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ABSTRACT 

Craniosynostosis is a developmental disorder characterised by the premature fusion of skull sutures 

in children, necessitating repetitive surgical interventions throughout infancy. A major goal of 

craniosynostosis research is to develop molecular adjunctive treatments to reduce the morbidity 

and complications associated with multiple craniofacial surgery. Recent progress in molecular 

biology has highlighted the regulatory effects of bone morphogenetic protein 2 (BMP2) 

antagonists, including glypicans (GPC1 and GPC3), on suture morphogenesis and cellular 

functions. Moreover, the availability of genetically-engineered murine models of human 

craniosynostosis and drug-delivery systems (DDS) has assisted towards investigation of the 

glypican-based therapeutics in vivo. However, the conventional DDS are limited by their 

uncontrolled release patterns and undesired pharmacokinetics. The development of clinically 

viable implantable DDS, prior to human trials, require preclinical studies to investigate their 

characterisation, efficacy, pharmacokinetics and toxicity both in vitro and in vivo (in animal 

models). 

Medical Titanium (Ti) implants nanoengineered with Titania nanotubes (TNTs) have been 

recognised as a superior delivery platform in complex bone therapies (i.e. orthopaedics, cancer 

etc.) to localise the release of therapeutics in a controlled and sustained manner. This thesis presents 

the use of therapeutic-releasing TNT/Ti implant technology in a murine model, to address a key 

clinical challenge of delaying post-operative sutural bone growth in craniosynostosis. This 

interdisciplinary project has three aspects and specific aims including: (i) engineering and in vitro 

study: to fabricate and optimise TNT/Ti implants to study glypican release in vitro and bioactivity 
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in murine C2C12 cells, (ii) pre-in vivo cell study: to evaluate the biological response at TNT-cell 

interface of heterogeneous (human) suture mesenchymal cells (SMCs) and (iii) in vivo study: to 

assess in vivo implant biocompatibility and efficacy as a glypican delivery system in wildtype and 

Crouzon murine models. 

TNT/Ti implants with controllable nanotube dimensions were fabricated via 

electrochemical anodisation process, and their protein-releasing capability and protein 

functionality were tested spectrophotometrically in physiological buffer and transfected C2C12 

cells (BMP reporter cells), respectively. A metabolic activity assay was performed to investigate 

human SMC behavior at TNT-cell interface. The in vivo performance was assessed using micro-

CT and histology in a surgical cranial defect model to verify TNT/Ti implant biocompatibility and 

glypican release efficiency. 

A protein loaded, mechanically robust TNT/Ti implant (120 ± 10 nm pore-diameter) 

displayed a biphasic in vitro release profile, with high loading efficiencies and prolonged release 

durations, spanning across 1 to 4 weeks. The pharmacokinetic modelling, based on the protein 

release parameters, showed an anomalous burst release and a zero-ordered sustained release. GPC1 

and GPC3 released from TNTs were biologically active and reduced the BMP2-osteogenic activity 

in C2C12 cells. A decrease in adhesion and proliferation of SMCs at the TNT-cell interface, 

rendered the implant nanotopography and surface chemistry suitable for craniosynostosis therapy. 

The murine studies confirmed the implant biocompatibility and reiterated the sustained delivery of 

glypicans in vivo, demonstrated by decreased bone volume and surface area in therapeutically-

intervened cranial defects.  
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These findings confirm the potential of the nanoengineered TNT/Ti implants as an effective 

glypican delivery system to delay rapid post-operative bone re-growth in a murine model. This 

approach may evolve into a non-surgical molecular adjunct to minimise the need for recurrent re-

operations in human craniosynostosis management.
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PREFACE 

This thesis is submitted as a “Combined Conventional Publication format” in accordance with 

“Specifications for Thesis 2015” of the University of Adelaide. It contains an introduction, a 

detailed literature review and six experimental chapters followed by conclusion and appendices. 

The research that was carried out during the three and a half years of this PhD program has resulted 

in successful publication and/or submission of two articles in reputed journals. Additionally, two 

other journal articles are under preparation. Also, the research findings of this PhD study have been 

presented at 7 national and international conferences. A complete list of publications is provided 

in following pages (p. xxii-xxv).  

