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Abstract 

There has been a rapid change in forest and land cover globally, especially in 

tropical forests due to heavy deforestation. The highest rate of deforestation is found 

predominantly in the developing world. Tropical deforestation is a process of 

transforming forests into cleared land for other uses. Tropical deforestation is the 

second largest source of greenhouse gas emissions, responsible for about 17 - 30% 

of global emissions of CO2 to the atmosphere, causing global warming. Precise and 

up to date information on the distribution and rate of forest cover change, especially 

in tropical regions, is required urgently for government policies aiming to control 

and manage forests and land development. Information on deforestation in tropical 

regions has been unavailable or inconsistent, including in the Lao PDR, due to 

socio-economic deficits, political interests and geographical constraints.  

Remote sensing technology has played a crucial role in providing the information 

required for reliable mapping and monitoring of forest cover changes at local, 

regional and global levels, but its application in tropical regions has been lagging. 

The overall goal of this research was to demonstrate and evaluate remote sensing 

methods for assessing and monitoring forest cover changes in tropical 

environments, particularly in the context of the Lao People’s Democratic Republic 

(PDR). The first aim of the research was to understand phenology of tropical forests 

and related vegetation types, which has been little studied.  Improved understanding 

of the phenology of tropical forests and other land covers involved in forest 

clearance and land use change is an important step towards the use of remote 

sensing to identify and track changes in forest cover. Long-term averages of land 

surface temperature (LST) and enhanced vegetation index (EVI) 16-day time series 

of MODIS over the seven-year period from 2006 to 2012 were calculated and their 

monthly transitions compared for forests, and for land covers that commonly 

replace forests. The findings showed the complex interrelationship of LST and EVI 

and their monthly transitions for the different land covers: they each showed 

distinctly different intra-annual LST and EVI variations. Secondly, the research 

evaluated whether the combined use of these indices (LST and EVI) can classify 

these land covers. It was found that there was high overall accuracy of separation 

of land covers by long-term means of these indices (86%). This knowledge can be 

potentially useful for further broadscale mapping of land cover and detection of 
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deforestation in tropical forests. For the third objective, the use of remote sensing 

time series data for detecting spatial and temporal changes in forest cover in tropical 

environments was tested. The disturbance index (DI) model was applied to detect 

spatial changes in different forest cover types, whilst the Breaks For Additive 

Season and Trend (BFAST) approach was used to examine temporal changes in 

these land covers. Results showed that the DI was capable of detecting vegetation 

changes during a seven-year period with high overall accuracy (82%); however, it 

showed low accuracy in detecting forest clearance (42%). The BFAST analysis 

detected abrupt temporal changes in vegetation in the tropical forests, especially in 

large conversions of mixed wooded/cleared area into plantation (from 2004 to 

2007). From these two approaches, it was found that MODIS time series data may 

be suitable for continental and national monitoring of land cover, although it may 

not provide the level of geographic detail and accuracy required for local 

assessments.  

As a result of these findings, further analysis of forest cover changes at a finer 

resolution was required to improve monitoring approaches. Therefore, the fourth 

aim was to detect and map vegetation cover changes at a higher spatial resolution 

over a period of ten years between 2003 and 2012. Landsat ETM+ imagery from 

2003 and 2012 was used in principal component analysis (PCA). This technique 

detected areas of vegetation cover change (both vegetation increase and loss) with 

high overall accuracy (87%). The results of these four studies provided new 

information on where and when recent forest cover changes have occurred in 

southern Lao PDR. The final step was to analyse the reasons underlying these 

changes. Thus, the final research task was to investigate potential factors associated 

with forest cover change in the study area, by using logistic regression analysis. The 

results of the analysis suggested that particular socio-economic and physical factors 

have a significant association with forest cover change. Forest clearance was 

associated strongly with elevation, distance to main roads and shifting cultivation 

practices. Meanwhile, vegetation increase was more likely to correlate with rubber 

plantations. Native forest and shifting cultivation lands were vulnerable to being 

converted into rubber plantations. This final research component contributes to a 

better understanding of ongoing land cover change processes to inform land use 

management. This is key information for policy and decision makers, and may be 
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used to minimize deforestation and deal with potential risks associated with land 

cover changes. 
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Chapter 1.  Introduction 

1.1 Introduction 

It is widely acknowledged that forests play a key role in ecosystems, 

regulating the Earth’s climate and contributing to mitigating climate change. 

