Dynamic Analysis of Steel Confined Concrete Tubular Columns against Blast Loads

Fangrui Zhang
Bachelor of Engineering (Civil & Structural) (Hons)

Thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide, Australia

The School of Civil, Environmental and Mining Engineering

January 2017
Table of Contents

Abstract .. 1
Statement of Originality ... 3
List of publications ... 4
Acknowledgements ... 5
Introductory Background ... 6

Chapter 1 – Experimental Investigation of CFDST Columns under Close-range Blast Loading ... 18
Experimental study of CFDST columns infilled with UHPC under Close-Range blast loading ... 22
 1. Introduction .. 22
 2. Experimental Program .. 25
 2.1 Specimen preparation .. 25
 2.2 Material properties ... 27
 2.3 Data acquisition and measurement devices ... 28
 2.4 Experiment setup .. 31
 3. Test Results ... 32
 3.1 Pressure-time histories .. 32
 3.2 Displacement-time histories .. 37
 4. Analysis and Discussion .. 38
 4.1 The effect of charge weight ... 38
 4.2 The effect of axial load ... 39
 4.3 The effect of test setups .. 40
 4.4 The effect of hollow core ... 41
 4.5 The deformed shape of and crack formation on CFDST specimens 42
 5. Conclusions ... 44

Residual Axial Capacity of CFDST columns infilled with UHPFRC after Close-Range blast loading .. 48
 1. Introduction ... 50
 2. Test Specimens .. 53
 3. Experimental Program .. 55
 3.1 Phase one: the static test ... 55
 3.2 Phase two: the blast experiment ... 61
 3.3 Phase three: the residual performance test ... 66
 4. Conclusion .. 73

Chapter 2 – Numerical Study of Concrete-filled Steel Columns under Close-range Blast Loading .. 77
Numerical Simulation of Concrete Filled Steel Tube Columns against BLAST Loads...... 81
 1. Introduction ... 81
 2. Finite Element Analysis of CFST Members .. 83
 2.1 Concrete model ... 84
 2.2 Steel model .. 86
 3. Experimental Program .. 87
 3.1 Specimen preparation .. 87
 3.2 Material test .. 88
 3.3 Three Point Bending Tests ... 89
 3.4 Blast Tests .. 91
 4. Finite element Model validation .. 94
 4.1 Validation of Three Point Bending Tests ... 94
 4.2 Validation of the Blast Tests ... 98
 5. Conclusions ... 107

Numerical Modeling of Concrete-Filled Double-Skin Steel Square Tubular Columns under
Blast Loading

1. Introduction ... 113
2. Finite Element Modelling ... 117
 2.1 Elements and boundaries .. 117
 2.2 Material properties ... 119
 2.3 Simulation of blast load ... 121
 2.4 Validation of the uniaxial compression test ... 122
3. Parametric Studies and Discussions ... 123
 3.1 Concrete strength .. 124
 3.2 Outer tube thickness ... 125
 3.3 Inner tube thickness ... 127
 3.4 Cross sectional geometry ... 128
 3.5 Hollowness ratio ... 131
 3.6 Axial load ... 133
 3.7 Support condition ... 135
4. Conclusion .. 137

Experimental and Numerical Study of Blast Resistance of Square CFDST Columns with Steel-Fibre Reinforced Concrete ... 144
1. Introduction ... 144
2. Experiment .. 147
 2.1 Specimen fabrication ... 147
 2.2 Material properties ... 148
 2.3 Experiment setup .. 149
3. Test Results ... 150
 3.1 Pressure-time histories .. 151
 3.2 Displacement-time histories .. 152
 3.3 Failure mode .. 153
4. Numerical Simulation .. 153
 4.1 Model Calibration .. 154
 4.2 Model Validation .. 158
5. Parametric Studies .. 162
 5.1 The effect of axial load ratio ... 162
 5.2 The effect of hollow section ratio .. 164
 5.3 The effect of concrete strength ... 166
 5.4 The effect of inner & outer tube thickness .. 168
 5.5 The effect of cross-section geometry .. 169
6. Conclusions .. 170