 

 

 

 

  

 

 

 

 

xxi 
 



 
 

LIST OF PUBLICATIONS 

Peer-reviewed Journal Articles Published: 

1. M. Bariana, P. Dwivedi, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson , “Biological 

Response of Human Suture Mesenchymal Cells to Titania Nanotube-Based Implants for 

Advanced Craniosynostosis Therapy”, Colloids and Surfaces: B, 2017, 150, 59-67. 

 

Journal Articles Submitted/In Preparation: 

2. M. Bariana, P. Dwivedi, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson, " Glypican-Based 

Drug Releasing Titania Implants to Regulate BMP2 Bioactivity as a Potential Approach for 

Craniosynostosis Therapy”, Nanomedicine: Nanotechnology, Biology and Medicine, 2016. 

(Invited article under peer-review)  

3. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson , “ Titania Nanotube-based 

Glypican-3 delivery Implants inhibit Cranial Defect Healing in Crouzon Model of 

Craniosynostosis” 2016. (Under preparation for Nature Communications) 

4. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson , “Assessment of  in vivo Tissue 

Response to Titania Nanotube-based Cranial implants” 2016. (Under preparation for Journal 

of Biomedical Materials Research Part A) 

 

xxii 
 

 
 



 
 

Conference Presentations: 

1. M. Bariana, P. Dwivedi, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson , “Cellular response 

of Human Suture Cells on Titania Nanotube-based Implants for Craniosynostosis Therapy”,  

International Conference on Nanoscience and Nanotechnology 2016, Canberra, Australia, 

February 2016. (Poster presentation) 

2. M. Bariana, P. Dwivedi, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson , “Nanoengineered 

Protein-Delivery System for Craniosynostosis Therapy”,  IADR ANZ Division 55th Annual 

Scientific Meeting, Dunedin, New Zealand, August 2015. (Poster and oral presentation) 

3. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson, “Titania Nanotubes-based 

Protein-release Studies to Delay Suture Fusion in Re-synostosis Murine Model”, 6th 

International Nanomedicine Conference, Sydney, Australia, July 2015. (Oral presentation) 

4. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson, “A Nano-approach for 

Craniosynostosis Therapy” Asia Pacific Craniofacial Association 2014 Biennial Meeting, 

Adelaide, Australia, October 2014. (Oral presentation)  

5. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic, P.J. Anderson, “A Novel Treatment to Prevent 

Re-operation in Craniosynostosis” 2014 Joint Australian-New Zealand CRS Student Workshop 

Development of Pharmaceutical Therapeutics: From Biological Imaging to Delivery System 

Optimisation, Adelaide, Australia, October 2014 (Oral presentation) 

xxiii 
 

 
 



 
 
6. M. Bariana, S. Ranjitkar, J. Kaidonis, D. Losic,  P.J. Anderson, “Protein-eluting Titania 

Nanotube-based Implants for Craniosynostosis Therapy” 5th International Nanomedicine 

Conference, Sydney, Australia, June 2014. (Poster presentation) 

7. M. Bariana, T. Kumeria, A. Santos, S. Ranjitkar, J. Kaidonis, D. Losic,  P.J. Anderson, 

“Nanoporous Anodic Alumina as Protein-Delivery System for Localised Therapy: Controlling 

Release Characteristics by Structural modifications” International Conference on Nanoscience 

and Nanotechnology 2014, Adelaide, Australia, February 2014. (Poster presentation) 

Awards: 

1. International Association for Dental Research (IADR) ANZ Division: Joan Chong Award in 

Dental Materials 2014 for early career researchers (October 2014). 

2. The Colgate Travel Award from the School of Dentistry, The University of Adelaide to 

present  at the IADR ANZ Division meeting in Dunedin, New Zealand (August 2015). 

3. Best Presentation Award at Research Day organised by the Faculty of Health Sciences, The 

University of Adelaide (July 2015). 