Forests cover approximately 30% of the global land surface (FAO 2010), providing 

various environmental benefits. For example, tropical forests store large amounts 

of carbon in terrestrial ecosystems (Main-Knorn et al. 2013; Thapa et al. 2013) and 

play a significant role in the regional and global cycles of carbon and hydrology 

(Avitabile et al. 2012; Hilker et al. 2012; Liu et al. 2013; Schepaschenko et al. 2015; 

Thapa et al. 2013). Forests are recognized as a key factor in global climate change 

(Richardson et al. 2013; Xuanlong et al. 2013). However, tropical deforestation 

reduces carbon sinks which are major drivers of climate change. Recently, tackling 

carbon emissions from tropical deforestation and forest degradation in developing 

countries has been included in international climate change negotiations 

(Arcidiacono-Bársony et al. 2011; Goetz et al. 2009). 

Despite the importance of forests, there has been a rapid change in forest and 

land cover globally through heavy deforestation (Bodart et al. 2011; Portillo-

Quintero et al. 2012). Forests cover approximately 4 billion hectares of the Earth’s 

land surface. However, the forest assessment in 2010, reported by the Food and 

Agriculture Organization (FAO), indicated that over 13 million hectares of forest 

area in developing nations are cleared each year (FAO 2010). The highest rate of 

deforestation is found predominantly in the developing world (Arcidiacono-

Bársony et al. 2011). During 1990 and 2010, the deforestation in Latin America 

contributed about 60% of the total world tropical forest clearance, while Asia and 

Africa are responsible for 30% and 5% respectively (FAO 2010). In Asia, Indonesia 

appears to have the highest rate of deforestation (Arcidiacono-Bársony et al. 2011). 

Alongside this, Indonesia and Africa are the two largest sources of greenhouse 

gases, resulting from deforestation (Avitabile et al. 2012; Broich et al. 2011). 

Tropical deforestation is the second largest source of greenhouse gas emissions, 

responsible for about 17% to 30% of global emissions (Arcidiacono-Bársony et al. 

2011; Goetz et al. 2009). This deforestation and forest degradation releases CO2 to 

the atmosphere, causing global warming.  
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Our current forests are under intense pressure from both natural and 

anthropogenic disturbances (Schepaschenko et al. 2015). Natural disturbances 

include flooding, drought, fire, insects, and diseases (Coops et al. 2009; Verbesselt 

et al. 2010). Human disturbances involve clear-cutting for agriculture and 

settlement, thinning, and burning (Getahun et al. 2013; Vu et al. 2014a; Vu et al. 

2014b; Webb et al. 2014). Anthropogenic activities are recognized as the most 

influential in tropical forest changes.  

Tropical deforestation is a process of transforming forests into deforested 

land for other uses (FAO 2010; Van Kooten 2000). This transformation is normally 

undertaken without reforestation following afterwards. In developing countries, 

rapid population growth has led to an increase in the high demand for land use and 

forest resources which have put these resources under serious pressure (Ji et al. 

2014; Nath and Mwchahary 2012; Ryan et al. 2014; Sassen et al. 2013; Tadesse et 

al. 2014; Vu et al. 2014a). Agricultural expansion, infrastructure development and 

timber extraction are blamed as direct causes for this change in land use and 

ecological composition in many countries. Where there is poverty, the population 

frequently relies heavily on forest resources, including food production, timber and 

non-timber forest products (Vu et al. 2014a). 

