Pressure and flow within the umbilical vessels

David John Wilke

October 5, 2016

Thesis submitted for the degree of
Doctor of Philosophy
in
Mathematical Sciences
at The University of Adelaide
Faculty of Engineering, Computer and Mathematical Sciences
School of Mathematical Sciences

THE UNIVERSITY
of ADELAIDE
Contents

Abstract xv

Signed Statement xvii

Acknowledgements xix

Dedication xxi

1 Introduction 1

1.1 The umbilical cord .. 3

1.2 Umbilical parameter survey 7

1.2.1 Vessel radius ... 9

1.2.2 Blood flow-rate .. 10

1.2.3 Pulsatility characteristics 12

1.2.4 Fetal heart-rate ... 13

1.2.5 Kinematic viscosity 14

1.2.6 Cord vessel pressure 15

1.2.7 Umbilical coiling index 15

1.2.8 Cord thickness .. 16

1.2.9 Summary .. 16

1.3 Modelling blood flow 16

1.3.1 The nature of blood 17

1.3.2 The constitutive equations 18

1.3.3 Pulsatile flow ... 20

1.4 Flow in curved and helical pipes 22

1.4.1 Coordinate systems 23

1.4.2 Characteristics of helical flow 24

1.4.3 The pressure drop and flow friction factor 24

1.5 Biomechanical studies of the cord 27

1.6 Summary .. 28

1.7 Aims and objectives 29
2 Methods

2.1 Assumptions .. 34
2.2 Dimensional scaling and flow regime 34
2.3 UCI calculation .. 35
 2.3.1 Clinical UCI, \dot{U}_c 36
 2.3.2 Theoretical UCI, \dot{U}_t 37
2.4 Vessel models .. 38
 2.4.1 Regularly coiled vessels 40
 2.4.2 Irregularly coiled cords 46
 2.4.3 Umbilical knots 52
2.5 Steady validation 65
 2.5.1 Background .. 67
 2.5.2 The computational model 68
 2.5.3 Results .. 71
2.6 Pulsatile validation 76
 2.6.1 Boundary conditions 76
 2.6.2 Straight pipe flow 78
 2.6.3 Straight pipe stenotic flow 81

3 Steady flow through the umbilical vessels 89

3.1 Steady boundary conditions 91
3.2 Results .. 91
 3.2.1 Constant U_t study 92
 3.2.2 Constant U_c study 99
 3.2.3 Irregularly coiled cords 103
 3.2.4 Umbilical knots 111
3.3 Conclusion ... 122

4 Pulsatile flow through the umbilical arteries 125

4.1 Pulsatile boundary conditions 126
 4.1.1 Saw-tooth approximation 127
 4.1.2 Numerical validation 132
4.2 Regularly coiled cords 133
 4.2.1 Constant U_t study 133
 4.2.2 Constant U_c study 138
 4.2.3 Systolic pressure ratio 140
 4.2.4 Effect of fetal heart-rate 142
4.3 Irregularly coiled cords 146
4.4 Umbilical knots 146
 4.4.1 Loose true knots 147
 4.4.2 Tight true knots, false knots and twist reversal 148
Contents

4.4.3 Effect of fetal heart-rate ... 152
4.5 Conclusion ... 155

5 New indices for quantifying umbilical flow resistance 157
5.1 Helical pressure gradient estimates 158
 5.1.1 Comparison with numerics ... 159
 5.1.2 Evaluation of ΔP for cords with $\gamma > 0.1$ 161
 5.1.3 Non-helical vessels .. 163
 5.1.4 The UCI and pressure prediction 166
5.2 Toward a new index .. 166
 5.2.1 The umbilical flow and pressure indices 171
 5.2.2 Variation with N and \hat{L}_p at constant \hat{w} 176
 5.2.3 Index sensitivity ... 178
5.3 Cord anomalies .. 183
 5.3.1 Loose true knots .. 183
 5.3.2 Irregularly coiled cords .. 184
5.4 Example index calculations .. 185
 5.4.1 Cord measurements .. 186
 5.4.2 Index calculation .. 187
 5.4.3 Anomalies ... 191
5.5 Clinical efficacy and implementation 194
5.6 Conclusion ... 194

