cysteine in the loop between the two primary α-helices.
Figure 7: A close structural homolog of the predicted structure for Tum51* was the fourth domain of UvrB (PDB ID: 1QOJ) which crystallised as a dimer via the loop. This structure, depicted here in orange, is shown overlaid on the best candidate dimer obtained using the Rosetta docking protocol (run essentially as described [Wang et al., 2007]) for two monomers of the Tum51* structure (in grey).
References

Casjens, S. R., Gilcrease, E. B., Huang, W. M., Bunny, K. L., Pedulla, M. L., Ford, M. E.,

in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.

Potent transcriptional interference by pausing of RNA polymerases over a downstream

structure of dini provides insight into its mode of reca inactivation. Protein Sci.,

the abrogation of the SOS response by an SOS protein: a negatively charged helix in

Fitting growth curves

During growth to log phase in 96-well plates, the A_{620}s of growing cultures can be recorded using a Multiskan Ascent plate reader at a number of time points during the course of any given assay. Such data can then be used to determine a growth rate for each strain. Numerous methods for estimating the 'ideal' (exponential) growth rate were trialled, including linear regression of the log-transformed OD_{600}s, weighted non-linear regression with an exponential model on the untransformed OD_{600}s, regression using generalised linear models (GLMs) with alternative link functions, and nonlinear regression using a Gompertz model on the log-transformed OD_{600}.

Before considering the different models, general improvements can be made by employing some preliminary formatting of the data. It was found that substantial statistical improvements could be made by taking a per-well offset using the A_{620} reading of the plate at time $t = 0$. This relies on the fact that the signal due to the cells is hidden relative to experimental noise at that time point, and also that the systematic error between wells (due to, e.g., small differences in volume or the background absorbance of the plate) is sufficient to warrant such a correction. By comparing the absorbances measured for the first time point with the absorbances measured at another time point early enough that

Figure A.1: Well-to-well variations in 96-well plates are correlated over time. The variation in A_{620} per well is a systematic error that persists over time. This is demonstrated in a growing culture where in the first two hours, the measurements (both with OD_{600} close to zero) are well-correlated. Hence growth curves may take the reading at time zero as the background reading for the extent of the assay.
the cells are still not evident above background noise, it can be seen that the readings are correlated (see Figure A.1), which supports the relevance of such a systematic error. To correct for this error, the reading at $t = 0$ is used as a per-well background measurement to offset the readings from all subsequent measurements made over the duration of the assay; this first data point is also then discarded.

A.1 Log-linear fits

Here we start by running some trial fits of growth data for E4300 (pIT-SL)$_\lambda$ (pIT-CH-pR-gfp)$_{HK}$ pUHA-1 pZC320t-lacZ pMTS-pR-tum$^+$ (glycerol Julian Pietsch (JP)#157.1) in LB with 50 µg/mL Kanamycin (Kan), 30 µg/mL Ampicillin (Amp) and 4 µg/mL Tet. An upper threshold on exponential growth was derived by aiming for some desired maximum fold-reduction in the residual of the n^{th} point, using a fit of the first $n-1$ points. Both a log-linear GLM assuming normally distributed errors and a GLM of the untransformed data, similarly assuming normally distributed errors but using a log link, were trialled. Note that while both methods use iteratively reweighted least squares (IRLS) to estimate weights, only the log link produces weights that diverge from unity.

As can be seen in Figure A.2 on the facing page, the log link model appears to fit the data reasonably well on a cursory inspection, and it is desirable that the threshold includes many more data points. However, the residuals in Figure A.2(f) reveal strong trends in the data that are divergent from this model (note that residuals are calculated on a log scale in Figure A.2(e); the residuals are actually not too different in magnitude between the two models). This is primarily a result of the log link model heavily weighting against the low magnitude measurements (as evidenced by the IRLS weights; data not shown), which are already of reduced significance since residuals are calculated prior to log transformation of the data. When using the log link with a GLM in the previous analysis in minimal media, it was noted that it produced almost the same result as a non-linear exponential fit of the data, confirming the effect of calculating residuals in the untransformed scaling.

Since the fit is made per well such that successive measurements are correlated, the residual error will not necessarily increase with OD$_{600}$ as it might for a regular assay. For the growth curve assays, the primary source of error is presumably that of the reader or artifacts like bubbles or dust.
Figure A.2: Fitting the ‘lacZ2’ data using alternative GLMs. The panels on the left are of a GLM with identity link and normally distributed errors, whilst the panels on the right are of a GLM with log link and normally distributed errors. (a) & (b) Determining an upper threshold based on the fold divergence from ideal exponential growth. Plotted are the residuals for the n^{th} points in the growth series relative to the model fit for the previous $n-1$ points. This was performed for all incremental subsets of the growth data. The divergence was observed to occur exponentially, so the residuals have been translated up by 1 and plotted and fit on a log scale. Note also that for all steps the data set has been truncated for all A_{620}s less than 0.001. (c) & (d) After specifying a cutoff, the data is fit using this cutoff and example fits are shown. The red curves originate from a high O/N, whilst the blue curves originate from a low O/N. (e) & (f) Residuals for fits using the upper threshold. Overlaid data from all wells on the plate is shown.
A.2 Gompertz fits

Given the observed divergence from pure exponential growth seen in Appendix A.1, an alternative model might be a more appropriate descriptor. Choosing a model for fitting growth curves is discussed in Zwietering et al. [1990], and they posit the Gompertz model as a balanced, general purpose fit. Their analysis assumes that the data input into each model is the logarithm of the relative population size. They also re-formulate the model in terms of parameters that are relevant to modelling microbial growth — in particular they specify the growth rate as the maximal slope of the log-transformed data. For the Gompertz model, this occurs at the inflection point. Their formulation is:

\[
y = A \exp \left[- \exp \left(\frac{\mu e}{A} (\lambda - t) + 1 \right) \right], \tag{A.1}
\]

where \(A \) is the asymptote that the growth curve tends towards, \(\mu \) is the maximum specific growth rate and \(\lambda \) is the lag time (\(e \) is simply \(\exp(1) \)). We choose to fit this model using the \texttt{drc} package, which has both three- and four-parameter implementations:

\[
y = C + (D - C) \exp \left[- \exp \left(B (t - E) \right) \right] \tag{A.2a}
\]

\[
y = D \exp \left[- \exp \left(B (t - E) \right) \right] \tag{A.2b}
\]

By comparing coefficients inside the exponentials in Equation (A.1) with those in Equations (A.2a) and (A.2b), the growth rate (\(\mu \)) can be determined from the \texttt{drc} fits using \(\mu = -\frac{B(D-C)}{e} \), with the lag time given by \(\lambda = E + \frac{1}{B} \). The three parameter model is just the case where \(C = 0 \). Observe that as \(t \to \infty \), \(y \to D - C \) and as \(t \to -\infty \), \(y \to C \).

After choosing some initial reference absorbance to calculate the relative population sizes, and then taking the logarithm of the data so that the slope of this transformed growth curve specifies the growth rate at each instant (see Figure A.3), we can observe that the offset coefficient \(C \) in the four-parameter Gompertz model would allow correction for errors.

Figure A.3: The Gompertz fit is designed to match data that has a lag period before entering a linear-like region that then asymptotes towards a maximum. As applied to log-transformed growth curves, this matches the masking of growth below instrumental sensitivity during the lag time, an approximately linear slope during the exponential growth phase, followed by a gradual slowing of growth as nutrients are consumed.
in determining the reference absorbance. That is, we have:

$$\log \left(\frac{A(t)}{A_0} \right) = \log (A(t)) - \log (A_0) = y - C,$$

(A.3)

where $A(t)$ is the time varying absorbance, and A_0 is the absorbance measured at time $t = 0$, so that the parameter $C = \log(A_0)$. Given these observations, it may make the most sense to simply use the initial reading as the per well reference (A_0) instead of using it as an offset.

The Gompertz fitting protocol:

1. Start with a data set using a per-well offset from the zero time point.
2. Choose starting parameters from an initial GLM fit of the data (the GLM fit ignores points with an OD_{600} less than 0.005 or greater than 0.3).
3. Calculate the relative growth using the next positive OD_{600} as the reference.
4. Refine the start parameters using a non-linear least squares Gompertz fit of the data in which the growth rate is set from the GLM fit.
5. Perform a robust Gompertz fit by median estimation.

A.3 Comparing the models

Of the Gompertz models, the three parameter Gompertz model is generally preferred since it has fewer parameters. However, where the reference point is clearly after the lag time point, the extra flexibility of the four parameter model becomes relevant.

Both of the Gompertz models can benefit from an initial estimate of the growth rate by the thresholded log-linear fit. Otherwise, the high-valued points are often over-weighted.

On the whole, for the time courses used for the MFL strains, the three parameter Gompertz model performs the best, producing the smallest standard deviations overall. This is presumably due to the small number of data points in the time course for these experiments, and few readings at early time points, reducing the need for the offset correction introduced by the four parameter Gompertz model. This can be seen in the direct comparison in Figure A.4.

The differences between plates observed across different days were somewhat alarming, especially those observed for the WR-MC and ER-MC strains. The difference in mean in those cases was significantly different (95% confidence limits in the means did not overlap for different days).

The largest differences were observed for the WR-MC strains, but these can apparently be accounted for by the difference in choice of time points. Plate ‘wrmc2’ has particularly late time points and hence suffers from a poor estimate of the base level reading (see Figure A.5).
Figure A.4: Comparing determinations of doubling time between the various models of growth for each of the MFL strains. Growth curves measured for the MFL strains were measured over time in 96-well plates during the hysteresis assay, and were fit using either a log-linear model with upper threshold (GLM), a three parameter Gompertz model (G.3), or four parameter Gompertz model (G.4). The doubling times drawn from each of these fits were calculated for each well and the mean value is shown for each plate, with error bars indicating the standard deviation.

Figure A.5: The ‘wrmc2’ plate deviates significantly due to fitting biases introduced by the selection of time points. Shown are growth curves and respective Gompertz fits for selected wells of two different hysteresis assay plates, ‘wrmc1’ and ‘wrmc2’, showing growth of the WR-MC MFL strain under assay conditions. Three-parameter Gompertz fits (G.3) or four-parameter Gompertz fits (G.4) are shown as indicated.
A.4 Growth rate measurements

The rate of growth of the strains shows little dependence on assay conditions as can be seen for growth rate measurements of the MFL strains shown in Figure A.6 and growth rate measurements of the induction reporter strains shown in Figure A.7.

Figure A.6: MFL strain doubling times show little dependence on IPTG or assay conditions. Growth of MFL strains under the hysteresis assay was monitored in 96-well plates by following the A_{620} over time and doubling times derived by fitting those curves with Gompertz models. These are shown plotted versus IPTG and separated by strain and level of induction of the overnight (O/N). Error bars indicate 95% confidence limits on the estimated mean doubling times; $n = 6$ for all data points.
Figure A.7: Induction reporter strain doubling times show little dependence on IPTG or assay conditions. Growth of the induction reporter strains was followed as described in Figure A.6, but the data from the two different O/Ns was aggregated since there were no significant differences between those data sets. Error bars indicate 95% confidence limits on the estimated mean doubling times; \(n = 8 \) for all data points.
Flow cytometry data obtained in this thesis was loaded and analysed in R, making use of a number of packages from Bioconductor [Gentleman et al., 2004], including the flowCore [Ellis et al., 2009a], and flowClust [Lo et al., 2009] packages.

The basic normalisation and curation of each set of data set typically proceeded as listed in the following code excerpt:

```r
# Load the data sets, transforming only the FSC/SSC channels for cell population selection:
fs.ermc <- fsload('data', logicle=c('FSC.H', 'SSC.A'))
sf.ermc <- SelectCellPop(fs.ermc, saveplot=TRUE)

# With the main population selected, calculate the Logicle transformation for the fluorescence channel:
sf.ermc <- MakeLogicle(sf.ermc, 'FITC.A')

# Calculate kernel density estimates for the entire flow set:
(fsf.ermc.range <- fsRange(fs.ermc))
sf.ermc.dmaps <- fsDensityMaps(fs.ermc, fsr=sf.ermc.range)

# Apply the morphology regression and normalisation:
fsn.ermc <- fsApply(fs.ermc, morphNormalise, densitymaps=sf.ermc.dmaps, fluorchannel='FITC.A.LOG')

# Annotate and order the flow set:
maskdict <- MaskDictionary()
sfna.ermc <- fsParseNames(fsn.ermc, translate2009, ordering2009, maskdict)
pData(fsn.ermc) # check the annotation

# Calculate unimodal Skew.t fits of all the control curves as a training set
fits.ermc.ctrl <- skewt.unifit(fsn.ermc[pData(fsn.ermc)$ctrl=='TM'])

# Store a list of models that can be used to predict skew t parameters from a median:
skewt.predictor.ermc <- skewt.predictor(fits.ermc.ctrl)
```
The most important methods from that excerpt will be described in more detail in the remainder of this appendix. These include automated selection of the main cell population (Appendix B.2), Logicle transformation of the data (Appendix B.3), morphology normalisation of the data (Appendix B.4), and constrained skew-t regression of the MFL samples (Appendix B.5).

B.1 General utility functions

Some general utility functions were used in many of the following protocols. These functions are listed here for reference.

```r
# # Skew-t distribution
dskewt <- function(x, params, n=1){
  if (!require(sn, quietly=TRUE))
    stop("the sn package must be installed to calculate skew-t functions")
  params$p[i][n] * dst(x, 
  xi=params$mu[n],
  omega=sqrt((params$sigma2[n]),
  alpha=params$shape[n],
  nu=params$nu[n])
}

# Bimodal skew-t distribution
dskewt.mix <- function(x, params){
  nmix <- length(params$mu)
  y <- numeric(length(x))
  for (i in 1:nmix)
    y <- y+dskewt(x, params=mu[i])
  return(y)
}

# Logicle functions {{
```
B.1 General utility functions

261

calcWfromP <- function(P) 2*P*log10(P)/(P+1)

26

Logicle <- function(x, W=M=4.5, T=262144, P=NA) {
 if(is.na(P))
 P <- uniroot(function(p){W-calcWfromP(p)}, c(0.1, 100))$root
 lt.W <- x<dW
 x[!lt.W]<- T*10^(-(M-W))*(10^(x[!lt.W]-W)-P^2*10^(-(x[!lt.W]-W)/P)+P^2-1)

invLogicle <- function(S, W=M=4.5, T=262144, P=NA) {
 if(is.na(P))
 P <- uniroot(function(p){W-calcWfromP(p)}, c(0.1, 100))$root
 loglim <- Logicle(2*W, W=W, M=M, T=T, P=P)
 sapply(S, function(s) {
 if(s>loglim) lims <- c(2*W, log10(s*10^(M-W)/T)+W)
 else if(s>0) lims <- c(W,2.1*W)
 else if(s>loglim) lims <- c(0, 1.1*W)
 else lims <- c(-log10(-(s*10^(M-W)/T)+W), 0.1)
 uniroot(function(x){s-Logicle(x, W=W, M=M, T=T, P=P)}, lims)$root
 }
}

LogicleWidth <- function(NegRef, M=4.5, T=262144)
 (M-log10(T/abs(NegRef)))/2

LogicleNegRef <- function(W, M=4.5, T=262144)
 -T*10^(2*W-M)

Curve Fitting Functions { { {
RChiS <- function(Func,p, datax, datay) {
 return(sum((datay-Func(datax,p))^2/Func(datax,p)) / (length(datax)-length(p))))
} } }
Appendix B. Scripts for analysis of flow cytometry data

LeastSquare <- function(p, Func, datax, datay) {
 return (sum((datay - Func(datax, p))^2))
}

B.2 Automated selection of the main cell population

The main cell population was selected with the aid of the flowClust package and the following functions:

SelectCells <- function(ff, level=0.8, channels=c('FSC.H.LOG', 'SSC.A.LOG')){
 cluster <- flowClust(ff, varNames=channels, K=1, B=100)
 ruleOutliers(cluster) <- list(level=level)
 return(list(ffC=ff[ff %in% cluster,], cluster=cluster))
}

Select the main cell population using a generous threshold, since the
FSC/SSC data can later be used to normalise the fluorescence data according
to morphology. SelectCellPop can also optionally save a plot of the chosen
region.
SelectCellPop <- function(x, ...) UseMethod('SelectCellPop')
SelectCellPop.default <- function(x, ...)
 stop("SelectCellPop" not implemented for this class.)

SelectCellPop.flowFrame <- function(x, level=0.95, ...){
 ffcluster <- SelectCells(x, level=level)
 return(ffcluster$ffC)
}

SelectCellPop.flowSet <- function(x, channels=c('FSC.H.LOG', 'SSC.A.LOG'),
 saveplot=FALSE, xlim=NULL, ylim=NULL, ...){
 if(saveplot){
 ranges <- apply(fsApply(x[,channels], each_col, quantile,
 probs=c(0.005,0.99)), 2, range)
 if(is.null(xlim)){
 Wparam.x <- getWparam(x, channels[[1]])
 if(!is.null(Wparam.x))
 xlim <- Logicle(ranges[,channels[[1]]], Wparam.x)
 else xlim <- ranges[,channels[[1]]]
 }
 }
For Logicle transformation, a common W parameter was chosen according to the method specified by Parks et al. [2006], and this parameter was stored as an attribute for each flowFrame (ff). The transformation with this parameter was then applied to a specified flow cytometry channel using the logicleTransform function of the flowCore package. The following functions were used to automate this process.

```r
setWparam <- function(ff, channel, W){
  if(!all(grepl('\\:LOG[.]*$', channel)))
    stop('Channel name has incorrect format: it should include ".LOG"')
  eval(parse(text=paste0('keyword(ff) <- list(\', channel, '.W = W)')))
  return(ff)
}

getWparam <- function(ff, channel="FITC.A.LOG"){  
  keyname <- sub("\:\:\.LOG[.]*\$", ".LOG.W", channel)
  if(inherits(ff, "flowFrame"))
    return(keyword(ff, keyname)[[1]])
  if(inherits(ff, "flowSet"))
    return(unique(fsApply(ff, function(ffi) keyword(ffi, keyname)[[1]][,1])))
  return(NULL)
}

MakeLogicle <- function(fs, channel="FSC.A"){
  # To calculate the width parameter, choose the fifth percentile of all
  # negative values in the data set as suggested in parks2006nld
  fsNegRef <- quantile(as.vector(fsApply(fs, function(ff)
    exprs(ff[,channel][ff[,channel]<0]) ) ),
    probs=0.05)[[1]]
  if(is.na(fsNegRef) || fsNegRef<-10) fsNegRef <- -10
  cat(paste('Choosing', fsNegRef, 'as negative reference for', channel, '\n'))
```
scripts for analysis of flow cytometry data

```r
srcname <- channel
newname <- paste(srcname, "LOG", sep=" ")

fsW <- (4.5 - log10(262144/abs(fsNegRef))) / 2
# Parameters for the transformation function are mostly the defaults, but
# set specifically just in case the defaults change:
assign("fcanalysis.logicleFunc",
      logicleTransform(transformationId="fcanalysisLogicleTransform",
                       w=fsW, t=262144, m=4.5, a=0),
      globalenv()) # transform function needs to be in global name space

# Set up the transformation with correct channel names and call it
fs <- eval(parse(text=paste0("transform (fs , ' ', newname,
                               ' ' = fcanalysis.logicleFunc(' ' , srcname , ' ')')")))
fsApply(fs, setWparam, channel=newname, W=fsW)
```

B.4 Morphology normalisation

Two alternative protocols for morphology normalisation were used in this thesis: normalisation using an average cell density (as per the protocol specified by [Knijnenburg et al., 2011]), or normalisation using a sample-specific cell density. Morphology normalisation using an average cell density works well for the majority of the Tum–CI MFL data, but substantial biases in absolute intensities were introduced for many of the high intensity samples. An example is the deviation of the high fluorescence data points (particularly in the controls) from the respective LacZ assay points back in Figure 5.3(a). Though it may seem minor, the accuracy of the normalisation protocol for a majority of the assays became suspect since the raw fluorescence means better matched the LacZ assay results. The errors were found to be associated with the conversion from relative to absolute intensities in the last step of the normalisation protocol, where an ‘average’ cell density in FSC/SSC space is used to estimate the true fluorescence mean from the fitted regression surface. Whilst the ‘average’ cell density worked well for a few high quality data sets, for the majority, the low representation of high fluorescence samples in the average density map amplified errors in poorly constrained regions of their regression surfaces. Since the absolute mean fluorescence of the raw data was a more reliable indicator of true mean activity, for most assays, the sample-specific FSC/SSC density (derived from the two-dimensional kernel density estimate of the FSC/SSC for that particular sample) was instead used to calculate the expected fluorescence for each regression surface. The effect of morphology normalisation
by the sample-specific density can be seen back in Figure 5.3(b). Whilst discrepancies with the LacZ assay remain, they are smaller in comparison with normalisation by average cell density and better reflect the expected trends.

Knijnenburg et al. developed the method for deriving the representative cell density by analogy with standard flow cytometry analyses, where fair inter-sample fluorescence comparisons are obtained by maximising population homogeneity using a stringent but consistent filter (gate) over the FSC and SSC channels. Knijnenburg et al. [2011] calculate a FSC/SSC density map that represents the ‘average’ cell morphology for an entire comparison group, and use this to weight the calculation of expected (mean) fluorescence for each regression surface.

The largest deviations tended to arise for samples whose FSC/SSC density map was poorly represented in the average density map. Poor representation resulted in incorrect calculation of the expected fluorescence for such regression surfaces, since low-confidence regions of the extrapolated surface were more heavily weighted, amplifying any inaccuracies in those regions. In other words, the average cell morphology had high densities in regions of the FSC/SSC space where the most problematic samples had few data points and thus where the regression surface was poorly constrained. That is, the errors were associated with poor inter-sample FSC/SSC overlap that did not appear to be correlated with fluorescence.

For the three high quality assays, the original normalisation using average cell density did not introduce errors and, in fact, improved the results. This was attributed both to higher cell counts (around 80,000 — at least twice as many as previously measured) and to greater care taken to ensure stability of FSC and SSC distributions during collection of the measurements. These experimental changes were prompted by observations of FSC/SSC drift occurring over the course of an experiment, presumably caused by occasional instabilities in the flow rate. Monitoring for such drift and increasing the overlap of FSC/SSC density using higher cell counts is recommended for future assays where the intent is to apply morphology normalisation. In this thesis, these three high quality assays are left normalised using the average cell density. For all other assays, normalisation of the fluorescence intensity was performed using the morphology normalisation protocol with sample-specific densities.

