The synthesis of bimane constrained peptides and their fluorescent and structural properties

The University of Adelaide

School of Physical Sciences

Department of Chemistry

Submitted in fulfilment of the degree

Master of Philosophy (Chemical Sci)

Presented by

Aimee Horsfall B. Sc. (MDD)

Supervisor(s): Professor Andrew Abell
& Dr. Sabrina Heng

October 2016
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

--

Aimee Jade Horsfall

31/10/2016
Abstract

Aberrant protein-protein interactions often result in disease, and as such, effective protein-protein interaction inhibitors are needed to mitigate the disease state. These interaction interfaces often involve secondary structural motifs, for example, an α-helix or β-sheet. Small molecule drugs are not well suited to inhibit protein-protein interactions however constrained peptides, have shown to have great therapeutic potential.1-17 Short peptides display little secondary structure in aqueous solution and as such, peptide sequences derived from a protein-protein interaction interface for use as a protein-protein interaction inhibitor, must be constrained into the native secondary structure. This can be achieved by installing a linker between the side-chains of two appropriately spaced amino-acids in the sequence. Many different linker chemistries have been designed and implemented with good biological results. However, these constrained peptide therapeutics are still restricted by traditional small-molecule drug hurdles including cell permeability, protease degradation and the ability to visualise and track a molecule intracellularly. Linkers such as the all-hydrocarbon metathesis linker have shown great promise in reducing protease degradation and increasing cell permeability,3,7,18-21 however a fluorescent tag is still necessary to visualise a drug candidate. Here, a bimane linker is proposed as a new peptide linker to help overcome these limitations. Dibromobimane is reacted with thiol-containing amino-acid side chains to introduce a new fluorescent constraint in a series of model peptides. The reaction conditions with dibromobimane are optimised in solution to reveal that a buffered system is required for the cyclisation to occur efficiently. Optimal reaction conditions, determined by monitoring the increase of the fluorescent product, were 0.5 mg/ml peptide in 10 mM PBS with one equivalent of dibromobimane. The reaction was shown to be facile and versatile; in this thesis an array of peptides with varied sequence length, constraint length and amino-acid composition were cyclised under the same conditions, all reaching reaction completion in under 30 minutes. Additionally, these same conditions were applied successfully to react monobromobimane with series of short peptides. Cyclisation on reaction with
dibromobimane, was also demonstrated on-resin with similar efficiency. The fluorescent properties of the resultant peptides were then explored to reveal that pH does not affect the observed fluorescence however a longer peptide length resulted in greater fluorescence intensity. Furthermore, acyclic mono-bimane-functionalised peptides displayed lower fluorescence intensity than the bimane-cyclised counterparts. The fluorescence of the bimane cyclised peptide could be detected as low as 10 nM on a plate reader, which is expected to further improve on a more sensitive instrument. The secondary structure of a series of tri- and penta-peptides were investigated through CD and NMR techniques. It was deduced that the bimane linker can induce β-strand like structure in an i-i+2 constrained peptide; in contrast an i-i+4 constrained pentapeptide with homocysteine in the 1 and 5 positions results in a 3_{10} helical like structure. β-alanine containing analogues of these peptides were also synthesised and showed minimal structure.

This work outlines the synthesis of macrocyclic peptides containing a peptide constraint, in the form of a fluorescent bimane, both in solution and on-resin to produce cyclised peptides. The fluorescent properties of the resultant peptides have been shown to be biologically compatible with great fluorescence sensitivity. Furthermore, different secondary structure can be introduced by simply alterations of the constraint length from $i-i+2$ to $i-i+4$. This work provides a foundation on which to design new fluorescent bimane-cyclised peptide-based protein-protein interaction inhibitors.
Acknowledgments

This work was funded with help from an ARC Discovery grant and the Centre for Nano-scale and Bio-Photonics (CNBP). Acknowledgement must also be given to the Australian Nanoscale Fabrication Facility for the ongoing funding they provide toward our analytical instruments.

I owe a huge thanks to my supervisor Prof. Andrew Abell for his continuous support over the last couple years, both in science and my personal circumstances. I would not have been able to complete this degree without the huge assistance you have provided above and beyond what was called of you. Thank you for continually pushing me to produce work of increasing quality and never letting me settle for second best.

Thank you to Kelly Keeling, who taught me the ropes and made me feel at home in a new and rather daunting environment that is the research lab. Thank you to Sabrina Heng, for the guidance and motivational support to put things in perspective when I have needed it the most. Thank you to Denis Scanlon and Kate Wegner for allowing me to continually pick their brains and wealth of knowledge.

