The Geology and Origin of Sedimentary Manganese
From the Boolcunda, Etna, and Muttabee Deposits,
central Flinders Ranges, South Australia

CHRISTOPHER T. GREGORY B.Sc.

Thesis submitted as partial fulfilment of
the Honours Degree of Bachelor of Science

Department of Geology and Geophysics
University of Adelaide
November, 1988

National Grid Reference : ORROROO Sheet SI 54-1 (1:250,000)
TABLE OF CONTENTS

ABSTRACT

1 INTRODUCTION

1.1 AIMS AND METHODS 1
1.2 LOCATION AND PHYSIOGRAPHY 2
1.3 PREVIOUS GEOLOGICAL INVESTIGATIONS 2

2 GEOLOGICAL SETTING

2.1 REGIONAL GEOLOGICAL HISTORY 4
2.2 GEOLOGY OF THE BOOLCUNDA, ETNA, AND MUTTABEE REGIONS 6
2.3 DESCRIPTION OF SEDIMENTARY UNITS 7
2.3.1 GENERAL 7
2.3.2 TAPLEY HILL FORMATION 7
2.3.3 TARCOWIE SILTSTONE 8
2.3.4 ETINA FORMATION 9
2.3.5 ENORAMA SHALE 10
2.3.6 TREZONA FORMATION 11
2.3.7 WILMINGTON - ELATINA FORMATIONS 11
2.3.8 BRACHINA FORMATION - ULUPA SILTSTONE 13
2.3.9 POST-TRIASSIC COVER 13
2.4 SUMMARY 14

3 THE ORE DEPOSITS

3.1 INTRODUCTION 15
3.2 OCCURRENCE 15
3.2.1 BOOLCUNDA 15
3.2.2 ETNA 16
3.2.3 MUTTABEE 16
3.3 PETROGRAPHY
3.3.1 BOOLCUNDA
3.3.2 ETNA
3.3.3 MUTTABEE
3.3.4 COMPARISON OF DEPOSITS
3.4 GEOCHEMISTRY
3.5 MINERALOGY

4 ORIGIN AND DISCUSSION

4.1 SOURCE OF MANGANESE
4.2 CONCENTRATION HISTORY
4.3 DEPOSITIONAL HISTORY
4.3.1 INTRODUCTION
4.3.2 DEPOSIT FORMATION AT ETNA AND MUTTABEE
4.3.3 DEPOSIT FORMATION AT BOOLCUNDA
4.4 SUPERGENE ENRICHMENT
4.5 COMPARISONS WITH MANGANESE DEPOSITS ELSEWHERE

5 CONCLUSION

ACKNOWLEDGEMENTS

REFERENCES

APPENDICES
A: MAPS
B.1: PETROGRAPHIC DESCRIPTIONS
 (with Whole Rock Analyses)
B.2: PETROGRAPHIC DESCRIPTIONS
 (without Whole Rock Analysis)
C: GEOCHEMICAL METHODS AND RESULTS
D: STRATIGRAPHIC SECTIONS
LIST OF FIGURES

FIGURE 1 Regional Locality Map
FIGURE 2 Regional Stratigraphy
FIGURE 3 Local Geology of the Map Areas and Environs
FIGURE 4 Local Map Stratigraphy
FIGURE 5 Extent of main phases of Adelaidan Sedimentation
FIGURE 6 Palaeocurrent Sketch Maps
FIGURE 7(a) Boolcunda Mine Site and Cross-Sections
FIGURE 7(b) Etna Mine Site and Cross-Sections
FIGURE 7(c) Muttabee Mine Site and Cross-Sections
FIGURE 8(a) Configuration of the Muttabee mineralisation zone
FIGURE 8(b) Configuration of the Etna mineralisation zone
FIGURE 9 Genesis model of the Etna and Muttabee accumulations
FIGURE 10 Genesis model for the Boolcunda accumulation

LIST OF TABLES

TABLE 1 MnO Ore Sample Elemental Constituents
TABLE 2 Background lithology geochemistry
TABLE 3 Global Mn Abundances relative to rock type
TABLE 4 MnO values of various Stuart Shelf Lithologies
TABLE 5 Comparison geochemistry of background lithologies encountered (from Binks, 1971)
ABSTRACT

The origin of small manganese deposits from the central Southern Flinders Ranges, has not previously been adequately discussed. The region comprising these sedimentary manganese accumulations incorporates a sinuous folded sequence of thick variegated clastic and carbonate sediments deposited within the Adelaide Geosyncline, the stratotype basin for the Adelaidean sediments delineated.

Extended exposure of the craton to the west provided a dominant source of both sedimentary detritus and manganese ore constituent. Paragenesis involved leaching of manganese from this source region, transport into the aqueous system and subsequent precipitation in favourable shallow-marine environments meridionally within the Adelaide Geosyncline.

Cyclic eustatic fluctuations increased potential ionic manganese concentration, with remobilisation and concentration during transgressive oxygen deficient phases and oxidation and precipitation during alternate regressive more oxygenated phases.

The precipitation of particulate manganese-oxides, from pre-existing particulate and dissolved manganese from an enriched reservoir, was controlled by the interactive response of a number of features: estuarine circulation, anoxic-oxic water stratification; and sediment-water interface relationships, at specific geomorphological sites on a stable shallow-marine continental platform. Retention of the precipitated manganese resulted from rapid burial by regressive sands and silts, with little post-genetic supergene alteration of the deposits observed.