The protocol used by [Knijnenburg et al., 2011] was written in Matlab. For convenience, the protocol was rewritten in R for this thesis as listed in the following code block.

```r
# Calculate cell density maps for each flow frame
fsDensityMaps <- function(fs, channels=c("FSC.H", "SSC.A"),
                          fsr=fsRange(fs, channels), n=2^8){
  if(!require(MASS, quietly=TRUE))
    stop("the MASS package must be installed to calculate kernel density estimates")
```
Obtain the necessary flow set limits
lims <- list()
for(i in channels)
 lims[[i]] <- range(fs[,paste(i, c("MIN","MAX"), sep=" "])])

Calculate a density map for each flow frame
densitymaps <-
 fsApply(fs, function(ff){
 cat('.') # track progress — this calculation can take a while
 return(kde2d(exprs(fs[,channels[1]]), exprs(fs[,channels[2]]),
 n=n, lims=unlist(lims)))
 })

NB: The kde2d function comes from the MASS package.
cat('
')

Normalise the densities
lapply(densitymaps, function(dens){
 dens$z <- dens$z/sum(dens$z)
 return(dens)
})

Calculate the average cell density for the entire flow set
fsAverageDensity <- function(densitymaps){
 # Sum all the densities together
 totaldensity <-
 Reduce(function(total, addmap) within(total, z <- z + addmap$z),
 densitymaps[-1], densitymaps[[1]])
 totaldensity$z <- totaldensity$z/length(densitymaps)
 return(totaldensity)
}

Make a grid of constraints to force the regression model to remain
monotonic. This function is called by 'ffRegressConstrained' and requires a
model that is of class 'gam'.
makeConstraintGrid <- function(model, lims, channels=c("FSC.H","SSC.A"), n=2^3){
 # Create two offset coordinate grids with the specified dimensions:
 fscrow <- seq(lims[[channels[1]]][1], lims[[channels[1]]][2], length.out=n)
 ssccol <- seq(lims[[channels[2]]][1], lims[[channels[2]]][2], length.out=n)
 lowgrid<-data.frame(
 fsc=c(rep(fscrow[-n], times=n), rep(fscrow, times=n-1)),
 ssc=c(rep(ssccol, each=n-1), rep(ssccol[-n], each=n))
)
 highgrid<-data.frame(
 fsc=c(rep(fscrow[-1], times=n), rep(fscrow, times=n-1)),
 ssc=c(rep(ssccol, each=n-1), rep(ssccol[-n], each=n))
)
B.4 Morphology normalisation

267

ssc=c(rep(ssccol,each=n−1),rep(ssccol[-1],each=n))

At these grid locations, determine a linear predictor for the specified model. The linear predictor is a matrix that can be used to calculate the # value of the regression model at these locations by post−multiplying with # the parameter vector.

X0 ← predict(model, newdata=lowgrid, type="lpmatrix")
X1 ← predict(model, newdata=highgrid, type="lpmatrix")

constrgrid ← X1−X0

Attach the grid positions that were used to facilitate plotting:
attr(constrgrid, "fscrow") ← fscrow
attr(constrgrid, "ssccol") ← ssccol

return(constrgrid)

This function fits fluorescence data to cell morphology data (FSC/SSC) using # the constrained regression model suggested by knijnenburg2011rma. The # monotonic constraint is applied using a coarse grid (constructed by # 'makeConstraintGrid') and constrained least squares fitting is performed by # the 'pcls' function of the 'mgcv' package. The function is based on the # example of monotonic regression given in the 'pcls' documentation.

ffRegressConstrained ← function(ff, lims, scatterchannels=c("FSC.H","SSC.A"), fluorchannel="FITC.A"){
if(!require(mgcv, quietly=TRUE))
 stop('the "mgcv" package must be installed to perform constrained regression')

ff.df<−data.frame{
 fsc=exprs(ff[,scatterchannels[1]])[,1],
 ssc=exprs(ff[,scatterchannels[2]])[,1],
 fl=exprs(ff[,fluorchannel])[,1]
}

Use 'gam' from the 'mgcv' package to set up the design matrix for the GLM # that can be input into the 'pcls' function after adding the constraints.
G ← gam(fl−(fsc+ssc)^2+(sqrt(fsc)+sqrt(ssc))^2+1(fsc^2)+1(ssc^2),
data=ff.df, fit=FALSE)

Perform a preliminary unconstrained fit:
prelimfit ← gam(G=G)

Enforce monotonicity by first calculating the finite difference between # two grids and constraining these to all be greater than zero by defining # the inequality matrix (Ain).
G$Ain ← makeConstraintGrid(prelimfit, lims=lims, channels=scatterchannels)
Appendix B. Scripts for analysis of flow cytometry data

G$bin <- rep(0, nrow(G$bin))
Force initial parameters to match the constraint:
G$p <- coef(prelimfit)
G$p[G$p<0] <- 0

Fit the coefficients using the 'penalised constrained least squares
fitting' function 'pcls':
finalfit <- prelimfit
finalfit$coefficients <- pcls(G)
if(any(is.na(finalfit$coefficients))){
 warning('some coefficients for ', keyword(ff, 'TUBE NAME')[[1]],
 ' are NA; reattempting with alternative initial parameters')
}

Start the initial fit again with a smaller subset of the parameters
initG <- gam(fl~fsc+ssc+sqrt(fsc)+sqrt(ssc)+l(fsc^2)+l(ssc^2),
data=ff.df, fit=FALSE)
initG <- gam(fl~fsc+ssc+sqrt(fsc)+sqrt(ssc),
 data=ff.df, fit=FALSE)
initfit <- gam(G=initG)

G$p <- rep(0, length(G$term.names))
names(G$p) <- G$term.names
G$p[names(coef(initfit))] <- coef(initfit)
G$p[G$p<0] <- 0

finalfit$coefficients <- pcls(G)
if(any(is.na(finalfit$coefficients)))
 warning('regression for ', keyword(ff, 'TUBE NAME')[[1]], ' failed')
}

Check that all constraints are satisfied:
constraints <- G$bin %>% finalfit$coefficients
if(any(constraints <= 0))
 warning('Regression for ', keyword(ff, 'TUBE NAME'),
 ' breaks ', sum(constraints <= 0), ' of ',
 length(constraints), ' constraints with a total deviation of ',
 format(sum(constraints[constraints <= 0])))

Update useful additional properties of the fit:
names(finalfit$coefficients) <- names(G$p)
finalfit$fitted.values <- predict(finalfit)
finalfit$residuals <- finalfit$y-finalfit$fitted.values
B.4 Morphology normalisation

return (finalfit)

Normalise the fluorescence channel of a flow frame according to its
'morphology' (i.e., FSC and SSC). The algorithm prescribed in
knijnenburg2011rma is followed.
morphNormalise <- function(ff, densitymaps, scatterchannels=c("FSC.H","SSC.A"),
 fluorchannel="FITC.A", dmap.index=NULL){
 if(!require(mgcv, quietly=TRUE))
 stop('the "mgcv" package must be installed to perform constrained regression')

 if(is.null(dmap.index)){
 # Either the function is already supplied with the correct cell density:
 if(length(densitymaps)==3L & all(names(densitymaps)[1:3]==c('x','y','z')))
 celldensity <- densitymaps
 # Or else it is supplied with a list of density maps to calculate the
 # average from:
 else{
 celldensity <- fsAverageDensity(densitymaps)
 }
 # Use the 'dmap.index' to specify a dmap:
 celldensity <- densitymaps[[keyword(ff, dmap.index)][[1]]]
 }

 lims <- list()
 lims[[scatterchannels[1]]] <- range(celldensity$x)
 lims[[scatterchannels[2]]] <- range(celldensity$y)

 constrfit <-
 ffRegressConstrained(ff, lims=lims, scatterchannels=scatterchannels, fluorchannel=fluorchannel)

 densitygrid <- data.frame(
 fsc=rep(celldensity$x, times=length(celldensity$y)),
 ssc=rep(celldensity$y, each=length(celldensity$x))
)

 densitygrid$fl <- predict(constrfit, newdata=densitygrid)
 celldensity$z.flat <- as.numeric(celldensity$z)
 avgfl <- sum(celldensity$z.flat*densitygrid$fl)

 normfl <- avgfl+residuals(constrfit)
 normfl <- matrix(normfl, nrow=length(normfl), ncol=1,
 dimnames=list(NULL, paste(fluorchannel,"M",sep=".")))
}
Appendix B. Scripts for analysis of flow cytometry data

return(cbind2(ff, normfl))

B.5 Constrained skew-t regression

Unimodal skew-t distributions were initially fit to the control samples in an unconstrained manner using the mixsmsn package [Prates et al., 2013]. This was applied to a flowSet using the following function

```r
# Generate unimodal Skew.t fits over a flowSet as training data {
  # NB: in order to save some time, the following function does not calculate
  # the information matrix.
  skewt.unifit <- function(fs, channel='FITC.A.LOG.M') {
    if(!require(mixsmsn, quietly=TRUE))
      stop("the mixsmsn package must be installed to fit skew-t mixture models")
    fits <- fsApply(fs, function(ff) {
      cat('.') # Progress counter since this can be slow
      # Calculate some statistics
      ffdata <- as.vector(exprs(ff[, channel]))
      ffquant <- quantile(ffdatal, probs=c(0.25, 0.5, 0.75), na.rm=TRUE)
      ffmean <- mean(ffdatal, na.rm=TRUE)
      ffvar <- sd(ffdatal, na.rm=TRUE)^2
      unifit <- smsn.mix(ffdatal, g=1, family='Skew.t', pii=1,
                         nu=5, mu=ffquant[[2]], sigma2=ffvar, shape=-1,
                         get.init=FALSE, calc.im=FALSE)
      list(unifit=unifit,
           stats=list(quant=ffquant, mean=ffmean, var=ffvar))
    })
    cat('
')
    structure(fits, class=c('skewt.unifit', 'list'))
  }
print.skewt.unifit <- function(x,...)
cat(paste0('A list of unimodal Skew.t fits of length ',
           length(x), '\n'))
summary.skewt.unifit <- function(x,...){
  fitsummary <- sapply(x, function(fit)
A 'predictor' object was constructed from these fitted skew-t distributions by calculating a series of regression models that described the data. These regression models are saved and enable the prediction of all other skew-t parameters from just a supplied median fluorescence. The following code shows how this was implemented.

```r
Generate a 'skewt.predictor' object from unimodal Skew.t fits by
constructing a catalog of regression models for each Skew.t parameter
against the median value determined from the training set. This object can
then later be used to predict skew t parameters from a median:
skewt.predictor <- function(unifit) {
 if(!inherits(unifit, 'skewt.unifit'))
 stop("'unifit' must be a "skewt.unifit" object")

 unifitsummary <- summary(unifit)

 predictor <-
 list(mu.median=lm(mu~quant50, data=unifitsummary),
 width.median=lm(quantdiff~quant50+I(quant50^2), data=unifitsummary),
 sigma2.width=lm(sigma2~quantdiff+I(quantdiff^2), data=unifitsummary),
 shape.width=lm(shape~quantdiff+I(quantdiff^2), data=unifitsummary),
 nu.sigma2=lm(nu~sigma2+I(sigma2^2), data=unifitsummary))
 structure(predictor, class=c('skewt.predictor', 'list'))
}

The following function estimates skew t parameters for a specified median
fluorescence, and optionally additionally a peak width, which is here
defined as the difference between the 25th and 75th percentiles. It returns
a 'Skew.t' object describing a mixture of skew t models.
predict.skewt.predictor <- function(object, median, width=NULL, pii=1,
 checks=TRUE){
 if(missing(median))
 stop("At least one "median" value must be supplied for prediction")

 if(is.null(width))
 width <- predict(object$width.median, newdata=data.frame(quant50=median))
```
if (checks){
  if (length(median) != length(width) || length(median) != length(pii))
    stop('The specified medians, widths and probabilities must all have ',
         'the same lengths')
  if (sum(pii) != 1.0)
    stop('Mixture component probabilities "pii" must sum to 1')
}

sigma2 <- predict(object$sigma2.width, newdata=data.frame(quantdiff=width))
pred <- list(pii=pii,
              mu=predict(object$mu.median, newdata=data.frame(quant50=median)),
              sigma2=sigma2,
              shape=predict(object$shape.width, newdata=data.frame(quantdiff=width)),
              nu=predict(object$nu.sigma2, newdata=data.frame(sigma2=sigma2)))

# For predicted values of 'nu' less than 1, take an average value instead to avoid
# small/ negative degrees of freedom
if (any(pred$nu < 1))
  pred$nu[pred$nu<1] <- mean(object$nu.sigma2$model$nu)
structure(as.data.frame(pred), class=c('Skew.t', 'data.frame'))

Maximum likelihood estimation could then be used to optimise the median fluorescence to fit the MFL distributions with either a unimodal or bimodal mixture model. This was implemented using the following code.

# Perform maximum-likelihood estimation to fit a unimodal skew t distribution
# that is restricted to the family defined by a skewt.predictor object.
unimodal.skewt.em <- function(ff, predictor, channel='FITC.A.LOG.M'){
  if (!inherits(ff, 'flowFrame'))
    stop('"ff" must be a "flowFrame"')
  if (!inherits(predictor, 'skewt.predictor'))
    stop('"predictor" must be a "skewt.predictor"')

  fndata <- exprs(ff[,channel])
  medrange <- c(0.7, 1.3) * range(predictor$mu.median$model$quant50)

  fit <-
    optim(c(med=median(fndata)),
          function(pars){
            probs <- with(as.list(pars),
                          ...)
            ...)

          function(pars){
            probs <- with(as.list(pars),
                          ...)
            ...)

}
B.5 Constrained skew-t regression

```r
Avoid an NaN likelihood by setting all ill-behaved probabilities
to be suitably improbable:
if(any(is.na(probs) | probs<=0))
 probs[is.na(probs) | probs<=0] <- 1e-8
Return the log likelihood; NB: optim minimises by default
return(-sum(log(probs)))
```

```r
structure(c(list(skewt.pars=predict(predictor, median=fit$par[['med']])),
 fit), class='unimodal.fit')
```

```r
Perform maximum-likelihood estimation to fit a bimodal mixture of skew t
distributions that have been restricted to the family defined by a
skewt.predictor object.
bimodal.skewt.em <- function(ff, predictor, channel='FITC.A.LOG.M'){
 if(!inherits(ff, 'flowFrame')) stop(""ff" must be a "flowFrame""
 if(!inherits(predictor, 'skewt.predictor'))
 stop("predictor" must be a "skewt.predictor")
 ffd data <- exprs(ff[,channel])
 ffqu ant <- quantile(ffd data, probs=c(0.25, 0.75))
 medrange <- c(0.7,1.3)*range(predictor$mu.median$model$quant50)
 # Optimise the expectation over the following variables:
 # - p.lo (the proportion of the low fluorescence population)
 # - m.lo (the median of the low fluorescence population)
 # - m.hi.fac (a multiplication factor giving the median of the high
 # fluorescence population relative to 'med.low')
 fit <-
 optim(c(p.lo=0.5, m.lo=ffqu ant[[1]], m.hi.fac=ffqu ant[[2]]/ffqu ant[[1]]),
 function(pars){
 # Don't check parameters in predict function during optimisation
 predpars <- with(as.list(pars),
 predict(predictor, median=c(m.lo, m.hi.fac*m.lo),
 pii=c(p.lo, 1-p.lo), checks=FALSE))
 probs <- dskewt.mix(ffd data, predpars)
 # Avoid an NaN likelihood by setting all ill-behaved probabilities
 # to be suitably improbable:
 if(any(is.na(probs) | probs<=0))
 probs[is.na(probs) | probs<=0] <- 1e-8
 })
```
Finally, the constrained mixture modelling analysis was performed over a flowSet using the ModalityAnalysis function, and the integrated mean values and parameter errors calculated using the summary function for a modality.fits object. The errors in the fit parameters were calculated from the Hessian output of the optim function and were transformed into the appropriate derived parameters (i.e., the distribution means) using the Jacobian.
B.5 Constrained skew-t regression

# Find the mean value of each skew t probability distribution:

```r
intskt <- function(pars, n)
 integrate(function(x) x*dskewt(x, pars, n=n), -Inf, Inf)$value
```

# For calculating means, set probability of each distribution to unity:

```r
biskt$pii <- rep(1, nrow(biskt))
uniskt.mean <- c(mean.uni=intskt(uniskt, n=1))
lowskt.mean <- c(mean.low=intskt(biskt, n=1))
highskt.mean <- c(mean.high=intskt(biskt, n=2))
```

```r
if(!is.null(W)) {
 # If W parameter is given, also calculate the distribution means in the
 # unlogged scale. This requires a change of variables, and hence the
 # Jacobian (gradient) of the invLogicle function. The 'grad' function
 # comes from package 'numDeriv':
 if(!require(numDeriv, quietly=TRUE))
 stop("the numDeriv package must be installed to calculate ",
 "skew t distribution means in the untransformed scale")

 # Can't perform Logicle transformation at infinity, so choose suitably
 # large bounds instead:
 intBounds <- c(-2.5, 4.5)

 cat('...') # This can be slow so track progress

 P <- uniroot(function(p) W - calcWfromP(p), c(0.1, 100))$root

 intskt.unlog <- function(pars, n)
 tryCatch(integrate(function(x) Logicle(x,W=P)*dskewt(x,pars,n=n),
 intBounds[[1]], intBounds[[2]])$value,
 error=function(e){ warning(e); return(NA) })

 uniskt.mean <- c(uniskt.mean, rawmean.uni=intskt.unlog(uniskt, n=1))
lowskt.mean <- c(lowskt.mean, rawmean.low=intskt.unlog(biskt, n=1))
highskt.mean <- c(highskt.mean, rawmean.high=intskt.unlog(biskt, n=2))
```

# If the predictor is supplied, calculate standard deviations on the
# estimated raw means:

```r
if(!is.null(predictor)) {
 # Define functions to allow parameter variation:
 calcRawMeanUni <- function(pars){
 skewtpars <- predict(predictor, median=pars[['med']])
 intskt.unlog(skewtpars, n=1)
 }
```
Appendix B. Scripts for analysis of flow cytometry data

\[
\text{calcRawMeanLow} <- \text{function}(\text{pars}) \{
\text{skewtpars} <- \text{predict}(\text{predictor}, \text{median}=\text{pars}[['m.lo']])
\text{intskt.unlog}(\text{skewtpars}, n=1)
\}
\]

\[
\text{calcRawMeanHigh} <- \text{function}(\text{pars}) \{
\text{skewtpars} <- \text{predict}(\text{predictor}, \text{median}=\text{pars}[['m.lo']] \times \text{pars}[['m.hi.fac']])
\text{intskt.unlog}(\text{skewtpars}, n=1)
\}
\]

\[
\text{uni.par} <- \text{fits$unimodal$par}
\text{uni.vcov} <- \text{solve(fits$unimodal$hessian)}
\text{bi.par} <- \text{fits$bimodal$par}
\text{bi.vcov} <- \text{solve(fits$bimodal$hessian)}
\text{bi.pii.sd} <- \text{drop}(\text{sqrt}(\text{bi.vcov}['p.lo', 'p.lo']))
\]

\[
\# \text{Accuracy is not as important for the errors so use the 'simple'}
\# \text{ method for the gradient:}
\text{uni.jac} <- \text{grad(calcRawMeanUni, uni.par['med'], method='simple')}\]

\[
\text{bi.lowjac} <- \text{grad(calcRawMeanLow, bi.par['m.lo'], method='simple')}
\text{bi.highjac} <- \text{grad(calcRawMeanHigh, bi.par[c('m.lo', 'm.hi.fac')], method='simple')}
\]

\[
\text{uni.sd} <- \text{drop}(\text{sqrt}(\text{uni.jac} \times \text{uni.vcov}['med', 'med'] \times \text{uni.jac}))
\text{bi.lowsd} <- \text{sqrt}(\text{bi.lowjac} \times \text{bi.vcov}['m.lo', 'm.lo'] \times \text{bi.lowjac})
\text{bi.highsd} <- \text{sqrt}(\text{bi.highjac} \times \text{bi.vcov}[/c('m.lo', 'm.hi.fac'),
\text{c('m.lo', 'm.hi.fac')] \times \text{bi.highjac})
\]

\[
\text{uniskt.mean} <- \text{c(uniskt.mean, \text{rawmean.unilxdrop(uni.sd)})}
\text{lowskt.mean} <- \text{c(pii.low.sd=bi.pii.sd, lowskt.mean, \text{rawmean.low.sd=drop(bi.lowsd))}
\text{highskt.mean} <- \text{c(highskt.mean, \text{rawmean.high.sd=drop(bi.highsd)}
\}
\]

\[
\# \text{Reset the probability parameters of each bimodal distribution:}
\text{biskt} <- \text{fits$bimodal$skewt.pars}
\]

\[
\text{structure(c(unlist(uniskt)), uniskt.mean, fits$unimodal$value,}
\text{unlist(biskt[1,]), lowskt.mean,}
\text{unlist(biskt[2,]), highskt.mean, fits$bimodal$value,}
\text{names=c(paste0(names(uniskt),'..uni'), names(uniskt.mean),
\}
\]
'value.uni',

paste0(colnames(biskt),' . low'), names(lowskt.mean),

paste0(colnames(biskt),' . high'), names(highskt.mean),

'value.bi'))

}  

fitsum <- sapply(x, summarise.modalty)

# Finish possible progress tracker

within(as.data.frame(t(fitsum)), valuediff <- value.bi-value.uni)
Fitting deterministic time-course models to the Tum−CI MFL data

This appendix describes how deterministic simulations of the MFL were implemented in R (Appendix C.1) and how they were then used to fit the model parameters to match either the LacZ assay (Appendix C.2) or flow cytometry (Appendix C.3 data sets.

C.1 Deterministic simulation of the MFL in R

All code presented in this appendix made extensive use of the rootSolve, deSolve [Soetaert et al., 2010] and FME [Soetaert and Petzoldt, 2010] R packages which provide general routines for finding steady-state roots of differential equations, simulating differential equations and optimising model parameters respectively. These libraries are loaded first.

```r
library(rootSolve)
library(deSolve)
library(FME)

Enable calculation of confidence intervals on modFit objects from the FME
package:
v cov . modFit <− function(x , . . .) summary(x)$cov.scaled
```

With these libraries loaded, efficient routines for solving the MFL (MFLderivs) and Tum− control (RepressDerivs) ODEs were defined. These routines perform calculations in parallel for multiple values of the final level of $P_{lac}$ induction ($PcFinal$). Routines are defined for finding both steady-state and time-course solutions to the ODEs, the latter further benefitting (in terms of speed) from an explicit definition of the Jacobian.