Chapter 3 – Numerical Derivation of Pressure-Impulse Diagrams 175
Numerical Derivation of Pressure-Impulse Diagrams for Square UHPCFDST Columns 178
1. Introduction ... 178
2. Numerical Modelling .. 181
 2.1 Concrete constitutive model ... 181
 2.2 Steel constitutive model ... 183
 2.3 Meshing and boundaries ... 184
 2.4 Application of blast loading ... 185
 2.5 Validation of the numerical model ... 185
3. Numerical Derivation of Pressure-Impulse Diagram .. 187
 3.1 Damage criterion .. 188
 3.2 Numerical derivation of damage index D ... 189
4. Parametric Studies and Results .. 190
 4.1 Side length, b ... 191
 4.2 Column height, H .. 192
4.3 Axial load ratio, ρ_{axial} ... 193
4.4 Hollow section ratio, ρ_{hollow} .. 194
4.5 Inner tube steel ratio, ρ_{inner} ... 196
4.6 Outer tube steel ratio, ρ_{outer} ... 197
4.7 Concrete compressive strength, f'_c ... 198
4.8 Steel yield strength, f_y .. 199

5. Normalisation of Pressure-Impulse Diagram 200
6. Conclusion ... 201

Chapter 4 – Concluding Remarks and Recommendation for Future Work 206
Abstract

The use of composite construction has drawn more and more attention in recent decades. This thesis contains a number of journal articles which aim to enrich the knowledge of the performance of concrete filled tubular columns when subjected to blast loading. Experimental investigations are used in conjunction with numerical analysis to provide a thorough assessment of the blast-resistance of concrete filled tubular columns.

The first chapter mainly focuses on the experimental study on concrete filled tubular columns under blast loading. A large-scale blast experimental program is carried out on concrete filled double-skin steel tube (CFDST) columns. The blast experiment aims to examine the blast-resistance of ten CFDST specimens, including five with square cross-section and the other five with circular cross-section. The parameters that are investigated during the blast experiment include: cross-sectional geometry, explosive charge weight and magnitude of axial load. After the experiment, several damaged test specimens are then transported back to the laboratory for residual axial load-carrying capacity tests. The proposed CFDST columns are able to retain more than 60% of its axial load-carrying capacity even after being subjected to close-range explosion.

As blast experiments are often costly and associated with potential safety concerns, numerical tools have been adopted by more and more researchers. In the second chapter of the thesis, numerical approaches in modelling the dynamic behaviour of concrete filled steel tube (CFST) columns and CFDST columns under blast loading are presented. The numerical models are validated against the results of the blast experiment as described in the first chapter and good agreement is achieved. Parametric studies on the effect of column dimensions and material properties are also discussed through intensive numerical simulations.

In the last chapter, a numerical method to generate pressure-impulse diagrams for CFDST columns is proposed which uses a damage criterion involving the residual axial
load-carrying capacity. Based on the numerical method, pressure-impulse diagrams for different column configurations are derived and analytical expressions of deriving pressure-impulse diagrams for CFDST columns are also developed through regression analysis.
Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

……………………………………..………………..………………..………………..
Print Name Signature Date
List of publications

 Status: Published

 Status: Published

 Status: Published

 Status: Published

 Status: Published

6. Numerical derivation of pressure-impulse diagrams for square UHPCFDST columns
 Status: Submitted to *Thin-walled Structures*
Acknowledgements

My sincerest gratitude goes to Professor Chengqing Wu, whose knowledge in the field of structural responses to blast loadings knows no bounds. For his willingness to provide guidance and assistance, no matter what day of the week it is, I am also extremely grateful for.

I would also like to thank Dr Terry Bennet and Professor Xiao-Ling Zhao, who were always willing to provide their expertise when needed. Also, my friends and family deserve my thanks and much more, for their patience and support. Finally, I dedicate this thesis to my wife, Ye Xia, who has provided me with the confidence and support to complete this thesis to the best of my abilities.