The role of α-synuclein in the pathology of murine Mucopolysaccharidosis type IIIA

Kyaw Kyaw Soe

(MBBS, MSc)

Lysosomal Diseases Research Unit

South Australian Health and Medical Research Institute

and

Department of Paediatrics School of Medicine, Faculty of Health Sciences University of Adelaide

> Thesis submitted for the degree of Doctor of Philosophy

> > January 2017

TABLE OF CONTENTS

List of abbreviations	VIII	
Thesis abstract	IX	
Declaration	XI	
Acknowledgements	XII	

Chapter (1): Introduction and preliminary review

1.1 General introduction	1
1.2 The lysosome and its functions	2
1.3 Biosynthesis of lysosomal enzymes	5
1.4 Functions of mannose-6-phosphate receptors	5
1.5 Lysosomal storage disorders	6
1.6 The mucopolysaccharidoses (MPS)	6
1.7 Sanfilippo syndrome	9
1.8 Sanfilippo syndrome type A (MPS type IIIA)	10
1.9 Clinical presentations of Sanfilippo syndrome	13
1.10 Diagnosis and therapeutic approaches for MPS disorders	15
1.11 MPS IIIA animal models	16
1.12 Primary storage pathology: glycosaminoglycans	18
1.12.1 Structure and functions of glycosaminoglycans	18
1.12.2 Degradation of glycosaminoglycans	19
1.12.3 Heparan sulphate metabolism	19
1.13 Secondary pathology	23
1.13.1 Gangliosides, microglia, neuroinflammation and cell death	23
1.13.2 Secondary proteinaceous accumulation	24
1.13.3 α -Synuclein accumulation in lysosomal storage disorders	25
1.14 Cellular protein degradation pathways	26
1.15 The synuclein family	30
1.16 The α -synuclein protein	31

1.16.1 Structure and location of α -synuclein	31
1.16.2 Structural components of α -synuclein	33
1.16.3 Physiological nature of α -synuclein	33
1.16.4 Truncated isoforms of α -synuclein	34
1.16.5 Physiological functions of α -synuclein	36
1.16.6 Importance of α -synuclein in normal central nervous system function	38
1.16.7 Improved functional outcomes in the absence of α -synuclein	39
1.16.8 Over-expression of α-synuclein	40
1.16.9 Degradation of α -synuclein	41
1.16.10 Pathological forms of α -synuclein	42
1.17 Clinical significance of α -synuclein in Parkinson's disease	44
1.18 Link between lysosomal storage disorders and α -synuclein-related	46
neurodegenerative disorders	
1.19 Research significance and hypothesis	48
1.20 Aims of the study	49

Chapter (2): Materials and Methods

2.1 Materials

2.1.1 Electrophoresis	50
2.1.2 Genotyping	50
2.1.3 Buffers and substrates	50
2.1.4 Histological reagents	51
2.1.5 Antibodies, enzymes and serum	52
2.1.6 Animal handling and tissue harvesting	52
2.1.7 Mass spectrometry reagents	53
2.1.8 Cell culture	53
2.1.9 Miscellaneous	53

2.2 Methods

2.2.1 Mouse colony breeding and maintenance	54
2.2.2 Genotyping of mice	55
2.2.2.1 Toe tagging	55

2.2.2.2 Genomic DNA extraction	55
2.2.2.3 PCR and restriction digest analysis of the sulphamidase (SGSH) gene	57
2.2.2.4 PCR analysis of the α -synuclein (SNCA) gene	57
2.2.3 Monitoring food and water intake	59
2.2.4 Assessing the level of cage soiling	59
2.2.5 Behavioural testing	59
2.2.5.1 Open field test	60
2.2.5.2 Elevated plus maze test	60
2.2.5.3 Morris water maze test	63
2.2.5.4 Foot print gait test	65
2.2.6 Perfusion fixation	67
2.2.7 Histology	67
2.2.7.1 Embedding and processing of brain tissues	67
2.2.7.2 Immunohistochemical staining	68
2.2.7.2.1 Haematoxylin and eosin immunostaining	68
2.2.7.2.2 Tyrosine hydroxylase	68
2.2.7.2.3 Glial fibrillary acidic protein	68
2.2.7.2.4 Lysosomal integral membrane protein II	69
2.2.7.2.5 Ubiquitin	69
2.2.7.2.6 Phospho-PHF-tau	70
2.2.8 Image analysis	70
2.2.9 Fresh tissue collection	71
2.2.10 Homogenisation and sonication of brain tissues	71
2.2.11 Biochemical analysis	72
2.2.11.1 Bicinchoninic acid protein assay	72
2.2.11.2 Cell culturing	72
2.2.11.3 Immunoblotting	72
2.2.11.4 Heparan sulphate quantification	73
2.2.11.4.1 Liquid chromatography/mass spectrometry of heparan sulphate	74
2.2.11.5 Ganglioside quantification	76
2.2.11.5.1 Liquid chromatography/mass spectrometry of gangliosides	76
2.2.11.6 Dopamine quantification	77
2.2.12 Statistical analysis	78