```r
Define MFL ODEs and solvers for processing multiple Pc values in parallel
###
```
## tumciEquilibrate(Ct, Tt, params=MFLparams) ##

# Tum−CI equilibrium solver for initial values#

#}{{
tumciEquilibrate <- function(Ct, Tt, params=MFLparams){
  RootEquation <- function(S, params)
    with (params, S*(Es/(Tt−2*S))^Hs − Ct + S)
  S <- uniroot(RootEquation, c(0, min(Ct, Tt/2)), params=params)$root
  Cf <- Ct − S
  Tf <- Tt − 2*S
  list(S=S, Cf=Cf, Tf=Tf)
}

## steadyRepress(PcInit, PcFinal, params) ##

# Solve the Repressor ODEs at steady−state; safe for multiple PcFinal's#

#}{{
steadyRepress <- function(PcInit, PcFinal, params)
{
  inicf <- PcFinal/params[['Dc']] # in this case, the initial values are exact:
  return(data.frame(Pc=PcFinal, Cf=inicf, 
              Z=with(as.list(params), Pz/Dz/(1+(inicf/Er)^Hr))))

  # The number of induction levels to solve for:
  N <- length(PcFinal)

  # Approximate the steady−state values of initial parameters
  inicf <- PcInit/params[['Dc']] # initialise start values
  iniz <- with(as.list(params), Pz/Dz/(1+(inicf/Er)^Hr))

  # Initialise start values
  init <- c(rep(inicf, N), rep(iniz, N))

  derivs <- function(t, y, params, Pc, N){
    # [Cf] = y[1], [Z] = y[N+1:]
    Cf <- y[1:N]
    Z <- y[(N+1):(2*N)]
    with(as.list(params), 
      list(c(Pc − Dc*Cf, 
              Pz/(1+(Cf/Er)^Hr) − Dz*Z)))
  }
}
C.1 Deterministic simulation of the MFL in R

```r
ss <- stode(init, parms=params, func=derivs, Pc=PcFinal, N=N)
with(ss, data.frame(Pc=PcFinal, Cf=y[1:N], Z=y[(N+1):(2*N)]))
```

```r
steadyMFL (PcInit, PcFinal, params)
Solve the MFL ODEs at steady-state; safe for multiple PcFinal's
#
steadyMFL <- function(PcInit, PcFinal, params)
{
 # The number of induction levels to solve for:
 N=length(PcFinal)
 listparms <- as.list(params)
 # Approximate the steady-state values of initial parameters
 initCt <- PcInit/listparms*Dc
 # Assume Tt = 'production due to repression by Ct'
 steady <- tumciEquilibrate(initCt, with(listparms, steady), Pt/Dt/(1+(initCt/Er)^Hr)),
 # Improve the guess on Tt by one iteration:
 steady <- tumciEquilibrate(initCt, with(c(listparms, steady), Pt/Dt/(1+(Cf/Er)^Hr)),
 # Initialise start values
 init <- with(steady, c(rep(Cf,N), rep(Tf,N), rep(S,N), rep(initZ,N)))
 derivs <- function(t, y, params, Pc, N){
 # [C] = y[1], [T] = y[2], [S] = y[3], [Z]
 Cf <- y[(0*N+1):(1*N)]
 Tf <- y[(1*N+1):(2*N)]
 S <- y[(2*N+1):(3*N)]
 Z <- y[(3*N+1):(4*N)]
 with(as.list(params),
 list(c(Pc - Dc*Cf + ksoff*(-Cf*(Tf/Es)^Hs + S) + (Dt-Dil)*S,
 Pt/(1+(Cf/Er)^Hr) - Dt*Tf + 2*ksoff*(-Cf*(Tf/Es)^Hs + S)
 + (Dc-Dil)*S,
 -(Ds+Dc+Dt-Dil)*S + ksoff*(Cf*(Tf/Es)^Hs - S),
 Pz/(1+(Cf/Er)^Hr) - Dz*Z))
)
 }
 ss <- stode(init, parms=params, func=derivs, Pc=PcFinal, N=N,
```

```r
#} }}
```

```r
steadyMFL (PcInit, PcFinal, params)
Solve the MFL ODEs at steady-state; safe for multiple PcFinal's
#
```
Appendix C. Fitting deterministic time-course models to the Tum–CI MFL data

```r
positive = TRUE)
jactype = 'bandint', bandup = 3, banddown = 3)
with (ss, data.frame (PC = PcFinal, CF = y[(0*N+1):(1*N)], TF = y[(1*N+1):(2*N)],
 S = y[(2*N+1):(3*N)], Z = y[(3*N+1):(4*N)]))
```

```r
RepressDerivs (t, y, params, Pc, N)
Define the Repressor ODEs to process multiple Pc values in parallel. The
variables for each Pc are grouped together in y so that the Jacobian is
banded.
#
MFLderivs (t, y, params, Pc, N, full = FALSE)
Define the MFL ODEs to process multiple Pc values in parallel. The
variables for each Pc are grouped together in y so that the Jacobian is
banded.
```
C.1 Deterministic simulation of the MFL in R

```r
list(as.vector(matrix(c(
Pc - Dc*Cf - Spow + (ks off+Dt*Dil)*S,
Pt*Rpow - Dt*Tf - 2*Spow + 2*(ks off+Dc*Dil)*S,
-(ks off+Ds+Dc+Dt*Dil)*S + Spow,
Pz*Rpow - Dz*Z
),nrow=4,byrow=TRUE))
}
```

# MFLjacob(t, y, params, Pc, N, full=FALSE) #
# For improved accuracy, define a Jacobian for the above multi-Pc MFL ODEs. It
# can be returned either as a full or banded matrix. Note that if N=1, the
# banded version is larger than the full matrix, and the ODE solver no longer
# works with the banded version.
# {{
MFLjacob <- function(t, y, params, Pc, N, full=FALSE) {
  ymat <- matrix(y, nrow=4)
  Cf <- ymat[1,]
  Tf <- ymat[2,]
  S <- ymat[3,]
  Z <- ymat[4,]

  # Jacobian layout:

  # Banded Jacobian layout:
  # 0 , 0 , 0 , dC[1] dot/dZ[1], 0 ,
  # 0 , 0 , dC[1] dot/dS[1], dT[1] dot/dZ[1], 0 ,
  # 0 , dC[1] dot/dT[1], dT[1] dot/dS[1], dS[1] dot/dZ[1], 0 ,
  # dS[1] dot/dC[1], dZ[1] dot/dT[1], 0 , 0 , dS[2] dot/dC[2], ...
  # dZ[1] dot/dC[1], 0 , 0 , 0 , dZ[2] dot/dC[2], ...

  zeros <- rep(0, ncol(y mat))
  zerorow <- matrix(zeros, nrow=1)
}
# Use the 'zeros' vector to ensure correct vector lengths when constructing
# the Jacobian matrices with zero and constant terms:

```
with(as.list(params),{

 Rpow <- 1/(1+(Cf/Er)^Hr)
 dRpow.dC <- -Rpow*Rpow*(Hr/Er)*(Cf/Er)^(Hr-1)
 dSpow.dC <- ksoff*(Tf/Es)^Hs
 dSpow.dT <- (Hs/Es)*ksoff*Cf*(Tf/Es)^(Hs-1)
 ddC <- matrix(c(-Dc-dSpow.dC, # dCdt
 Pt*dRpow.dC - 2*dSpow.dC, # dTdt
 dSpow.dC, # dSdt
 Pz*dRpow.dC), # dZdt
 nrow=4, byrow=TRUE)

 ddT <- matrix(c(-dSpow.dT, # dCdt
 -Dt - 2*dSpow.dT, # dTdt
 dSpow.dT, # dSdt
 zeros), # dZdt
 nrow=4, byrow=TRUE)

 ddS <- matrix(c(ksoff+Dt-Dil + zeros, # dCdt
 2*(ksoff+Dc-Dil) + zeros, # dTdt
 -(ksoff+Ds+Dc+Dt-Dil) + zeros, # dSdt
 zeros), # dZdt
 nrow=4, byrow=TRUE)

 ddZ <- matrix(c(zeros, # dCdt
 zeros, # dTdt
 zeros, # dSdt
 -Dz + zeros), # dZdt
 nrow=4, byrow=TRUE)

 if (ncol(ymat)==1)
 return (cbind(as.vector(ddC),as.vector(ddT),as.vector(ddS),as.vector(ddZ)))

 if (full){
 fullmat <- cbind(as.vector(ddC),as.vector(ddT),as.vector(ddS),as.vector(ddZ))
 fullmat <- cbind(fullmat, matrix(0, nrow=length(y), ncol=length(y)-4))
 fullmat <- matrix(t(fullmat), nrow=4+length(y), ncol=ncol(ymat))
 fullmat <- rbind(fullmat, matrix(0, nrow=4, ncol=ncol(ymat)))
 fullmat <- matrix(as.vector(fullmat)[1:(length(fullmat)-length(y))],
 nrow=length(y), ncol=length(y), byrow=TRUE)
 return (fullmat)
 }
 else{
 bandmat <- rbind(zerorow, zerorow, zerorow, dC,
 bandmat, zeros, zeros, zeros, zeros),
 nrow=4*length(y), byrow=TRUE)
 return (fullmat)
 }
```

C.1 Deterministic simulation of the MFL in R

```r
zerow, zerow, ddT, zerow,
zerow, ddS, zerow, zerow,
 ddZ, zerow, zerow, zerow)

return(matrix(bandmat, nrow=7))
```
Appendix C. Fitting deterministic time-course models to the Tum−CI MFL data

```r
atol <- 1e-6
rtol <- 1e-6

Simulate over the assay time starting from equilibration conditions:
repeat {
 sim <- lsoda(init, times=timesteps, parms=params,
 func=RepressDerivs, atol=atol, rtol=rtol,
 Pc=PcFinal, N=N)

 # Stop looping if all values are ok:
 if(!any(is.na(sim))) break

 if(length(assaytimes) > 1) {
 assaytimeindex <- assaytimeindex * 5
 Ntimesteps <- c(assaytimeindex[1] - 1, diff(assaytimeindex))
 timesteps <- mapply(function(x, y, z) seq(x, y, length.out=z),
 c(0, assaytimes[-length(assaytimes)]),
 assaytimes, Ntimesteps + 1)
 timesteps <- Reduce(function(x, y) c(x, y[-1]), timesteps, init=0)
 } else {
 Ntimesteps <- 5 * Ntimesteps
 timesteps <- seq(0, assaytimes, length.out=Ntimesteps)
 }

 atol <- atol * 1e-2
 rtol <- rtol * 1e-2

 if(atol < 1e-10 || rtol < 1e-10) {
 warning('NA values in repressor simulation with params:

 # print(as.list(params))
 browser()
 # Simulation failed, return zero instead of NA:
 sim <- matrix(0, nrow=1, ncol=2*N+1)
 break
 }

 if(length(assaytimes) > 1) {
 finaldata <- data.frame(Pc=PcFinal)
 for(i in 1:length(assaytimeindex)) {
 imat <- matrix(sim[assaytimeindex[i], -1], nrow=2)
 idata <- data.frame(Cf=imat[1,], Z=imat[2,])
 colnames(idata) <- paste0('t ', i, colnames(idata))
 finaldata <- cbind(finaldata, idata)
 }
 }
```

C.1 Deterministic simulation of the MFL in R

```r
321 } return(finaldata)
322 } else {
323 finalmat <- matrix(sim[, -1], nrow=2)
324 return(data.frame(Pc=PcFinal, Cf=finalmat[, 1], Z=finalmat[, 2]))
325 }
326 }
327 }
328
330 #\{ detMFL(PcInit, PcFinal, params, assaytimes, ontime=60) \#
331 # Run a multi-Pc deterministic MFL simulation starting from a single initial
332 # condition (PcInit). The simulation starts by approximating steady-state
333 # values at PcInit and then equilibrating at the initial condition for
334 # ‘ontime’ minutes. It then solves the MFL ODEs for each ‘PcFinal’ value to
335 # the maximum time in ‘assaytimes’, saving the state at each time specified in
336 # ‘assaytimes’
337 #\{{
338 detMFL <- function(PcInit, PcFinal, params, assaytimes, ontime=60)
339 {
340 # The number of induction levels to solve for:
341 N <- length(PcFinal)
342
343 listparms <- as.list(params)
344
345 # Allow the use of an optional scaling parameter for Tum production in the
346 # O/N cultures:
347 if(is.null(listparms[['PtInitScale']]))
348 listparms[['PtInitScale']] <- 1
349
350 # Approximate the steady-state values of initial parameters
351 initCt <- PcInit/listparms$Dc
352 # Assume Tt = ‘production due to repression by Ct’
353 steady <-
354 tumciEquilibrate(initCt, with(listparms,
355 PtInitScale*Pt/Dt/(1+(initCt/Er)^Hr)),
356 params=listparms)
357 # Improve the guess on Tt by one iteration:
358 steady <-
359 tumciEquilibrate(initCt, with(c(listparms, steady),
360 PtInitScale*Pt/Dt/(1+(Cf/Er)^Hr)),
361 params=listparms)
362 initZ <- with(c(listparms, steady), Pz/Dz/(1+(Cf/Er)^Hr))
363
364 # Equilibrate at initial condition:
```
init <- with(steady, c(Cf=Cf, Tf=Tf, S=S, Z=initZ))

if(any(is.na(init))){
    warning("Approximated initial steadystate values contain NA")
    browser() # If the equilibration failed switch to allow user input
}

initparams <- params
initparams[['Pt']] <- with(listparms, PtInitScale*Pt)

Ntimesteps <- 10
maxatol <- 1e-6
maxrtol <- 1e-6
rtol <- c(rep(maxrtol, 3), 1e-6)
atol <- c(rep(maxatol, 3), 1e-6)

repeat{
    sim <- lsoda(init, times=seq(0, ontime, length.out=Ntimesteps), parms=initparams,
        jactfunc=MFLjacob, jactype='fullusr',
        func=MFLderivs, atol=atol, rtol=rtol,
        Pc=PcInit, N=1, full=TRUE)

    # Stop looping if all values are ok:
    if(!any(is.na(sim))) break

    Ntimesteps <- Ntimesteps*5
    maxatol <- maxatol*1e-2
    maxrtol <- maxrtol*1e-2
    if(maxatol<1e-10 || maxrtol<1e-10){
        warning("NA values in simulated initial conditions with params:\n")
        # print(as.list(params))
        bestcol <- 1
        # browser() # disable browser...
        # Use the best guess we have:
        sim <- t(sim[bestcol,]) # Defaults to initial values
        break
    }
    rtol <- c(rep(maxrtol, 3), 1e-6)
atol <- c(rep(maxatol, 3), 1e-6)
}

### NB: A banded Jacobian can only be specified for N>1!!!! ###
### Otherwise a *full* matrix must be used. ###
# Initialise start values from equilibrated values
init <- with(as.list(sim[nrow(sim)]), rep(c(Cf, Tf, S, Z), N))

# Scale timesteps to the equivalent step size for 'assaytimes'
if (length(assaytimes) > 1){
  assaytimes <- assaytimes[order(assaytimes)]
  assaytimeindex <- (round(assaytimes/max(assaytimes)) * Ntimesteps)
  Ntimesteps <- c(assaytimeindex[1] - 1, diff(assaytimeindex))
  timesteps <- mapply(function(x, y, z) seq(x, y, length.out=z),
                      c(0, assaytimes[-length(assaytimes)]),
                      assaytimes, Ntimesteps + 1)
  timesteps <- Reduce(function(x, y) c(x, y[-1]), timesteps, init=0)
} else {
  timesteps <- seq(0, assaytimes, length.out=ceiling(assaytimes/ontime*Ntimesteps))
}

rtol <- rep(c(rep(maxrtol, 3), 1e-6), N)
atol <- rep(c(rep(maxatol, 3), 1e-6), N)

# Simulate over the assay time starting from equilibration conditions:
### NB: A banded Jacobian can only be specified for N>1!!! ###
### Otherwise a *full* matrix must be used.
repeat {
  if (N>1)
    sim <- lsoda(init, times=timesteps, parms=params,
                 jacfunc=MFLjacob, jactype='bandusr', bandup=3, banddown=3,
                 func=MFLderivs, atol=atol, rtol=rtol,
                 Pc=PcFinal, N=N, full=FALSE)
  else
    sim <- lsoda(init, times=timesteps, parms=params,
                 jacfunc=MFLjacob, jactype='fullusr',
                 func=MFLderivs, atol=atol, rtol=rtol,
                 Pc=PcFinal, N=N, full=TRUE)

  # Stop looping if all values are ok:
  if (!any(is.na(sim))) break

  if (length(assaytimes) > 1){
    assaytimeindex <- assaytimeindex * 5
    Ntimesteps <- c(assaytimeindex[1] - 1, diff(assaytimeindex))
    timesteps <- mapply(function(x, y, z) seq(x, y, length.out=z),
                        c(0, assaytimes[-length(assaytimes)]),
                        assaytimes[assaytimeindex[1]:length(assaytimes)]),
                        assaytimes, Ntimesteps + 1)
    timesteps <- Reduce(function(x, y) c(x, y[-1]), timesteps, init=0)
  }}
Appendix C. Fitting deterministic time-course models to the Tum−CI MFL data

assaytimes, Ntimesteps+1)
timesteps <- Reduce(function(x,y) c(x,y[-1]), timesteps, init=0)
} else {
  Ntimesteps <- 5*Ntimesteps
timesteps <- seq(0,assaytimes,length.out=ceiling(assaytimes/ontime*Ntimesteps))
}

maxatol <- maxatol*1e-2
maxrtol <- maxrtol*1e-2
if (maxatol<1e-10 || maxrtol<1e-10){
  warning('NA values in simulation with params:
  
  # print(as.list(params))
  # Simulation failed, return zero instead of NA:
  sim <- matrix(0,nrow=1,ncol=4*N+1)
  break
}
rtol <- rep(c(rep(maxrtol,3), 1e-6), N)
atol <- rep(c(rep(maxatol,3), 1e-6), N)

if (length(assaytimes)>1){
  finaldata <- data.frame(Pc=PcFinal)
  # If any rows contain NA values, or the simulation was terminated early,
  # then simply report the last available non-NA value:
  firstNA <- match(TRUE, apply(sim, 1, function(x) any(is.na(x))), nomatch=nrow(sim)+1)
  assaytimeindex[assaytimeindex>=firstNA | assaytimeindex>nrow(sim)] <- firstNA-1
  for(i in 1:length(assaytimeindex)){
    imat <- matrix(sim[assaytimeindex[i],-1], nrow=4)
    idata <- data.frame(Cf=imat[1,], Tf=imat[2,], S=imat[3,], Z=imat[4,])
    colnames(idata) <- paste0(‘t ‘, colnames(idata))
    finaldata <- cbind(finaldata, idata)
  }
  return(finaldata)
} else {
  finalmat <- matrix(sim[nrow(sim),-1], nrow=4)
  return(data.frame(Pc=PcFinal, Cf=finalmat[1,], Tf=finalmat[2,],
                    S=finalmat[3,], Z=finalmat[4,]))
}
C.2 Fitting the model to the LacZ assays

The LacZ assay data required a number of steps including curation of the data set (Appendix C.2.1), setting up the model output (Appendix C.2.2), and defining the cost function for the optimisation routines (Appendix C.2.3).

C.2.1 Loading and curating the data set

The first step in fitting the LacZ assay data was to load and curate the data into a form that could be used with the FME package. The following code excerpt shows how this was done.

```r
Load and process the data sets for fitting
{ { {
load('~/Documents/Biochemistry/Assays/pZCMFL/DRassays/CombinedAnalysis/MFLdata.Rdata')

sum(is.na(MFLdata$values)) # 19 NA values
sum(na.omit(MFLdata$values+1)<0) # 23 negative values

AddValueMeans adds the respective means and SDs to the data array after transformation by the 'transform' function
AddValueMeans <- function(df, name='id', transform=identity, ...){
 valtransform <- transform(as.numeric(df$values), ...)
 means <- with(df, tapply(valtransform, equil.strain.assay.on.iptg, mean, na.rm=TRUE))
 sds <- with(df, tapply(valtransform, equil.strain.assay.on.iptg, sd, na.rm=TRUE))
 Ns <- with(df, tapply(valtransform, equil.strain.assay.on.iptg, function(x) sum(!is.na(x))))
 newcols <- paste0(name, c('.mean', '.sd', '.n', '.resid', '.scresid', '.sqscresid', '.seresid'))
 df[[newcols[1]]] <- as.numeric(df$values)
 df[[newcols[2]]] <- as.numeric(df$values)
 for(i in names(means))
 df[i==df$equil.strain.assay.on.iptg, newcols[1]] <- means[[i]]
 for(i in names(sds))
 df[i==df$equil.strain.assay.on.iptg, newcols[2]] <- sds[[i]]
 for(i in names(Ns))
 df[i==df$equil.strain.assay.on.iptg, newcols[3]] <- Ns[[i]]
 # transform.resid (residuals):
 df[,newcols[4]] <- valtransform - df[,newcols[1]]
 # transform.scresid (residuals divided by standard deviation):
 df[,newcols[5]] <- df[,newcols[4]]/df[,newcols[2]]
 # transform.sqscresid (residuals divided by sqrt of standard deviation):
 df[,newcols[6]] <- df[,newcols[4]]/sqrt(df[,newcols[2]])
```
# transform.seresid (residuals divided by standard error):

\[
dxdf[,newcols[7]] \leftarrow \sqrt{\frac{df[,newcols[4]]}{df[,newcols[2]]}}
\]

# Limit the analysis just to the ermc and wrmc strains

\[
MFLdata.mc \leftarrow \text{with}(MFLdata, MFLdata[strain%in%('ermc','wrmc')])
\]

# Reset the columns:

\[
MFLdata.mc \leftarrow MFLdata.mc[,c("values","assay","on","iptg","strain","day",
"assay.on.iptg.strain","equil","equil.strain.on",
"assay.on","strain.assay.on",
"equil.strain.assay.on.iptg","normiptg")]
\]

\[
default(MFLdata.mc$values) \leftarrow 'equil.strain.assay.on.iptg'
\]

# Split the data into assay type:

\[
MFLdata.summaries \leftarrow \text{split}(MFLdata.mc$values, \text{factor(getmask(MFLdata$values, '#assay+on'))})
\]

\[
MFLdata.summaries \leftarrow \text{lapply}(MFLdata.summaries, \text{summary})
\]

# There don't seem to be any particular trends with assay type:

\[
\text{matplot}(\log(\text{matrix}(c(TM.LO$mean,TM.HO$mean,TP.LO$mean,TP.HO$mean),ncol=4)),
\log(\text{matrix}(c(TM.LO$sd,TM.HO$sd,TP.LO$sd,TP.HO$sd),ncol=4)),
type='p',pch=19,cex=0.5,col=c('black','grey','blue','red'),
\text{xlab='Mean values', ylab='Standard deviation'})
\]

### Calculate data set statistics ###

\[
MFLdata.mc \leftarrow \text{AddValueMeans}(MFLdata.mc)
\]

\[
\text{MFLdata.mc} \leftarrow \text{within}(MFLdata.mc,\{\text{slope} \leftarrow \text{coef}(MFLdata.mc.sdfit)[[2]],\text{intercept} \leftarrow \text{coef}(MFLdata.mc.sdfit)[[1]],\text{sd.est} \leftarrow ((id.mean+1)^\text{slope})^\text{exp}(\text{intercept}),\text{sdtrend.sc} \leftarrow \text{id.resid}/\text{sd.est}\})
\]
C.2 Fitting the model to the LacZ assays

## Build the set of Pc values used in the experiments ##

# To use the same simulation data for assays from both equilibration times,
# a few classification aids need to be used. Firstly, since
# the normal and long equilibration time assays used slightly different sets
# of final IPTG concentrations, to avoid repeating the same simulations for
# the same IPTG concentrations, we identify Pc values by a unique ID

```r
Ival <- with(MFLdata, split(as.numeric(as.character(iptg)), equil))
Ival <- lapply(Ival, unique)
Ival <- lapply(Ival, function(x) x[order(x)])
with(Ival, intersect(normal, long)) # 0 20 40 80 120 300
with(Ival, setdiff(normal, long)) # 160 220
IvalSet <- with(Ival, union(normal, long))
IvalSet <- IvalSet[order(IvalSet)]
with(Ival, which(IvalSet %in% intersect(normal, long))) # 1 2 3 5 6 10
which(IvalSet %in% Ival$normal) # 1 2 3 4 5 6 8 10
which(IvalSet %in% Ival$long) # 1 2 3 4 5 6 8 10
```

# Use the following masks on ordered 'IvalSets' to index Pc values for
# normal or long equilibration experiments:

```r
normalPcMask <- c(1:3, 5:7, 9:10) # Copied from set analysis above
longPcMask <- c(1:6, 8, 10) # Copied from set analysis above
```

# Construct lists of all the different possible Pc values depending on
# strain (ermc, ...), assay (Tum+/−) and overnight (high/low):

```r
ExptPcValues <- with(MFLdata, split(normiptg, paste0(strain, assay, on)))
ExptPcValues <- lapply(ExptPcValues, unique)
ExptPcValues <- lapply(ExptPcValues, function(x) x[order(x)])
```

# Each item in ExptPcValues can be indexed by normal or long PcMask variants
# to obtain the values for either of those experiments.

