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Abstract

The wave-induced collisions and rafting of ice floes are investigated experimentally
and theoretically. Results from a series of wave basin experiments are presented. Ice
floes are simulated experimentally using thin plastic disks. The first round of exper-
iments focusses on measuring the oscillatory surge, heave, pitch and drift motions
of solitary floes. The second and third rounds of experiments record the motions of
two adjacent floes. Rafting is suppressed in the second round, and allowed in the
third round. Collision and rafting regimes are identified, and collision behaviours

are quantified over a range of incident wavelengths and wave amplitudes.

Two mathematical models are proposed to model the wave-induced motions of soli-
tary floes. The first is based on slope-sliding theory, and the second is based on linear
potential-flow theory. Both models are validated using results from the single-floe
experiments. Model-data comparisons show that the slope-sliding model is valid in
the long-wavelength regime, and potential-flow model is more accurate in shorter

wavelengths.

A two-floe collision model is then developed to replicate the conditions of the two-floe
experiments. Slope-sliding theory is used to model floe motions. A time-stepping
algorithm is implemented to determine the occurrence of collision and rafting events.
Predicted collision behaviours are compared with results from the two-floe experi-
ments. Good agreement is attained in incident waves of intermediate to long wave-

lengths.
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