The Effect of Dairy on Insulin Sensitivity

Jordan Peters

School of Medicine/Discipline of Medicine

Prof. Peter Clifton, Prof David Torpy, A/Prof. Jennifer Keogh

January 2017

A thesis submitted for fulfilment of the requirements for the Master of Philosophy in Medicine

Word count (excluding references): 30,286.
Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Name________Jordan Peters__________

Signature____________________________ Date____25/1/2017______

The Effect of Dairy on Insulin Sensitivity ____________________________

Jordan Peters
The Effect of Dairy on Insulin Sensitivity

Jordan Peters
Abstract

Introduction: Insulin resistance is a condition of impaired sensitivity of tissues for insulin. Insulin sensitivity may be modified by modifying diet, which could include increasing dairy consumption. The literature is divided on dairy’s effectiveness at reducing the risk of type 2 diabetes. Dairy may also be linked to cardiovascular health, and two common measures of vascular health are pulse wave velocity and augmentation index which examine the stiffness of arteries.

Objective: To recruit participants at risk of developing type II diabetes as well as healthy participants for a 10-week randomised crossover trial to determine if increased dairy intake improves insulin sensitivity and cardiovascular health.

Methods: 28 Participants underwent a ten-week crossover study and were required to eat a high (4-6 serves/day) and low dairy diet (0-0.5 serves/day) for four weeks each, with a two-week break in-between. A Low Dose Insulin and Glucose Infusion test (LDIGIT), a hyperglycaemic clamp, pulse wave velocity and augmentation index test were performed at the end of each four-week period.

Results: 28 people completed the study. No significant differences in insulin sensitivity were detected (10.2 ml kg^{-1}min^{-1}/pmol/Lx10^{-3} in the high dairy diet, and 9.4 x10^{-3} in the low dairy diet for the LDIGIT (P=0.7)). The hyperglycaemic clamp test had an insulin sensitivity index of 40.4 x 10^{-3} and 34.2 x 10^{-3} ml kg^{-1}min^{-1}/pmol/L for the high and low dairy diets respectively (P=0.6).

Augmentation index was 6.7 ± 2.6% for the high dairy diet, and 6.4 ± 2.5% for the low dairy diet. No significant differences were found between diets (P=0.9). Pulse wave velocity had a median 6.1 and 6.5 m/s in high and low dairy diets respectively (P=0.9).

Average glucose concentrations in the LDIGIT were 5.7 and 5.6 mmol/L in the high and low dairy diets respectively (P = 0.9). The LDIGIT steady state glucose (120-150 minutes) had concentrations of 5.4 and 5.3 mmol/L (P=0.7).

Fasting insulin LDIGIT values were 10.6 and 11.5 pmol/L in the high and low dairy values (P=0.52). Steady state insulin values for the LDIGIT were 44.3 and 44.8 pmol/L in respectively (P=0.63). Fasting clamp insulin values were 9.7 and 9.7 pmol/L (P = 0.6) respectively. Steady state values were 107.3 and 116.2 pmol/L (P=0.5)
Conclusion: No significant differences were detected for insulin sensitivity or cardiovascular health markers. For the hyperglycaemic clamp, in order for the 10% difference observed here to be statistically significant a sample size of 113 would be needed.