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Abstract
Genome-wide association studies (GWAS) have uncovered numerous genetic variants

(SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP

changes by acting on intermediate molecular phenotypes such as coded protein sequence

or gene expression, which in turn affect BP variability. Therefore, characterizing genes

whose expression is associated with BP may reveal cellular processes involved in BP regu-

lation and uncover how transcripts mediate genetic and environmental effects on BP vari-

ability. A meta-analysis of results from six studies of global gene expression profiles of BP

and hypertension in whole blood was performed in 7017 individuals who were not receiving

antihypertensive drug treatment. We identified 34 genes that were differentially expressed

in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have

been previously reported to be involved in BP-related processes; the others are novel. The

top BP signature genes in aggregate explain 5%–9% of inter-individual variance in BP. Of

note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP,

was found to be a trans regulator of the expression of 6 of the transcripts we found to be as-

sociated with BP (FOS,MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set en-

richment analysis suggested that the BP-related global gene expression changes include

genes involved in inflammatory response and apoptosis pathways. Our study provides new

insights into molecular mechanisms underlying BP regulation, and suggests novel tran-

scriptomic markers for the treatment and prevention of hypertension.

Author Summary

The focus of blood pressure (BP) GWAS has been the identification of common DNA se-
quence variants associated with the phenotype; this approach provides only one dimen-
sion of molecular information about BP. While it is a critical dimension, analyzing DNA
variation alone is not sufficient for achieving an understanding of the multidimensional
complexity of BP physiology. The top loci identified by GWAS explain only about 1 per-
cent of inter-individual BP variability. In this study, we performed a meta-analysis of gene
expression profiles in relation to BP and hypertension in 7017 individuals from six studies.
We identified 34 differentially expressed genes for BP, and discovered that the top BP sig-
nature genes explain 5%–9% of BP variability. We further linked BP gene expression sig-
nature genes with BP GWAS results by integrating expression associated SNPs (eSNPs)
and discovered that one of the top BP loci from GWAS, rs3184504 in SH2B3, is a trans
regulator of expression of 6 of the top 34 BP signature genes. Our study, in conjunction
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with prior GWAS, provides a deeper understanding of the molecular and genetic basis of
BP regulation, and identifies several potential targets and pathways for the treatment and
prevention of hypertension and its sequelae.

Introduction
Systolic and diastolic blood pressure (SBP and DBP) are complex physiological traits that are
affected by the interplay of multiple genetic and environmental factors. Hypertension (HTN) is
a critical risk factor for stroke, renal failure, heart failure, and coronary heart disease [1]. Ge-
nome-wide association studies (GWAS) have identified numerous loci associated with BP traits
[2,3]. These loci, however, only explain a small proportion of inter-individual BP variability. In
aggregate the 29 loci reported by the International Consortium of Blood Pressure (ICBP) con-
sortium GWAS account for about one percent of BP variation in the general population [3].
Most genes near BP GWAS loci are not known to be mechanistically associated with BP regula-
tion [3]. Therefore, further studies are needed to determine whether the genes implicated in
GWAS demonstrate functional relations to BP physiology and to uncover the molecular ac-
tions and interactions of genetic and environmental factors involved in BP regulation.

Alterations in gene expression may mediate the effects of genetic variants on phenotype var-
iability. We hypothesized that characterizing gene expression signatures of BP would reveal cel-
lular processes involved in BP regulation and uncover how transcripts mediate genetic and
environmental effects on BP variability. We additionally hypothesized that by integrating gene
expression profiling with genetic variants associated with altered gene expression (eSNPs or
eQTLs) and with BP GWAS results, we would be able to characterize the genetic architecture
of gene expression effects on BP regulation.

Several previous studies have examined the association of global gene expression with BP [4,5]
or HTN [6,7]. Most of these studies, however, were based on small sample sizes and lacked repli-
cation [4,5,6,7]. To address this challenge, we conducted an association study of global gene ex-
pression levels in whole blood with BP traits (SBP, DBP, and HTN) in six independent studies. In
order to avoid the possibility that the differentially expressed genes we identified reflect drug treat-
ment effects, we excluded individuals receiving anti-hypertensive treatment. The eligible study
sample included 7017 individuals: 3679 from the FraminghamHeart Study (FHS), 972 from the
Estonian Biobank (EGCUT), 604 from the Rotterdam Study (RS) [8], 597 from the InCHIANTI
Study, 565 from the Cooperative Health Research in the Region of Augsburg [KORA F4] Study
[9], and 600 from the Study of Health in Pomerania [SHIP-TREND] [10]. We first identified dif-
ferentially expressed BP genes in the FHS (n = 3679) followed by external replication in the other
five studies (n = 3338). Subsequently, we performed a meta-analysis of all 7017 individuals from
the six studies, and identified 34 differentially expressed genes associated with BP traits using a
stringent statistical threshold based on Bonferroni correction for multiple testing of 7717 unique
genes. The differentially expressed genes for BP (BP signature genes) were further integrated with
eQTLs and with BP GWAS results in an effort to differentiate downstream transcriptomic
changes due to BP from putatively causal pathways involved in BP regulation.

Results

Clinical characteristics
After excluding individuals receiving anti-hypertensive treatment, the eligible sample size was
7017 (FHS, n = 3679; EGCUT, n = 972; RS, n = 604; InCHIANTI, n = 597; KORA F4, n = 565
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and SHIP-TREND, n = 600). Clinical characteristics of participants from the four studies are
presented in Table 1. The mean age varied across the cohorts (FHS = 51, EGCUT = 36, RS =
58, InCHIANTI = 71, KORA F4 = 72 and SHIP-TREND = 46 years) as did the proportion of
individuals with hypertension (11% in FHS, 19% in EGCUT, 35% in RS, 45% in InCHIANTI,
26% in KORA, and 12% in SHIP).

Identification and replication of differentially expressed BP signature
genes
At a Bonferroni corrected p<0.05, we identified 73, 31, and 8 genes that were differentially ex-
pressed in relation to SBP, DBP, and HTN, respectively in the FHS, which used an Affymetrix
array for expression profiling, and 6, 1, and 1 genes in the meta-analysis of the 5 cohorts that
used an Illumina array (Illumina cohorts): EGCUT, RS, InCHIANTI, KORA F4 and SHIP-
TREND (S1 Table). For each differentially expressed BP gene in the FHS or in the Illumina co-
horts, we attempted replication in the other group. At a replication p<0.05 (Bonferroni cor-
rected), 13 unique genes that were identified in the FHS were replicated in the Illumina
cohorts, including 10 for SBP (CD97, TAGAP, DUSP1, FOS,MCL1,MYADM, PPP1R15A,
SLC31A2, TAGLN2, and TIPARP), 5 for DBP (CD97, BHLHE40, PRF1, CLC, andMYADM),
and 2 for HTN (GZMB andMYADM) (Table 2). Each of the unique BP signature genes in the
Illumina cohorts, 6 for SBP (TAGLN2, BHLHE40,MYADM, SLC31A2, DUSP1, andMCL1), 1
for DBP (BHLHE40) and 1 for HTN (SLC31A2), replicated in the FHS. All 6 Illumina cohorts
BP signature genes that replicated in the FHS were among the 13 FHS BP signature genes that
replicated in the Illumina cohorts. The BP signature genes identified in the FHS showed enrich-
ment in the Illumina cohorts at pi1 = 0.88, 0.75, and 0.99 for SBP, DBP, and HTN respectively
(pi1 value indicates the proportion of significant signals among the tested associations [11]; see
details in the Methods section). Fig. 1 shows that the mean gene expression levels of the top BP
signature genes were consistent with the BP phenotypic changes observed in the FHS and the
Illumina cohorts.