```r
Obtain the initial conditions for each assay variant:
initPc <- with(MFLdata,
 list(Pc.WPL=min(normiptg[assay.on=='TP.LO' & strain=='wrmc'])),
Pc.WPH=max(normiptg[assay.on=='TP.HO' & strain=='wrmc'])),
Pc.WML=min(normiptg[assay.on=='TM.LO' & strain=='wrmc'])),
Pc.WMH=max(normiptg[assay.on=='TM.HO' & strain=='wrmc'])),
Pc.EPL=min(normiptg[assay.on=='TP.LO' & strain=='ermc'])),
Pc.EPH=max(normiptg[assay.on=='TP.HO' & strain=='ermc'])),
Pc.EML=min(normiptg[assay.on=='TM.LO' & strain=='ermc'])),
Pc.EMH=max(normiptg[assay.on=='TM.HO' & strain=='ermc'])))
```
# Create a summary data array for fitting

```r
MFLsummary <-
 with(within(MFLdata, {
 values <- as.numeric(values)
 iptg <- as.numeric(as.character(iptg))
 data.frame(name='name', # Temporary placeholder to be filled later
 PcID=1, # Temporary placeholder to be filled later
 Zmean=tapply(values, grouping, mean, na.rm=TRUE),
 Zsd=tapply(values, grouping, sd, na.rm=TRUE),
 iptg=tapply(iptg, grouping, head, n=1),
 Pc=tapply(normiptg, grouping, head, n=1),
 equi=tapply(as.character(equi), grouping, head, n=1),
 strain=tapply(as.character(strain), grouping, head, n=1),
 assay=tapply(as.character(assay), grouping, head, n=1),
 on=tapply(as.character(on), grouping, head, n=1)
 })
)

Replace sample SDs with fitted SDs:
MFLsummary$Zsd <-
 with(list(sd.slope=coef(MFLdata.mc.sdfit)[[2]],
 sd.intercept=coef(MFLdata.mc.sdfit)[[1]]),
 ((MFLsummary$Zmean+1)^sd.slope)*exp(sd.intercept))

Define a name identifier to be used when comparing with modelling output
MFLsummary <-
 within(MFLsummary, {
 name <- paste(strain, assay, on, sep='.', sep='.
 # Name as t1Z for normal or t2Z for long equilibration times. The
 # 'Z' selects that simulation variable in particular.
 name[equi=='normal'] <- paste0(name[equi=='normal'], '.t1Z')
 name[equi=='long'] <- paste0(name[equi=='long'], '.t2Z')
 })

Order elements first by group name, then by IPTG. This needs to be done
before allocating a PcID so that the ordering is correct.
MFLsummary <- MFLsummary[with(MFLsummary, order(as.character(name), iptg))]

Use PcIDs to identify each IPTG factor based on the Pc value set identity
allocated above:
MFLsummary <-
 within(MFLsummary, {
 PcID[equi=='normal'] <-
 rep(normalPcMask, length.out=length(PcID[equi=='normal']))
 PcID[equi=='long'] <-
 })
```

C.2 Fitting the model to the LacZ assays

C.2.2 Setting up the model output

Once the data was loaded, simulations of the deterministic model needed to be configured to output simulations only for the experimental induction levels. The output of these simulations also needed to be in a form that would be recognised by the FME package.

```r
Set up the modelling environment

Create a new parameter set for MFL fitting
Start with:
- rbsScale=1 (i.e., assuming correct experimental parameters)
- LOscale=HOscale=1 (assuming correct initial Pc values)
- Take all other required parameters from the experimentally derived set
assaytimes.expt <- c(5.9*60, 7.5*60) # not specified in paramsExpt
FitPars.init <- c(unlist(paramsExpt[c('Es', 'Hs', 'Pt', 'Dt', 'Ds', 'Dil', 'ksoff',
 'Er', 'Hr', 'Pz', 'Dz', 'Dc')]),
 rbsScale=1, LOscale=1, HOscale=1, toff=assaytimes.expt[[1]])

Define models as functions of Ct

Define initial and experimental Pc values as Ct values:
ExptCtValues.ermc <- lapply(ExptPcValues[grep('^ermc', names(ExptPcValues))],
 function(x) x/paramsExpt$Dc)
ExptCtValues.wrmc <- lapply(ExptPcValues[grep('^wrmc', names(ExptPcValues))],
 function(x) x/paramsExpt$Dc)
ExptCtInit.ermc <- lapply(initPc[grep('^Pc\..E', names(initPc))],
 function(x) x/paramsExpt$Dc)
ExptCtInit.wrmc <- lapply(initPc[grep('^Pc\..W', names(initPc))],
 function(x) x/paramsExpt$Dc)
LOermc.mask <- grepl('L$', names(ExptCtInit.ermc))
HOermc.mask <- grepl('H$', names(ExptCtInit.ermc))
LOWrmc.mask <- grepl('L$', names(ExptCtInit.wrmc))
HOWrmc.mask <- grepl('H$', names(ExptCtInit.wrmc))

Separate model functions
MFLmodel.Ct.wrmc <- function(params, assaytimes=c(5.9*60, 7.5*60)){
 initPc.wrmc <- with(as.list(params), unlist(ExptCtInit.wrmc)•Dc)
 initPc.wrmc[LOWrmc.mask] <- initPc.wrmc[LOWrmc.mask]•params[['LOscale']]
```
Appendix C. Fitting deterministic time-course models to the Tum−CI MFL data

initPc.wrmc[HOwrmc.mask] <- initPc.wrmc[HOwrmc.mask] + params[["HOscale"]]

PcValues.wrmc <-
  with(as.list(params), lapply(ExptCtValues.wrmc, function(x) x*Dc))
with(c(as.list(initPc.wrmc), PcValues.wrmc),
  data.frame(PcID=1:10,
    wrmc.TP.LO=detMFL(Pc.WPL,wrmcTPLO,params, assaytimes),
    wrmc.TP.HO=detMFL(Pc.WPH,wrmcTPHO,params, assaytimes),
    wrmc.TM.LO=detRepress(Pc.WML,wrmcTMLO,params, assaytimes),
    wrmc.TM.HO=detRepress(Pc.WMH,wrmcTMHO,params, assaytimes)))

MFLmodel.Ct.ermc <- function(params, assaytimes=c(5.9*60, 7.5*60)){
  initPc.ermc <- with(as.list(params), unlist(ExptCtInit.ermc)*rbsScale*Dc)
  initPc.ermc[LOermc.mask] <- initPc.ermc[LOermc.mask] + params[["LOscale"]]
  initPc.ermc[HOermc.mask] <- initPc.ermc[HOermc.mask] + params[["HOscale"]]
  PcValues.ermc <-
    with(as.list(params), lapply(ExptCtValues.ermc, function(x) x*rbsScale*Dc))
  with(c(as.list(initPc.ermc), PcValues.ermc),
    data.frame(PcID=1:10,
      ermc.TP.LO=detMFL(Pc.EPL,ermcTPLO,params, assaytimes),
      ermc.TP.HO=detMFL(Pc.EPH,ermcTPHO,params, assaytimes),
      ermc.TM.LO=detRepress(Pc.EML,ermcTMLO,params, assaytimes),
      ermc.TM.HO=detRepress(Pc.EMH,ermcTMHO,params, assaytimes)))
}

## Combined model function ##
MFLmodel.Ct <- function(params, assaytimes=c(5.9*60, 7.5*60)){
  initPc.wrmc <- with(as.list(params), unlist(ExptCtInit.wrmc)*Dc)
  initPc.wrmc[LOwrmc.mask] <- initPc.wrmc[LOwrmc.mask] + params[["LOscale"]]
  initPc.wrmc[HOwrmc.mask] <- initPc.wrmc[HOwrmc.mask] + params[["HOscale"]]
  PcValues.wrmc <-
    with(as.list(params), lapply(ExptCtValues.wrmc, function(x) x*Dc))
  with(c(as.list(initPc.wrmc), as.list(initPc.ermc), PcValues.wrmc, PcValues.ermc),
    data.frame(PcID=1:10,
      wrmc.TP.LO=detMFL(Pc.WPL,wrmcTPLO,params, assaytimes),
      wrmc.TP.HO=detMFL(Pc.WPH,wrmcTPHO,params, assaytimes),
      wrmc.TM.LO=detRepress(Pc.WML,wrmcTMLO,params, assaytimes),
      wrmc.TM.HO=detRepress(Pc.WMH,wrmcTMHO,params, assaytimes)))
C.2 Fitting the model to the LacZ assays

```
747 wrmc.TM.HO=detRepress(Pc.WMH,wrmcTMHO, params, assaytimes),
748 ermc.TP.LO=detMFL(Pc.EPL,ermcTPLO, params, assaytimes),
749 ermc.TP.HO=detMFL(Pc.EPH,ermcTPHO, params, assaytimes),
750 ermc.TM.LO=detRepress(Pc.EML,ermcTMLO, params, assaytimes),
751 ermc.TM.HO=detRepress(Pc.EMH,ermcTMHO, params, assaytimes)))
752 }
753
754 ## Test the new functions ##
755 MFLmodel.Ct(FitPars.init)
756 MFLmodel.Ct.wrmc(FitPars.init)
757 MFLmodel.Ct.ermc(FitPars.init)
758
759 ## Function for plotting curve details rather than just data points ##
760 MFLmodel.Ct.curves <- function(params, assaytime=7.5*60, n=200){
761 # Obtain the assay limits for determining curve points:
762 initPc.wrmc <- with(as.list(params), unlist(ExptCtInit.wrmc)*Dc)
763 initPc.ermc <- with(as.list(params), unlist(ExptCtInit.ermc)*rbsScale>Dc)
764
765 # Calculate the simulation Pc's:
766 simPc <- with(as.list(c(initPc.wrmc, initPc.ermc)),
767 list(ermcTP=seq(Pc.EPL,Pc.EPH, length.out=n),
768 ermcTM=seq(Pc.EML,Pc.EMH, length.out=n),
769 wrmcTP=seq(Pc.WPL,Pc.WPH, length.out=n),
770 wrmcTM=seq(Pc.WML,Pc.WMH, length.out=n)))
771
772 # Now scale the initial Pc states:
773 initPc.wrmc[LOwrmc.mask] <- initPc.wrmc[LOwrmc.mask]*params[['LOscale']]
774 initPc.wrmc[HOwrmc.mask] <- initPc.wrmc[HOwrmc.mask]*params[['HOscale']]
775 initPc.ermc[LOermc.mask] <- initPc.ermc[LOermc.mask]*params[['LOscale']]
776 initPc.ermc[HOermc.mask] <- initPc.ermc[HOermc.mask]*params[['HOscale']]
777
778 # Finally simulate:
779 with(c(as.list(initPc.wrmc), as.list(initPc.ermc), simPc),
780 data.frame(ermc.TP.LO=detMFL(Pc.EPL,ermcTP, params, assaytime),
781 ermc.TP.HO=detMFL(Pc.EPH,ermcTP, params, assaytime),
782 ermc.TM.LO=detRepress(Pc.EML,ermcTM, params, assaytime),
783 ermc.TM.HO=detRepress(Pc.EMH,ermcTM, params, assaytime),
784 wrmc.TP.LO=detMFL(Pc.WPL,wrmcTP, params, assaytime),
785 wrmc.TP.HO=detMFL(Pc.WPH,wrmcTP, params, assaytime),
786 wrmc.TM.LO=detRepress(Pc.WML,wrmcTM, params, assaytime),
787 wrmc.TM.HO=detRepress(Pc.WMH,wrmcTM, params, assaytime))
788 }
789 ###}
790```
Appendix C. Fitting deterministic time-course models to the Tum−CI MFL data

C.2.3 Defining the cost function and optimising parameters

Finally, a cost function is defined by making use of the modCost function of the FME package. A selection of parameters are chosen to be free to vary, whilst others are set fixed. The model can then be fit to the data using the ‘Pseudo’ algorithm of the modFit function.

Fit normal and long WR−MC and ER−MC data together, adjusting initial values

```r
### Fit normal and long WR-MC and ER-MC data together, adjusting initial values ###
# Vary all parameters including the rate of dilution 'Dil' (hence also 'Dc'
# and 'Dz') and the scaling on initial low & high O/N values, but excluding
# the time offset 'toff', 'ksoff', 'Ds', and 'rbsScale'. The pseudo-random
# optimisation is started from the best fit of the normal and long WR-MC
# data.
#
# Calculate initial parameters:
erwr.initpars <- wrmc.optpars
# Add in optimised 'rbsScale' value:
erwr.initpars[['rbsScale']] <- rbsScale.opt
erwr.vary <-
c('Er', 'Hr', 'Es', 'Hs', 'Mt', 'Mz', 'Dil', 'DtScale', 'LOscale', 'HOscale')
erwr.derived <- c('Dc', 'Pt', 'Dt', 'Pz', 'Dz')
erwr.fixed <-
  names(erwr.initpars)[!names(erwr.initpars)%in%c(erwr.vary, erwr.derived)]
erwr.varpars <- erwr.initpars[erwr.vary]
erwr.fixpars <- erwr.initpars[erwr.fixed]
erwr.lpars <- log(erwr.varpars)
erwr.costlog <- function(lparams){
  # Update the parameters
  params <- c(exp(lparams), erwr.fixpars)
  assaytimes <- params[['toff']] + c(0,96) # Fixed time interval
  params[c('Dc', 'Dz')] <- params[['Dil']]  
  params[['Dt']] <- with(as.list(params), Dil*DtScale)
  params[['Pt']] <- with(as.list(params), Mt*Dt)
  params[['Pz']] <- with(as.list(params), Mz*Dz)

  # Progress report:
  counter <- get('FitCounter', envir=.GlobalEnv)
  if(counter%%1000 == 0){
    cat('
'); print(params); cat('
') }
  assign('FitCounter', counter+1, envir=.GlobalEnv)
cat(paste0(counter+1,'/10000, '))
  modCost(model=MFLmodel.Ct(params, assaytimes=assaytimes),
```
C.3 Fitting the model to the flow cytometry assays

Fits of the flow cytometry data set were performed in a similar way to that described in the previous section for the LacZ assay data. However, the idiosyncrasies of the flow cytometry assays require some modifications. The model was fitted to the flow cytometry data using a Monte Carlo approach, with limits defined on the variable parameters. The parameter estimates were then evaluated using data frame objects, with errors calculated as described in the previous section.
cytometry data set necessitated a number of amendments. These included (1) choosing appropriate ‘deterministic’ data points, (2) setting fluorescence intensity scaling and offset factors, (3) introducing additional model parameters, and (4) using an alternative optimisation algorithm. These amendments will be explained in the coming paragraphs.

The idiosyncracies of this new data necessitated a few modifications to the protocol, which are described in detail in Appendix C.3, but summarised in the following three points. (1) Unlike the activities obtained by LacZ assay, the fluorescence intensities measured by flow cytometry were not calibrated to an absolute reference. To relate fluorescence intensity to reporter gene activity, fluorescence scaling and offset parameters were chosen for each assay using preliminary alignments of the model and data. These per-assay parameters allow for systematic day-to-day variation in fluorescence measurements, essentially acting to calibrate each assay to a nominal reference value for the M_Z parameter (here, standing for the fluorescence produced from an unrepessed pR promoter). (2) There was insufficient flexibility in the initial model to simultaneously match the data at all equilibration time points, so three new parameters were introduced. An ‘initial Tum scaling’ parameter complemented the low and high O/N scaling parameters by effectively dissociating initial CI and Tum concentrations. A pair of ‘time-offset’ parameters, one for the low cell count assays and one for the high cell count assays, were used to permit a lag time before cells start log phase growth. (3) The greater apparent correspondence between the initial model predictions and the deterministic projection of the flow cytometry data motivated a directed approach to fitting the data instead of the pseudo-random search used to fit the LacZ assay data. It was more informative and efficient to incrementally optimise parameters, fitting related parameters and data sets together (e.g., those pertaining to the Tum$^-$ control strains), whilst keeping other parameters constrained except for a final step of numerical optimisation with all parameters left unconstrained.

Without knowing a priori the likelihood of a sub-population belonging to the presumptive deterministic trajectory, it was assumed that the ‘stochastic’ sub-populations were those with intensities furthest from their initial states. This was a naive choice of ‘deterministic’ data, but stood as a basic first guess to determine preliminary parameters. Since the deterministic model predicts a single macroscopic state, only one sub-population of each sample can be attributed to the deterministic trajectory. The choice of data to include was based on a heuristic assessment of sub-populations consistent with a deterministic interpretation. The assumption was that any sub-population centred in the ‘alternative’ zone of fluorescence (i.e., with intensities furthest from the initial state) arose stochastically by, for example, some low probability stochastic switching event shifting the state of the circuit into the basin of attraction of the alternative stable state. That is, the data was filtered to exclude low fluorescence points in low O/N samples and to exclude high fluorescence points in high O/N samples. So for bimodal low or high O/N samples, the expected sub-populations (i.e., those populations with fluorescence intensity closest to their initial
states) were kept and the alternative populations excluded. Unimodal low O/N samples with low fluorescence were also excluded to avoid the potential inclusion of dominant ‘stochastic’ populations that might mask smaller ‘deterministic’ populations. Similarly, unimodal samples with high fluorescence were discarded for the high O/N samples. An additional three points in the high O/N samples were also excluded since they diverged significantly from expected behaviour: these were small sub-populations in the normal equilibration time and high cell count long equilibration time assays whose locations fell substantially below the control curves at low CI production rates. All data excluded from the fits is indicated by the open circles in Figure C.1.

Unlike the activities obtained by LacZ assay, the fluorescence intensities measured by flow cytometry were not calibrated to an absolute reference, so additional care needed to be taken when relating these intensities to reporter gene activity. Fluorescence intensities measured by flow cytometry are sensitive functions of many instrumental settings (e.g., the laser strength and pulse width, the photomultiplier tube voltage, and the sample flow rate); these can be set consistently, but some level of day-to-day variation in fluorescence intensity remains unavoidable. The result is that relative fluorescence intensities within an assay can be reliably compared, but comparisons between assays are less reliable. Since cellular autofluorescence produces a non-zero background fluorescence, both this offset and the scale of fluorescence may vary across assays. To allow for this variation in the model, per-assay fluorescence offset and scaling parameters were added that could be optimised for a given assay. The scaling parameter is essentially equivalent to the M_Z parameter used when fitting the LacZ assay data. M_Z represents the maximum steady-state level of reporter protein that would be produced from the unrepressed pR promoter. Here, M_Z becomes the steady-state level of fluorescent protein produced from pR (in arbitrary fluorescence units instead of LacZ units), but to facilitate inter-assay comparison, it was set fixed to 1000, leaving the fluorescence scaling parameter to convert relative fluorescence intensities to this nominal absolute reference activity.

It was found that leaving the fluorescence offset and scaling parameters to freely vary within the fitting algorithm provided too much flexibility in the model: the optimisation function would frequently get trapped in poorly-fitting local minima. Hence, methods were sought that might objectively fix the fluorescence offset and scale for each assay. Fluorescence offset parameters were simple to determine, since all of the assays contained a number of data points that could be presumed to have close to zero activity. These data points were picked to be the low activity high O/N unimodal points in both the tum^+ and tum^- strains (an approximate filter for ‘low pR activity’ was obtained by restricting to data points at CI production rates greater than half of the maximum CI production rate). To allow for slight trends in the data, model curves simulated from a crude MFL parameter set were scaled and offset using linear regression to match the model curves to these selected low-activity data points. The fitted offsets were then kept as the fixed
fluorescence offset parameters for each assay.

Ideally, the fluorescence scaling parameters would then be fixed using high pR activity reference data points that are known to be consistent between assays. Unfortunately, such data points are difficult to identify in the present assays, since the high pR activity data points show fairly large (absolute) variation with equilibration time, which is then further compounded by greater experimental variability at the same activities. Instead, fluorescence scale parameters were chosen by performing flexible fits of the data for each assay separately. In these preliminary fits of the data, loose bounds were placed on all other model parameters, so that any flexibility that might be captured by these other parameters would not bias scaling parameter determination. In so doing, data points whose values are largely determined by the maximum production rate from pR (such as the high fluorescence low O/N data) also have the largest influence in determining the scaling parameter. For all subsequent fits of the data, the fluorescence scale parameter for each assay was set fixed to this optimised value.

Parameterisation of the model was much the same as was previously specified for fitting of the LacZ assays. As before, the core optimisation parameters are the EC₅₀s and Hill coefficients of the CI−pR and Tum−CI equilibria (εR, H_R, εS and H_S), the maximal steady-state Tum concentration (M_T), and the rates of protein loss (γ and δ_T). The only core parameter missing from this list is the maximal steady-state reporter activity (M_Z), since, as previously mentioned, it is set fixed to 1000 in favour of per-assay fluorescence scaling parameters. Recall that the rates of loss of CI and the reporter were both set by the dilution rate (γ). Further, the Tum degradation rate was also parameterised as a multiplier of γ, so that with a lower bound of one, δ_T would never be smaller (slower) than γ. The production rates necessary for simulation (p_C, p_T and p_Z) are then determined by the maximal steady-state concentrations and these rates of loss.

Induction levels of the P_{lac} promoter are set for each sample in terms of the calibrated steady-state concentrations of total CI. When fitting the LacZ assay data, a RBS scaling factor was applied to reduce the steady-state CI concentrations measured for production from the eRBS to those measured for production from the wRBS (see Section 4.3.3). Since it was likely that the eRBS measurements were an overestimate, this same scaling was applied when modelling the flow cytometry data. To confirm its applicability to the flow cytometry data set, the CI RBS scaling factor was applied to the ER-MC curve shown in Figure 5.9 for comparison with the WR-MC curve in that figure. The overlap of the two assays was as good as that previously observed for the LacZ assays. The steady-state CI concentrations remained fixed at these scaled values for all fits; CI production rates are, however, still able to vary since the dilution rate is allowed to vary.