Several key impacts have been associated with changes in forest cover. A 

number of studies show strong links between deforestation and climate change 

(McDowell et al. 2015; Ostendorf et al. 2001; Richardson et al. 2013; Rosenqvist 

et al. 2003; Zuidema et al. 2013).  Deforestation is recognized as one of the main 

contributing factors to local, regional and global climate change, due to changes to 

the carbon cycle. Forest disturbances can also lead to the loss of biodiversity. 

Significant numbers of plant species and wildlife are losing their habitats to 

deforestation and then face extinction in many parts of the world (Benhin and 

Barbier 2004; Develey and Stouffer 2001; Jha and Bawa 2006). Changes in forest 

cover have a negative impact on soil quality and erosion, and have been widely 

studied (An et al. 2008; Khormali et al. 2009; Wang et al. 2016; Yoo et al. 2014; 

Zheng et al. 2005). Tree roots penetrate deeply into the soil surface. Without these 

roots, the soil and its chemical components are easily washed away after heavy 

tropical rain falls. This can lead to increased soil erosion and reductions in soil 
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quality. In addition, forests play an important role in controlling landscape 

hydrological functionality (Setiawan et al. 2014).  

Due to these concerns, adequate information on change in forest cover is 

essential for effective governmental policy, regulation and management. However, 

acquiring accurate information on time and locations of forest cover change on a 

broad scale, especially in tropical regions, has proven to be challenging. This is due 

to regressive social-economic conditions and political interest as well as the 

geographical constraints of the region. The areas are sparsely populated and poorly 

served by roads and transport, and they are vast and often inaccessible. 

Statistics on forest attributes in most of the developing countries were previously 

derived from field-based measurements and surveys. This intensive field-based 

forest monitoring was often expensive and it was difficult to acquire accurate, 

timely and consistent data over large areas. As a result, the data, where it exists, has 

often been inconsistent and unreliable. Now, however, technologies such as remote 

sensing may be the most effective tools for monitoring difficult to access tropical 

forests over large areas.  

Remote sensing technology has played a crucial role in providing the 

information required for reliable mapping and for monitoring forest cover changes 

at local, regional and global levels (Setiawan et al. 2014). Over several decades, 

numerous satellite remote sensing instruments have been developed to acquire 

information from space, and sensors and their capabilities have improved over time 

(Lhermitte et al. 2011; Rosenqvist et al. 2003). Recent advances in remote sensing 

have provided relatively high spatio-temporal resolutions and now this technology 

offers greater opportunities for monitoring tropical forest change processes.  

Remote sensing has been used to monitor and observe a wide range of 

environments. For example, remote sensing approaches have been used to detect 

burned forests (Matricardi et al. 2010; Monzón-Alvarado et al. 2012), estimate 

above-ground biomass (Avitabile et al. 2012), detect forest disturbances (Cohen et 

al. 2010; Griffiths et al. 2013; Kennedy et al. 2010; Zhu et al. 2012), monitor forest 

cover changes at large scales (Coops et al. 2009; Klein et al. 2012; Mildrexler et al. 

2009), and study fire risks in Australia (Okin et al. 2013; Turner et al. 2011). 

Remote sensing has become a primary source of information and it could 

complement, combine with or replace traditional environment and natural resource 
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monitoring approaches, especially for broad scale surveys (Goetz et al. 2009). The 

technology already provides unique data that can be used to analyze and distinguish 

forest and land use types on the ground at high resolutions (Hansen et al. 2013; 

Iqbal and Khan 2014; Miettinen et al. 2014; Phompila et al. 2014; Roy et al. 2014; 

Vieira et al. 2012; Zhai et al. 2012; Zhu and Woodcock 2014). 

However, although there is significant benefit from applying remote sensing 

techniques, some limitations and challenges in tropical environments have been 

reported and have hindered their application in these regions. In particular the 

ability of satellite optical sensors to provide high quality observations of the land 

surface is often reduced by atmospheric and ground conditions, including cloud 

cover, atmospheric haze and rough terrain (Reimer et al. 2015). Active microwave 

remote sensing, such as radar, can overcome the persistent problem of cloud cover 

in these environments through its capability to penetrate the atmosphere under 

virtually all conditions. Various frequencies, polarizations and combinations of 

radar imagery from several sensors have shown promise for tropical forest 

clearance studies (e.g. Mahmudur and Sumantyo et al. 2010; Antropov et al. 2015). 