The 73 SBP signature genes in the FHS (55 of these 73 genes were measured in the Illumina
cohorts) at a Bonferroni corrected p<0.05 in aggregate explained 9.4% of SBP phenotypic vari-
ance in the Illumina cohorts, and the 31 DBP signature genes from the FHS (22 of these 31
genes were measured in the Illumina cohorts) in aggregate explained 5.3% of DBP phenotypic
variance in the Illumina cohorts. These results suggest that in contrast to common genetic vari-
ants identified by BP GWAS, which explain in aggregate only about 1% of inter-individual BP
variation [3], changes in gene expression levels explains a considerably larger proportion of
phenotypic variance in BP.

Table 1. Clinical characteristics of the study cohorts.

FHS N = 3,679 EGCUT N = 972 RS N = 604 InCHIANTI N = 597 KORA F4 N = 565 SHIP-TREND N = 600

Age (yr) 51 ± 12 36 ± 14 58 ± 8 71 ± 16 72 ± 5 46 ± 13

Sex, male (%) 42 49 46 46 51 43

Hypertension (%) 11 19 35 45 26 12

BMI (kg/m2) 27.2 ± 5.3 24.8 ± 4.4 26.8 ± 4.1 27.0 ± 4.2 29.8± 4.6 26 ± 4.2

Systolic BP (mm Hg) 118 ± 15 122 ± 16 132 ± 20 132 ± 20 129± 21 120 ± 15

Diastolic BP (mm Hg) 74 ±9 76 ± 10 82 ± 11 78 ±10 73±11 75 ± 9

doi:10.1371/journal.pgen.1005035.t001
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Table 2. Differentially expressed genes associated with BP and hypertension at Bonferroni correction p<0.05 in meta-analysis of the six
cohorts.

Gene Chr. Gene Description FHS
Beta

FHS
s.e.

FHS
pvalue

Illumina
Beta

Illumina
s.e.

Illumina
pvalue

Meta
*

Meta
s.e.

Meta
pvalue

—SBP Signature genes

SLC31A2 9 solute carrier family 31 (copper
transporters), member 2

2.4E-
03

3.3E-
04

1.2E-13 2.1E-03 3.3E-04 9.9E-11 2.3E-
03

2.3E-
04

<1E-16

MYADM 19 myeloid-associated differentiation
marker

2.5E-
03

3.2E-
04

2.2E-14 2.7E-03 3.9E-04 2.2E-12 2.6E-
03

2.5E-
04

<1E-16

DUSP1 5 dual specificity phosphatase 1 2.2E-
03

3.9E-
04

1.1E-08 2.1E-03 4.2E-04 3.7E-07 2.2E-
03

2.9E-
04

2.0E-14

TAGLN2 1 transgelin 2 2.0E-
03

4.1E-
04

1.0E-06 2.0E-03 4.0E-04 1.3E-06 2.0E-
03

2.9E-
04

5.8E-12

CD97 19 CD97 molecule 1.7E-
03

3.2E-
04

1.4E-07 1.5E-03 3.5E-04 1.6E-05 1.6E-
03

2.4E-
04

1.0E-11

BHLHE40 3 basic helix-loop-helix family,
member e40

1.5E-
03

3.4E-
04

4.3E-06 1.5E-03 3.0E-04 6.4E-07 1.5E-
03

2.2E-
04

1.2E-11

MCL1 1 myeloid cell leukemia sequence 1
(BCL2-related)

1.0E-
03

2.0E-
04

7.5E-07 1.6E-03 3.2E-04 1.5E-06 1.2E-
03

1.7E-
04

1.4E-11

PRF1 10 perforin 1 (pore forming protein) 2.5E-
03

4.1E-
04

2.5E-09 1.8E-03 5.3E-04 1.0E-03 2.2E-
03

3.3E-
04

1.6E-11

GPR56 16 G protein-coupled receptor 56 2.0E-
03

3.4E-
04

3.5E-09 1.7E-03 5.8E-04 3.0E-03 1.9E-
03

2.9E-
04

3.9E-11

PPP1R15A 19 protein phosphatase 1, regulatory
(inhibitor) subunit 15A

1.5E-
03

2.6E-
04

1.7E-09 1.3E-03 3.0E-04 2.8E-05 1.4E-
03

2.4E-
04

1.5E-08

FGFBP2 4 fibroblast growth factor binding
protein 2

2.3E-
03

5.0E-
04

5.8E-06 2.0E-03 6.2E-04 1.5E-03 2.2E-
03

3.9E-
04

3.3E-08

GNLY 2 granulysin 2.6E-
03

6.4E-
04

3.6E-05 2.6E-03 7.2E-04 3.0E-04 2.6E-
03

4.8E-
04

4.0E-08

FOS 14 FBJ murine osteosarcoma viral
oncogene homolog

1.7E-
03

2.5E-
04

1.6E-11 2.6E-03 6.3E-04 3.6E-05 2.3E-
03

4.1E-
04

4.8E-08

NKG7 19 natural killer cell group 7 sequence 2.3E-
03

5.3E-
04

1.9E-05 1.4E-03 5.5E-04 8.8E-03 1.9E-
03

3.8E-
04

9.4E-07

GRAMD1A 19 GRAM domain containing 1A -6.0E-
04

1.4E-
04

2.1E-05 -6.7E-04 2.8E-04 1.8E-02 -6.2E-
04

1.3E-
04

1.1E-06

GLRX5 14 glutaredoxin 5 1.7E-
03

3.9E-
04

1.3E-05 1.3E-03 6.1E-04 3.5E-02 1.6E-
03

3.3E-
04

1.5E-06

TMEM43 3 transmembrane protein 43 7.5E-
04

2.1E-
04

3.0E-04 7.7E-04 2.5E-04 2.4E-03 7.6E-
04

1.6E-
04

2.3E-06

TIPARP 3 TCDD-inducible poly(ADP-ribose)
polymerase

1.2E-
03

2.3E-
04

1.3E-07 8.6E-04 2.4E-04 3.3E-04 9.5E-
04

2.0E-
04

2.6E-06

AHNAK 11 AHNAK Nucleoprotein 9.1E-
04

2.6E-
04

4.1E-04 9.7E-04 3.4E-04 4.0E-03 9.3E-
04

2.0E-
04

5.2E-06

PIGB 15 phosphatidylinositol glycan anchor
biosynthesis, class B

1.1E-
03

3.1E-
04

5.3E-04 6.7E-04 2.1E-04 1.9E-03 8.0E-
04

1.8E-
04

6.1E-06

TAGAP 6 T-cell activation RhoGTPase
activating protein

1.7E-
03

2.5E-
04

5.7E-12 1.3E-03 3.7E-04 7.1E-04 1.4E-
03

3.1E-
04

6.4E-06

—DBP Signature genes
BHLHE40 3 basic helix-loop-helix family,

member e40
2.4E-
03

5.1E-
04

2.3E-06 2.5E-03 5.2E-04 2.8E-06 2.4E-
03

3.6E-
04

2.7E-11

ANXA1 9 annexin A1 3.5E-
03

5.7E-
04

1.2E-09 2.1E-03 7.8E-04 6.3E-03 3.0E-
03

4.6E-
04

6.5E-11

PRF1 10 perforin 1 (pore forming protein) 3.2E-
03

6.2E-
04

3.2E-07 3.2E-03 9.4E-04 5.7E-04 3.2E-
03

5.2E-
04

6.7E-10

(Continued)
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Table 2. (Continued)

Gene Chr. Gene Description FHS
Beta

FHS
s.e.