The core parameters are complemented by three parameters whose roles are essentially to enable additional flexibility in the initial conditions. The introduction of such parameters is justified by the need to compensate for the anticipated differences between cultures
in log phase versus those in stationary phase (i.e., the initial O/N cultures). For fitting of the LacZ assays, low and high O/N scaling factors were introduced that could independently adjust the effective level of induction of the O/N cultures. This addition allowed for asymmetries in conditions between the two alternative O/N cultures and meant that steady-state CI concentrations in the O/N cultures could be greater or lesser than might be expected in a growing log-phase culture. Both of these parameters were retained for fitting the flow cytometry data. The O/N scaling parameters implicitly affect the initial concentration of Tum, which adopts steady-state values according to the adjusted induction levels. When fitting the short equilibration time flow cytometry assays, however, it became necessary to dissociate the initial Tum and CI concentrations so that the apparently slow evolution of the high fluorescence sub-populations might be matched. For this reason an additional parameter was introduced (identical for both O/N conditions) that would adjust the initial steady-state concentration of Tum by scaling the maximum Tum production rate (p_T).

A final pair of parameters were introduced to account for timing differences between the assay sets. In order to keep consistency with LacZ assay protocols, cultures were assayed by flow cytometry only when they reached an OD$_{600}$ of 0.6. This meant that the actual time taken until cultures were assayed could vary between assays, even if the same equilibration protocol was followed. This is seen in Figure 5.11 when comparing the reported times to assay between the low and high cell count assay sets. The high cell count assays (lower panels) consistently take a shorter time to reach similar final OD$_{600}$s than the low cell count assays do, in spite of otherwise identical protocols. The time intervals between each equilibration method (i.e., about 1.4 hours between short and medium, and 1 hour between medium and long equilibration times) are, however, very similar between the sets. Thus the discrepancy appears to be differing lag times occurring early in the assay, perhaps pertaining to the time it takes to transition from stationary-phase to log-phase growth. The origin of these differences is unknown, but likely signifies some unaccounted systematic difference in the states of the O/N cultures. To account for this divergent lag time, two time offset parameters, one for each assay set, were introduced into the model. These time offset parameters reduce the effective times taken to reach the short equilibration time point, but do not change the relative times between equilibration assays within each set. The introduction of these parameters allowed for much better alignment of the model with the combined assay sets, particularly when modelling the Tum$^-$ control data. It also dissociated fitting of the dilution rate and Tum degradation rate parameters from the presumptive initial conditions.

Parameter optimisation was performed incrementally, fitting the model to the flow cytometry data set in stages. This is in contrast with the all-parameter pseudo-random search that was used to find parameters for the LacZ assay data set. For the flow cytometry data, the relationship between model and data was more apparent, so a directed approach to
fitting the data became more efficient and informative. Thus, instead of allowing all parameters to freely vary, protocols were implemented to hold certain parameters fixed in early optimisation iterations, but with progressively more parameters allowed to vary as the model better matched the data. Numerical optimisation of the unconstrained parameters in each iteration was made using a quasi-Newton method of the \texttt{R optim} function that performs a directed search of parameter space based on function values and gradients. In final optimisation iterations, all parameters in this numerical optimisation algorithm were left unconstrained.

After preliminary parameter optimisation for setting the per-assay fluorescence offset and scale parameters, all other model parameters were subsequently optimised to simultaneously fit all six assays. In keeping with the directed fitting approach, the data for the Tum\(^{-}\) control strains was fit first to establish tighter constraints on the subset of parameters pertaining to the control curves (i.e., \(\varepsilon_R\), \(H_R\), \(\gamma\), the low and high O/N scaling factors, and the two time offset parameters). These parameters were then constrained to their optimised values while the remaining model parameters were optimised to fit the Tum\(^{+}\) MFL data. In final fits, both Tum\(^{+}\) and Tum\(^{-}\) data were fitted and all parameters (including the control parameters) left unconstrained.

The final optimised parameters produced a good match to the data at almost all equilibration times as can be seen in Figure C.1. This came at the cost of permitting the the degradation rate of Tum to be slower than the dilution rate, as can be seen from the optimised parameters listed in the ‘Full fit’ column of Table C.1. Only by so doing could the deterministic model match the slow evolution of the high fluorescence sub-populations.

In this knowledge, an additional optimisation step was performed for just the long equilibration time data sets. This improved the discrepancy as can be seen from the ‘Long only’ column of Table C.1, but the change was still insufficient to allow the Tum half life to fall equal to or below the doubling time. As such, the ‘Simple fit’ strategy described in the main text (Section 6.3.1) was employed.
C.3 Fitting the model to the flow cytometry assays

Figure C.1: Deterministic fits of the ER-MCTum−CI MFL flow cytometry hysteresis assay. Continued on following page.
Figure C.1 (Continued): Two sets of short, normal and long equilibration time hysteresis assays of the ER-MC strain were measured by flow cytometry: the first set (upper panels) were measured for lower cell counts (10,000–35,000), and the second set (lower panels) were measured for higher cell counts (78,000–92,000). The fluorescence distributions were curated as described in Figure 5.9 and the sub-populations are also plotted as described in that figure. Indicated in italic text for each assay is the equilibration type (short, normal or long) and the recorded number of hours of equilibration time. A deterministic model was fitted to the long equilibration time data as described in the text, but is shown overlaid in all panels for reference. Data points that were included in the parameter optimisation protocols are shown as filled circles, whilst those that were excluded are shown as open circles. As in previous figures, colour is used to distinguish history (low/high overnight (O/N)) and presence or absence of Tum (Tum\(^+\)/Tum\(^-\)). Since the scale of CI production was allowed to vary when fitting the model to the data, the units of the CI production rate are displayed as a percentage of the maximum CI production rate (i.e., the production rate of the high O/N Tum\(^+\)/Tum\(^-\) samples induced to 300 µM IPTG).
Table C.1: A comparison of the deterministic parameters fitted to various subsets of the time-course flow cytometry data measured for the ER-MCTum−CI MFL. The upper block contains the core MFL parameters; the middle block contains the initial condition scaling parameters; the lower block contains the timing parameters. Unless otherwise indicated, limits specify 95% confidence intervals.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Full fit</th>
<th>Long only**</th>
<th>Simple fit†</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε<sub>R</sub> (CI dimers/cell)</td>
<td>9.39 × 10²</td>
<td>9.45 × 10²</td>
<td>9.74 × 10²</td>
</tr>
<tr>
<td>H<sub>R</sub></td>
<td>3.05</td>
<td>3.07</td>
<td>3.01</td>
</tr>
<tr>
<td>ε<sub>S</sub> (Tum monomers/cell)</td>
<td>7.98 × 10³</td>
<td>3.00 × 10³</td>
<td>2.67 × 10³</td>
</tr>
<tr>
<td>H<sub>S</sub></td>
<td>1.19</td>
<td>1.01</td>
<td>1.04</td>
</tr>
<tr>
<td>M<sub>T</sub> (Tum monomers/cell)</td>
<td>3.19 × 10⁴</td>
<td>3.19 × 10⁴</td>
<td>3.18 × 10⁴</td>
</tr>
<tr>
<td>Doubling time (min.)</td>
<td>27.1</td>
<td>27.0</td>
<td>32.4</td>
</tr>
<tr>
<td>Tum half life (min.)</td>
<td>153.5</td>
<td>51.5</td>
<td>32.4</td>
</tr>
<tr>
<td>Low O/N scaling</td>
<td>4.49</td>
<td>4.81</td>
<td>–</td>
</tr>
<tr>
<td>High O/N scaling</td>
<td>1.67</td>
<td>1.48</td>
<td>–</td>
</tr>
<tr>
<td>Initial Tum scaling</td>
<td>7.86</td>
<td>7.81</td>
<td>–</td>
</tr>
<tr>
<td>Assay time (hours)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC, short equil.</td>
<td>2.4</td>
<td>2.4</td>
<td>–</td>
</tr>
<tr>
<td>LCC, normal equil.</td>
<td>3.7</td>
<td>3.7</td>
<td>–</td>
</tr>
<tr>
<td>LCC, long equil.</td>
<td>4.7</td>
<td>4.7</td>
<td>–</td>
</tr>
<tr>
<td>HCC, short equil.</td>
<td>3.0</td>
<td>2.8</td>
<td>–</td>
</tr>
<tr>
<td>HCC, normal equil.</td>
<td>4.5</td>
<td>4.3</td>
<td>–</td>
</tr>
<tr>
<td>HCC, long equil.</td>
<td>5.6</td>
<td>5.3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

* Parameters determined experimentally in this thesis or derived from the literature.
** Parameters from the model shown in Figure 5.11 fitting all available parameters to match the time course data.
† Parameters from the model shown in Figure 6.3 fitted to match a single long equilibration time assay with a simplified parameter scheme.
‡ The period of log phase growth attributed to each of the Low Cell Count (LCC) and High Cell Count (HCC) short, normal and long equilibration time (equil.) assays.
The hybrid stochastic/deterministic model of the Tum−CI MFL

Networks of stochastic reactions can be modelled as Markov processes with a probability density function that evolves according to a CME that defines the network [Gillespie, 1992; Kepler and Elston, 2001; Paulsson, 2005; Qian and Bishop, 2010]. In theory, the full stochastic behaviour of a gene network is completely specified by solutions to its CME, but deriving such solutions, whether analytically or numerically, is impractical for any but the simplest networks. Solutions must instead be characterised either via simulated trajectories consistent with the CME [Rao et al., 2002] or by making suitable approximations to the full CME [Thattai and van Oudenaarden, 2001; Elf and Ehrenberg, 2003].

In this thesis, stochastic modelling of the Tum−CI MFL is performed by running Monte-Carlo simulations of the network. Specifically, a hybrid stochastic/deterministic simulator [Kiehl et al., 2004] based on the Next-Reaction variant [Gibson and Bruck, 2000] of the standard Gillespie algorithm [Gillespie, 1977] is implemented. The basic theory and a summary of the modelled reactions has already been presented in Chapter 6. In this appendix, additional technical details and samples of the simulation code are included to explain how the simulator has been implemented.

The hybrid simulator extends the standard Gillespie algorithm by allowing for continuous changes to the state. To accommodate this in an otherwise discrete simulation method, the hazards (reaction propensities) dependent on any continuous processes need to be integrated over time to determine if changes in the deterministic variables affect the probability of getting the next reaction. Here, an Euler integration method is employed, which simplifies the implementation at the cost of reduced accuracy. However, by ensuring a small enough step size (set here to be at most 1 minute), the reduction in accuracy is inconsequential.

The core functionality of the stochastic model has been implemented in C++ and makes use of classes and inheritance to promote flexibility and reusability of the code. As such, the model has been split into various interchangeable units that are combined together to constitute the specific model. The most fundamental unit is the model state, which needs to synchronise between discrete and continuous representations of the system. A
state class was designed to handle these tasks in a transparent way and its code is listed in Appendix D.1.

The model itself is built from a ‘state’ class, a ‘parameters’ class, an ‘equilibrator’ class and a ‘simulator’ class. The syntax of these classes is specified in Appendix D.2 as a collection of interfaces. The ‘simulator’ class specifies the generic simulation method and comes in two forms: a basic form that takes equal time-steps and is suited to deterministic simulation, and a stochastic form that accepts a list of stochastic events that it can track and integrate the hazards of. The latter simulator is of most interest here, since it defines the hybrid simulation algorithm. The code implementing the Euler integration step of the hazards and coordinating event firing can be found at the end of the listing in Appendix D.2.

MFL-specific code can be found in Appendix D.3. This includes:
1. the definition of a class to store model parameters,
2. expanding the ‘state’ class to additionally track CI and/or Tum levels,
3. definitions of the stochastic events in the Tum—CI MFL, including cell division,
4. a highly optimised ‘equilibrator’ that solves the Tum—CI constraint equation (Equation (6.5)) and is called to determine the free species concentrations, and
5. declarations of the models (the deterministic tum control and MFL models, and the stochastic tum control and MFL models).

The code listings in Appendix D.4 exemplify how simulation is applied in practice. The example presented can be used to perform time-course simulations using the listed models and is part of an R library that allows the C++ library to be called from R.

The final section in this appendix (Appendix D.5) displays and explains the R code that was used to add experimental noise onto the raw stochastic simulation data. Mixture models of this generated data were fit using the constrained skew-t method described in Appendix B.

D.1 Tracking simulator state

As specified by Kiehl et al. [2004], it is important to ensure that discrete and continuous representations of the hybrid stochastic/deterministic model are kept well-synchronised. Here, the state of the system is defined to be completely characterised by the current volume \(V \) and three continuous state variables for the total concentrations of Tum, CI and GFP. The number of each protein is then determined by the product of that protein’s concentration with the current volume, and discrete values are obtained by rounding down.

In the stateinterfaces.h header file, the ‘Variable’ class is defined to automatically detect whether a continuous or discrete representation is required based on the context. Operator overloading means that the ‘Variable’ class acts like a standard C++ variable.
The 'Variable' class depends on the 'Volume' class to convert between concentrations and counts, and changes in 'Volume' trigger all 'Variable' instances to update their recorded concentrations. The time, 'Volume' and 'Variable' instances are collected together in a 'state' structure to be passed between the various calculators of the simulator.

```cpp
#include <cmath>
#include <cstdlib>
#include <vector>

typedef unsigned int uint;

class Volume;
class Variable;

// The relationship between discrete and continuous representations is dependent on cell volume. The Volume class keeps a list of registered simulation variables that should be notified when the volume is changed.

class Volume {
public:
    Volume(double vol=1.0) : vol(vol) { }

    // Variable registration and notification
    void registerVariable(Variable&);
    void volumeChanged();

    // Type conversion to double simply accesses the volume
    operator double() const { return vol; }

    // Streamline definition of (compound) assignment operators using a macro:
    #define VOLUME_ASSIGNMENT(Op) \
        Volume& operator Op (const Volume& rhs) { \
            vol Op rhs.vol; volumeChanged(); return *this; \
        } \
        Volume& operator Op (const double rhs) { \
            vol Op rhs; volumeChanged(); return *this; \
        } /* END VOLUME_ASSIGNMENT */
```
// Define the (compound) assignment operators
VOLUME_ASSIGNMENT(=)
VOLUME_ASSIGNMENT(+=)
VOLUME_ASSIGNMENT(-=)
VOLUME_ASSIGNMENT(*=)
VOLUME_ASSIGNMENT(/=)

// Streamline definition of arithmetic operators using a macro:
#define VOLUME_ARITHMETIC(Op, RetType) |
 const RetType operator Op (const Volume& rarg) const { \
 return vol Op rarg.vol; \
 } \
 friend const RetType operator Op (const Volume& larg, const Volume& rarg) { \
 return larg.vol Op rarg.vol; \
 } \
 const RetType operator Op (const double rarg) const { \
 return vol Op rarg; \
 } \
 friend const RetType operator Op (const double larg, const Volume& rarg) { \
 return larg Op rarg.vol; \
 } /* END VOLUME_ARITHMETIC */

// Define the arithmetic operators
VOLUME_ARITHMETIC(+, double)
VOLUME_ARITHMETIC(-, double)
VOLUME_ARITHMETIC(*, double)
VOLUME_ARITHMETIC(/, double)

// Define the relational operators
VOLUME_ARITHMETIC(<, bool)
VOLUME_ARITHMETIC(>, bool)
VOLUME_ARITHMETIC(<=, bool)
VOLUME_ARITHMETIC(>=, bool)
VOLUME_ARITHMETIC(==, bool)
VOLUME_ARITHMETIC(!=, bool)

// Printing
friend std::ostream& operator << (std::ostream& o, Volume& v) { o<<v.vol; return o; }

private:
 double vol;
 std::vector<Variable*> vars;
 typedef std::vector<Variable*>::const_iterator varIt;
D.1 Tracking simulator state

// Simulation variables that may be treated simultaneously in discrete and
// continuous spaces should be defined using the 'Variable' class. This class
// automates conversion between numbers of molecules and concentration. When
// operating using the 'double' type, the class works in concentrations; when
// operating using the 'unsigned int' type, the class works in molecule
// counts.

class Variable {
 public:
 // Initialise with a concentration:
 Variable(double init, Volume& vol) : conc(init), vol(vol) {
 fracCount = conc * vol;
 // NB: casting from floating-point type to integer type is performed as
 // truncation:
 count = static_cast<uint>(std::abs(fracCount));
 // Register to receive updates to the Volume:
 vol.registerVariable(*this);
 }

 // Initialise with a count:
 Variable(uint init, Volume& vol) : count(init), vol(vol) {
 fracCount = static_cast<double>(count);
 conc = fracCount / vol;
 vol.registerVariable(*this);
 }

 // Initialise with an integer:
 Variable(int init, Volume& vol) : vol(vol) {
 fracCount = static_cast<double>(init);
 count = static_cast<uint>(std::abs(init));
 conc = fracCount / vol;
 vol.registerVariable(*this);
 }

 // Dual type conversions
 operator uint() const { return count; }
 operator int() const { return static_cast<int>(count); }
 operator double() const { return conc; }

 // Assignment
 Variable& operator = (const Variable &rhs) {
 count = rhs.count; fracCount = rhs.fracCount;
 conc = rhs.conc; vol = rhs.vol; return *this;
 }
 }
};
```cpp
Variable& operator = (const double rhs) {
    conc = rhs; fracCount = rhs * vol;
    count = static_cast<ui>(std::abs(fracCount));
    return *this;
}

Variable& operator = (const uint rhs) {
    count = rhs; fracCount = static_cast<double>(rhs);
    conc = fracCount / vol; return *this;
}

Variable& operator = (const int rhs) {
    fracCount = static_cast<double>(rhs);
    count = static_cast<ui>(std::abs(rhs));
    conc = fracCount / vol; return *this;
}

// Streamline definition of compound assignment operators using a macro:
#define VARIABLE_ASSIGNMENT(Op) \
    Variable& operator Op (const Variable &rhs) { \
    /* Operate on fracCounts, but derive other values using this */ \
    /* instance's volume: */ \
    fracCount Op rhs.fracCount ; \
    count = static_cast<ui>(std::abs(fracCount));\/
    conc = fracCount / vol; return *this; \
} \

Variable& operator Op (const double rhs) { \
    conc Op rhs; fracCount = conc * vol; \
    count = static_cast<ui>(std::abs(fracCount));\/
    return *this; \
}

Variable& operator Op (const uint rhs) { \
    count Op rhs; fracCount Op static_cast<double>(rhs);\/
    conc = fracCount / vol; return *this; \
} // END VARIABLE_ASSIGNMENT */

// Define compound assignment operators
VARIABLE_ASSIGNMENT(+=)
VARIABLE_ASSIGNMENT(−=)
VARIABLE_ASSIGNMENT(*=)
VARIABLE_ASSIGNMENT(/=)

// Streamline definition of arithmetic operators using a macro:
#define VARIABLE_ARITHMETIC(Op, RetTypeConc , RetTypeCount ) \
    const RetTypeConc operator Op (const double rhs) const { return conc Op rhs; } \
    friend const RetTypeConc operator Op (const double lhs , const Variable& rhs) { \
```
D.1 Tracking simulator state

```cpp
return lhs Op rhs.conc;
}
const RetTypeCount operator Op (const uint rhs) const {
  return count Op rhs;
}
friend const RetTypeCount operator Op (const uint lhs, const Variable& rhs) {
  return lhs Op rhs.count;
} // END VARIABLE_ARITHMETIC */

// Define arithmetic operators
VARIABLE_ARITHMETIC(+, double, uint)
VARIABLE_ARITHMETIC(-, double, uint)
VARIABLE_ARITHMETIC(*, double, uint)
VARIABLE_ARITHMETIC(/, double, uint)

// Define relational operators
VARIABLE_ARITHMETIC(>, bool, bool)
VARIABLE_ARITHMETIC(<, bool, bool)
VARIABLE_ARITHMETIC(>=, bool, bool)
VARIABLE_ARITHMETIC(<=, bool, bool)
VARIABLE_ARITHMETIC(==, bool, bool)
VARIABLE_ARITHMETIC(!=, bool, bool)

// Printing
friend std::ostream& operator << (std::ostream& o, Variable& v) { o<<v.conc; return o; }

// This function gets called whenever the volume is updated:
void volumeChanged() {
  // Only the concentration changes with volume changes:
  conc = fracCount / vol;
}

private:
  uint count;
  double conc, fracCount;
  Volume& vol;
};

// Given the definition of a Variable, now define Variable registration and
// event notification in the Volume class. Note that the Volume class is
// filled using references instantiated elsewhere, so is not responsible for
// creation or deletion of the registered Variables.
inline void Volume::registerVariable(Variable& var) {
  vars.push_back(&var);
}
inline void Volume::volumeChanged() {
```

Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

// Notify all registered variables that Volume has changed
for (var ITER var = vars.begin(); var != vars.end(); ++var)
 (*var)->volumeChanged();
}

// Simulation state is stored in the 'state' struct. Note that this struct can
// be copied and assigned to so that an initial state can be saved and then the
// main state later reset.
struct state {
 explicit state() : t(0.0), vol(1.0), Report(0u, vol) { }
 double t;
 Volume vol;
 Variable Report;
 virtual double call_event(class stochEvent* event);
};

#endif /* STATEINTERFACES_H */

D.2 The generic simulation framework

// modelinterfaces.h:
// Define interfaces for accessing modelling simulators (stochastic or
deterministic). Inherit from these interfaces to create modelling protocols
// with defined operation.