However global coverage of suitable radar imagery at appropriate time frames is 

not complete, and radar image processing and classification of land cover can be 

challenging (Antropov et al. 2015). Satellite optical imagery is often used to assess 

the accuracy of radar cover mapping projects. 

Despite the cloud cover problems, there was considerable diversity of optical 

satellite imagery of appropriate spatial, spectral and temporal resolutions for use in 

this research. The products derived from MODIS and Landsat ETM were 

considered as the most suitable. MODIS aggregated images over observation 

periods (e.g. 1 to 2-days, 8-days, 16-days or monthly composites) potentially 

overcome some of the atmospheric and cloud problems over broad areas. Data from 

Landsat provides the most appropriate spatial resolution for finer mapping and 

monitoring of forest cover changes, with resolution of 30 m and 16-day repetition 

(Bodart et al. 2011; Avitabile et al. 2012; Czerwinski et al. 2014), while the 

availability of archived time series provided considerable opportunity for repeated 

analysis of vegetation cover changes.  

Detailed information on deforestation has been inconsistent or unavailable in 

many parts of the world, despite the recognized importance of forest ecosystem 
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services. Although the scope and scale of mapping and monitoring forest cover 

changes in the tropical regions has increased considerably due to its contribution to 

greenhouse gas emissions, land degradation and loss of biodiversity, this need still 

remains poorly addressed, particularly in developing countries. “Nobody knows 

exactly how much of the world’s rainforests have already been destroyed and 

continue to be razed each year. Data is often imprecise and subject to differing 

interpretations. However, it is obvious that the area of tropical rainforest is 

diminishing and the rate of tropical rain forest destruction is escalating 

worldwide,…” (Sumit Chakravarty et al. 2012). 

In Lao PDR, as in many developing countries, information on forest cover 

change is not well-documented. The country has a weak financial foundation from 

which to strengthen its human resources capacity and to establish national 

databases. Meanwhile, monitoring and estimating forest cover change is required 

as an initial task for carbon accounting in climate change mitigation activities, such 

as reducing emissions from deforestation and forest degradation schemes (REDD 

or REDD-plus). Spatially and temporally detailed information on national-scale 

forest change does not exist in Laos to date. The country experienced extensive 

deforestation during the early 1980s, and has undergone profound landscape 

transformation since the 2000s, due to agricultural expansion and land leases and 

concessions through foreign direct investments. However, this remains poorly 

assessed. The limitations of remotely sensed and GIS data availability and quality 

are also challenging. Thus, the development of appropriate remote sensing tools for 

this effort is needed urgently.  

1.2 Problem statements 

The specific gaps in relevant remote sensing research which were addressed 

through this research are as follows: 

 Detecting and monitoring forest change through remote sensing requires an 

understanding of how vegetation growth and cover vary through seasons and 

years. Remote sensing indices related to vegetation growth have been used 

effectively to document broad-scale seasonal and phenological phenomena in 

many ecosystems (Richardson et al. 2013; Samanta et al. 2012; Sexton et al. 

2013; Verbesselt et al. 2010; Xuanlong et al. 2013; Zhang et al. 2005), but study 
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of vegetation phenology in tropical regions is challenging and not well 

documented (Moreau and Defourny 2012). Most previous studies have relied 

on measurements in permanent sampling plots, which required time and are 

labor intensive. There has been little work on the phenology of different land 

cover types in tropical environments. Improved understanding of the phenology 

of tropical forests and other land covers involved in forest clearance and land 

use change is an important step towards use of remote sensing to identify and 

track changes in forest cover. Thus, this is one of my research foci. 

