Effect of 3D Stress States at Crack Front on Deformation, Fracture and Fatigue Phenomena

By

Zhuang He

B. Eng., M. Eng.

A thesis submitted for the degree of Doctor of Philosophy at the

School of Mechanical Engineering
The University of Adelaide
Australia

Submitted: December 2015
Accepted: March 2016
Abstract

Theoretical, numerical and experimental studies involving elastic plate components, weakened by through-the-thickness cracks and subjected to loading parallel to the plane of the plate, are often based on plane stress or plane strain simplifications. These simplifications essentially reduce the dimensionality of the physical three-dimensional problem and enable the achievement of effective analytical and numerical solutions for many important practical problems. The influence of various three-dimensional effects, such as the variation of stresses across the plate thickness, effects of the three-dimensional corner (vertex) singularities and coupling of fracture modes II and III, on the deformation and stresses near the crack front are at present largely ignored or viewed as negligible for all practical purposes. As a result of this view, the outcomes of experimental studies and fracture tests are also commonly analysed within the framework of the plane theories of elasticity. Nevertheless, a number of theoretical and experimental studies over the past two decades have demonstrated that the predictions made within these theories can be unsatisfactory and the effect of three-dimensional stress states at the crack front on deformation, fatigue and fracture of plate components can be significant.

This thesis aims to elucidate the role of three-dimensional stress states in the deformation, fracture and fatigue phenomena further. The main outcomes of this thesis are: (1) the development and validation of a simplified method for the evaluation of the fatigue crack front shapes and their effect on the steady-state fatigue crack growth rates in plate components; (2) investigation of the effect of three-dimensional corner (vertex) singularities on the stress intensities and displacement field near the crack front; and (3) development and validation of a new experimental approach for the evaluation of mode I and mode II stress intensity factors from the measurement of the out-of-plane displacements in the near crack tip region, which are affected by three-dimensional effects, and, in particular, by the 3D corner (vertex) singularity.
This new research is important in many engineering contexts. For example, the new theoretical model, which takes into account the actual shape of the crack front, can be utilised in advanced fatigue life calculations, as well as in failure investigations. The latter is possible as the shape of the fatigue crack front can now be related to the parameters of fatigue loading. The new experimental approach developed in this thesis can be useful in fracture characterisation of thick plate components with through-cracks. This approach specifically addresses the situation when the K-dominance zone, or William’s solution convergence domain, are relatively small. In this case, the data extraction region can be affected by the three-dimensional stress states leading to significant errors in the evaluation of the stress intensity factors when using traditional approaches.

This thesis is presented in the form of a compendium of published papers that are the summation of the research undertaken by the author. The five articles which form the main body of the thesis are united by a common theme, which is the investigation of three-dimensional effects near the crack front on stresses and displacements, fracture and fatigue phenomena. Two appendices are also included; they represent a compilation of the candidate’s publications related to the main topic of the thesis.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and, where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

___________________ _____________________
Zhuang He Date
Acknowledgments

This thesis has become a reality with the kind support and help of many individuals. Here I would like to extend my sincere thanks to all of them.

Foremost, I would like to express my deepest gratitude to my supervisors, Professor Andrei Kotousov, Dr Giang Nguyen and Dr Francis Rose, for their expert guidance, care and patience, providing me with an excellent atmosphere in which to conduct research. In addition, I express my appreciation to Professor Filippo Berto, who was always willing to guide me with my academic research and paper writing. His thoughtful comments are valued greatly. Special thanks go to Mr Andrea Fanciulli for his assistance with my experimental study. It would have been a lonely lab without him.

My sincere thanks also go to Professor Reza Ghomashchi, Professor Ricardo Branco, Dr John Codrington, Dr Erwin Gamboa, Mr Garry Clarke, Miss Alison-Jane Hunter and Ms Fei Gao for providing me with encouragement and support in many aspects of my work.

I thank my postgraduate friends, Aditya Khanna, Munawwar Mohabuth, Houman Alipooramirabad, Pouria Aryan and Sunly Bun for their inspiration and insightful discussions, which provided much stress relief throughout the day.

Last but not the least, I would like to thank my grandmother, aunt and parents for their unconditional love and support throughout my life.
List of Publications

Journal publications

Conference publications

Table of Contents

Abstract ... i
Declaration .. iii
Acknowledgments .. iv
List of Publications .. v
Table of Contents .. vii

1 Introduction .. 1
 1.1 Fracture Mechanics .. 3
 1.2 Brittle Fractures ... 4
 1.3 Historical Development of the Field .. 5
 1.4 Objectives of the Research ... 8
 1.5 Details of Publications Included in the Thesis ... 9
References .. 14

2 Literature Review .. 17
 Nomenclature .. 19
 2.1 Introduction .. 20
 2.2 Classical Linear Elastic Fracture Mechanics ... 20
 2.2.1 Williams’ Crack Tip Solution ... 20

vii
2.1 Analytical Approach ... 59
2.2 Parametric Equation for Crack Front Shape 60
2.3 Outline of the Numerical Procedure 60
2.4 Comparison with Experimental Data 61
2.5 Effect of Various Parameters on Crack Front Shapes 62
3 Normalised Load Ratio Parameter... 62
4 Conclusion .. 63
References .. 64

4 Effect of Vertex Singularities on Stress Intensities near Plate Free Surfaces 67
Statement of Authorship .. 69
Abstract .. 71
Nomenclature .. 71
Introduction ... 72
Objectives of the Present Investigation 73
Finite Element Model and Validation 74
Effect of Vertex Singularities on Local Stress Intensity Factor 75
Three-Dimensional J-Integral .. 75
Conclusions .. 78
References .. 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Numerical Model and Validation</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>Out-Of-Plane Surface Displacement under Model II Loading</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Experimental Study</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Specimen Preparation and Loading Set Up</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>DIC Measurement of Out-Of-Plane Displacement</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>DIC Results and Discussion</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>On Evaluation of Stress Intensity Factor from Far and Near Vertex Fields</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Statement of Authorship</td>
<td>107</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Details of Numerical and Experimental Studies</td>
<td>115</td>
</tr>
<tr>
<td>2.1</td>
<td>Specimen Geometry</td>
<td>115</td>
</tr>
<tr>
<td>2.2</td>
<td>Details of Numerical Modelling</td>
<td>116</td>
</tr>
<tr>
<td>2.3</td>
<td>Details of Specimen Preparation and Experimental Procedure</td>
<td>116</td>
</tr>
<tr>
<td>2.4</td>
<td>Measurement of Displacement by DIC</td>
<td>117</td>
</tr>
<tr>
<td>2.5</td>
<td>Extraction of SIF from Far Crack Tip Field</td>
<td>118</td>
</tr>
<tr>
<td>2.6</td>
<td>Extraction of SIF from near Crack Tip Field</td>
<td>119</td>
</tr>
</tbody>
</table>
3 Results and Discussion .. 121

4 Conclusions .. 126

Acknowledgements ... 127

References ... 128

8 Conclusions and Future Work .. 133

8.1 Summary .. 135

8.2 Development of A Simplified Method for Evaluating Fatigue Crack Front Shapes .. 135

8.3 Investigation of the Effect of 3D Corner Singularity on Stress Intensities near Plate Free Surfaces ... 136

8.4 Development of an Experimental Method for Evaluating SIF from Near Crack Tip Displacement Field .. 137

8.5 Recommendations for Future Work ... 138

References ... 140

Appendix A. On Influence of Non-Singular Stress States on Brittle Fracture.. 143

Appendix B. Application of Digital Image Correlation Technique for Investigation of the Displacement and Strain Field within a Sharp Notch... 155