THE GEOLOGY AND GENESIS OF THE POLYMETALLIC

WAGGA TANK PROSPECT, MOUNT HOPE, N. S. W.

STEVEN J. RYAN B.Sc

Thesis submitted as partial fulfilment for
the Honours degree of Bachelor of Science.

November 1987

Department of Geology and Geophysics
The University of Adelaide

National Grid Reference: Mount Allen 8032 (1:100,000)
GENESIS OF THE MINERALIZATION

10.1 Introduction .. 45
10.2 Metal / Ligand Source .. 45
10.3 Syngenesis / Epigenesis 46
10.4 Heat Source ... 47
10.5 Position .. 49
10.6 Massive / Vein Type Sulphides 49
10.7 An Analogy ... 49

CONCLUSIONS

ACKNOWLEDGMENTS

BIBLIOGRAPHY

LIST OF APPENDICES

1 Selected thin section descriptions - host rocks
2 Whole rock analysis
3 Selected polished thin section descriptions - mineralization
4 X.R.D. analysis - argillic alteration zone
5 Fluid inclusion analysis
6 Sulphur isotope analysis
7 Chlorite data
8 Electron microprobe analysis - sphalerite
9 Thermodynamic equations

LIST OF FIGURES

1 Location plan and regional geology
2 Reconnaissance map
3 1:2500 scale geological map (back pocket of thesis)
4 Interpretive cross-section (back pocket of thesis)
5 Discrimination diagrams
6 Mineralized zone - surface projection
7 Mineralized zone - cross-sections
8 Fluid inclusion - final melt temperatures
9 Fluid inclusion - first melt temperatures
10 Fluid inclusion - homogenization temperatures
11 Homogenization temperature vs salinity graph
12 Isochores for 5 wt% NaCl solution
13 Results of sulphur isotope measurements
14 Equilibrium isotopic fractionation factors
15 Contours of $\Delta = \delta^{34}S_H_2S - \delta^{34}S$ fluid
16 Log fO$_2$ - pH diagram
17 Log $\sum SO_2/ \sum H_2S$ - T diagram
18 Mole % FeS in zoned sphalerite grains

LIST OF PLATES

1 Mt. Kennan rhyolite dome
2 Flow banded rhyolite
3 Tuff / rhyolite interbeds
4 Quartz pebble conglomerate
5 Polymict conglomerate
6 Carbonaceous turbidite
7 Framboidal pyrite lenses
8 Pyrite framboid
9 Graphitic siltstone - slate
10 Carbonaceous knotted slate
11 Vitric - crystal - lithic tuff
12 Glass shards
13 Amygdaloidal rhyo-dacite
14 Boolahbone Granite
15 Massive type sulphide, drill - core
16 Porous massive sulphide
17 Colloform texture
18 Pyrite aggregates
19 Cyclically zoned sphalerite
20 Chlorite and sericite gangue
21 Vein type sulphide, drill - core
22 Chalcopyrite replacing sphalerite
23 Fractured pyrite grains
24 Galena replacing pyrite
25 Cubanite exsolution in chalcopyrite
26 Curved cleavage traces in galena
27 Zoned sphalerite
28 Quartz primary fluid inclusions
29 Sphalerite secondary fluid inclusions
ABSTRACT

The Wagga Tank Prospect is located in Central Western N.S.W, 125 km south of Cobar. The prospect is hosted by the Lower Devonian Mount Hope Group, a complex succession of sedimentary, felsic volcanic and comagmatic intrusive rocks representing the oldest division of the Cobar Supergroup in the Mount Hope area.

The prospect is primarily a Pb and Zn deposit with minor Cu, Ag and significant Au. Gold values are highest within steeply dipping gossan shoots in the oxidised zone, while Pb and Zn values are highest in subvertical shoots of massive sulphide within the primary zone. Cu is concentrated as chalcocite, digenite and malachite at a zone of supergene enrichment.

The primary mineralization occurs within a zone of intense tectonic brecciation and argillic alteration at a pronounced flexure along the steeply dipping contact between the volcaniclastic sequence and siltstone - slate sequence.

The mineralization can be divided into two categories on the basis of textural relationships, i.e. fine grained, crudely banded massive type sulphides and coarser grained vein type sulphides. The vein type sulphides are represented by varying proportions of pyrite, chalcopyrite, sphalerite and galena with rare inclusions of cubanite and pyrrhotite. The massive type sulphides show mineral abundances of pyrite > sphalerite > galena >> chalcopyrite.

Fluid inclusion and chlorite data indicate that the mineralizing fluid reached temperatures of about 325°C. Sulphur isotope compositions of the sulphide minerals (δ³⁴S = 10 per mil) suggest that the sulphur originated from seawater SO₄²⁻. Reduction of seawater SO₄²⁻ to H₂S was primarily by an inorganic process at elevated temperatures in a heated rock pile. Thermodynamic
calculations suggest possible log fO\textsubscript{2} - pH constraints of about
log fO\textsubscript{2} = -29.5 to -31.7 and pH = 3 to 4.5 for the mineralizing fluid.

The mineralization is considered to be of epigenetic - hydrothermal origin. The hydrothermal fluid was probably derived from dewatering of the rock pile during metamorphism accompanying the major deformation. Sulphide precipitation occurred along a plane of high permeability produced by folding of adjacent beds with a contrasting competency.

The prospect bears many similarities to the principal deposits in the Cobar area. Those deposits are typically narrow steeply plunging elongate bodies occurring along sheared or brecciated contacts between cleaved turbiditic siltstones and coarser clastic beds or felsic volcanics.