 Several studies have successfully applied MODIS enhanced vegetation index 

(EVI), often in combination with land surface temperature (LST) time series, to 

detect vegetation dynamics in broad landscapes including boreal, semiarid, arid 

and temperate forests (Chernetskiy et al. 2011; Coops et al. 2009; Herdianto et 

al. 2013; Hmimina et al. 2013; Prabakaran et al. 2013; Stroppiana 2014; Yue et 

al. 2007). However, the application of time series of these indices in a wider 

range of land cover types in tropical regions has not been conducted. Thus, my 

second objective was to evaluate whether the use of MODIS LST and EVI can 

improve classification of different land covers associated with tropical forests 

and deforestation activities. This knowledge can be potentially useful for further 

detection of deforestation in tropical forests. 

 Use of time series data for monitoring and detecting spatial and temporal 

changes in forest cover in tropical environments has been little tested. 

Therefore, the disturbance index (DI) model and the Breaks For Additive 

Season and Trend (BFAST) approaches were selected and applied to detect 

spatial and temporal changes in different forest cover types in a tropical region. 

The disturbance index (DI) developed by Mildrexler et al. (2007); Mildrexler et 

al. (2009) to monitor global vegetation changes was successfully tested in the 

United States and Canadian forests (Coops et al. 2009). Meanwhile, the BFAST 

approach is a powerful technique to detect gradual and abrupt changes in 

satellite data time series (Verbesselt et al. 2010; Verbesselt et al. 2012). It has 

been successfully tested in south eastern Australia and South Somalia. 

However, there are known problems in tropical environments such as cloud 

cover, atmospheric water column content, and aerosol haze (Grogan and 

Fensholt 2013; Samanta et al. 2012). There is little known about the 
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performance of DI (Coops et al. 2007; Mildrexler et al. 2009, 2011) and BFAST 

and whether these two models could be useful in detecting changes in land cover 

in this little-studied tropical region. Therefore, this is the third focus of this 

study. 

 While MODIS time series data may be suitable for continental and national 

monitoring of land cover, it may not provide the level of geographic detail and 

accuracy required for local assessments. Analysis of changes in forest cover is 

often required at a finer resolution to improve monitoring. This is another focus 

of this research. 

 The literature suggests that both socio-economic and biophysical factors have 

important influences on forest depletion. Because of concerns about the 

alarming increase in rate of deforestation and the rapid progression of national 

socio-economic development in the Lao PDR, my final research question is to 

assess whether there is any connection between these phenomena. This 

knowledge may assist local forestry managers and ecologists for forestry policy 

and decision making as well as for guiding appropriate forest and land use 

management. 

1.3 Research objectives 

Due to concerns about several environmental issues related to deforestation, 

such as climate change and loss of biodiversity, studies on changes in tropical 

forests are urgently required, as identified in Section 1.1. The overall goal of this 

study is to demonstrate and evaluate remote sensing methods for assessing and 

monitoring forest cover changes in tropical environments, particularly in the 

context of Lao People’s Democratic Republic (PDR). The specific objectives are: 

1. To assess the detectability of intra- and inter-annual changes in tropical 

forests using remote sensing and to observe relationships between 

vegetation phenology and climatic variables within a specific study area in 

the southern part of Lao PDR. 
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2. To test the use of selected remote sensing indices for classifying land cover 

in tropical environments. This knowledge will be useful for developing 

remote sensing approaches for detecting deforestation in tropical regions.  

 

3. To demonstrate and evaluate remote sensing models for detecting change 

over time in different types of land cover. To achieve this objective, two 

models for detecting changes in remote sensing time series are tested and 

evaluated: BFAST and the Disturbance Index. The effectiveness of these 

approaches in detecting changes in land covers in tropical regions has been 

little investigated to date.  