6 Conclusions and further work ... 197

A Numerical method ... 201
 A.1 The finite element method ... 201
 A.2 oomph-lib .. 203
 A.2.1 Elements ... 204
 A.2.2 Mesh .. 204
 A.2.3 Procedure .. 205
 A.3 Iterative linear solvers .. 207

B Steady flow ... 209
 B.1 Temporal calculations within oomph-lib 209
 B.2 Outlet boundary conditions 211

C Pulsatile flow ... 215
 C.1 Pulsatile oomph-lib code ... 215
D Pressure and flow indices 295
 D.1 Empirical comparison 295
 D.2 umbili-calc .. 295
 D.3 Index sensitivity 306

Bibliography 311
List of Tables

1.1 Pulsatile characteristics of the umbilical arteries 13
1.2 Summary of the umbilical parameters from the literature 17
2.1 Nominal parameters used throughout the flow analysis for the artery, A, and vein, V. ... 36
2.2 Geometric parameters for the regularly coiled cords with constant theoretical UCI ... 45
2.3 Geometric parameters for the regularly coiled cords with constant clinical UCI ... 48
2.4 Characteristics of the nominal loose knot. Note that Ė̃_knot is based on the knot centreline distance between the inlet to the first cubic section and the outlet to the second. 60
2.5 Knot geometries used in this study. R_{h,i} is the non-dimensional helical radii for each of the distinct vessels, L_{Z,i} is the corresponding vessel arclength and N is the total number of coils throughout the knot (excluding the straight sections). 61
2.6 Curvature and torsion of the loose knot, LK, geometries 64
2.7 Meshes used for the steady curved pipe entry flow validation . 71
3.1 Steady numerical results for the irregularly coiled veins with variable coil spacing ... 104
3.2 Steady numerical results for the irregularly coiled veins with variable coil width .. 105
3.3 Steady numerical results for the irregularly coiled veins with variable coil width and spacing 107
3.4 Steady numerical results for the irregularly coiled arteries 108
3.5 Results of the steady loose knot study 116
4.1 Pulsatile pressure results for each of the U_t arteries at Re = 100, \text{U}_{red} = 41 ... 139
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Pulsatile pressure gradient results for each of the U_t arteries at $Re = 100$, $U_{red} = 41$</td>
<td>139</td>
</tr>
<tr>
<td>4.3</td>
<td>Pulsatile pressure results for the tight true knots</td>
<td>152</td>
</tr>
<tr>
<td>5.1</td>
<td>The reference cord parameters for the artery and vein</td>
<td>176</td>
</tr>
<tr>
<td>5.2</td>
<td>The effect of deconstructing an irregular vein for index calculation</td>
<td>186</td>
</tr>
<tr>
<td>5.3</td>
<td>The reference and example cord measurements</td>
<td>187</td>
</tr>
<tr>
<td>5.4</td>
<td>Results for the example cord veins and arteries</td>
<td>188</td>
</tr>
<tr>
<td>B.1</td>
<td>Steady solve statistics for the U_t study</td>
<td>210</td>
</tr>
<tr>
<td>D.1</td>
<td>Error in the empirical formula from Liu and Masliyah (1993) at $Re = 100$ for the regularly coiled cords</td>
<td>296</td>
</tr>
<tr>
<td>D.2</td>
<td>Error variation for the reference cord</td>
<td>309</td>
</tr>
<tr>
<td>D.3</td>
<td>Index error variation for Cord I</td>
<td>309</td>
</tr>
<tr>
<td>D.4</td>
<td>Index error variation for Cord II</td>
<td>310</td>
</tr>
<tr>
<td>D.5</td>
<td>Index error variation for Cord III</td>
<td>310</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The umbilical cross-section 3
1.2 A normocoiled umbilical cord with placenta attached 4
1.3 Umbilical cords with left, right and no twisting 5
1.4 An umbilical cord with variable coiling 7
1.5 An umbilical cord with true and false knots 8
1.6 An umbilical cord with distinct vessel coiling 8
1.7 Experimental flow visualisation in a helical pipe 25