Chapter (3): Generation and characterisation of MPS IIIA mice

deficient in α -synuclein

3.1 Introduction	80
3.2 Results	83
3.2.1 Genotyping of animals	83
3.2.2 Breeding for the first generation	83
3.2.3 Breeding for the second generation	85
3.2.4 Breeding for the third generation	88
3.2.5 Characteristics of the third generation mice	92
3.2.5.1 General appearance	92
3.2.5.2 Food and water intake in the experimental male mice	92
3.3 Discussion	97
3.3.1 Fertility outcomes	97
3.3.2 Body weight and general characteristics	98
3.3.3 Feeding and energy intake	99
3.3.4 Role of heparan sulphate in energy intake	99
3.4 Conclusion	100

Chapter (4): Behavioural assessment of MPS IIIA mice deficient in α -synuclein

4.1 Introduction	101
4.2 Results	104
4.2.1 Open Field activity test	104
4.2.2 Elevated Plus maze test	109
4.2.3 Morris water maze test	114
4.2.3.1 Latency	114
4.2.3.2 Path length and speed	117
4.2.3.3 Time spent in the target and non-target quadrants	117
4.2.3.4 Probe phase and visual test	120
4.2.4 Motor gait test	123
4.3 Discussion	125
4.3.1 Reduced locomotor activity in mice with the MPS IIIA genotype	125
4.3.2 Increased anxiety in MPS IIIA-SNCA ^{-/-} mice	126
4.3.3 Spatial learning and memory impaired in MPS IIIA-SNCA-/- mice	127

4.3.4 Impaired motor gait in MPS IIIA-SNCA-/- mice	129
4.4 Conclusion	129

Chapter (5): Histopathological evaluation in MPS IIIA mice deficient in

α-synuclein	
5.1 Introduction	131
5.2 Results	133
5.2.1 Spleen weight	133
5.2.2 Quantification of heparan sulphate	135
5.2.3 Quantification of gangliosides G_{M2} and G_{M3} in brain	135
5.2.4 Levels of striatal dopamine	140
5.2.5 Immunohistological analysis	142
5.2.5.1 Proteinaceous inclusions: ubiquitin	142
5.2.5.2 Proteinaceous inclusions: hyperphosphorylated-tau	142
5.2.5.3 Glial fibrillary acidic protein expression	148
5.2.5.4 Lysosomal integral membrane protein II expression	148
5.3 Discussion	154
5.3.1 α -Synuclein has no effect on biochemical changes in MPS IIIA	154
5.3.2 Absence of α -synuclein does not correct the lysosomal pathology and	155
proteinaceous accumulation	
5.3.3 Decreased levels of dopamine in MPS IIIA mice	156
5.4 Conclusion	158

Chapter (6): Immunodetection of endogenous α-synuclein in MPS IIIA mice

6.1 Introduction	159
6.2 Results	162
6.2.1 α -Synuclein in mouse brain homogenates	162
6.2.2 α -Synuclein in mouse skin fibroblasts	162
6.3 Discussion	166
6.3.1 Increased level of α -synuclein in MPS IIIA brain	166
6.3.2 Increased level of α -synuclein in MPS IIIA cells	166
6.4 Conclusion	167