 

4. To detect and map vegetation cover changes at a higher spatial resolution 

over a period of ten years between 2003 and 2012. In order to monitor 

changes in vegetation cover at local scales, it is necessary to obtain greater 

detail of the types, variations and extent of the vegetation cover. While 

coarse resolution data may be suitable for continental and national 

monitoring of land cover, it may not provide the level of detail and accuracy 

required for local assessments. Consequently, further analysis of forest 

cover changes at a finer resolution was undertaken with the objective of 

improved monitoring. 

 

5. To examine the spatial relationships between vegetation cover changes and 

associated physical and socio-economic factors. This knowledge can offer 

insights and tools to improve effective maintenance of forest resources. 

Such knowledge is essential for forestry policy and decision makers to 

minimize and prevent deforestation.  

1.4 Thesis scope, outline and structure 

Geographic and environmental scope 

The studies comprising this thesis were based in Champasack Province in 

southwestern Lao PDR, a region which has undergone rapid changes in land cover 

in recent years, including clearance of native forest and large expansions of rubber 

plantations. Consequently it provided an ideal study area to test the suitability of 

several remote sensing approaches for land cover discrimination and change 
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monitoring. Specific study areas for the component studies differed somewhat, 

influenced by the availability of suitable dates of historic or time-series of imagery. 

In addition, independent information was needed to validate the various coarse and 

medium resolution analyses. In the absence of comprehensive field data, Google 

EarthTM high resolution images were the only available source of land cover 

information for this validation, so specific study areas were determined by their 

availability for key dates. Extent, geography and land use of the study areas for the 

component studies are described more fully in each chapter. 

This investigation was conducted to map and detect the cover changes in Lao 

tropical forests from 2006 to 2012. “Forest cover” throughout the thesis refers to 

natural tropical forest of mixed species composition with high canopy densities. 

Several of the study components involved detecting and differentiating this dense 

canopy forest from more open woodlands and thinned or partially cleared forests, 

as well as clearance associated with agriculture and plantations of commercial tree 

crops. 

The thesis is divided into seven chapters; each chapter is written as a 

published manuscript or intended for publication in international peer-reviewed 

journals, as follows: 

Chapter 1: Introduction (this chapter).  

The thesis starts with an introductory chapter which provides an overview of 

the tropical forest cover changes and the motivation behind this research, research 

objectives along with an outline of the thesis structure. 

Chapter 2: Phompila, C., Lewis, M., Ostendorf, B. and Clarke, K. 

(2015). “MODIS EVI and LST temporal response for discrimination of 

tropical land covers”. Remote Sensing, 7(5):6026-6040. 

Objectives one and two were addressed in this chapter. Understanding of 

tropical forest phenology is necessary background knowledge for the development 

of a remote sensing approach for detecting temporal changes in tropical forests. 

However, there has been no study on temporal characteristics and variation in the 

Lao tropical forests to date. Therefore, the annual vegetation phenological response 

of dominant land cover types associated with forest conversion in Lao PDR was 

investigated using time series of enhanced vegetation index (EVI) and land surface 
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temperature (LST) indices of MODIS. Long-term averages of MODIS EVI and 

LST 16-day time series and monthly transitions of these two indices over the seven-

year period from 2006 to 2012 were calculated and compared. The relationship 

between forest and land cover phenology and seasonal precipitation and 

temperature was also examined. My second objective was to test whether these 

indices can be used to classify four types of land cover associated with 

deforestation. The outcomes of this study thus contribute to improving our 

understanding of tropical vegetation characteristics, variability and their responses 

to climatic conditions. 

Chapter 3: Phompila, C., Lewis, M., Clarke, K. and Ostendorf, B. 

(2015). “Applying the global disturbance index for detecting vegetation 

changes in Lao tropical forests”. Advances in Remote Sensing, 4(1):73-

82.  

Results from chapter two provided confidence that EVI and LST should be 

able to detect spatial change in land cover, which was addressed in objective three, 

chapter three. A combination of the LST and EVI indices, as time series, has been 

proven to be useful for detection and monitoring of changes in land cover at a 

continental scale. However, time series models have not been adequately applied 

or assessed across different land cover types in tropical regions. In Chapter 4, my 

objective was to demonstrate and evaluate a combination of LST and EVI time 

series in the DI model to detect spatial change in land cover in Lao’s tropical forests. 