FHS
pvalue

Illumina
Beta

Illumina
s.e.

Illumina
pvalue

Meta
*

Meta
s.e.

Meta
pvalue

KCNJ2 17 potassium inwardly-rectifying
channel, subfamily J, member 2

-2.6E-
03

5.6E-
04

3.9E-06 -2.0E-03 5.5E-04 2.6E-04 -2.3E-
03

3.9E-
04

4.9E-09

CLC 19 Charcot-Leyden crystal protein -4.1E-
03

8.6E-
04

2.6E-06 -3.6E-03 1.0E-03 5.7E-04 -3.9E-
03

6.7E-
04

5.8E-09

CD97 19 CD97 molecule 2.3E-
03

4.8E-
04

1.6E-06 1.9E-03 5.8E-04 1.1E-03 2.1E-
03

3.7E-
04

7.4E-09

IL2RB 22 interleukin 2 receptor, beta 2.3E-
03

4.9E-
04

3.0E-06 2.2E-03 7.3E-04 2.4E-03 2.3E-
03

4.1E-
04

2.5E-08

S100A10 1 S100 calcium binding protein A10 3.2E-
03

6.1E-
04

2.4E-07 1.6E-03 6.2E-04 9.9E-03 2.4E-
03

4.4E-
04

4.0E-08

GPR56 16 G protein-coupled receptor 56 2.5E-
03

5.2E-
04

1.1E-06 2.4E-03 1.0E-03 1.7E-02 2.5E-
03

4.6E-
04

5.5E-08

TIPARP 3 TCDD-inducible poly(ADP-ribose)
polymerase

1.3E-
03

3.4E-
04

1.3E-04 1.1E-03 3.1E-04 2.8E-04 1.2E-
03

2.3E-
04

1.4E-07

HAVCR2 5 Hepatitis A Virus Cellular Receptor
2

1.7E-
03

4.6E-
04

3.8E-04 1.8E-03 4.8E-04 1.8E-04 1.7E-
03

3.3E-
04

2.4E-07

PTGS2 1 prostaglandin-endoperoxide
synthase 2 (prostaglandin G/H
synthase and cyclooxygenase)

-2.1E-
03

4.9E-
04

2.2E-05 -1.3E-03 5.1E-04 9.0E-03 -1.7E-
03

3.5E-
04

1.0E-06

MYADM 19 myeloid-associated differentiation
marker

2.8E-
03

4.9E-
04

1.7E-08 4.1E-03 1.0E-03 8.6E-05 3.6E-
03

7.4E-
04

1.1E-06

ANTXR2 4 anthrax toxin receptor 2 1.5E-
03

3.3E-
04

5.2E-06 8.3E-04 4.3E-04 5.5E-02 1.3E-
03

2.6E-
04

1.7E-06

OBFC2A 2 nucleic acid binding protein 1 -1.7E-
03

3.9E-
04

7.2E-06 -9.6E-04 4.6E-04 3.8E-02 -1.4E-
03

3.0E-
04

1.8E-06

GRAMD1A 19 GRAM domain containing 1A -9.3E-
04

2.1E-
04

1.4E-05 -8.7E-04 5.0E-04 7.8E-02 -9.2E-
04

2.0E-
04

2.8E-06

ARHGAP15 2 Rho GTPase activating protein 15 -1.3E-
03

4.1E-
04

1.1E-03 -1.4E-03 4.4E-04 1.5E-03 -1.4E-
03

3.0E-
04

5.2E-06

FBXL5 4 F-box and leucine-rich repeat
protein 5

-1.6E-
03

3.7E-
04

2.1E-05 -9.4E-04 4.9E-04 5.5E-02 -1.3E-
03

2.9E-
04

5.3E-06

SLC31A2 9 solute carrier family 31 (copper
transporters), member 2

2.8E-
03

4.9E-
04

1.0E-08 2.4E-03 8.1E-04 2.6E-03 2.6E-
03

5.6E-
04

5.4E-06

VIM 10 vimentin 1.7E-
03

3.8E-
04

5.5E-06 7.6E-04 5.9E-04 2.0E-01 1.4E-
03

3.2E-
04

6.2E-06

—HTN Signature genes
SLC31A2 9 solute carrier family 31 (copper

transporters), member 2
5.9E-
02

1.4E-
02

1.9E-05 6.4E-02 1.4E-02 2.1E-06 6.1E-
02

9.6E-
03

1.8E-10

MYADM 19 myeloid-associated differentiation
marker

7.8E-
02

1.4E-
02

1.2E-08 7.3E-02 2.1E-02 6.2E-04 7.4E-
02

1.4E-
02

3.0E-07

TAGAP 6 T-cell activation RhoGTPase
activating protein

4.4E-
02

1.1E-
02

3.2E-05 3.2E-02 1.2E-02 5.3E-03 3.9E-
02

7.8E-
03

7.3E-07

GZMB 14 granzyme B (granzyme 2, cytotoxic
T-lymphocyte-associated serine
esterase 1)

1.6E-
01

2.3E-
02

1.1E-11 1.1E-01 3.5E-02 9.6E-04 1.3E-
01

2.6E-
02

1.4E-06

KCNJ2 17 potassium inwardly-rectifying
channel, subfamily J, member 2

-5.2E-
02

1.6E-
02

8.4E-04 -4.4E-02 1.3E-02 5.5E-04 -4.7E-
02

9.9E-
03

1.7E-06

*Meta: meta-analysis of all six cohorts.

doi:10.1371/journal.pgen.1005035.t002
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Meta-analysis of the six cohorts identifies differentially expressed BP
signature genes
Ameta-analysis of differential expression across all six cohorts revealed 34 differentially ex-
pressed BP genes at p<0.05 (Bonferroni corrected for 7717 genes that were measured and
passed quality control in the FHS and Illumina cohorts), including 21 for SBP, 20 for DBP, and
5 for HTN (Table 2 and S2 Fig.). All of the 34 differentially expressed BP signature genes
showed directional consistency in the FHS and the Illumina cohorts (Table 2). The 34 BP sig-
nature genes included all 13 genes that were cross-validated between the FHS and the Illumina
cohorts. Of the 34 BP signature genes, 27 were positively correlated with BP and only 7 genes
were negatively correlated.MYADM and SLC31A2 were top signature genes for SBP, DBP, and
HTN. At FDR<0.2, 224 unique genes were differentially expressed in relation BP phenotypes
including 142 genes for SBP, 137 for DBP, and 45 for HTN (details are reported in the S1–S2
Text, and S3–S5 Table).

Functional analysis of differentially expressed BP signature genes
We used gene set enrichment analysis (GSEA) to identify the biological process and pathways
associated with gene expression changes in relation to SBP, DBP, and HTN in order to better
understand the biological themes within the data. As shown in Table 3, the GSEA of genes
whose expression was positively associated with BP showed enrichment for antigen processing
and presentation (p<0.0001), apoptotic program (p<0.0001), inflammatory response
(p<0.0001), and oxidative phosphorylation (p = 0.0018). The negatively associated genes
showed enrichment for nucleotide metabolic process (p<0.0001), positive regulation of cellular
metabolic process (p<0.0001), and positive regulation of DNA dependent transcription (p =
0.0021).