2.1 A regularly coiled vessel with lengths annotated 37
2.2 Curvature of the curved inlet centreline for the regularly coiled cord, U_{t1} .. 42
2.3 Smoothing the inlet for a regularly coiled vessel 43
2.4 Regularly coiled vessels with constant theoretical UCI 45
2.5 The torsion and curvature of vessel in the U_t study 46
2.6 Regularly coiled vessels with constant clinical UCI 47
2.7 A magnified view of cord U_{c1} which has large torsion, low curvature ... 48
2.8 Variation of the theoretical UCI, curvature and torsion for the U_c geometries ... 49
2.9 Schematic diagram of the irregular cord types 50
2.10 Irregular venous models with varying coil spacing 52
2.11 Irregular venous models with varying coil width 53
2.12 Irregular venous models with varying coil spacing and width 53
2.13 Variation of the curvature and torsion for each of the irregularly coiled veins .. 54
2.14 Construction of the loose knot centreline geometry 58
2.15 The outlet cubic used in the loose knot definition 59
2.16 The loose knot and vessel centrelines 60
2.17 A comparison between physical and model loose true knots 61
2.18 The loose knots investigated in the LK study 62
2.19 The curvature and torsion along the loose knot centreline for the LK study ... 63
2.20 The false knot, twist reversal and tight true knot geometries ... 65
2.21 A magnified view of a tight true knot .. 66
2.22 The computational domain for the steady curved pipe entry flow validation ... 70
2.23 A quantitative comparison of the secondary flow field for the steady curved pipe validation study 73
2.24 The axial velocity within the plane of symmetry for the steady curved pipe validation 74
2.25 A comparison of the axial velocity in the plane of symmetry for the steady curved pipe validation study 75
2.26 Relative error in the oomph-lib numerics for the steady curved pipe validation ... 77
2.27 Temporal variation of the average sectional velocity and pressure drop for a straight pipe with pulsatile validation inlet conditions ... 79
2.28 Temporal variation of the inlet velocity profile for the pulsatile validation ... 80
2.29 Straight pipe pulsatile validation .. 82
2.30 Straight pipe stenosis geometry ... 83
2.31 Stenotic flow validation at $Re = 100$ for $t/T = 1.0, 1.24$.. 85
2.32 Stenotic flow validation at $Re = 100$ for $t/T = 1.52, 1.76$... 86
2.33 Contours of the axial velocity within the plane of symmetry for the stenotic validation at $Re = 200$, $U_{red} = 5$... 87
3.1 Boundary conditions for the steady analysis shown on a regularly coiled vessel .. 91
3.2 A cutaway view of the mesh refinement for cord U_{t1} .. 93
3.3 Evolution of the steady velocity field with arclength for vessel U_{t6} ... 95
3.4 Fully developed helical flow at $Re = 100$ for each of the U_t vessels .. 96
3.5 Fully developed helical flow for vessel U_{t6} for a range of Re ... 97
3.6 Pressure variation with Re for the U_t geometries ... 98
3.7 Variation of the dimensional pressure drop for the U_t vessels .. 100
3.8 Steady pressure results from the constant U_c study ... 101
3.9 The fully developed helical helical velocity field for steady flow in the U_c vessels 102
3.10 Pressure variation for each of the variable pitch veins studied ... 104
3.11 Pressure variation for each of the variable width veins studied ... 106
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12</td>
<td>Steady pressure variation for each of the irregularly coiled veins with variable coil width and spacing.</td>
</tr>
<tr>
<td>3.13</td>
<td>Comparison of the flow direction effect on the irregularly coiled arteries.</td>
</tr>
<tr>
<td>3.14</td>
<td>Steady pressure variation for each of the irregularly coiled arteries.</td>
</tr>
<tr>
<td>3.15</td>
<td>Recomputed flow for three irregularly coiled venous geometries with boundary effects minimised.</td>
</tr>
<tr>
<td>3.16</td>
<td>Fully developed helical flow in the nominal cord.</td>
</tr>
<tr>
<td>3.17</td>
<td>Velocity field variation with vessel arclength for the venous geometry with reduced boundary effects and variable pitch.</td>
</tr>
<tr>
<td>3.18</td>
<td>Velocity field variation with vessel arclength for the venous geometry with reduced boundary effects and width variation.</td>
</tr>
<tr>
<td>3.19</td>
<td>Velocity field variation with vessel arclength for the venous geometry with reduced boundary effects and width/coil space variation.</td>
</tr>
<tr>
<td>3.20</td>
<td>Fully-developed helical flow at the entrance to the knot for the loose knot, LK, geometries with $\hat{w} = 1.6$ cm.</td>
</tr>
<tr>
<td>3.21</td>
<td>Average axial pressure for the loose knot geometries.</td>
</tr>
<tr>
<td>3.22</td>
<td>Axial pressure gradient measured along the knot length for the loose knot vessels.</td>
</tr>
<tr>
<td>3.23</td>
<td>Pressure variation for the tight true knot, false knot and twist reversal geometries.</td>
</tr>
<tr>
<td>3.24</td>
<td>The region of flow-reversal in the steady calculations for the tight true knots.</td>
</tr>
<tr>
<td>4.1</td>
<td>Ultrasound images of the maximum umbilical arterial velocity waveform.</td>
</tr>
<tr>
<td>4.2</td>
<td>The straight pipe umbilical centreline velocity and pressure waveform.</td>
</tr>
<tr>
<td>4.3</td>
<td>The full cross-sectional unsteady inlet velocity profile at four points within the period.</td>
</tr>
<tr>
<td>4.4</td>
<td>Pulsatile validation for artery U_{11} at $Re = 100, U_{red} = 41$.</td>
</tr>
<tr>
<td>4.5</td>
<td>Helical flow variation for the U_{11}, U_{12} and U_{13} arteries at systole and diastole at $Re = 100, U_{red} = 41$.</td>
</tr>
<tr>
<td>4.6</td>
<td>Helical flow variation for the U_{14}, U_{15} and U_{16} arteries at systole and diastole at $Re = 100, U_{red} = 41$.</td>
</tr>
<tr>
<td>4.7</td>
<td>Pulsatile pressure results for the constant U_1 study at $Re = 100, U_{red} = 41$.</td>
</tr>
<tr>
<td>4.8</td>
<td>Pulsatile pressure results for each of the U_c arteries at $Re = 100, U_{red} = 41$.</td>
</tr>
</tbody>
</table>
4.9 Variation of the peak systolic pressure ratio with various parameters at $Re = 100, U_{red} = 41$.. 143
4.10 Variation of the ratio of peak systolic pressure to the temporal average for the umbilical waveform 144
4.11 Helical flow variation with U_{red} for artery U_{t1} at systole and diastole at $Re = 100, U_{red} = 41$.. 145
4.12 Variation of the total pressure drop and helical pressure gradient with U_{red} for the U_{t1} artery ... 146
4.13 Pulsatile pressure results for the irregularly coiled arteries ... 147
4.14 Pulsatile pressure results for each of the loose knot arteries .. 148
4.15 Pulsatile pressure results for each of the true knot arteries .. 149
4.16 Contours and isosurfaces of axial velocity at systole for the tight true knots ... 150
4.17 Contours and isosurfaces of axial velocity at diastole for the tight true knots ... 151
4.18 Variation of the peak systolic pressure ratio with constriction severity and variation of the inlet pressure with U_{red} for the 0.55R constriction ... 153
4.19 Contours and isosurfaces of axial velocity at systole for the tight true knot with $R_{min} = 0.55R$ and $U_{red} = 30$ 154