#define MODELINTERFACES_H

#include <gsl/gsl_rng.h>
#include <vector>
#include "stateinterfaces.h"

// To avoid divisions by zero and numerical errors we need to set volatile
// concentrations close to zero to some absolute zero reference.
const double zeroconc = 1e-3;

// Use a different threshold for zero for hazards
const double zeroHazard = 1e-9;

// Parameter lists should be noncopyable to avoid duplicate parameter sets
// diverging inappropriately during initialisation
struct parameters {
 protected:
 parameters() {}
};
D.2 The generic simulation framework

```cpp
~parameters() {} 
private:
  parameters(const parameters &);
  parameters & operator = (const parameters &);
};

// The equilibrator class needs an equilibrate and steadystate function
// and typically should need no more than a pointer to some state and a
// pointer to some parameter set from which to make calculations
class equilibrator {
  public:
    virtual void equilibrate() = 0;
    virtual void steadystate() = 0;
  
  protected:
    // Interface definition, so keep the constructor protected
    explicit equilibrator(state* s, parameters* p) : s(s), p(p) { } 
    // We do not want to allow polymorphic deletion
    virtual ~equilibrator() { }

  private:
    // noncopyable
    equilibrator(const equilibrator &);
    equilibrator & operator = (const equilibrator &);
    
    // Keep these private so that derived classes can alternatively work with
    // children of 'state' or 'parameters' classes
    state* s;
    parameters* p;
};
```

```cpp
// The base simulation class from which new simulation classes should be
// derived. You can either request single steps to be taken, or specify a time
// to simulate to (the class then works out how many steps it needs to take).

class simulator {
  public:
    // Simulation
    virtual void initialise() { } // Optional initialisation function
    virtual void step(double ts) { s->t += ts; eq->equilibrate(); }
```
virtual void simulate(double simtime) {
 // NB: we want to simulate an ADDITIONAL simtime minutes
 simtime += s->t;

 // Step the default time step size unless it would take us past simtime:
 while((simtime - s->t) > ts_default) step(ts_default);

 // Finish by stepping exactly to the desired step time. This is in a
 // while loop since the timestep supplied to step() is preferred but
 // not guaranteed:
 while(s->t < simtime) step(simtime - s->t);
}

// We do not want to allow polymorphic deletion but to avoid warnings make
// destructor virtual and public...
virtual ~simulator() { }

protected:

// Interface definition, so keep the constructor protected
simulator(state* s, parameters* p, equilibrator* eq, const double ts) :
 ts_default(ts), s(s), p(p), eq(eq) { }

// The default time step size:
const double ts_default;

private:

// noncopyable
simulator(const simulator&);
simulator& operator=(const simulator&);

// Keep these private so that derived classes can alternatively work with
// children of 'state', 'parameters' or 'equilibrator' classes
state* s;
parameters* p;
equilibrator* eq;
};

// 'model' class
// **************
// This base class specifies how all the components should be collected
// together for a complete modelling package. This is the interface that users
// will access. A model should be constructed with a private collection of the
// unique instances of 'state', 'parameters', 'equilibrator' and 'simulator'
D.2 The generic simulation framework

113 // classes

114 class model {
115 public:

116 // 'initialise' member functions should do something equivalent to the
117 // following but may need updating depending on the state struct:
118 virtual void initialise() {
119 s->t = 0.0; s->Report = 0.0; // Set all state variables
120 eq->steadystate(); // Relax initial values to steadystate
121 sim->initialise(); // Run any simulator initialisation
122 }

123 // Accessors & mutators
124 virtual double time() { return s->t; }
125 virtual void time(double t) { s->t = t; }
126 virtual double activity() { return s->Report; }

127 // Equilibration
128 virtual void equilibrate() { eq->equilibrate(); }
129 virtual void steadystate() { eq->steadystate(); }

130 // Simulation
131 virtual void step(double ts) { sim->step(ts); }
132 virtual void simulate(double time) { sim->simulate(time); }

133 // We do not want to allow polymorphic deletion but to avoid warnings make
134 // destructor virtual and public...
135 virtual ~model() { }

136 protected:

137 // Protect the constructor so that only children can initialise a model
138 explicit model(state* s, parameters* p, equilibrator* eq, simulator* sim)
139 : s(s), p(p), eq(eq), sim(sim) { }

140 private:

141 // noncopyable
142 model(const model &);
143 model & operator = (const model &);

144 // Keep these private so that derived classes can alternatively work with
145 // children of 'state', 'parameters', 'equilibrator' or 'simulator'
146 // classes
147 state* s;
148 parameters* p;
 Appendix D. The hybrid stochastic/deterministic model of the Tum—CI MFL

157 equilibrator* eq;
158 simulator* sim;
159 }
160 // ///
161 // 'stochEvent' class
162 // ****************
163 // Inherit from this class to build new stochastic events. An event needs the
164 // following members:
165 // – a function that samples this event's probability distribution
166 // – a comparison operator so that we can choose the next event
167 // – a function to update the state
168 // – a pointer to a RNG
169 // – Note that step() should NOT update the state time
170
class stochEvent {
171 friend bool compare(stochEvent*, stochEvent*);
172
173 public:
174 //////////////// Event-specific behaviour – children must define these functions //////////
175 // Override these to return the instantaneous hazard for this event
176 virtual double hazard(state* init) {
177 throw "Error: base stochEvent::hazard(state*) method called."
178 }
179
180 virtual double hazard(struct repress* init) {
181 // Delegate to children by upcasting
182 return this->hazard((state*)init);
183 // throw "Error: base stochEvent::hazard(repress*) method called."; */
184 }
185
186 virtual double hazard(struct mfl* init) {
187 // Delegate to children by upcasting
188 return this->hazard((repress*)init);
189 // throw "Error: base stochEvent::hazard(mfl*) method called."; */
190 }
191
192 // Fire the event, updating the global state
193 virtual void fire() = 0;
194
195 ////////////// Standard stochastic event behaviour //////////
196 // Event behaviour is assumed Poissonian, so sample a random number from
197 // Exp(1) and reset the cumulative hazard
D.2 The generic simulation framework

```cpp
virtual void sample() {
    rexp = -log(gsl_rng_uniform_pos(r));
    h_cumulative = 0;
}

// Peek ahead to see if this event will fire within the supplied time step
virtual bool will_fire(double ts) {
    if(h_cumulative + ts * hazard(s) > rexp)
        return true;
    else
        return false;
}

// Return the time to the next event assuming an Euler timestep
virtual double time_to_event() {
    double h = hazard(s);
    // If hazard is too close to zero (or negative), set it to a very small
    // (nonzero) value to guarantee the event will be outside the current time
    // step:
    if(h < zerohazard) h = zerohazard;
    /* std::cout<<"Event: "<<this->name()<<"; hazard: "<<h; */
    /* std::cout<<"; cumulative hazard: "<<h_cumulative; */
    /* std::cout<<"; random draw: "<<rexp<<std::endl; */
    return (rexp - h_cumulative)/h;
}

// Step the cumulative hazard forward in time
virtual void step(double ts, state* init) {
    // Update the cumulative hazard:
    h_cumulative += ts * hazard(init);
}

virtual const char* name() { return "unspecified"; }

// We do want to allow polymorphic deletion so we need a virtual
// destructor to ensure that deletion is defined
virtual ~stochEvent() { }

protected:
// Interface definition, so keep the constructor protected
explicit stochEvent(state* s, parameters* p, gsl_rng* r)
    : rexp(0.0), h_cumulative(0.0), r(r), s(s), p(p) {}

double rexp; // Random draw from Exp(1) distribution
```
double h_cumulative; // Cumulative hazard
gsl_rng* r;

private:
// noncopyable
stochEvent(const stochEvent &);
stochEvent & operator = (const stochEvent &);

// Keep these private so that derived classes can alternatively work with
// children of 'state' or 'parameters' classes
state* s;
parameters* p;
};

// Define a compare function of pointers to 'stochEvent' objects since we will
// want to find the next event according to its 't_event' from a vector of
// pointers to stochEvent objects
inline bool compare(stochEvent* a, stochEvent* b)
{
 return a->time_to_event() < b->time_to_event(); }

// Allow double dispatch between events and states:
inline double state::call_event(stochEvent* event) { return event->hazard(this); }

// 'stochSimulator' base class
// *********************************
// Stochastic simulators should inherit from this class by allocating a set of
// possible stochastic events to the events vector.

template<class StateType>
class stochSimulator : public simulator {
public:
 virtual void initialise();
 virtual inline void step(double);
 // Add in an optional deterministic step
 virtual inline void step_detrm(double ts) { }

protected:
 // Interface definition, so keep the constructor and destructor protected
 explicit stochSimulator(StateType* s, parameters* p,
 equilibrator* eq, gsl_rng* r, double ts=1.0)
 : simulator(s,p,eq,ts), r(r), s(s), eq(eq) { }
 ~stochSimulator() {
 // Ensure that allocated events are destroyed:
 if (!events.empty())
 events.
 // Ensure that allocated events are destroyed:
 if (!events.empty())
 events.

 // Ensure that allocated events are destroyed:
 if (!events.empty())
 events.
```
for(eventIterator iter = events.begin(); iter != events.end(); ++iter)
    delete (*iter);

for(auto it = events.begin(); it != events.end(); ++it)
    delete (*it);

gsl_rng * r;
std::vector<stochEvent*> events; // Vector of possible stochastic events
typedef std::vector<stochEvent*>::const_iterator eventIterator;

private:
    // noncopyable by inheritance
    StateType* s;
equilibrator* eq;
};

template<class StateType>
inline void stochSimulator<StateType>::initialise() {
    // Make sure we don't initialise (or start) simulation if our simulator has
    // no events (otherwise we will get segmentation faults...)
    if(events.empty())
        throw "Error in stochastic simulator: events stack is empty!";

    // Draw random times from each of the distributions
    std::for_each(events.begin(), events.end(), std::mem_fun(&stochEvent::sample));
}

template<class StateType>
inline void stochSimulator<StateType>::step(double ts){
    // This step is essentially an ODE integration step
    // For the moment, Euler integration steps are taken to keep the algorithm
    // simple (later it might be good to perform Runge-Kutta integration).
    // The simulator needs to update the deterministic reactions, but also
    // needs to integrate over any time-varying stochastic hazards.

    // We need to save the initial state so that it can be re-used to update
    // both the deterministic reactions and evolution of the hazards:
    StateType init(*s);

    // First check if any events are due for firing:
    eventIterator will_fire;
    for(will_fire = events.begin(); will_fire != events.end(); ++will_fire)
        if((*will_fire)->will_fire(ts)) break;
    if(will_fire != events.end()){
```
Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

// An event will fire this step, so estimate event firing times and pick
// the minimum:
eventIterator nextEvent = std::min_element(events.begin(), events.end(), &compare);
double ts_event = (*nextEvent)->time_to_event();

// First step the deterministic reactions forwards to the event:
step_detrm(ts_event);

// Then step each stochastic hazard forwards to the event:
for(eventIterator iter = events.begin(); iter != events.end(); ++iter)
 (*iter)->step(ts_event, &init);

// Update the state time:
s->t += ts_event;

// Finally, take the stochastic jump:
(*nextEvent)->fire();
// And sample a new random number:
(*nextEvent)->sample();
} else {
 // First step the deterministic reactions forwards:
 step_detrm(ts);

 // Then step each stochastic hazard forwards:
 for(eventIterator iter = events.begin(); iter != events.end(); ++iter)
 (*iter)->step(ts, &init);

 // Update the state time
 s->t += ts;
}

// Once the ODE integration step has completed, finish by equilibrating
// any fast reactions:
eq->equilibrate();
}
#endif /* MODELINTERFACES_H */

D.3 Classes for simulation of the MFL

D.3.1 mflLibrary.h

The first part of mflLibrary.h defines C++ structures that contain parameters used when modelling the Tum−CI MFL. A number of different parameter sets were used, but the first exemplifies the general syntax of these structures. The other parameter sets are omitted
D.3 Classes for simulation of the MFL

for brevity.

```cpp
#include <cmath>
#include <vector>
#include "modelinterfaces.h"
#include <gsl/gsl_rng.h>

// MFLlibrary.h:
// Define the procedures for modelling MFL-like genetic networks.

#ifndef MFLLIBRARY_H
#define MFLLIBRARY_H

#include "modelinterfaces.h"
#include <cmath>
#include <gsl/gsl_rng.h>
#include <vector>

// 'MFLparams’ structure
// *********************
// A structure for holding all the constants necessary for making calculations
// from a given state.

struct MFLparams : public parameters {
    // Copy numbers
    double genome, PtCopy, pRcopy, cSites, nM_per_atom, ConcCIsites;
    // Parameters used for modelling cell volume:
    double Tdbl, Vinit, Vrate, PartProb, Vscale, VrateDt, PartProbDt;
    // Production and degradation
    double PcBasal, PcMax, Pt, Pz, Dc, Dt, Dz, Mz, units_per_conc;
    // Parameters used when fitting the model to data:
    double PtInitScale, DtScale, LOscale, HOscale;
    // Stochastic parameters
    double PcMaxBurstRate, PtMaxBurstRate, PzMaxBurstRate;
    double PcBurstSize, PtBurstSize, PzBurstSize;
    double DegEvents;
    // Equilibria Parameters
    double Hr, Er, Hs, Es;
    // NB: the following parameters are not currently used.
    double Ds, kson, ksoff;

    void print(std::ostream& out = std::cout) const {
        out << "**** Copy Numbers ****" << std::endl;
        out << "Genome: " << genome << " ; PtCopy : " << PtCopy << " ; pRcopy : " << pRcopy;
        out << " ; cSites : " << cSites << " ; ConcCIsites : " << ConcCIsites << std::endl;
        out << "**** Modelling cell volume ****" << std::endl;
        out << "Doubling time : " << Tdbl << " ; Vinit : " << Vinit << " ; Vscale : " << Vscale;
```
Appendix D. The hybrid stochastic/deterministic model of the Tum-Ct MFL

```cpp
out"; Vrate: "<<Vrate<<"; VrateDt: "<<VrateDt<<std::endl;
out"; PartProb: "<<PartProb<<"; PartProbDt: "<<PartProbDt<<std::endl;
out"; Production (nM/min) ****"<<std::endl;
out"; PcBasal: "<<PcBasal<<"; PcMax: "<<PcMax<<"; Pt: "<<Pt<<std::endl;
out"; LacZ Production (Units/min) ****"<<std::endl;
out"; units_per_conc: "<<units_per_conc<<"; Pz: "<<Pz<<std::endl;
out"; Parameters used to fit the model to data ****"<<std::endl;
out"; PtInitScale: "<<PtInitScale<<"; DtScale: "<<DtScale;
out"; LOscale: "<<LOscale<<"; HOscale: "<<HOscale<<std::endl;
out"; Degradation ****"<<std::endl;
out"; Dc: "<<Dc<<"; Dt: "<<Dt<<"; Ds: "<<Ds<<"; Dz: "<<Dz<<std::endl;
out"; Stochastic ****"<<std::endl;
out"; PcMaxBurstRate: "<<PcMaxBurstRate<<"; PcBurstSize: "<<PcBurstSize<<std::endl;
out"; PtMaxBurstRate: "<<PtMaxBurstRate<<"; PtBurstSize: "<<PtBurstSize<<std::endl;
out"; PzMaxBurstRate: "<<PzMaxBurstRate<<"; PzBurstSize: "<<PzBurstSize<<std::endl;
out"; DegEvents: "<<DegEvents<<" per minute; relative degSizes: ";
out"; 100-Dc/DegEvents%% (Ct), "<<100-Dt/DegEvents%% (Tt)"<<std::endl;
out"; Ct degSizes in molecules: "<<PcBasal/(DegEvents*nM_per_atom)<<" (min), ";
out"; PcMax/(DegEvents*nM_per_atom)<<" (max)"<<std::endl;
out"; Tt degSizes in molecules: "<<Pt/((1 + std::pow(PcMax/(Dc*Er), Hr)) * DegEvents*nM_per_atom)" <<(min), "<<Pt/(DegEvents*nM_per_atom)<<" (max)"<<std::endl;
out"; Equilibria ****"<<std::endl;
out"; Hr: "<<Hr<<"; Er: "<<Er<<"; Hs: "<<Hs<<"; Es: "<<Es<<std::endl;
out"; kson: "<<kson<<"; ksoff: "<<ksoff<<std::endl;

explicit MFLparams(bool TumDeg = true) {
    defaultInit();
    if (!TumDeg) changeDt(Dc);
}

explicit MFLparams(double PcBS, double PtBS, double NewEs=1175.0, double newDt=0.0693) {
    defaultInit();
    changeDt(newDt);
    Es = NewEs;
    // Estimated burst sizes
    PcBurstSize = PcBS;
    PtBurstSize = PtBS;
```
// Calculated burst rates
PcMaxBurstRate = PcMax / PcBurstSize;
PtMaxBurstRate = Pt / PtBurstSize;
}

explicit MFLparams(double newDt) {
 defaultInit();
 changeDt(newDt);
}

protected:
void changeDt(double newDt) {
 Pt = Pt / Dt * newDt;
 Dt = newDt;
 PtBurstSize = Pt / PtMaxBurstRate; // (nM)
 units_per_conc = Pz / Pt;
}

private:
void defaultInit() {
 // DNA elements
 genome = 2.3; // Number of copies of the genome per cell
 PtCopy = 10.0; // Number of copies of pR-tum relative to the genome
 pRcopy = 12.0; // Number of copies of pR relative to the genome
 cSites = 7.0; // Number of CI dimer binding sites per pR promoter
 nM_per_atom = 1.47; // Conversion from absolute number per cell to nM

 // Calculate the concentration of available sites for CI dimer binding
 ConCIsites = genome * pRcopy * cSites * nM_per_atom;

 // **** Production & Degradation ****
 // Production rates (nM/min)
PcBasal = 14.6; PcMax = 326.8; Pt = 2050.0;
 // Degradation rates (min^-1)
 Dc = 0.0173; Dt = 0.0693;
 // Degradation rate of lacZ is the same as CI
 Dz = Dc;
 // Production rate of lacZ is the unpressed steadystate value (in units)
 // multiplied by the degradation rate.
Pz = 850.0 * Dz;
The lacZ transcription rate (in units/min) can be determined from the Pt promoter production rate (in nM/min, where Pt gives the maximum rate) through a conversion via units_per_conc:

\[
\text{units_per_conc} = \frac{P_z}{Pt}
\]

```
/* * * * * Stochastic Parameters * * * * */

// Estimated burst rates in RNAP firings per minute
PcMaxBurstRate = 4.3;
PzMaxBurstRate = 7.3;  // NB: value for single copy pR reporter
PtMaxBurstRate = PtCopy \cdot PzMaxBurstRate;  // NB: value for PtCopies of pR

// Calculated burst sizes
PcBurstSize = \frac{PcMax}{PcMaxBurstRate};  // (nM)
PtBurstSize = \frac{Pt}{PtMaxBurstRate};  // (nM)
PzBurstSize = \frac{Pz}{PzMaxBurstRate};  // (units)

// Number of stochastic degradation events to occur per minute
DegEvents = 10.0;  // per minute
// NB: to ensure different timescales for degradation and production, set this parameter to 600 to get 10 degradation events per second. 20 per minute will mean that at low firing rates, continuous degradation will never occur over a timescale where the consequent change in PtRate will have an impact.

/* * * * * Equilibria Parameters * * * * */

// pR repression
Hr = 1.2; Er = 690.0;  // (nM)
// Tum−CI binding
Hs = 2.5; Es = 1175.0;  // (nM)

/* * * * * Unused Parameters * * * * */

Ds = 0.0173;  // (min^{-1})
kson = 3.73;  // (nM^{-1} \cdot Hs \cdot min^{-1})
ksoft = 1.77e+8;  // (min^{-1})
}
```

After defining the parameter sets, mflLibrary.h continues by defining state structures specific to the MFL, and a cohort of stochastic events that can be used in various formulations of the stochastic model.

```
D.3 Classes for simulation of the MFL

329

489 // State structures
490 // ***************
491 // Structures for containing the state of the model
492
493 struct repress : virtual public state {
494 explicit repress()
495 : PcR(10.0), PtR(10.0), Ct(10u, vol) { }
496 double PcR;
497 double PtR;
498 Variable Ct;
499 // Allow double dispatch between events and states:
500 double call_event(stochEvent* event) { return event->hazard(this); }
501 }
502
503 struct mfl : virtual public repress {
504 explicit mfl() : Tt(10u, vol) { }
505 Variable Tt;
506 // Allow double dispatch between events and states:
507 double call_event(stochEvent* event) { return event->hazard(this); }
508 }
509
510 /*******************************
511 Stochastic Event Definitions
512 *******************************/
513
514 // **** Pc Production variants ****/
515
516 // Stochastic production from Pc. Burst size constant.
517 class stochPcNoMsg : public stochEvent {
518 public:
519 stochPcNoMsg(repress* s, MFLparams* p, gsl_rng* r)
520 : stochEvent(s,p,r), p(p), s(s)
521 { h_scale = 1/p->PcBurstSize; }
522
523 // Double dispatch to the state-specific function
524 double hazard(state* init) { return init->call_event(this); }
525 double hazard(repress* init) { return init->PcR * h_scale; }
526 double hazard(mfl* init) {
527 /* std::cout<<"stochPcNoMsg- PcR: "<<init->PcR; */
528 /* std::cout<<"; h_scale: "<<h_scale<<std::endl; */
529 return init->PcR * h_scale; }
530
531 void fire()
532 { s->Ct += p->PcBurstSize; }
class stochPc : public stochPcNoMsg {
    public:
    stochPc(repress * s, MFLparams * p, gsl_rng * r)
        : stochPcNoMsg(s, p, r), s(s) {}
    void fire() {
        s->Ct += p->PcBurstSize * (-log(gsl_rng_uniform_pos(r)));
    }
    const char* name() { return "stochPc"; }
    private: repress * s;
};

class stochPtReport : public stochEvent {
    public:
    stochPtReport(repress * s, MFLparams * p, gsl_rng * r)
        : stochEvent(s, p, r), s(s) {}
    void fire() {
        s->Ct += gsl_ran_geometric(r, p_geom);
    }
    protected: double p_geom;
    private: repress * s;
};
D.3 Classes for simulation of the MFL

```cpp
stochPtReport(repress * s, MFLparams * p, gsl_rng * r)
: stochEvent(s,p,r), p(p), s(s)
{ h_conversion = p->units_per_conc/p->PzBurstSize; }

// Double dispatch to the state-specific function

double hazard(state * init) { return init->call_event(this); }

// Instantaneous hazard of reporter production at a given state:

double hazard(repress * init) {
 // The Pt rate (monomers) must be converted to reporter units
 return init->PtR * h_conversion;
}

double hazard(mfl * init) {
 // The Pt rate (monomers) must be converted to reporter units
 return init->PtR * h_conversion;

 /* std::cout << "stochPtReport; conversion: " << h_conversion; */
 /* std::cout << "PtR: " << init->PtR << std::endl; */
}

void fire() {
 s->Report += p->PzBurstSize * (-log(gsl_rng_uniform_pos(r)));
}

const char * name() { return "stochPtReport"; }

protected: double h_conversion; MFLparams * p;

private: repress * s;
};

// Truly discrete production of reporter molecules (i.e., molecules are added
// as counts and not as volume-dependent concentrations).

class stochPtReportDiscrete : public stochPtReport {

public:
 stochPtReportDiscrete(repress * s, MFLparams * p, gsl_rng * r)
 : stochPtReport(s,p,r), s(s) {
 p_geom = p->Vs/Scale/p->PzBurstSize;
 }

 void fire() {
 // For truly discrete production, molecules should be added as counts
 // (i.e., not added as concentrations that have a volume dependence). So
 // choose a burst size from the geometric distribution with mean
 // 1/p_geom = 1.5*Vinit*PzBurstSize (1.5*Vinit is the mean cell volume
 // for each generation, so should correctly scale the PzBurstSize from
 // molecules/cell to a count):
 s->Report += gsl_ran_geometric(r, p_geom);
 }
};
```
Appendix D. The hybrid stochastic/deterministic model of the Tum−Cl MFL

```cpp
protected: double p_geom;
private: repress* s;
};

// Stochastic Tum production from Pt. Burst size stochastic.
class stochPtTum : public stochEvent {
 public:
 stochPtTum(mfl* s, MFLparams* p, gsl_rng* r)
 : stochEvent(s,p,r), p(p), s(s)
 { h_scale = 1/p->PtBurstSize; }
 double hazard(state* init) { return init->call_event(this); }
 double hazard(mfl* init) {
 return init->PtR * h_scale;
 }
 void fire() {
 s->Tt += p->PtBurstSize * (-log(gsl_rng_uniform_pos(r)));
 }
 const char* name() { return "stochPtTum"; }
 protected: double h_scale; MFLparams* p;
 private: mfl* s;
};