Genetic effects on expression of BP signature genes
Among the 34 BP signatures genes from the meta-analysis of all 6 studies, 33 were found to
have cis-eQTLs and 26 had trans-eQTLs (Fig. 2A and S2 Table) based on whole blood

Fig 1. Effect size of differentially expressed BP genes in the Framingham Heart Study and the Illumina cohorts. A) SBP; B) DBP; C) HTN. The x-axis
is the effect size of the differentially expressed genes in the FHS cohort and the y-axis is the effect size in the Illumina cohorts. The BP signature genes
identified both in the FHS and the Illumina cohorts at p<0.05 (Bonferroni corrected) are highlighted. pi1 values indicate the proportion of significant signals
among the tested associations [11] (See details in the Methods section).

doi:10.1371/journal.pgen.1005035.g001

Gene Expression Signatures of Blood Pressure

PLOS Genetics | DOI:10.1371/journal.pgen.1005035 March 18, 2015 7 / 29



profiling [12,13]. Of these, six master trans-eQTLs mapped to either five or six BP signature
genes (no master cis-eQTL was identified). Five master trans-eQTLs (rs653178, rs3184504,
rs10774625, rs11065987, and rs17696736) were located on chromosome 12q24 within the
same linkage disequilibrium (LD) block (r2 >0.8, Fig. 2B). We retrieved a peak cis- and trans-
eQTL for each BP signature gene. The peak cis-eQTL explained 0.2–20% of the variance in the
corresponding transcript levels, in contrast, the peak trans-eQTL accounted for very little
(0.02–2%) of the corresponding transcript variance. Westra et al. also reported a similar small
proportion of variance in transcript levels explained by trans-eQTLs [12].

We then linked the cis- and trans-eQTLs of the 34 BP signature genes with BP GWAS re-
sults from the ICBP Consortium [3] and the NHGRI GWAS Catalog [14] (Fig. 2 and S2
Table). We did not find any cis-eQTLs for the top BP signature genes that also were associated
with BP in the ICBP GWAS [3]. However, the 6 master trans-eQTLs were all associated with
BP at p<5e-8 in the ICBP GWAS [3] and were associated with multiple complex diseases or
traits (Table 4). For example, rs3184504, a nonsynonymous SNP in SH2B3 that was associated
in GWAS with BP, coronary heart disease, hypothyroidism, rheumatoid arthritis, and type 1
diabetes [12], is a trans-eQTL for 6 of our 34 BP signature genes from the meta-analysis (FOS,
MYADM, PP1R15A, TAGAP, S100A10, and FGBP2; Fig. 2A-B and Table 4). These 6 genes are
all highly expressed in neutrophils, and their expression levels are correlated significantly

Table 3. Gene set enrichment analysis for BP associated gene expression changes.

Name Pos / Neg associated gene expression
changes

Database Number of genes in
pathway

NES* p
value

FDR

- DBP signature

Antigen processing and presentation Positive KEGG 37 2.0 <1E-4 0.01

Nature killer cell mediated cytotoxicity Positive KEGG 71 1.8 <1E-4 0.07

Porphyrin and chlorophyll metabolism Positive KEGG 15 1.7 0.01 0.13

Rho protein signaling transduction Negative GO-BP 18 -1.8 3.9E-3 0.10

Receptor mediated endocytosis Negative GO-BP 16 -1.8 3.9E-3 0.17

Detection of stimulus Negative GO-BP 18 -1.9 9.8E-3 0.20

- SBP signature
Natural killer cell mediated cytotoxicity Positive KEGG 71 1.9 1.7E-3 0.05

Apoptotic program Positive GO-BP 37 1.9 <1E-4 0.03

Inflammatory response Positive GO-BP 72 2.0 <1E-4 0.05

Nucleotide metabolic process Negative GO-BP 32 -1.9 <1E-4 0.04

Translation Negative GO-BP 79 -1.8 <1E-4 0.05

- HTN signature
Antigen processing and presentation Positive KEGG 37 1.8 <1E-4 0.04

Oxidative phosphorylation Positive KEGG 52 1.8 1.8E-3 0.05

Apoptotic program Positive GO-BP 37 1.9 1.8E-3 0.14

Positive regulation of nucleic acid
metabolic process

Negative GO-BP 71 -1.9 <1E-4 0.08

Positive regulation of cellular metabolic
process

Negative GO-BP 105 -1.8 <1E-4 0.08

Positive regulation of transcription DNA
dependent

Negative GO-BP 56 -1.8 2.1E-3 0.09

*NES: normalized enrichment score;

GO-BP: Gene ontology- biological process;

KEGG: Kyoto encyclopedia of genes and genomes.

doi:10.1371/journal.pgen.1005035.t003
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(average r2 = 0.04, p<1e-16). rs653178, intronic to ATXN2 and in perfect LD with rs3184504
(r2 = 1), also is associated with BP and multiple other diseases in the NHGRI GWAS Catalog
[14]. It also is a trans-eQTL for the same 6 BP signature genes (Table 4). These two SNPs are
cis-eQTLs for expression SH2B3 in whole blood (FDR<0.05), but not for ATXN2 (FDR = 0.4).
We found that the expression of SH2B3 is associated with expression ofMYADM, PP1R15A,
and TAGAP (at Bonferroni corrected p<0.05), but not with FOS, S100A10, or FGBP2. The ex-
pression of ATXN2 was associated with expression of 5 of the 6 genes (PP1R15A was not asso-
ciated). S3 Fig. shows the coexpression levels of the eight genes that were cis- or trans-
associated with rs3184504 and rs653178 genotypes. These results suggest that there may be a
pathway or gene co-regulatory mechanism underling BP regulation involving these genes that
is driven by this common genetic variant (rs3184504; minor allele frequency 0.47) or its proxy
SNPs.

We further checked whether the cis- or trans-eQTLs for the top 34 BP signature genes are
associated with other diseases or traits in the NHGRI GWAS catalog [14]. We identified 12 cis-
eQTLs (for 8 genes) and 6 trans-eQTLs (for 6 genes) that are associated with other diseases or
traits in the NHGRI GWAS catalog [14] (Table 4).

Discussion
Our meta-analysis of gene expression data from 7017 individuals from six studies identified
and characterized whole blood gene expression signatures associated with BP traits. Thirty-
four BP signature genes were identified at Bonferroni corrected p<0.05 (224 genes were identi-
fied at FDR<0.2, reported in the S1 Text). Thirteen BP signature genes replicated between the
FHS and Illumina cohorts. The top BP signature genes identified in the FHS (55 genes for SBP

Fig 2. Global view of BP eQTLs effects on differentially expressed BP signature genes. A) 2-Dimensional plot of in whole blood eQTLs vs. transcript
position genome wide. eQTL-transcript pairs at FDR<0.1 are shown in black dots; those that fall along the diagonal are cis eQTLs and all others are trans
eQTLS. eQTL-transcript pair SNPs that are associated with BP in GWAS [3] are highlighted with blue triangles. eQTL-transcript pair genes that are BP
signature genes from analysis of differential gene expression in relation to BP are depicted by red circles. B) Regional association plots for rs3184504 proxy
QTLs that showing association with BP in ICBPGWAS [3]. −log10(p) indicated the −log10 transformed DBP association p values in ICBP GWAS [3]. Color
coding indicates the strength (measured by r2) of LD of each SNP with the top SNP (rs3184504). Five master trans-eQTLs (also BP GWAS SNPs) for BP
signature genes are labeled in the figure. This figure was drawn by LocusZoom [32].

doi:10.1371/journal.pgen.1005035.g002
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and 22 genes for DBP) explained 5–9% of interindividual variation in BP in the Illumina co-
horts on average.