Chapter (7): Conclusions, Implications and Future directions

7.1 Introduction	168
7.2 Summary	169
7.3 Conclusions and implications	172
7.4 Future directions	173

176

Bibliography

List of abbreviations

Autophagy	macroautophagy
CD-MPR	cation-dependent M6P receptor
CI-MPR	cation-independent M6P receptor
D31N	aspartic acid to asparagine change at codon 31
ELISA	enzyme-linked immunosorbent assay
G _{M2}	monosialoganglioside 2
G _{M3}	monosialoganglioside 3
HS	heparan sulphate
hr	hour(s)
IGF-II	insulin-like growth factor II receptor
Kb	kilobase (1000 base pairs of DNA or RNA)
kDa	kilodalton (unified atomic mass unit)
LC-MS/MS	liquid chromatography- tandem mass spectrometry
LSDs	lysosomal storage disorders
min	minute(s)
MPS	mucopolysaccharidoses
MPS IIIA	mucopolysaccharidosis type IIIA
MPS IIIA-SNCA ^{+/+}	mucopolysaccharidosis type IIIA with intact α -synuclein
MPS IIIA-SNCA ^{+/-}	mucopolysaccharidosis type IIIA with heterozygous α -synuclein
MPS IIIA-SNCA-/-	mucopolysaccharidosis type IIIA with an absence of α -synuclein
MPTP	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NACP	precursor of non-A β component of Alzheimer disease amyloid
Normal mice	wild type mice (SGSH ^{+/+} SNCA ^{+/+})
PBS	phosphate buffered saline
PC12	pheochromocytoma cells of the rat adrenal medulla
sec	seconds
SGSH	sulphamidase
SNARE	soluble N-ethylmaleimide-sensitive factor attachment protein receptor
SNCA	α-synuclein

Thesis abstract

Lysosomal storage disorders are a heterozygous group of inherited metabolic disorders caused by a deficiency in one or more lysosomal enzymes, resulting in the accumulation of undegraded substrates in cells. Although specific enzymes deficits are the primary cause of specific lysosomal storage disorders, the underlying pathological mechanisms responsible for subsequent clinical features are largely unknown. About two-thirds of affected cases are associated with neurodegeneration with no effective therapies available due to the lack of understanding of the pathological mechanisms in the brain.

One of the foremost pathological events in several lysosomal storage disorders is the progressive accumulation of α -synuclein in the affected brain (Hamano et al., 2008a). α -Synuclein has long been known for its pathological involvement in Parkinson's disease and other neurological disorders, collectively known as 'synucleopathies'. Moreover, wild-type α -synuclein at physiological levels can impair lysosomal autophagy both *in vitro* and *in vivo*, but deletion of α -synuclein improves autophagy and clinical features in Huntington's disease mice (Corrochano et al., 2012; Tomás-Zapico et al., 2012).

Few studies have investigated the pathophysiological role of endogenous α -synuclein in lysosomal storage disorders *in vivo*. To address this issue, this study utilised a naturally occurring murine model of the neurological lysosomal storage disorder, mucopolysaccharidosis type IIIA (MPS IIIA; Sanfilippo syndrome type A) to investigate the role of α -synuclein in disease pathogenesis. MPS IIIA is an autosomal recessive disorder caused by the lysosomal deficiency of sulphamidase and the subsequent accumulation of heparan sulphate and secondary ganglioside substrates. Due to an inefficient degradation process, accumulation of aggregate-prone proteins such as α -synuclein was observed in MPS IIIA mouse brain as early as three-weeks of age and in humans with the disorder (Beard et al., unpublished).

In this study, MPS IIIA mice were crossed with α -synuclein knockout mice to create a colony of MPS IIIA mice deficient in α -synuclein. The progeny of these MPS IIIA mice (MPS IIIA-SNCA^{+/+}, MPS IIIA-SNCA^{+/-} and MPS IIIA-SNCA^{-/-}) showed a similar clinical phenotype, such as coarse, apathetic facial features, hunched posture and aggressiveness toward cage mates. The α -synuclein-deficient MPS IIIA mice showed significant hypoactivity, increased anxiety, motor gait impairment, and reduced learning and memory abilities compared to normal

littermates in a battery of behavioural tests. Histopathological investigations confirmed the deposition of both primary and secondary substrates in the brains of MPS IIIA mice with or without the deficiency of α -synuclein. Moreover, preliminary studies have shown increased amounts of α -synuclein in native forms, instead of toxic oligomers, in congenic MPS IIIA brains and skin fibroblasts compared to wild-type normal tissues, possibly a result of a defect in lysosomal autophagy.