 

 

 

xxiv 
 

 
 



 
 

Additional Publications: 

Book Chapter: 

1. M. S. Aw, M. Bariana, D. Losic, “Nanoporous Anodic Alumina for Drug Delivery and 

Biomedical Applications”, Nanoporous Alumina: Fabrications, Structure, Properties and 

Applications 2015, Springer International Publishing AG- Germany, Springer Series in 

Materials Science 219, DOI: 10.1007/978-3-319-20334-8. 

Review Articles: 

2. A. Santos, M. Sinn Aw, M. Bariana, T. Kumeria, Y. Wang., D. Losic, “Drug-releasing 

implants: Current progress, challenges and perspectives”, Journal of Materials Chemistry B, 

2014, 2, 6157-6182. 

3. D. Losic, M. Sinn Aw, A. Santos, K. Gulati, M. Bariana, “Titania nanotube arrays for local 

drug delivery: Recent advances and perspectives”, Expert Opinion on Drug Delivery, 2015, 

12, 103-127. 

 

 

 

xxv 
 

 
 



 
 

DECLARATION 

I certify that this work contains no material which has been accepted for the award of any other 

degree or diploma in my name, in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another person, 

except where due reference has been made in the text. In addition, I certify that no part of this work 

will, in the future, be used in a submission for any other degree or diploma in any university or 

other tertiary institution without the prior approval of the University of Adelaide and where 

applicable, any partner institution responsible for the joint-award of this degree. I acknowledge the 

support I have received for my research through the provision of an Australian Government 

Research Training Program Scholarship. 

I give consent to this copy of my thesis when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

 The author acknowledges that copyright of published works contained within this thesis resides 

with the copyright holder(s) of those works.  

I also give permission for the digital version of my thesis to be made available on the web, via the 

University’s digital research repository, the Library catalogue and also through web search engines, 

unless permission has been granted by the University to restrict access for a period of time. 

 

            MANPREET BARIANA 

xxvi 
 

 
 



 
 

AKNOWLEDGEMENTS 

“Nothing worth having comes easy” and this amazingly daunting yet worthy PhD journey was no 

different. This unique milestone in my life would have been impossible to achieve without my 

professional and personal support system. First and foremost, I would like to thank my principal 

supervisor Prof. Peter Anderson for his unwavering support and encouragement over the years, 

from introducing me to the world of craniofacial biology to putting the “bio” in my engineering. I 

have been constantly amazed by his passion, enthusiasm and dedication for research which may 

only be eclipsed by his commitment to the students. He was always an email away to discuss new 

ideas, problems with research, or even for a “pep talk”, no matter how busy his schedule was! He 

has worked equally hard (if not more) to get me across the finish line and I would not be overstating 

when I say, I owe this thesis to him. 

I would also like to thank my co-supervisor Prof. Dusan Losic for giving me my first break as a 

naïve researcher 5 years ago and supporting me till the end of my PhD. He gave me freedom to 

explore the exciting field of biomaterials and believed in my ability to handle this exciting 

interdisciplinary project. I would also like to acknowledge my co-supervisor A/Prof. John Kaidonis 

for always having full confidence in me (even when I doubted myself). His kind and insightful 

comments (both work and life-related) have helped me stay motivated and sane. He has always 

guided me with patience and a big smile on his face. I cannot express my gratitude towards Dr. 

Sarbin Ranjitkar for being a tremendous mentor in more ways than one. His valuable feedback and 

attention to detail has turned hundreds of my imperfect drafts into well-crafted 

manuscripts/chapters. His prompt and timely advice has kept this thesis on schedule, even if it 

xxvii 
 

 
 



 
 
meant spending the weekends to help me run statistics, chase paper submissions, or just pick up 

typos and spelling errors. Besides being an ace advisor, he’s also a great friend. I could not have 

asked for a better supervisory panel to work with. I would like to extend a big thank you to the 

University of Adelaide for giving me the opportunity and financial support to pursue this research. 

The friendly staff at Women’s and Children’s hospital deserve a special mention. More specifically, 

I would like to thank Dr. Prem Dwivedi for training me in cell culture and related bioassays, all the 

while reminding me the importance of being organised and planned during the experiments. I am 

also extremely grateful to Kerry Lymm for her infallible help with all things related to bone 

histology, and to Lynn Marsden and Steve for managing and taking care of my mice and patiently 

helping me out in the unfamiliar animal house territory. 