5.1 Contours of constant pressure gradient computed using the correlation of Liu and Masliyah (1993) 160
5.2 The helical pressure gradient variation with Re for the numerical and empirical calculations .. 161
5.3 The helical pressure gradient versus helical radius for the U_c study showing a comparison of a number of empirical pressure gradient estimates at $Re = 100$... 162
5.4 The cords outside the current empirical correlation and the interpolated helical pressure gradient data 164
5.5 A comparison between the helical pressure gradient computed numerically and using the interpolated solution for irregular and loose knotted cords at $Re = 100$... 167
5.6 Variation of helical vessel parameters over a range of N and L_p at $\dot{\omega} = 1.6$ cm and $Re = 100$.. 168
5.7 Variation of the non-dimensional helical pressure gradient with clinical UCI and coil width for a standard vein ... 169
5.8 A schematic diagram of an umbilical cord showing the length measurements required for calculation of the pressure and flow indices .. 174
5.9 Characteristics of the reference cord used for the index calculation .. 177
5.10 Contours of constant pressure index (P_X) for each vessel at three coil widths 179
5.11 Contours of constant flow index (Q_X) for each vessel at three coil widths 180
5.12 Contours of the venous pressure and flow sensitivity norms for cords of interest 182
5.13 Schematic diagram showing an irregularly coiled vein deconstructed into two sections for index calculation .. 185
5.14 Example cord I .. 188
5.15 Example cord II .. 189
5.16 Example cord III .. 190
5.17 Theoretical vessel models of the reference and example cords shown to scale. 191
5.18 The reference and example cord models shown to scale over one pitch-length of the reference cord (5 cm). .. 192
5.19 Pressure and flow ratios for the reference and example arteries and vein 193
A.1 The TubeMesh used in oomph-lib .. 206
B.1 Convergence of the temporal solvers showing the evolution of the pressure drop and the average Kinetic Energy .. 212
B.2 Convergence of the temporal solvers showing contours of the axial velocity at two locations .. 213
B.3 Contours of the axial velocity, W, with the secondary velocity field overlayed at $Re = 300$ to demonstrate the outlet effect. .. 214
D.1 Pressure index sensitivity to individual measurements .. 307
D.2 Flow index sensitivity to individual measurements .. 308
Abstract