MODIS LST and EVI data across Champasack Province (15,415 km2) from 2006–

2012 were used and Google Earth images over a smaller area (2,500 km2) from two 

dates in 2006 and 2012 were used as ground truth data for an accuracy assessment 

of the model.  

Chapter 4: Phompila, C., Lewis, M., Clarke, K., and Ostendorf, B. 

(2014). “Monitoring temporal vegetation changes in Lao tropical 

forests”. Malaysian Journal of Remote Sensing and GIS, 3(2):100-111. 

This chapter also addresses objectives one and three. It summarizes seasonal 

growth characteristics of selected tropical land covers as shown by long-term 

average MODIS EVI and examines their relationships with seasonal precipitation 

and temperature. The Breaks For Additive Season and Trend (BFAST) method was 

applied to examine longer term and historical changes in vegetation in Lao’s 
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tropical forests. The study area for this paper was a 1,000 km2 subregion of 

Champasack Province, with averaged temporal signals analysed for each land 

cover. The result of this research component was presented as a conference paper 

at the 7th IGRSM International Conference and Exhibition on Remote Sensing and 

GIS, in Malaysia. The improved manuscript was published in a special issue of the 

Malaysian Journal of Remote Sensing and GIS. 

Chapter 5: Phompila, C., Lewis, M., Clarke, K., and Ostendorf, B. 

(2014). “Monitoring expansion of plantations in Lao tropical forests 

using Landsat time series”. Land Surface Remote Sensing Conference II, 

in Beijing, China: published in SPIE Library, 9260(1):1-11. 

This chapter addresses objective four. In previous chapters, the coarse 

resolution data from MODIS was unable to provide the necessary details of 

vegetation cover changes at a local scale. The MODIS results identified temporal 

changes in forest cover variations in the study area – there was massive clearance 

for plantations from late 2004 to 2007, and an increase in plantations in 2011 - but 

they had low classification accuracy in terms of spatial changes. My objective in 

this chapter was to test the higher resolution of Landsat ETM+ imagery in order to 

detect spatial changes in forest cover. The choice of image dates for change analysis 

was influenced by the availability of Landsat with little or no cloud cover, as well 

as the extent and dates of Google EarthTM validation images. Principal component 

analysis (PCA) was applied to detect changes in land cover over the period 2003-

2012. This can help in understanding of the changes in land cover in greater detail. 

The paper was presented as a conference paper at the Land Surface Remote Sensing 

II conference, in Beijing, China. The paper from the proceedings was published in 

the library of the International Society for Optics and Photonics (the SPIE Library).  

Chapter 6: Phompila, C., Lewis, M., Clarke, K., and Ostendorf, B. 

(2016). “Vegetation cover changes in Lao tropical forests: physical and 

socio-economic factors are the most important drivers”. Forest Policy 

and Economics. (Under review) 

This chapter addresses objective five. Socio-economic and biophysical 

elements have an important association with forest cover changes. Therefore, I 

investigated potential factors associated with forest cover changes in the south of 

Lao PDR. This was essential to gain a better understanding of ongoing land use 
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management and land cover change processes. The results could be key information 

for policy and decision makers, and used to minimize deforestation and deal with 

potential risks associated with land cover changes. The analysis identifies the 

drivers and factors associated with vegetation cover changes and may also be useful 

for developing predictive deforestation models.  

Chapter 7: Conclusion 

This chapter summarizes the key findings and significance of the study and 

suggests important areas for further research. My key research contributions include 

several major advances towards international efforts to develop remote sensing and 

earth observation, so that communities can monitor deforestation in tropical regions 

more comprehensively and reliably. This research also helps to improve critical 

understandings based around monitoring forest clearances in Lao PDR, along with 

the demonstration and evaluation of remote sensing approaches and tools for this 

context. 