Among the 34 BP signature genes (at Bonferroni corrected p<0.05), only FOS [15] and
PTGS2 [16] have been previously implicated in hypertension. We did not find literature

Table 4. GWAS eQTLs for the top differentially expressed BP signature genes.

SNP—Trait Association SNP-Gene Association Gene-Trait Association

SNP ID SNP. Location ICBP-
SBP
pval

ICBP-
DBP
pval

Other Traits in GWAS Catalog Gene Chr.
Gene

Cis/
Trans

SBP
pval

DBP
pval

HTN
pval

rs3184504* chr12
(missense,
SH2B3)

1.70E-09 2.30E-14 Coronary heart disease;
Rheumatoid arthritis; Type 1
diabetes

MYADM chr19 trans <1e-
16&

1.1e-6 3.0e-7

FOS chr14 trans§ 4.9e-8 3.2e-4 7.9e-5

PPP1R15A chr19 trans§ 1.6e-8 1.2e-5 6.1e-4

TAGAP chr6 trans 6.4e-6 1.3e-4 7.3e-7

S100A10 chr1 trans§ 2.6e-4 4.0e-8 7.0e-5

FGFBP2 chr4 trans§ 3.3e-8 1.8e-5 5.1e-3

rs10187424 chr2 (intergenic) - - Prostate cancer GNLY chr2 cis§ 4.0e-8 2.8e-5 2.2e-4

rs411174 chr5 (intron,
ITK)

- - Personality dimensions HAVCR2 chr5 cis§ 1.6e-4 2.4e-7 1.5e-3

rs3758354 chr9 (intergenic) - - Schizophrenia, bipolar disorder
and depression

ANXA1 chr9 cis 1.8e-3 6.5e-
11

7.5e-3

rs1950500 chr14
(intergenic)

- - Height GZMB chr14 cis 7.8e-5 6.0e-5 1.4e-6

rs8017377 chr14
(missense,
NYNRIN)

- - LDL cholesterol GZMB chr14 cis 7.8e-5 6.0e-5 1.4e-6

rs8192917 chr14
(missense,
GZMB)

- - Vitiligo GZMB chr14 cis 7.8e-5 6.0e-5 1.4e-6

rs2284033 chr22 (intron,
IL2RB)

- - Asthma IL2RB chr22 cis§ 1.6e-4 2.5e-8 9.3e-3

rs11724635+ chr4 (intergenic) - - Parkinsons disease FBXL5 chr4 cis 5.9e-5 5.3e-6 0.07

rs4333130$ chr4 (intron,
ANTXR2)

- - Ankylosing spondylitis ANTXR2 chr4 cis 2.8e-4 1.7e-6 0.04

rs8005962 chr14
(intergenic)

- - Tuberculosis GLRX5 chr14 cis 1.5e-6 0.13 0.09

rs7995215 chr13 (intron,
GPC6)

- - Attention deficit hyperactivity
disorder

TAGAP chr6 trans 6.4e-6 1.3e-4 7.3e-7

rs12047808 chr1 (intron,
C1orf125)

- - Multiple sclerosis (age of onset) FOS chr14 trans§ 4.9e-8 3.2e-4 7.9e-5

rs2894207 chr6 (intergenic) - - Nasopharyngeal carcinoma AHNAK chr11 trans 5.2e-6 6.8e-5 1.8e-3

rs3763313 chr6 (neargene
5, BTNL2)

- - HIV-1 control PPP1R15A chr19 trans 1.6e-8 1.2e-5 6.1e-4

rs9376092 chr6 (intergenic) - - Beta thalassemia/hemoglobin E
disease

GPR56 Chr16 trans 3.9e-
11

5.5e-8 4.9e-4

* rs653178, intronic to ATXN2 and in tight linkage disequilibrium with rs3184504 (r2 = 1), was also associated with BP in ICBP GWAS and all the 6 genes;
+ A proxy SNP rs4698412 at LD r2 = 1 associated with the same trait;

$ A proxy SNP rs4389526 at LD r2 = 1 associated with the same trait;
§ indicated eQTL were identified from[12].
& highlighted p values indicated passing transcriptome-wide significance at Bonferroni corrected p<0

doi:10.1371/journal.pgen.1005035.t004
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support for a direct role of the remaining signature genes in BP regulation. However, we found
several genes involved in biological functions or processes that are highly related to BP, such as
cardiovascular disease (GZMB, ANXA1, TMEM43, FOS, KCNJ2, PTGS2, andMCL1), angio-
genesis (VIM and TIPARP), and ion channels (CD97, ANXA1, S100A10, PRF1, ANTXR2,
SLC31A2, TIPARP, and KCNJ2). We speculate that these genes may be important for BP regu-
lation, but further experimental validation is needed.

Seven of the 34 signature genes, including KCNJ2, showed negative correlation of expression
with BP. KCNJ2 is a member of the potassium inwardly-rectifying channel subfamily; it en-
codes the inward rectifier K+ channel Kir2.1, and is found in cardiac, skeletal muscle, and ner-
vous tissue [17]. Most outward potassium channels are positively correlated with BP. Loss-of-
function mutations in ROMK (KCNJ1, the outward potassium channel) are associated with
Bartter's syndrome, and ROMK inhibitors are used in the treatment of hypertension [18,19].
Previous studies reported that greater potassium intake is associated with lower blood pressure
[20,21,22,23]. These data suggest that KCNJ2 up-regulation may be a means of lowering BP.

By linking the BP signature genes with eQTLs and with BP GWAS results, we found several
SNPs that are associated with BP in GWAS and that also are trans associated with several of
our top BP signature genes. For example, rs3184504, a non-synonymous SNP located in exon 3
of SH2B3, is associated in GWAS with BP, coronary heart disease, hypothyroidism, rheumatoid
arthritis, and type I diabetes [12]. rs3184504 is a common genetic variant with a minor allele
frequency of approximately 0.47; the rs3184504-T allele is associated with an increment of
0.58 mmHg in SBP and of 0.48 mmHg in DBP [2]. rs3184504 is a cis-eQTL for SH2B3, expres-
sion of this gene was not associated with BP or hypertension in our data. However, rs3184504
also is a trans-eQTL for 6 of our 34 BP signature genes: FOS,MYADM, PP1R15A, TAGAP,
S100A10, and FGBP2. These 6 genes are highly expressed in neutrophils [12], and are coex-
pressed. Prior studies have suggested an important role of neutrophils in BP regulation [24].
We speculate that these 6 BP signature genes, all driven by the same BP-associated eQTL, point
to a critical and previously unrecognized mechanism involved in BP regulation. Further experi-
mental validation is needed.

One limitation of our study is the use of whole blood derived RNA for transcriptomic profil-
ing. GSEA showed that the top enriched biological processes for the differentially expressed BP
genes include inflammatory response. Numerous studies have shown links between inflamma-
tion and hypertension [25,26,27]. The top ranked genes in inflammatory response categories
provide a guide for further experimental work to recognize the contributions of inflammation
to alterations in BP regulation. We speculate that using similar approaches in other tissues
might identify additional differentially expressed BP signature genes.