This thesis considers a fluid dynamic study of blood flow within the umbilical vessels of the human maternal-fetal circulatory system. In particular, it evaluates the efficacy of the umbilical coiling index (UCI) in predicting the blood vessel pressure drop, and develops clinically viable indices for the quantification of umbilical cord flow resistance. A numerical approach is developed employing the finite element method via the open-source C++ code oomph-lib, available from the University of Manchester. This permits the description of an umbilical vessel geometry as a fully three-dimensional rigid tube in order to consider a wide range of cords subject to steady and unsteady boundary conditions.

The thesis is composed of three main studies. The first concerns steady incompressible Newtonian flow through model geometries representative of the umbilical vessels. It is found that the UCI is unable to distinguish between cords of significantly varying pressure and flow characteristics, which are typically determined by the vessel curvature, torsion and length. Larger scale geometric non-uniformities superposed over the inherent coiling, including cords exhibiting width and/or local UCI variations as well as loose true knots, typically produce a small effect on the total pressure drop. Crucially, this implies that a helical geometry of mean coiling may be used to determine the steady vessel pressure drop through a more complex cord. The presence of vessel constriction, however, drastically increases the steady pressure drop and alters the flow profile.

The second study provides an analysis of pulsatile incompressible Newtonian flow through arterial geometries. The steady pressure drop is found to approximate the time-averaged value with high accuracy over a wide range of arteries. Furthermore, the relative peak systolic pressure measured over the period is found to remain virtually constant and approximately 25% below the equivalent straight pipe value for a large range of non-straight vessels. Interestingly, this suggests that the coiled structure dampens extreme pressures within the arterial cycle and may provide another possible evolutionary benefit to the coiled structure of the cord.
Having shown the UCI ineffective at predicting the vessel pressure drop, the third and final study presents two alternative indices for the diagnosis of cord pathology based on steady calculations. The umbilical pressure index, \(PX \), and flow index, \(QX \), quantify the deviation of a cord geometry from typical conditions by considering the steady pressure and flow-rate, respectively. These indices are calculated based on a combination of empirical and interpolated numerical data and require only one additional geometric measurement to the calculation of the UCI; namely the cord width. Together the indices provide a non-invasive measure of the flow-resistance inherent to a particular cord geometry, and allow comparison with typical values in pregnancy. Further testing of the indices is required to determine their efficacy in a clinical setting, however, their simple and robust nature ensures that they are promising candidates.
Signed Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: Date:
Signed Statement
I wish to extend my gratitude to those that have supported me throughout my study and in particular, through the completion of this thesis. Firstly, to Dr. Trent Mattner, for unwavering technical and personal support over the years. To Prof. Jim Denier, for providing an interesting research topic as well as the freedom to explore it independently. To Prof. Yee Khong, for enthusiasm, guidance and direction in an unknown medical world. To Dr. Phil Haines, for countless meetings on oomph-lib without which this study may well have taken a decade. To Prof. Matthias Heil and Dr. Andrew Hazel for developing, and their personal correspondence regarding oomph-lib. To my fellow Ph.D students, in particular Dr. Wade and Dr. Stanford, for providing a welcoming office and some respite in difficult times. To my family; my father Ray, and my two sisters Susannah and Eve, for support throughout my study and beyond. To Mr. Fahy, Mr. Robertson, Mr. Griffith and Dr. Ugalov for providing a comfortable home. Finally, to Amelia, for your love, support and patience.
Acknowledgements
Dedication

For my mother, Rosemary.