All MPS IIIA mice showed more than 30% loss in dopamine levels compared to normal mice, regardless of α -synuclein *SNCA* gene composition. This shows a possible functional link between MPS IIIA and the abnormal motor phenotypes observed. The results suggest that lysosomal dysfunction in the MPS IIIA brain may lead to impaired synthesis or trafficking of dopamine, or may result in selective loss of dopaminergic neurons in the substantia nigra. Further studies are needed to determine which of these scenarios underlie the observations made here.

Modification of α -Synuclein expression did not change the progressive proteinaceous accumulation (e.g. ubiquitin, phosphorylated-tau) or that of endo/lysosomal proteins (lysosomal integral membrane protein II) and neuroinflammatory proteins (glial fibrillary acidic protein) in MPS IIIA mice. It was also demonstrated that failure of fusion between autophagosomes and lysosomes in MPS IIIA mice resulted in the accumulation of ubiquitin-positive inclusions and toxic substrates (Settembre et al., 2008). Consequently, impaired lysosomal autophagy can also disrupt the continuous clearance of cytosolic proteins by the ubiquitin-proteasome system (Hara et al., 2006; Komatsu et al., 2006).

The major conclusion from this study is that deletion or deficiency of α -synuclein made little or no contribution to the clinical and neuropathological disease progression in MPS IIIA mice. The data suggest that defects in autophagy and/or ubiquitin-proteasome system may play the main pathological mechanism, and α -synuclein accumulation is a secondary downstream event and of itself is unlikely to contribute significantly to the pathogenesis of MPS IIIA.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:

Acknowledgements

I would like to express deepest gratitude to my supervisors, Dr. Kim Hemsley, and Professor John Hopwood, for their full support, expert guidance, understanding and encouragement throughout my research years. I am also thankful to them for bringing me to the world of research on lysosomal storage disorders and for giving me the opportunity to complete a fascinating and at times challenging Ph.D. journey at the Lysosomal Diseases Research Unit. Without their incredible patience and timely wisdom and counsel, my thesis work would have been a frustrating and overwhelming pursuit.

Many thanks to Dr. Adeline Lau for demonstrating standard techniques and procedures required for toe tagging and behavioural studies of mice. I would also like to thank Meghan Setford, Andrew Shoubridge, Sarah Tamang and Carly Thorsen for their invaluable input, thoughts and advice on animal monitoring, data recording and perfusion fixation technique; Lynn Garrard and her team for the daily care of the mouse colony (especially on weekends), and for helpful assistance with mouse handling and experimentation.

I wish to thank Helen Beard and Sofia Hassiotis for their insightful advice and guidance with the processing of brain tissues for immunostaining and protein quantification; Jim Manavis at IMVS and Ricky Williams for helping me with tissue embedding and image scanning. My histological work would not be possible without their expert help. I would also like to thank Dr. Stuart Howell for his expert statistical analysis of the data.

I gratefully acknowledge Barbara King for her patient demonstration and helpful advice on protein quantification and preparing tissue samples for Mass Spectrometry analysis; Leanne Winner for helping me in cell culturing and providing me skin fibroblast cells for biochemical analyses. I also would like to thank Lauren Whyte for demonstrating cell-based biochemical methods and for being a great PhD friend. I would like to express my sincere gratitude to Dr. Marten Snel, Dr. Paul Trim and Stephen Duplock for their expert guidance and technical help with Mass Spectrometry analysis.

I take this opportunity to record my sincere thanks to Dr. Anthony Fedele, Sandra Isenmann, Kathryn Hattersley, Tina Rozaklis, and Leanne Hein for their assistance, particularly with immunoblotting and general laboratory protocols; Dr. Tim Sargeant, Dr. Makoto Kamei, Dr. Litsa Karageorgos and Dr. Lungisa Bickle for sharing their experience and advice on both work and non-work related matters. Their friendship, support, smiles and good humour made the working place truly enjoyable and lively.

I am greatly indebted to my family and friends outside of work for their constant encouragement, unconditioned love, care and support throughout the years, especially during difficult times when I was not well or home sick. Without their mental support and kind companionship in this long and challenging journey, I would not have been able to finish my study.

Last but not least, I would like to acknowledge the financial and technical support from the University of Adelaide to make it possible to finish. I am thankful to the South Australian Health and Medical Research Institute for providing me this opportunity to study in excellent research facilities.