The support from characterisation facility at Adelaide microscopy is of paramount importance to 

this research. I would like to acknowledge Ruth Williams, Ken Nuebauer, Lyn Waterhouse and 

Agatha Labrinidis for their constant help and guidance (even after hours and on weekends). Ruth 

has been an absolute legend, forever staying positive to help me tackle the never ending list of 

problems related to micro-CT (she called me “trouble” for a reason). I also appreciate the help 

provided by the IPAS (at OptoFab node of the Australian National Fabrication Facility) during 

Implant fabrication. I would like to extend my gratitude to workshop staff from the School of 

Chemical Engineering, particularly Jason Peak, Michael Jung and Jeffrey Hiorns, for assistance 

with the fabrication of the electrochemical set-up. 

I would like to thank my 6th floor dentistry family for accepting me as one of their own; Special 

thanks to Prof. Grant Townsend for his valuable fatherly advice whenever I was in distress; Karen 

xxviii 
 

 
 



 
 
Squires and Michelle Bockmann for taking care of the administrative and financial aspects of my 

project, so that I can fully focus on research and Dr. Fizza Sabir for the much needed friendly 

conversations during my otherwise socially hibernated period of thesis writing. I would also like 

to acknowledge the members of the Losic group, including Dr. Tushar Kumeria, Dr. Abel Santos, 

Dr. Karan Gulati, Shervin Kabiri, Dr. Ivan Andjelkovic, Dr. Jie Qin, Dr. Diana Tran, Ramesh 

Karunagaran and Charu Rohatgi for their support, advice, and friendship over the years.  

Special thanks to Karan sir for making the lab work interesting and providing valuable advice 

whenever I was confused, stuck or even desperate for help. To Charu Di for being my family away 

from home. She and her amazing food made me miss home a little less. A very special thanks goes 

to Tushar, for he was my inspiration to pursue a career in research. Over the years he has taught 

me so many things, both professionally and personally, and has inspired me to push harder and be 

a better researcher. Although he has moved half-way across the world since past 2 years, he will 

forever be my “person” (the one you list as emergency contact in every life situation). 

This thesis would be incomplete without appreciating my best friends Arjun and Ishan; Arjun, you 

definitely are the epitome of true friendship, thank you for having my back all these years. Ishan, 

thank you for being my personal therapist and keeping a check on me. I can’t wait for all of us to 

graduate and be the most epic “Dr-trio”. Not to forget my local friends, Rahul, Arun and K.P., for 

they have endured more than their fair share of “I can’t catch up tonight because…”.  A very special 

thanks to Nitin for always dropping me home after all those late nights at work despite my endless 

tantrums. 

xxix 
 

 
 



 
 
Most importantly, I would like to convey my utmost gratitude towards my family; Mum for her 

unconditional love, genuine care and constant prayers, Dad for believing in me and my dreams and 

off course for the “brainy genes”, my big brother for being my hero and stress-buster, and my sis-

in-law for being my personal cheerleader. You guys mean the world to me and I know I can always 

count on you for anything and everything.  

“Being a PhD student is like becoming all of the Seven Dwarfs. In the beginning you're Dopey and 

Bashful. In the middle, you are usually sick (Sneezy), tired (Sleepy), and irritable (Grumpy). But 

at the end, they call you Doc, and then you're Happy." (Adapted from Azuma, 2002, p.2) 

 
I dedicate this thesis to these very special people in my life:  

My Mum  

My Dad 

My Brother  

And my fur-baby Dazzle. 

I love you all dearly. 

 

 

xxx 
 

 
 


	TITLE: Nanoengineered Titanium as Protein-Releasing Implants: A Molecular Adjunct to Reduce Craniofacial Surgery
	Table of Contents
	List of Figures
	LIST OF TABLES
	ABSTRACT
	PREFACE
	LIST OF PUBLICATIONS
	DECLARATION
	AKNOWLEDGEMENTS