// Truly discrete production of Tum molecules (i.e., molecules are added as
// counts and not as volume-dependent concentrations).
class stochPtTumDiscrete : public stochPtTum {
 public:
 stochPtTumDiscrete(mfl* s, MFLparams* p, gsl_rng* r)
 : stochPtTum(s,p,r), s(s) {
 p_geom = p->Vs/ p->PtBurstSize;
 }
 void fire() {
 // For truly discrete production, molecules should be added as counts
 // (i.e., not added as concentrations that have a volume dependence). So
 // choose a burst size from the geometric distribution with mean
 // 1/p_geom = 1.5*Vinit*PtBurstSize (1.5*Vinit is the mean cell volume
 // each generation, so should correctly scale the PtBurstSize from
 // molecules/cell to a count):
 s->Tt += gsl_ran_geometric(r, p_geom);
 }
 // Todo: Implement discrete for the different distributions
};
```
protected: double p_geom;
private: mfl* s;
};

/**** Cell division ****/

// Here, cell division is defined to be a non-stochastic event that occurs
// regularly after each period of cell division. So override each of the
// stochastic functions, replacing with deterministic ones:

class cellDivision : public stochEvent {
public:
    cellDivision(state* s, MFLparams* p, gsl_rng* r)
        : stochEvent(s,p,r), s(s) {
        // The hazard here is simply the rate of growth in volume:
        h_scale = p->Vrate;
        // The initial volume is also the cap on h_cumulative, since cells
        // double in size:
        Vinit = p->Vinit;
        // The probability used for partitioning species by the binomial
        // distribution:
        PartProb = p->PartProb;
    }

    // Override the sampling function to make cell division deterministically
    // periodic:
    void sample() {
        h_cumulative = 0; // Reset the volume growth counter
        rexp = Vinit; // 'rexp' in this instance is the target growth in volume
    }

    // Hazard has no state dependence, so do not need to double dispatch in
    // this case:
    double hazard(state* init) { return h_scale; }
    double hazard(repress* init) { return h_scale; }
    double hazard(mfl* init) { return h_scale; }

    void fire() {
        // Reset the volume to initial:
        s->vol = Vinit;

        // Split each population in half according to the binomial distribution:
        s->Report = gsl_ran_binomial(r, PartProb, s->Report);
        // NB: the Variable class automatically handles conversion to and from
        // unsigned ints in the above.
class cellDivisionRepress : public cellDivision {
  public:
  cellDivisionRepress(repress* s, MFLparams* p, gsl_rng* r)
    : cellDivision(s,p,r), s(s) { }
  void fire() {
    /* std::cout<"** Before split ** Vol: "<<s->vol; */
    /* std::cout<"; Ct: "<<s->Ct<< " / static_cast<uint>(s->Ct)"<<std::endl; */
    cellDivision::fire(); // Run the parent event first
    // Additionally split CI population in half:
    s->Ct = gsl_ran_binomial(r, PartProb, s->Ct);
    /* std::cout<"** After split ** Vol: "<<s->vol; */
    /* std::cout<"; Ct: "<<s->Ct<< " / static_cast<uint>(s->Ct)"<<std::endl; */
  }
  private: repress* s;
};

class cellDivisionMFL : public cellDivisionRepress {
  public:
  cellDivisionMFL(mfl* s, MFLparams* p, gsl_rng* r)
    : cellDivisionRepress(s,p,r), s(s) { }
  void fire() {
    cellDivisionRepress::fire(); // Run the parent event first
    // Additionally split Tum population in half:
    s->Tt = gsl_ran_binomial(r, PartProb, s->Tt);
  }
  private: mfl* s;
};

#endif /* MFLLIBRARY_H */
D.3 Classes for simulation of the MFL

```cpp
#include "mflLibrary.h"
#include <gsl/gsl_roots.h>
#include <vector>
#include <algorithm>

// To save on computing time, set a threshold squared difference that is
// tolerable when recalculating the hill coefficient terms.
const double diffthreshold = 1e-12;

// 'gslRootSolver' class
// ---------------------
// Class to wrap up the root solving algorithm from the GSL

struct gslError {
 gslError(int error_code, const char* function)
 : error_code(error_code), function(function) {}
 int error_code;
 const char* function;
};

class gslRootSolver {
public:
 explicit gslRootSolver(double rel_tol = 0.0001, unsigned int max_iter = 100)
 : rel_tol(rel_tol), max_iter(max_iter), solverType(gsl_root_fsolver_brent)
 { solver = gsl_root_fsolver_alloc(solverType); }
 ~gslRootSolver()
 { gsl_root_fsolver_free(solver); }
 double tolerance() { return rel_tol; }
 unsigned int maxIterations() { return max_iter; }
 unsigned int preIterations() { return iter; }
 double findroot(gsl_function*, double, double);

private:
 double rel_tol;
 unsigned int iter;
 unsigned int max_iter;
 const gsl_root_fsolver_type* solverType;
 gsl_root_fsolver* solver;
};
```
# Appendix D. The hybrid stochastic/deterministic model of the Tum−Cl MFL

```cpp
inline double gslRootSolver::findroot(gsl_function *F, double initLower, double initUpper) {
 // std::cout<<initLower<<"<"<initUpper<<std::endl;
 iter = 0;
 int status = GSL_CONTINUE;
 status = gsl_root_fsolver_set(solver,F,initLower,initUpper);
 if(status != GSL_SUCCESS) throw gslError(status,"gsl_root_fsolver_set");
 do{
 // Iterate the root finder
 status = gsl_root_fsolver_iterate(solver);
 if(status != GSL_SUCCESS) throw gslError(status,"gsl_root_fsolver_iterate");
 // Test whether the new interval satisfies the specified relative
 // tolerance. NB: the third parameter to the function specifies the
 // absolute error, which we take to be the same as the relative tolerance
 // so that roots close to zero will also converge.
 status = gsl_root_test_interval(
 gsl_root_fsolver_x_lower(solver),
 gsl_root_fsolver_x_upper(solver),
 rel_tol,rel_tol);
 if(status != GSL_CONTINUE && status != GSL_SUCCESS)
 throw gslError(status,"gsl_root_test_interval");
 } while(status == GSL_CONTINUE && iter < max_iter);
 if(status == GSL_CONTINUE)
 throw "gslRootSolver::findroot() failed to converge.");
 if(status != GSL_SUCCESS)
 throw "gslRootSolver::findroot() failed.");
 return gsl_root_fsolver_root(solver);
}
```

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

// 'eqHelper' class
// *
// Provides helper functions for performing optimised equilibration
// calculations.

class eqHelper {
public:
    eqHelper() :
D.3 Classes for simulation of the MFL

```c
invEr(0.0),invEs(0.0),Hr(0.0),Hs(0.0),
RHi1l(0.0),SHi1l(0.0),oldCf(0.0),oldTf(0.0) { }

// Ensure this function is called before any of the calculation functions
// are used
void initialise(MFLparams* pars) {
 invEr = 1/pars->Er; invEs = 1/pars->Es;
 Hr = pars->Hr; Hs = pars->Hs;
}

// Calculating (Cf/Er)^Hr
double calcRHi1l(double Cf) {
 // Do a quick test to see if Cf is significantly different from the
 // previous calculation of RHi1l
 double difference = Cf - oldCf;
 if (difference * difference > diffthreshold) {
 oldCf = Cf;
 RHi1l = pow(Cf*invEr,Hr);
 }
 return RHi1l;
}

// Calculating (Tf/Es)^Hs
double calcSHi1l(double Tf) {
 // Do a quick test to see if Tf is significantly different from the
 // previous calculation of SHi1l
 double difference = Tf - oldTf;
 if (difference * difference > diffthreshold){
 oldTf = Tf;
 SHi1l = pow(Tf*invEs,Hs);
 }
 return SHi1l;
}

private:

// Store local copies of the required parameters; these are set from a
// given MFLparams struct by calling ' initialise '
double invEr,invEs,Hr,Hs;

// Store local copies of the previously calculated results so that the
// power calculation can be omitted if the old values are close enough to
// the new ones.
double RHi1l,SHi1l;

double oldCf,oldTf;
};
```
Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

// 'equilibrate' classes
// The equilibrate classes specify the functions that are needed to update
// the state variables that are dependent on equilibria occurring on much
// faster timescales than the simulation step size.

// Equilibrator for Repressor (Tum−); ignores loss of CI to CI−pR

class repressEquil : public equilibrate {
public:
inline repressEquil(repress* s, MFLparams* p) :
    equilibrate(s, p), p(p), s(s) {
    // Initialise the helper class based on the parameters
    h.initialise(p);
    // Calculate the concentration of available sites for CI dimer binding
    // (this parameter is needed only for children that account for loss
    // of CI dimers through CI−pR binding)
    ConcClsites=p->ConcClsites;
}

    // Species calculations
    // In the simple repressor, the amount of free CI is simply the total
    // amount of free CI
    virtual double FreeCI() { return s->Ct; }
    virtual double PtRate() {
    // Calculate the production rate from the Pt promoter based on
    // the amount of repression due to free CI
    return p->Pt/(1 + h.calcRHill(FreeCI()));
    }

    // Equilibrate the state
    virtual void equilibrate() {
    s->PtR = PtRate();
    }
    virtual void steadystate() {
    s->Ct = s->PcR / p->Dc;
    equilibrate();
    s->Report = p->units_per_conc * s->PtR / p->Dz;
    }
}

protected:
    double ConcClsites;
    MFLparams* p;
eqHelper h; // Create a local copy of the helper class

private:
    repress* s;
};

// Equilibrator for Repressor (Tum−); account for loss of CI to CI−pR
class repressEquilCRbind : public repressEquil {
    explicit repressEquilCRbind(repress* s, MFLparams* p)
    : repressEquil(s, p), s(s) {
        // Initialise the wrapper gsl_function ready for the root solver
        gslRepressorPoly.function = &repressEquilCRbind::RepressorPolyWrapper;
        gslRepressorPoly.params = this;
    }

    // Species calculations
    virtual double FreeCI() {
        // When total CI is effectively zero, return zero free CI
        if (s->Ct <= zeroconc) return zeroconc;
        else return solver.findroot(&gslRepressorPoly, zeroconc, s->Ct);
    }

protected:
    gslRootSolver solver;
    gsl_function gslRepressorPoly;

    static double RepressorPolyWrapper(double Cf, void* data) {
        repressEquilCRbind* _this = static_cast<repressEquilCRbind*>(data);
        return _this->RepressorPoly(Cf);
    }

    // The polynomial whose roots give FreeCI for the repressor
    double RepressorPoly(double Cf) {
        return Cf*h.calcRHill(Cf) + (ConcClSites - s->Ct)*h.calcRHill(Cf) + Cf - s->Ct;
    }

private:
    repress* s;
};

// Equilibrator for MFL (Tum+); ignores loss of CI to CI−pR
class mflEquil : public repressEquil {
    public:

Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

```cpp
mflEquil(mfl* s,MFLparams* p)
 : repressEquil(s,p).s(s) {
 // Initialise gsl_function for root solver
 gslNoBindPoly.function = &mflEquil::NoBindPolyWrapper;
 gslNoBindPoly.params = this;

 // Initialise the pre-calculated root solver limits grid:
 initGrid();
 }

 // Species calculations
 virtual double FreeTum() {
 // When total CI is effectively zero, return total Tum; note that since
 // total CI thus never goes to 0, Tf will be at least 'diffthreshold'
 // less than s>Tt
 if(s->Ct <= zeroconc) return s->Tt;
 // When total Tum is effectively zero, return zero free Tum
 if(s->Tt <= zeroconc) return zeroconc;

 // Uncomment to solve without the grid:
 // return solveRoot(zeroconc,s->Tt-diffthreshold);

 // Find bounds for the solver using the pre-computed grid:
 int i = floor(s->Ct*invStepCt);
 int j = floor(s->Tt*invStepTt);

 double lower, upper;

 if(i < 0 || j < 0) throw "Cannot equilibrate: there are negative concentrations."
 // Check if we are outside the grid:
 if(i+1 >= nbins || j+1 >= nbins){
 // If we are outside default to the max and min possible values:
 lower = zeroconc;
 upper = s->Tt-diffthreshold;
 } else {
 // Locate the bounds on each corner of the grid surrounding this point:
 double corners[4];
 corners[0] = bounds[i][j];
 corners[1] = bounds[i][j+1];
 corners[2] = bounds[i+1][j];
 corners[3] = bounds[i+1][j+1];
 }
```
D.3 Classes for simulation of the MFL

270 // Find the minimum and maximum values of the grid
271 lower = corners[0];
272 upper = corners[0];
273 for (int k = 1; k < 4; ++k) {
274     if (lower > corners[k]) lower = corners[k];
275     if (upper < corners[k]) upper = corners[k];
276 }
277
278 // Output for debugging:
279 // std::cout << std::endl << "Bounds: "; 
280 // std::cout << bounds[i][j] << ","; 
281 // std::cout << bounds[i][j+1] << ","; 
282 // std::cout << bounds[i+1][j] << ","; 
283 // std::cout << bounds[i+1][j+1] << std::endl; 
284
285 // Scale slightly to avoid errors when close to a grid edge
286 lower *= static_cast<double>(0.999);
287 upper *= static_cast<double>(1.001);
288 if (upper > s->Tt) upper = s->Tt - diffthreshold;
289 }
290
291 // Output for debugging:
292 // std::cout < " i: " < j < " Tt: " < lower < " upper: " < std::endl;
293 double Tf;
294 try {
295     Tf = solveRoot(lower, upper);
296 } catch (gslError err) {
297     std::cerr << "Error " << err.error_code << " from function ";
298     std::cerr << err.function << "": " << std::endl;
299     std::cerr << "Root function did not straddle 0. Retrying..." << std::endl;
300     Tf = solveRoot(zeroconc, s->Tt - diffthreshold);
301 }
302
303 // Output for debugging:
304 // std::cout << " , Tf: " << Tf << " , prevIter: " << solver.prevIterations() << std::endl;
305 return Tf;
306 }
307
308 virtual double FreeCI() {
309     // If the total Tum is effectively zero, return the total CI
310 }
Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

```cpp
if (s->Tt <= zeroconc) return s->Ct;
else {
 double Tf = FreeTum();
 return (s->Tt - Tf) / (2 * h::calcShill(Tf));
}
```

```cpp
virtual double CmplxConc() {
 // If the total Tum is effectively zero, return zero complex
 if (s->Tt <= zeroconc) return zeroconc;
 else {
 double Tf = FreeTum();
 return (s->Tt - Tf) / 2;
 }
}
```

```cpp
protected:
 // Cache upper and lower limits for the solver in a 2D grid of size
 // nbins*nbins. Indexing is [Ct][Tt]. The choice of nbins=200 seems to
 // balance between time required to build the array versus the number of
 // iterations required. Observe the following:
 // nbins=20: mean iters = 5.3; generation time = 1 ms;
 // nbins=200: mean iters = 3; generation time = 120 ms;
 // nbins=500: mean iters = 2.5; generation time = 729 ms;
 static const int nbins = 200;
 int maxCt, maxTt;
 double stepCt, stepTt, invStepCt, invStepTt;
 double bounds[nbins][nbins];
```
gslRootSolver solver;
gsl_function gslNoBindPoly;

static double NoBindPolyWrapper(double Tf, void* data) {
    mflEquil* _this = static_cast<mflEquil*>(data);
    return _this->NoBindPoly(Tf);
}

// The polynomial whose roots give the FreeTum for the MFL
double NoBindPoly(double Tf) {
    double SHill = h.calcSHill(Tf);
    return Tf * SHill + (2.0 * s->Ct - s->Tt) * SHill + Tf - s->Tt;
}

// Make the solver function virtual so that it can be overridden without
// needing to change the 'initGrid' or 'FreeTum' functions
virtual double solveRoot(double lower, double upper) {
    return solver.findroot(&gslNoBindPoly, lower, upper);
}

virtual void initGrid() {
    // Calculate the maximum possible deterministic values for Tt and Ct and
    // multiply by a factor to account for noise:
    maxTt = 1.5 * p->Pt / p->Dt;
    maxCt = 1.5 * p->PcMax / p->Dc;

    // Calculate the step between gridpoints in the array:
    stepCt = maxCt / static_cast<double>(nbins);
    stepTt = maxTt / static_cast<double>(nbins);

    // Calculate the inverse of the step to initialise for grid locating:
    invStepCt = 1.0 / stepCt;
    invStepTt = 1.0 / stepTt;

    // Initiate the limits array:
    for (int i = 0; i < nbins; ++i) {
        s->Ct = i * stepCt;
        for (int j = 0; j < nbins; ++j) {
            s->Tt = j * stepTt;
            bounds[i][j] = solveRoot(0.0, s->Tt);
            // Output for debugging:
            // * std::cout << i << 't' << j << 't' << bounds[i][j] << std::endl; */
        }
    }
}
private:
  mfl* s;
};

// Equilibrator for MFL (Tum+); accounts for loss of Cl to Cl-pR
class mflEquilCRbind : public mflEquil {
  mflEquilCRbind(mfl* s,MFLparams* p) : mflEquil(s,p),s(s) {
    // Initialise gsl_function for root solver
    gslFullPoly.function = &mflEquilCRbind::FullPolyWrapper;
    gslFullPoly.params = this;
    initGrid();
  }

protected:
  gsl_function gslFullPoly;

  static double FullPolyWrapper(double Tf, void* data){
    mflEquilCRbind* _this = static_cast<mflEquilCRbind*>(data);
    return _this->FullPoly(Tf);
  }

  // The polynomial whose roots give the FreeTum for the MFL
  double FullPoly(double Tf){
    double SFactor = NoBindPoly(Tf);
    double SHill = h.calcSHill(Tf); // This shouldn’t call pow()
    return ConcCIsites*SHill + SFactor*
      (1 + pow( 2*p->Er*SHill / (s->Tt-Tf) ,p->Hr ));
  }

  // Override the mflEquil root solver function
  virtual double solveRoot(double lower, double upper){
    return solver.findroot(&gslFullPoly,lower,upper);
  }

  virtual void initGrid(){
    // Re-initialise the array using the new solveRoot function:
    // TODO this is costly and should not have to be repeated...
  }

  // NB: the MFL CRbind function is trickier since it blows up when Tt
  // gets close to zero or close to Tf, so we need to handle those cases
  // separately. The upper limit given to solveRoot must never be equal
D.3 Classes for simulation of the MFL

D.3.3 models.h

1 // models.h: Defining MFL models from the library

2

3 // to Tt.

4 // No Tum or Cl gives us zeroconc of free Tum
5 bounds[0][0] = zeroconc;

6 // No Cl gives us Tf equal to total Tum, less the diffthreshold
7 for(int j=1; j<nbins; ++j){
8    bounds[0][j] = j * stepTt - diffthreshold;
9 }

10 // No Tum gives us zeroconc reduced by the amount of Cl
11 s->Tt = zeroconc;
12 for(int i=1; i<nbins; ++i){
13    s->Ct = i * stepCt;
14    bounds[i][0] = solveRoot(0.0,zeroconc-diffthreshold);
15 }

16 for(int i=1; i<nbins; ++i){
17    s->Ct = i * stepCt;
18    for(int j=1; j<nbins; ++j){
19        s->Tt = j * stepTt;
20        bounds[i][j] = solveRoot(0.0,s->Tt-diffthreshold);
21    }
22 }

23 for(int i=1; i<nbins; ++i){
24    s->Ct = i * stepCt;
25    for(int j=1; j<nbins; ++j){
26        s->Tt = j * stepTt;
27        bounds[i][j] = solveRoot(0.0,s->Tt-diffthreshold);
28    }
29 }

30 // Output for debugging:
31 /* std::cout << i << 't' << j << 't' << bounds[i][j] << std::endl; */
32 }
33 }

34 // Output for debugging:
35 /* std::cout << std::endl << "MFL CRbind grid: "; */
36 /* std::cout << bounds[0][135] << ","; */
37 /* std::cout << bounds[0][136] << ","; */
38 /* std::cout << bounds[1][135] << ","; */
39 /* std::cout << bounds[1][136] << std::endl; */
40 }
41 }
42
43 private:
44    mfl* s;
45 }
46
47 #endif /* EQUILIBRATION_H */
Appendix D. The hybrid stochastic/deterministic model of the Tum−CI MFL

```cpp
#ifndef MODELS_H
#define MODELS_H

#include "modelinterfaces.h"
#include "mflLibrary.h"
#include "equilibration.h"

/* */

Model Templates
ITCHIPHOTON

/* */

// 'repressModel' class
// 'repressModel' describes the state of a network where CI represses the pR
// (here named Pc) promoter to produce some output reporter activity.

class repressModel : public model {
public:

 virtual void PcaAct(double PcA)
 { s->PcR = p->PcBasal + PcA*(p->PcMax-p->PcBasal); }

 virtual double PcaAct() const
 { return (s->PcR-p->PcBasal) / (p->PcMax-p->PcBasal); }

 virtual void initLO()
 { PcaAct(0.0); initialise(); }

 virtual void initHi()
 { PcaAct(1.0); initialise(); }

 virtual void initialise() {
 s->t = 0.0;
 s->vol = p->Vinit;
 eq->steadystate();
 sim->initialise();
 }

 // Accessors & mutators

 void TotalCI(double CIconc) { s->Ct = CIconc; }
 double TotalCI() const { return s->Ct; }
 double PcRate() const { return s->PcR; }
 double FreeCI() const { return eq->FreeCI(); }
 double PtRate() const { return s->PtR; }
```
D.3 Classes for simulation of the MFL

48 repressModel(repress * s, MFLparams * p, repressEquil * eq, simulator * sim)
49 : model(s, p, eq, sim), s(s), p(p), eq(eq), sim(sim) { }
50
51 private:
52 repress * s;
53 MFLparams * p;
54 repressEquil * eq;
55 simulator * sim;
56
57 /* ***************************************************/
58 /* 'mflModel' class
59 /* **************************************************
60 /* 'mflModel' extends the 'repressModel' by adding in functionality for Tum
61 /* and Tum−CI complex concentrations.
62 */
63
class mflModel : public repressModel {
64
65 public:
66 // Accessors & mutators
67 void TotalTum(double TumConc) { s−Tt = TumConc; }
68 double TotalTum() const { return s−Tt; }
69 double FreeTum() const { return eq−FreeTum(); }
70 double CmplxConc() const { return eq−CmplxConc(); }
71
72 mflModel(mfl * s, MFLparams * p, mflEquil * eq, simulator * sim)
73 : repressModel(s, p, eq, sim), s(s), eq(eq) { }
74
75 private:
76 mfl * s;
77 mflEquil * eq;
78
79 /* ***************************************************/
80 /* Model Definitions
81 *******************************************************/
82
83 /* ***** Deterministic simulators ******/
84
85 // 'lacDetRepress' model
86
87 // Extend basicDetRepress by additionally simulating reporter degradation.