In conclusion, we conducted a meta-analysis of global gene expression profiles in relation to
BP and identified a number of credible gene signatures of BP and hypertension. Our integrative
analysis of GWAS and gene expression in relation to BP can help to uncover the genetic and
genomic architecture of BP regulation; the BP signature genes we identified may represent an
early step toward improvements in the detection of susceptibility, and in the prevention and
treatment of hypertension.

Materials and Methods

Study population and ethics statement
This investigation included six studies (the Framingham Heart Study (FHS), the Estonian Bio-
bank (EGCUT), the Rotterdam Study (RS) [8], the InCHIANTI Study, the Cooperative Health
Research in the Region of Augsburg (KORA F4) Study [9], and the Study of Health in Pomera-
nia (SHIP-TREND) [10], each of which conducted genome-wide genotyping, mRNA
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expression profiling, and had extensive BP phenotype data. Each of the six studies followed the
recommendations of the Declaration of Helsinki. The FHS: Systems Approach to Biomarker
Research (SABRe) in cardiovascular disease is approved under the Boston University Medical
Center’s protocol H-27984. Ethical approval of EGCUT was granted by the Research Ethics
Committee of the University of Tartu (UT REC). Ethical approval of the InCHIANTI study
was granted by the Instituto Nazionale Riposo e Cura Anziani institutional review board in
Italy. Ethical approval of RS was granted by the medical ethics committee of the Erasmus Med-
ical Center. The study protocol of SHIP-TREND was approved by the medical ethics commit-
tee of the University of Greifswald. KORA F4 is a population-based survey in the region of
Augsburg in Southern Germany which was performed between 2006 and 2008. KORA F4
was approved by the local ethical committees. Informed consent was obtained from each
study participant.

Hypertension (HTN) was defined as SBP�140 mmHg or DBP�90 mmHg. We excluded
individuals receiving anti-hypertensive treatment because of the possibility that some of the
differentially expressed genes we identified would reflect treatment effects. The eligible study
sample included 7017 individuals: 3679 from FHS, 972 from EGCUT, 604 from RS, 597 from
InCHIANTI, 565 from KORA F4, and 600 from SHIP-TREND.

Gene expression profiling
RNA was isolated from whole blood samples that were collected in PaxGene tubes (PreAnaly-
tiX, Hombrechtikon, Switzerland) in FHS, RS, InCHIANTI, KORA F4 and SHIP-TREND, and
in Blood RNA Tubes (Life Technologies, NY, USA) in EGCUT. Gene expression in the FHS
samples used the Affymetrix Exon Array ST 1.0. EGCUT, RS, InCHANTI, KORA F4, and
SHIP-TREND used the Illumina HT12v3 (EGCUT, InCHANTI, KORA F4, and SHIP-
TREND) or HT12v4 (RS) array. Raw data from gene expression profiling are available online
(FHS [http://www.ncbi.nlm.nih.gov/gap; accession number phs000007], EGCUT [GSE48348],
RS [GSE33828], InCHIANTI [GSE48152], KORA F4 [E-MTAB-1708] and SHIP-TREND
[GSE36382]). The details of sample collection, microarrays, and data processing and normali-
zation in each cohort are provided in the S2 Text.

Identification and replication of differentially expressed genes
associated with BP
The association of gene expression with BP was analyzed separately in each of the six studies
(Equation 1). A linear mixed model was used in the FHS in order to account for family struc-
ture. Linear regression models were used in the other five studies. In each study, gene expres-
sion level, denoted by geneExp, was included as the dependent variable, and explanatory
variables included blood pressure phenotypes (SBP, DBP, and HTN), and covariates included
age, sex, body mass index (BMI), cell counts, and technical covariates. A separate regression
model was fitted for each gene. The general formula is shown below, and the details of analyses
for each study are provided in the S2 Text and S6 Table.

geneExp ¼ BP þ
Xm
j¼1

covariates

The overall analysis framework is provided in S1 Fig. We first identified differentially ex-
pressed genes associated with BP (BP signature genes) in the FHS samples (Set 1) and at-
tempted replication in the meta-analysis results from the Illumina cohorts (Set 2, see Methods,
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Meta-analysis). We next identified BP signature genes in the Illumina cohorts (Set 2), and then
attempted replication in the FHS samples (Set 1). The significance threshold for pre-selecting
BP signature genes in discovery was at Bonferroni corrected p = 0.05 (in FHS, corrected for
17,318 measured genes [17,873 transcripts], and in illumina cohorts, corrected for 12,010 mea-
sured genes [14,222 transcripts] that passed quality control). Replication was established at
Bonferroni corrected p = 0.05, correcting for the number of pre-selected BP signatures genes in
the discovery set. We computed the pi1 value to estimate the enrichment of significant p values
in the replication set (the Illumina cohorts) for BP signatures identified in the discovery set
(the FHS) by utilizing the R package Qvalue [11]. Pi1 is defined as 1-pi0. Pi0 value provided by
the Qvalue package, represents overall probability that the null hypothesis is true. Therefore,
pi1 value represents the proportion of significant results. For genes passing Bonferroni cor-
rected p<0.05 in the discovery set for SBP, DBP and HTN, we calculated pi1 values for each
gene set in the replication set.

Meta-analysis
We performed meta-analysis of the five Illumina cohorts (for discovery and replication pur-
poses), and then performed meta-analysis of all six cohorts. An inverse variance weighted
meta-analysis was conducted using fixed-effects or random-effects models by themetagen()
function in the R package Meta (http://cran.r-project.org/web/packages/meta/index.html). At
first, we tested heterogeneity for each gene using Cochran’s Q statistic. If the heterogeneity p
value is significant (p<0.05), we will use a random-effects model for the meta-analysis, other-
wise use a fixed-effects model. The Benjamini-Hochberg (BH) method [28] was used to calcu-
late FDR for differentially expressed genes in relation to BP following the meta-analysis of all
six cohorts. We also used a more stringent threshold to define BP signature genes by utilizing
p<6.5e-6 (Bonferroni correction for 7717 unique genes [7810 transcript] based on the overlap
of FHS and illumina cohort interrogated gene sets).

Estimating the proportion of variance in BP attributable to BP signature
genes
To estimate the proportion of variances in SBP or DBP explained by a group of differentially
expressed BP signature genes (gene 1, gene 2, . . ., gene n), we used the following two models:

Full model:

BP ¼
Xn
i¼1

gene i þ
Xm
j¼1

covariates

Null model:

BP ¼
Xm
j¼1

covariates

The proportion of variance in BP attributable to the group of differentially expressed BP sig-
nature genes (h2

BP sig) was calculated as:

h2
BP sig ¼ max 0;

s2
G:null þ s2

err:null � s2
G:full � s2

err:full

s2
BP

� �

where s2
BP is the total phenotypic variance of SBP or DBP, s2

G:full and s
2
err:full are the variance and
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error variance when modeling with the tested group of gene expression traits (gene 1, gene 2,
. . ., gene n), and s2

G:null and s
2
err:null are the variance and error variance when modeling without

the tested group of gene expression traits.
The proportion of the variance in BP phenotypes attributable to the FHS BP signature genes

was estimated in the five Illumina cohorts, respectively, and then the average proportion values
were reported. In turn, the proportion of the variance in BP phenotypes attributable to the Illu-
mina BP signature genes was estimated in the FHS.