The last couple of years have been an absolute rollercoaster and without a huge support team both academically and socially I would not be filling in this final addition to my thesis. To Irene, there is no way I could have picked a better desk-buddy to help see me through the first year of research, thank you for all the laughs, I’m so glad our friendship has lasted since you left. To Kirby, my sanity would have been far worse off without you as a wall to sound ideas off of whether that was over a coffee, beer or test tube. To all of you whom I shared a beer with at the end of a long day, when science decided cooperating was over-rated - you are what makes me love science when I hate it the most, in particular to the regular Friday crew of Tash, Oli, Kate. Harley you earn a special mention for always turning up at the most opportune times and suffering through my drafts in the last week. To Cohen and Matt, for the
endless mind-numbing hilarious videos, wines and knowing when its best to not ask or just nodding when you have no idea what I’ve started rambling about.

Pat, thank you for bearing with me on the days of little sanity, the early mornings, the even later nights, and providing an endless stream of coffee and love; and for trying to understand, even when you really don’t. This would have been all the harder without your support and encouragement.

Mum and Dad, despite the cliché, I would not be here, handing up this work, without you. Thank you for supporting me in my decision to move away, and for always fuelling my fire to do better. In spite of the distance from home, this has been one of the most rewarding, yet challenging experiences I have endured. To Lachlan, thank you for the endless stream of memes (selected specifically for my current circumstance), laughs, binge TV sessions and adventures every time we catch up, if only we could make them more often.

I have learnt so much more, in the last year, about science and myself, than in the last ten and have grown so much as a result – I hope you would agree. Although this has been by far the most challenging mental experience of my life, above all else, it has highlighted what an awesome support group surrounds me and just how lucky I am for that. Thank you, to you all so much. Here’s to the next four years!
Abbreviations

AAB: Ammonium acetate buffer; **Ac₂O:** Acetic anhydride; **ACN:** Acetonitrile; **dBB:** Dibromobimane; **CD:** Circular Dichroism; **DCM:** Dichloromethane; **DIPEA:** \(N,N \)-Diisopropylethylamine; **DMF:** \(N,N' \)-Dimethylformamide; **DMSO:** Dimethylsulfoxide; **DODT:** 2,2′-(Ethylenedioxy)diethanethiol; **Fmoc:** 9-Fluorenylmethoxycarbonyl; **HATU:** 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3- oxid hexafluorophosphate; **HCy:** Homocysteine; **HOBt:** 1-Hydroxybenzotriazole hydrate; **HPLC:** High Performance Liquid Chromatography; **HRMS:** High Resolution Mass Spectrometry; **LCMS:** Liquid Chromatography Mass Spectrometry; **mBB:** Monobromobimane; **Mmt:** 4-Methoxytrityl; **NMR:** Nuclear Magnetic Resonance; **Pbf:** 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl; **PBS:** Phosphate buffered saline; **PPI:** Protein-protein interaction; **PyBOP:** (Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate; **RP-HPLC:** Reverse-Phase High Performance Liquid Chromatography; **SPPS:** Solid-phase peptide synthesis; **TFA:** Trifluoroacetic acid; **TFE:** 2,2,2-Trifluoroethanol; **TIPS:** Triisopropylsilane; **TNBS:** 2,4,6-Trinitrobenzenesulfonic acid; **Trt:** Trityl.
Table of Contents

Declaration .. iii

Abstract ... v

Acknowledgments .. ix

Abbreviations ... xiii

Table of Contents ... xv

Chapter 1: Introduction ... 1
 1.1 Protein-protein interactions in disease ... 1
 1.2 Protein structure ... 2
 1.3 Methods for determining secondary structure .. 6
 1.3.1 Circular Dichroism .. 6
 1.3.2 Nuclear Magnetic Resonance Spectroscopy .. 7
 1.4 Constrained peptides ... 10
 1.5 An alternative constraint ... 15
 1.5.1 Aims for this thesis .. 16

Chapter 2: Synthesis and Fluorescent Properties .. 19
 2.1 Synthesis .. 19
 2.1.1 Optimisation of solution-phase reaction conditions 19
 2.1.2 Applications of the solution-phase dibromobimane reaction 27
 2.1.3 Cyclisation on solid support .. 31
 2.2 Purification .. 35
 2.3 Fluorescent Properties ... 37
 2.4 Chapter conclusions ... 41
5.3 Analysis ... 83
 5.3.1 Analytical Methods .. 83
 5.3.2 NMR Spectroscopy .. 83
 5.3.3 Circular Dichroism ... 83
 5.3.4 Plate Reader Experiments ... 84

5.4 Syntheses ... 85

References .. 107

Appendices ... 123

Appendix 1: Calculations .. 123

Appendix 3: Characterisation .. 131

 1D NMR Spectra .. 131
 2D NMR Spectra .. 143
 HPLC Spectra .. 146