```cpp
class lacDetRepressSim : public simulator {
 public:
 lacDetRepressSim(repress *s, MFLparams* p, equilibrator* eq)
 : simulator(s,p,0.1), s(s), p(p), eq(eq) { }

 void step(double ts) {
 s->t += ts;
 s->Ct += (s->PcR - p->Dc*s->Ct)*ts;
 s->Report += (p->units_per_conc*s->PtR - p->Dz*s->Report)*ts;
 eq->equilibrate();
 }

 private: repress* s; MFLparams* p; equilibrator* eq;
};

struct lacDetRepress {
 lacDetRepress (MFLparams* p)
 : eq(&s,p), sim(&s,p,&eq), m(&s,p,&eq,&sim) { }
 repress s; repressEquil eq;
 lacDetRepressSim sim;
 repressModel m;
};

struct lacCRbDetRepress {
 lacCRbDetRepress (MFLparams* p)
 : eq(&s,p), sim(&s,p,&eq), m(&s,p,&eq,&sim) { }
 repress s; repressEquilCRbind eq;
 lacDetRepressSim sim;
 repressModel m;
};

// ///
// 'detMFL' model
// *
// Add in deterministic Tum production & degradation to model the MFL

class detMFLsim : public simulator {
 public:
 detMFLsim(mfl* s, MFLparams* p, equilibrator* eq, const double ts=0.1)
 : simulator(s, p, eq, ts), s(s), p(p), eq(eq) { }

 void step(double ts) {
 s->t += ts;
 s->Ct += (s->PcR - p->Dc*s->Ct)*ts;
 }
```
\[ s \rightarrow T_t := (s \rightarrow P_t R - p \rightarrow D_t s \rightarrow T_t) \cdot ts; \]
\[ s \rightarrow \text{Report} := (p \rightarrow \text{units per conc.} \cdot s \rightarrow P_t R - p \rightarrow D_z s \rightarrow \text{Report}) \cdot ts; \]
\[ eq \rightarrow \text{equilibrate}(); \]

```cpp
private: mfl* s; MFLparams* p; equilibrator* eq;
};
```

```cpp
struct detMFL {
 detMFL(const MFLparams* p, const double ts=0.1)
 : eq(&s, p), sim(&s, p, eq, ts), m(&s, p, eq, &sim) { }
 mfl s; mflEquil eq;
 detMFLsim sim;
 mflModel m;
};
```

```cpp
struct detCRbMFL {
 detCRbMFL(MFLparams* p)
 : eq(&s, p), sim(&s, p, eq), m(&s, p, eq, &sim) { }
 mfl s; mflEquilCRbind eq;
 detMFLsim sim;
 mflModel m;
};
```

```cpp
// ***** Stochastic simulators *****/

```cpp
// 'stochDiscreteRepress' model

```cpp
// Hybrid stochastic/deterministic simulation of simple pR repression, where
// discrete and continuous representations of the model state are
// simultaneously tracked. This model additionally simulates growth by a
// linear increase in cell volume with periodic and cell division events
// (binomial partitioning).

class stochDiscreteRepressSim : public stochSimulator<repress> {
 public:
 stochDiscreteRepressSim(repress* s, MFLparams* p,
 equilibrator* eq, gsl_rng* r)
 : stochSimulator<repress>(s, p, eq, r), s(s), p(p), eq(eq)
 {
 // Partition molecules at cell division
 events.push_back(new cellDivisionRepress(s, p, r));
 }
```
Appendix D. The hybrid stochastic/deterministic model of the Tum—CI MFL

// Note that for truly discrete production, molecules should be added as counts (i.e., not added as concentrations that have a volume dependence). So use discrete versions of each stochastic event.

// Discrete production of CI
events.push_back(new stochPcDiscrete(s,p,r));

// Discrete production of reporter
events.push_back(new stochPtReportDiscrete(s,p,r));

protected:
  double DtDiff;

  void step_detrm(double ts) {
    // Fast reactions are handled by equilibrator, so the only deterministic step is a linear increase in volume:
    s->vol += p->Vrate*ts;
    // Note that the Volume class then automatically updates all dependent Variables
  }

private: repress* s; MFLparams* p; equilibrator* eq;

struct stochDiscreteRepress {
  stochDiscreteRepress(MFLparams* p, gsl_rng* r) :
    eq(&s,p), sim(&s,p,&eq,r), m(&s,p,&eq,&sim) { }
  repress s; repressEquil eq;
  stochDiscreteRepressSim sim;
  repressModel m;
};

///////////////////////////////////////////////////////
// 'stochDiscreteMFL' model
///////////////////////////////////////////////////////

// Hybrid stochastic/deterministic simulation of the MFL where discrete and continuous representations of the model state are simultaneously tracked.
// This model additionally simulates growth by volume increases and cell division (binomial partitioning).

class stochDiscreteMFLsim : public stochSimulator<mfl> {
  public:
    stochDiscreteMFLsim(mfl* s,MFLparams* p,equilibrator* eq,gsl_rng* r)
    : stochSimulator<mfl>(s,p,eq,r),s(s),p(p),eq(eq)
// Partition molecules at cell division
events.push_back(new cellDivisionMFL(s,p,r));

// Note that for truly discrete production, molecules should be added as
// counts (i.e., not added as concentrations that have a volume
// dependence). So use discrete versions of each stochastic event.

// Discrete production of CI
events.push_back(new stochPcDiscrete(s,p,r));
// Discrete production of Tum
events.push_back(new stochPtTumDiscrete(s,p,r));
// Discrete production of reporter
events.push_back(new stochPtReportDiscrete(s,p,r));

// The difference between dilution rate and rate of loss of Tum:
DtDiff = -(p->Dt - p->Dc); // Will be positive for `fittedparams`
}

protected:
  double DtDiff;
  void step_detrm(double ts) {
    // Fast reactions are handled by equilibrator, so the only deterministic
    // step is a linear increase in volume:
    s->vol += p->Vrate*ts;
    // Note that the Volume class then automatically updates all dependent
    // Variables

    // Since Tum is allowed an alternative degradation (dilution) rate,
    // which was fitted to a rate much slower than that caused by cell
    // division, additionally model deterministic 'degradation' of Tum using
    // the difference between Dt and Dil (NB: this effectively makes for
    // exponential growth in this case since the difference should be
    // negative, giving a positive coefficient in the exponent).
    s->Tt += DtDiff*s->Tt*ts;
  }

private: mfl* s; MFLparams* p; equilibrator* eq;
};

struct stochDiscreteMFL {
stochDiscreteMFL(MFLparams* p, gsl_rng* r)
    : eq(&s,p), sim(&s,p,&eq,r), m(&s,p,&eq,&sim) { }
  mfl s; mflEquil eq;
stochDiscreteMFLsim sim;
Appendix D. The hybrid stochastic/deterministic model of the Tum—CI MFL

D.4 Running the simulator

```cpp
using namespace std;
using namespace Rcpp;

namespace timecourseNamespace {

 // Container for storing repressor model output
 struct repressArray {
 vector<double> time;
 vector<double> PcR;
 vector<double> Ct;
 vector<double> Cf;
 vector<double> PtR;
 vector<double> Report;
 };

 // Container for storing MFL model output
 struct mflArray {
 vector<double> time;
 vector<double> PcR;
 vector<double> Ct;
 vector<double> Cf;
 vector<double> PtR;
 vector<double> Report;
 vector<double> Tt;
 vector<double> Tf;
 };

 // Sample a repressor model by appending data to a repressArray
```
D.4 Running the simulator

```cpp
void tcSample(repressArray& out, repressModel& model)
{
 out.time.push_back(model.time());
 out.PcR.push_back(model.PcRate());
 out.Ct.push_back(model.TotalCI());
 out.Cf.push_back(model.FreeCI());
 out.PtR.push_back(model.PtRate());
 out.Report.push_back(model.activity());
}

// Sample a MFL model by appending data to a mflArray

void tcSample(mflArray& out, mflModel& model)
{
 out.time.push_back(model.time());
 out.PcR.push_back(model.PcRate());
 out.Ct.push_back(model.TotalCI());
 out.Cf.push_back(model.FreeCI());
 out.PtR.push_back(model.PtRate());
 out.Report.push_back(model.activity());
 out.Tt.push_back(model.TotalTum());
 out.Tf.push_back(model.FreeTum());
}

// Define function to convert repressArray to DataFrame:

DataFrame RcppArray(repressArray& a)
{
 return DataFrame::create(
 Named("time")=a.time
 Named("Ct")=a.Ct, Named("Cf")=a.Cf
 Named("Report")=a.Report);
}

// Define function to convert mflArray to DataFrame:

DataFrame RcppArray(mflArray& a)
{
 return DataFrame::create(
 Named("time")=a.time
 Named("Ct")=a.Ct, Named("Cf")=a.Cf
 Named("Report")=a.Report,
 Named("Tt")=a.Tt, Named("Tf")=a.Tf);
}

const uint samplingrate = 20;

// Sample states over the course of a simulation
```
void assay(Array& out, Model& model, bool lo, double activation, double flushtime, double ontime, double assaytime) {
    // Initialise the model
    if(lo) model.initLO();
    else model.initHI();

    // Equilibrate/randomize starting positions by simulating for flushtime
    // minutes (should be around two generations):
    model.simulate(flushtime);
    model.time(0.0); // Reset the time but keep the randomised IC

    // Output the initial values:
    tcSample(out, model);

    // Step through the O/N in defined step sizes using the simulate function:
    uint nSamples = samplingrate * static_cast<uint>(ontime);
    double stepsize = ontime / static_cast<double>(nSamples);
    for(uint i = 0; i < nSamples; ++i){
        model.simulate(stepsize); // Simulate for a single step
        tcSample(out, model); // Sample after each time step
    }

    // Set the assay activation level:
    model.PcAct(activation);

    // Step through the assay in defined step sizes using the simulate function:
    nSamples = samplingrate * static_cast<uint>(assaytime);
    stepsize = assaytime / static_cast<double>(nSamples);
    for(uint i = 0; i < nSamples; ++i){
        model.simulate(stepsize); // Simulate for a single step
        tcSample(out, model); // Sample after each time step
    }
}

RcppExport SEXP timecourse(SEXP raw_act, SEXP raw_on, SEXP raw_model,
                           SEXP raw_parset, SEXP raw_params, SEXP raw_ontime, SEXP raw_assaytime,
                           SEXP raw_seed, SEXP raw_debug) {
    try {

        // Determine if we should output any debug information:
        bool debug = as<bool>(LogicalVector(raw_debug));

        // Construct Rcpp objects from the R arguments

D.4 Running the simulator

```c
NumericVector R_act(raw_act);
CharacterVector R_on(raw_on);
CharacterVector R_model(raw_model);
CharacterVector R_parset(raw_parset);
List R_params(raw_params);
NumericVector R_ontime(raw_ontime);
NumericVector R_assaytime(raw_assaytime);

double activation = as<double>(R_act);
bool lo = R_on[0] == "LO";
double assaytime = as<double>(R_assaytime);
double ontime = as<double>(R_ontime);

// Convert to C++ parameters...
double PcBS = as<double>(R_params["PcBS"]) ;
double PtBS = as<double>(R_params["PtBS"]) ;
double PzBS = as<double>(R_params["PzBS"]) ;

// Initialise parameter sets
mflFittedParams fittedparams(PcBS, PtBS, PzBS);
mflManParams manparams(PcBS, PtBS, PzBS);

// Parameter reference variable
MFLparams* params ;
params = &fittedparams ; // Default parameter set
if (R_parset[0] == "fitted") params = &fittedparams ;
if (R_parset[0] == "manual") params = &manparams ;

if (debug) {
 Rprintf("Simulating with:\n");
 Rprintf("ontime = %f\nassaytime = %f\nactivation = %f\n", ontime, assaytime, activation);
}

// Also output the parameters being used:
stringstream parstring ;
params->print(parstring) ;
Rprintf("%s parameters:\n", as<string>(R_parset[0]).c_str(),
 parstring.str().c_str()) ;
}
```

/ * * * Shared initialisation code * * */

// Create a random number generator
Taus is the fastest (but least 'nice') method

```c
// Since this may be called repeatedly from R very quickly, cannot use
// the system time to set the seed:
unsigned long int rng_seed = as<unsigned long int>(IntegerVector(raw_seed));
gsl_rng_set(r, rng_seed);
```

// Since cell division is taken to be periodic, randomise the length of
// the flush time uniformly over the doubling time, so that cells start
// at random points in the cycle:
```c
double flush_time = 60 + gsl_rng_uniform_pos(r)*params->Tdbl;
```

// Create an empty DataFrame to be returned after simulations are complete:
```c
DataFrame outdf;
if (R_model[0] == "DR") {
 repressArray outarray;
 lacDetRepress DR(params);
 assay(outarray, DR.m, lo, activation, flush_time, ontime, assaytime);
 outdf = RcppArray(outarray);
}
```
D.4 Running the simulator

215 // Clean up before exiting...
216
217 // Free up memory used by random number generator
218 gsl_rng_free(r);
219
220 // Return the DataFrame to R (filled or not)
221 return(outdf);
222
223 }
catch(std::exception &ex) {
224 forward_exception_to_r(ex);
225 }
catch(...) {
226 ::Rf_error("c++ exception (unknown reason)" );
227 }
return R_NilValue; // −Wall
228 }

# Define an R interface function to check and curate arguments before handing
# over to the C++ 'timecourse' routine:
2 timecourse <- function(activation=0.2, on=c('LO', 'HI'),
3 model=c('SM', 'SR', 'DM', 'DR'),
4 parset=c('fitted', 'manual'),
5 params=list(PcBS=100, PtBS=100, PzBS=10),
6 ontime=60, assaytime=250, debug=FALSE) {
7 # Match 'on', 'model' and 'parset', to the formals of this function:
8 on <- match.arg(on)
9 model <- match.arg(model)
10 parset <- match.arg(parset)

11 # Make sure that we have all of the params as specified in the default
12 # argument list; if some are missing, then set those to their defaults:
13 requiredParams <- .formals(timecourse)$params
14 missingParams <-
15 names(requiredParams)[!(names(requiredParams) %in% names(params))]
16 params[missingParams] <- requiredParams[missingParams]
17 if(debug) print(params)

18 # Ensure the correct type for all other arguments:
19 if(!(is.numeric(activation) || is.numeric(ontime) || is.numeric(assaytime)))
20 stop("'activation", "ontime" and "assaytime" must all be numeric.")
21 ontime <- abs(ontime) # Make sure ontime is positive
22 assaytime <- abs(assaytime) # Make sure assaytime is positive
if (activation < 0 || activation > 1)
    stop("activation" must be in [0,1])

# Choose a new seed for this instance:
seed <- sample.int(.Machine$integer.max, 1)
.Call("timecourse", PACKAGE='stochlib',
    activation, on, model, parset, params, ontime, assaytime, seed, debug)

# Run a complete MFL experiment multiple times:
tcExpt <- function(activation=0.2, model=c('M','R'),
    parset=c('fitted','manual'),
    params=list(PcBS=100, PtBS=100, PzBS=10),
    n=10, ontime=60, assaytime=250, debug=FALSE,
    col=c('blue','red'), lty='solid'){
    model <- match.arg(model)
    dataset <- list()
    cols <- rep(col, each=trunc(4/length(col)))
    cols <- lapply(cols, function(x) rgb2hsv(col2rgb(x)))
    tctags <- paste0(c('s1','s2','d1','d2'), model)

    # Run multiple stochastic simulations
    for(i in 1:n){
        for(j in 1:2){
            dataset[[tctags[j]][1]]$data[[i]] <-
                timecourse(activation, on=if(j==1) 'LO' else 'HI',
                    model=paste0('S',model), parset=parset, params=params,
                    ontime=ontime, assaytime=assaytime, debug=debug)
            dataset[[tctags[j]][1]]$cols[[i]] <- hsv(cols[[j]][1], i/n, cols[[j]][3])
            dataset[[tctags[j]][1]]$lty[[i]] <- lty[1+(j-1)%/%length(lty)]
        }
    }

    # Run single deterministic simulations
    for(j in 3:4){
        dataset[[tctags[j]][1]]$data[[1]] <-
            timecourse(activation, on=if(j==3) 'LO' else 'HI',
            model=paste0('D',model), parset=parset, params=params,
            ontime=ontime, assaytime=assaytime, debug=debug)
        dataset[[tctags[j]][1]]$cols[[1]] <- hsv(cols[[j]][1], cols[[j]][2], cols[[j]][3])
        dataset[[tctags[j]][1]]$lty[[1]] <- lty[1+(j-1)%/%length(lty)]
D.5 Adding experimental noise to stochastic simulations

In order to best replicate the experimental data, background noise was added to the simulated results. Experimental noise was simulated by randomly sampling from a normal distribution with a mean (offset) and standard deviation chosen so that the distribution would match the spread of the fully repressed control samples. This background noise was added to the stochastic simulation data before being analysed like the flow cytometry samples were.

The following code block shows how this was achieved in R using the R library described in this appendix. The assayocc and assaydet functions in the listing are similar to the time course simulation code shown in the previous section, except that they return a large collection of activities at a specified time point for stochastic or deterministic simulations respectively. The 'DR' and 'DM' models specified in calls to the assayocc function choose between repressor and MFL stochastic models of the (Discrete) hybrid stochastic/deterministic model.

After adding in noise, the data is then analysed using code taken from the flow cytometry library that was customised only to handle the different format of the data structures shown below. These steps included (1) Logicle transformation of all data, (2) fitting the control simulations with skew-t distributions, (3) training the constrained skew-t model using this data, and (4) fitting the MFL simulations with a constrained skew-t mixture model.

```r
library(stochlib) # The stochastic simulation library

EXCERPTED: customised flow cytometry analysis code

Set the number of simulations to run
Nlarge <- 3e4

Simulation times are 3, 4 and 5 hours
simtimes <- list(short=180, medium=240, long=300)

Choose the levels of induction for stochastic simulation...
indLevels <- seq(0,1,length.out=24)
... and for deterministic simulation
indLevels.det <- seq(0,1,length.out=200)

Define the background noise that will be generated to simulate the
experimental background:
```
bgdPars <- list(offset=1674*1000/5861, bgsd=1254*1000/5861)

# Set parameters as per the other thesis figures:
manpars <- list(PcBS=300, PtBS=3000, PzBS=100)

# Start by building a model of the control distributions:

# Standard deterministic simulations
SRdet.man <- lapply(simtimes, function(simtime) {
  assaydet(indLevels.det, model='R', parset='manual',
            params=manpars, assaytime=simtime)
})

# Hybrid stochastic simulations
SRocc.man <- lapply(simtimes, function(simtime) {
  assayocc(indLevels, model='DR', nsamples=Nlarge,
            parset='manual', params=manpars, assaytime=simtime)
})

PcR.man <- sapply(SRocc.man[[1]]$histlo, function(x) x$PcR[[1]])

# Add background noise
SRocc.bgd.man <- lapply(SRocc.man, function(assay)
  lapply(assay, function(x)
    lapply(x, function(sim)
      with(bgdPars, sim$Report + rnorm(Nlarge, offset, bgsd))
    )))

# Determine Logicle transformation parameters
negref.man <- lapply(SRocc.bgd.man, function(assay)
  c(Reduce(c, assay$histlo, numeric()),
    Reduce(c, assay$histhi, numeric())))

negref.man <- lapply(negref.man, function(ng) unname(quantile(ng[ng<=0], probs=0.05)))
logicleW.man <- lapply(negref.man, function(ng) (4.5 - log10(262144/abs(ng))) / 2)

# Do the Logicle transformation
SRocc.bgd.log.man <- mapply(function(assay, Wpar) {
  lapply(assay, function(on) {
    cat('\n')
  })
})
D.5 Adding experimental noise to stochastic simulations

```r
lapply(on, function(ffdata){
 cat('.'); invLogicle(ffdata, Wpar)
})
}, SRocc.bgd.man, logicleW.man, SIMPLIFY=FALSE)

SRocc.fits.man <-
lapply(SRocc.bgd.log.man, function(assay)
 skewt.unifit(with(assay, c(histlo, histhi))))

SRocc.predictor.man <-
lapply(SRocc.fits.man, function(fits) skewt.predictor(fits))

END control distributions}

Now fit the constrained skew t model to simulated MFL distributions:

Standard deterministic simulations
SMdet.man <-
lapply(simtimes, function(simtime) {
 assaydet(indLevels.det, model='M', parset='manual',
 params=manpars, assaytime=simtime) })

Hybrid stochastic simulations
SMocc.man <-
lapply(simtimes, function(simtime) {
 assayocc(indLevels, model='DM', nsamples=Nlarge,
 parset='manual', params=manpars, assaytime=simtime) })

Pc induction levels are the same as PcR man
all(PcR.man == sapply(SMocc.man[[1]]$histlo, function(x) x$PcR[[1]])) # TRUE

Add background noise
SMocc.bgd.man <-
lapply(SMocc.man, function(assay)
 lapply(assay, function(x)
 lapply(x, function(sim) {
 with(bgdPars, sim$Report + rnorm(Nlarge, offset, bgsd))
 }))
)

Use the same Logicle transformation parameters as the repressor controls

Do the Logicle transformation
SMocc.bgd.log.man <-
mapply(function(assay, Wpar) {
 lapply(on, function(ffdata){
 cat('.'); invLogicle(ffdata, Wpar)
 })
})
SRocc.bgd.log.man, logicleW.man, SIMPLIFY=FALSE)
```

The hybrid stochastic/deterministic model of the Tum−CI MFL

\[
lapply(\text{assay}, \text{function(}\text{on}) \{ \\
  \text{cat}'\n'\} \\
  lapply(\text{on}, \text{function(}\text{ffdata}) \{ \\
    \text{cat}'.'; invLogicle(\text{ffdata}, Wpar) \\
  \}) \}) \\
}, \text{SMocc.bgd.man, logicleW.man, SIMPLIFY=FALSE})
\]

# Fit mixture models (unimodal and bimodal) to the data:
# NB: the following was re-run with even more partitions in the initial
# parameter search in the 'bimodal.skewt.em' function
SMocc.mixfits.man <-
mcmapply(\text{function(}\text{assay, predictor})
  lapply(\text{assay, ModalityAnalysis, predictor=predictor}),
  \text{SMocc.bgd.log.man, SRocc.predictor.man, SIMPLIFY=FALSE})

SMocc.summary.man <-
mcmapply(\text{function(}\text{assayfits, predictor, Wpar})
  lapply(\text{assayfits, summary, W=Wpar, predictor=predictor}),
  \text{SMocc.mixfits.man, SRocc.predictor.man, logicleW.man, SIMPLIFY=FALSE})

SMocc.summary.man <-
lapply(SMocc.summary.man, \text{function(}\text{equil})
  lapply(\text{equil, function(x) within(x, bimodal <- valuediff < -100)})

# END MFL distributions }}


Henderson, D. A., Boys, R. J., Krishnan, K. J., Lawless, C., and Wilkinson, D. J. (2009). Bayesian emulation and calibration of a stochastic computer model of mitochondrial


Bibliography