Identifying eQTLs and estimating the proportion of variance in gene
expression attributable to single cis- or trans-eQTLs
SNPs associated with altered gene expression (i.e. eQTLs) were identified using genome-wide
genotype and gene expression data in all available FHS samples (n = 5257) at FDR<0.1 (Joe-
hanes R, submitted, 2014, and a brief summary of methods and results are provided in the S2
Text). A cis-eQTL was defined as an eQTL within 1 megabase (MB) flanking the gene. Other
eQTLs were defined as trans-eQTLs. We combined the eQTL list generated in the FHS with
the eQTLs generated by meta-analysis of seven other studies (n = 5300) that were also based on
whole blood expression[12].

For every BP signature gene, we estimated the proportion of variance in the transcript at-
tributable to the corresponding cis- or trans-eQTLs (h2

eQTL) using the formula:

h2
eQTL ¼ max 0;

s2
eQTL:null þ s2

err:null � s2
eQTL:full � s2

err:full

s2
gene

 !

where s2
gene was the total phenotypic variance of a gene expression trait; s2

eQTL:full and s
2
err:full were

the variance and the residual error, respectively, when modeling with the tested eQTL; s2
eQTL:null

and s2
err:null were the variance and the residual error when modeling without the tested eQTL.

Functional category enrichment analysis
In order to understand the biological themes within the global gene expression changes in rela-
tion to BP, we performed gene set enrichment analysis[29] to test for enrichment of any gene
ontology (GO) biology process[30] or KEGG pathways[31]. “Metric for ranking gene” parame-
ters were configured to the beta value of the meta-analysis, in order to look at the top enriched
functions for BP associated up-regulated and down-regulated gene expression changes respec-
tively. One thousand random permutations were conducted and the significance level was set
at FDR� 0.25 to allow for exploratory discovery [29].
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signature genes identified in the FHS cohort in the Illumina cohorts. And in turn, we replicated
the BP signature genes identified in Illumina cohorts in FHS cohort. Fourth, we conducted a
meta-analysis in the six cohorts and reported the BP signature genes passing Bonferroni cor-
rected p<0.05 (corrected for 7717 genes). And finally, we cross-analyzed the BP signature
genes with blood eQTLs as well as with BP GWAS results to identify the BP signature genes
having BP GWAS eQTLs.
(TIF)

S2 Fig. Volcano plots of the meta-analysis results of differentially expressed genes of BP. A)
SBP; B) DBP; C) HTN. The x-axis is the effect size (beta values) of meta-analysis and the y-axis
is the −log10 transformed p values.
(TIF)

S3 Fig. Coexpression of the eight genes associated in cis or trans with rs3184504 or
rs653178 in the FHS. The numbers in the Heatmap indicate Pearson correlations between
pairs of genes.
(TIF)

S1 Table. Differentially expressed genes of BP at Bonferroni corrected p<0.05 in the FHS
cohort.
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S2 Table. BP signature genes at Bonferroni corrected p<0.05 with cis/trans eQTLs.
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S3 Table. BP differentially expressed genes at FDR<0.2 in the meta-analysis of all six co-
horts.
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S4 Table. Gene ontology enrichment analysis of BP signatures at FDR<0.2.
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S5 Table. BP signature genes at FDR<0.2 with cis eQTLs in ICBP GWAS.
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S6 Table. Technical covariates utilized for gene expression data normalization.
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S2 Text. Supplementary Materials and Methods.
(DOCX)

Acknowledgments
We thank the field staff in Augsburg who was involved in the conduct of the studies. The au-
thors are grateful to the study participants, the staff from the Rotterdam Study and the partici-
pating general practitioners and pharmacists. We thank Marjolein Peters, MSc, Ms. Mila
Jhamai, Ms. Jeannette M. Vergeer-Drop, Ms. Bernadette van Ast-Copier, Mr. Marijn Verkerk
and Jeroen van Rooij, BSc for their help in creating the RNA array expression database.

This study utilized the high-performance computational capabilities of the Biowulf Linux
cluster at the National Institutes of Health, Bethesda, MD. (http://biowulf.nih.gov).

Gene Expression Signatures of Blood Pressure

PLOS Genetics | DOI:10.1371/journal.pgen.1005035 March 18, 2015 27 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005035.s011
http://biowulf.nih.gov


Author Contributions
Performed the experiments: NR RW PL PCMC. Analyzed the data: TH TEMJP LCP KS CS
BHC CL RJ. Wrote the paper: TH TE MJP LCP KS CS DL LF JBJvM HP UV XY. Designed, di-
rected, and supervised the project: DL LF JBJvM HP UV XY CH. Participated in revising and
editing the manuscripts: ADJ CY SxY LM NR ER AD AH AGU DGH SB AS DM AMMCHG
CH TMAPMRMWMD SBF TZ RV CJO PJM.

References
1. Chobanian AV, Bakris GL, Black HR, CushmanWC, Green LA, et al. (2003) Seventh report of the Joint

National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hy-
pertension 42: 1206–1252. PMID: 14656957

2. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, et al. (2009) Genome-wide association study of
blood pressure and hypertension. Nat Genet 41: 677–687. doi: 10.1038/ng.384 PMID: 19430479

3. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. (2011) Genetic variants in novel path-
ways influence blood pressure and cardiovascular disease risk. Nature 478: 103–109. doi: 10.1038/
nature10405 PMID: 21909115

4. Leonardson AS, Zhu J, Chen Y, Wang K, Lamb JR, et al. (2010) The effect of food intake on gene ex-
pression in human peripheral blood. HumMol Genet 19: 159–169. doi: 10.1093/hmg/ddp476 PMID:
19837700

5. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, et al. (2010) Genetics and beyond—the transcrip-
tome of human monocytes and disease susceptibility. PLoS One 5: e10693. doi: 10.1371/journal.
pone.0010693 PMID: 20502693

6. Bull TM, Coldren CD, Moore M, Sotto-Santiago SM, Pham DV, et al. (2004) Gene microarray analysis
of peripheral blood cells in pulmonary arterial hypertension. Am J Respir Crit Care Med 170: 911–919.
PMID: 15215156

7. Korkor MT, Meng FB, Xing SY, Zhang MC, Guo JR, et al. (2011) Microarray analysis of differential
gene expression profile in peripheral blood cells of patients with human essential hypertension. Int J
Med Sci 8: 168–179. PMID: 21369372

8. Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HL, et al. (2011) The Rotterdam Study: 2012
objectives and design update. Eur J Epidemiol 26: 657–686. doi: 10.1007/s10654-011-9610-5 PMID:
21877163

9. Schurmann C, Heim K, Schillert A, Blankenberg S, Carstensen M, et al. (2012) Analyzing illumina gene
expression microarray data from different tissues: methodological aspects of data analysis in the
metaxpress consortium. PloS one 7: e50938. doi: 10.1371/journal.pone.0050938 PMID: 23236413

10. Volzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, et al. (2011) Cohort profile: the study of health in
Pomerania. Int J Epidemiol 40: 294–307. doi: 10.1093/ije/dyp394 PMID: 20167617

11. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the Na-
tional Academy of Sciences 100: 9440–9445. PMID: 12883005

12. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, et al. (2013) Systematic identification of
trans eQTLs as putative drivers of known disease associations. Nature genetics 45: 1238–1243. doi:
10.1038/ng.2756 PMID: 24013639

13. Joehanes R., Huan T., C Yao, X Zhang, S Ying, et al. (2013) Genome-wide Expression Quantitative
Trait Loci: Results from the NHLBI’s SABRe CVD Initiative. the American Society of Human Genetics
(ASHG) conference. Boston Convention Ctr. Boston, MA.

14. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and func-
tional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U
S A 106: 9362–9367. doi: 10.1073/pnas.0903103106 PMID: 19474294

15. Rowland NE, Li BH, Fregly MJ, Smith GC (1995) Fos induced in brain of spontaneously hypertensive
rats by angiotensin II and co-localization with AT-1 receptors. Brain Res 675: 127–134. PMID:
7796121

16. Beetz N, Harrison MD, Brede M, Zong X, Urbanski MJ, et al. (2009) Phosducin influences sympathetic
activity and prevents stress-induced hypertension in humans and mice. J Clin Invest 119: 3597–3612.
doi: 10.1172/JCI38433 PMID: 19959875

17. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, et al. (2010) Inwardly rectifying potassium
channels: their structure, function, and physiological roles. Physiol Rev 90: 291–366. doi: 10.1152/
physrev.00021.2009 PMID: 20086079

Gene Expression Signatures of Blood Pressure

PLOS Genetics | DOI:10.1371/journal.pgen.1005035 March 18, 2015 28 / 29

http://www.ncbi.nlm.nih.gov/pubmed/14656957
http://dx.doi.org/10.1038/ng.384
http://www.ncbi.nlm.nih.gov/pubmed/19430479
http://dx.doi.org/10.1038/nature10405
http://dx.doi.org/10.1038/nature10405
http://www.ncbi.nlm.nih.gov/pubmed/21909115
http://dx.doi.org/10.1093/hmg/ddp476
http://www.ncbi.nlm.nih.gov/pubmed/19837700
http://dx.doi.org/10.1371/journal.pone.0010693
http://dx.doi.org/10.1371/journal.pone.0010693
http://www.ncbi.nlm.nih.gov/pubmed/20502693
http://www.ncbi.nlm.nih.gov/pubmed/15215156
http://www.ncbi.nlm.nih.gov/pubmed/21369372
http://dx.doi.org/10.1007/s10654-011-9610-5
http://www.ncbi.nlm.nih.gov/pubmed/21877163
http://dx.doi.org/10.1371/journal.pone.0050938
http://www.ncbi.nlm.nih.gov/pubmed/23236413
http://dx.doi.org/10.1093/ije/dyp394
http://www.ncbi.nlm.nih.gov/pubmed/20167617
http://www.ncbi.nlm.nih.gov/pubmed/12883005
http://dx.doi.org/10.1038/ng.2756
http://www.ncbi.nlm.nih.gov/pubmed/24013639
http://dx.doi.org/10.1073/pnas.0903103106
http://www.ncbi.nlm.nih.gov/pubmed/19474294
http://www.ncbi.nlm.nih.gov/pubmed/7796121
http://dx.doi.org/10.1172/JCI38433
http://www.ncbi.nlm.nih.gov/pubmed/19959875
http://dx.doi.org/10.1152/physrev.00021.2009
http://dx.doi.org/10.1152/physrev.00021.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086079


18. Felix JP, Priest BT, Solly K, Bailey T, Brochu RM, et al. (2012) The inwardly rectifying potassium chan-
nel Kir1.1: development of functional assays to identify and characterize channel inhibitors. Assay Drug
Dev Technol 10: 417–431. doi: 10.1089/adt.2012.462 PMID: 22881347

19. Fang L, Li D, Welling PA (2010) Hypertension resistance polymorphisms in ROMK (Kir1.1) alter chan-
nel function by different mechanisms. Am J Physiol Renal Physiol 299: F1359–1364. doi: 10.1152/
ajprenal.00257.2010 PMID: 20926634

20. Cappuccio FP, MacGregor GA (1991) Does potassium supplementation lower blood pressure? A
meta-analysis of published trials. J Hypertens 9: 465–473. PMID: 1649867

21. Geleijnse JM, Kok FJ, Grobbee DE (2003) Blood pressure response to changes in sodium and potassi-
um intake: a metaregression analysis of randomised trials. J HumHypertens 17: 471–480. PMID:
12821954

22. Fulgoni VL 3rd (2007) Limitations of data on fluid intake. J Am Coll Nutr 26: 588S−591S. PMID:
17921470

23. Koliaki C, Katsilambros N (2013) Dietary sodium, potassium, and alcohol: key players in the pathophys-
iology, prevention, and treatment of human hypertension. Nutr Rev 71: 402–411. doi: 10.1111/nure.
12036 PMID: 23731449

24. Morton J, Coles B, Wright K, Gallimore A, Morrow JD, et al. (2008) Circulating neutrophils maintain
physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in
the vasculature of healthy mice. Blood 111: 5187–5194. doi: 10.1182/blood-2007-10-117283 PMID:
18281503

25. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, et al. (2011) Inflammation, immunity, and hy-
pertension. Hypertension 57: 132–140. doi: 10.1161/HYPERTENSIONAHA.110.163576 PMID:
21149826

26. Harrison DG, Marvar PJ, Titze JM (2012) Vascular inflammatory cells in hypertension. Front Physiol 3:
128. doi: 10.3389/fphys.2012.00128 PMID: 22586409

27. Harrison DG, Vinh A, Lob H, Madhur MS (2010) Role of the adaptive immune system in hypertension.
Curr Opin Pharmacol 10: 203–207. doi: 10.1016/j.coph.2010.01.006 PMID: 20167535

28. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society Series B (Methodological): 289–300.

29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci U S A 102: 15545–15550. PMID: 16199517

30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the unifica-
tion of biology. Nature genetics 25: 25–29. PMID: 10802651

31. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research
28: 27–30. PMID: 10592173

32. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, et al. (2010) LocusZoom: regional visualiza-
tion of genome-wide association scan results. Bioinformatics 26: 2336–2337. doi: 10.1093/
bioinformatics/btq419 PMID: 20634204

Gene Expression Signatures of Blood Pressure

PLOS Genetics | DOI:10.1371/journal.pgen.1005035 March 18, 2015 29 / 29

http://dx.doi.org/10.1089/adt.2012.462
http://www.ncbi.nlm.nih.gov/pubmed/22881347
http://dx.doi.org/10.1152/ajprenal.00257.2010
http://dx.doi.org/10.1152/ajprenal.00257.2010
http://www.ncbi.nlm.nih.gov/pubmed/20926634
http://www.ncbi.nlm.nih.gov/pubmed/1649867
http://www.ncbi.nlm.nih.gov/pubmed/12821954
http://www.ncbi.nlm.nih.gov/pubmed/17921470
http://dx.doi.org/10.1111/nure.12036
http://dx.doi.org/10.1111/nure.12036
http://www.ncbi.nlm.nih.gov/pubmed/23731449
http://dx.doi.org/10.1182/blood-2007-10-117283
http://www.ncbi.nlm.nih.gov/pubmed/18281503
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.163576
http://www.ncbi.nlm.nih.gov/pubmed/21149826
http://dx.doi.org/10.3389/fphys.2012.00128
http://www.ncbi.nlm.nih.gov/pubmed/22586409
http://dx.doi.org/10.1016/j.coph.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20167535
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://dx.doi.org/10.1093/bioinformatics/btq419
http://dx.doi.org/10.1093/bioinformatics/btq419
http://www.ncbi.nlm.nih.gov/pubmed/20634204