Appendices: 

The appendices contain software procedures implemented by author to derive some 

of the results in this research. Appendices include data preparation (i.e. performing 

geographic transformation/re-projection of MODIS data time series and masking 

time series data) and sample selection by extracting pixel values of MODIS time 

series data. These preliminary procedures were done to prepare data for analysis in 

Chapters 2, 3 and 4. Appendix 5 presents R scripts for Linear Discriminant 

Analysis, which was implemented in Chapter 2. Appendix 6 contains R scripts of 

BFAST for Chapter 4. The final appendix shows the steps used to extract and geo-

reference Google EarthTM images. These images were used as reference data for 

accuracy assessment.  
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Chapter 2. MODIS EVI and LST Temporal Response for 

Discrimination of Tropical Land Covers 

Phompila, C., Lewis, M., Ostendorf, B. and Clarke, K. (2015). “MODIS EVI and 

LST Temporal Response for Discrimination of Tropical Land Covers”. Remote 

Sensing, 7(5):6026-6040. 

 

Abstract 

MODIS enhanced vegetation index (EVI) and land surface temperature (LST) 

are key indicators for monitoring vegetation cover changes in broad ecosystems. 

However, there has been little evaluation of these indices for detecting changes in 

a range of land covers in tropical regions. In this study, we investigated the 

characteristics and seasonal responses of LST and EVI for four different land covers 

in Lao tropical forests: native forest, rubber plantation, mixed wooded/cleared areas 

and agriculture. We calculated long-term averages of MODIS LST and EVI 16-day 

time series and compared their monthly transitions over the seven-year period from 

2006 to 2012. We also tested whether these indices can be used to classify these 

four land covers. The findings demonstrate the complex interrelationship of LST 

and EVI and their monthly transitions for different land covers: they each showed 

distinctly different intra-annual LST and EVI variations. Native forests have the 

highest EVI, and the lowest LST throughout the year. In contrast, agricultural areas 

with little or no vegetation cover have the highest LST. The transition of LST/EVI 

for the land covers other than native forests showed marked seasonality. Linear 

discriminant analysis (LDA) showed that there was high overall accuracy of 

separation of land covers by these indices (86%). The encouraging results indicate 

that the combined use of MODIS LST and EVI holds promise for improving 

monitoring of changes in a Lao tropical forest. 

Keywords: vegetation characteristics; temporal response; monthly 

transition; hysteresis; linear discrimination analysis (LDA); MODIS LST; EVI. 
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2.1 Introduction 

Vegetation cover changes in tropical regions are among the most significant 

contributors to global climate change (Hou et al. 2013; Setiawan et al. 2014; Thapa 

et al. 2013; Zuidema et al. 2013). These changes have resulted in changes in carbon 

stock, land degradation and rapid loss of biodiversity (Setiawan et al. 2014). 

Understanding how ecological systems are changing requires effective monitoring 

of vegetation changes in space and time (Forkel et al. 2013). Our knowledge of 

these changing events and processes can be improved using information from 

satellite observations. The majority of remote sensing approaches to monitoring 

these changes have used vegetation indices, most commonly the normalized 

difference vegetation index (NDVI) or enhanced vegetation index (EVI) (Hmimina 

et al. 2013; Prabakaran et al. 2013; Setiawan et al. 2014). However, many studies 

have suggested that use of additional parameters such as land surface temperature 

(LST) improves monitoring of land covers (Mildrexler et al. 2009, 2011; Sobrino 

and Julien 2013). 

Used together, these indices may be suitable for monitoring land cover 

change in tropical regions. In tropical regions, EVI is more suitable than NDVI to 

study vegetation, as it has been shown to have improved sensitivity to high biomass 

through a de-coupling of the canopy background signal and a reduction in 

atmospheric influences (Coops et al. 2009; Huete et al. 2006; Huete et al. 2008; 

Senf et al. 2013; Xuanlong et al. 2013; Zhang et al. 2005). LST is used to measure 

the heat energy flux from the Earth’s surface (Coops et al. 2007; Herdianto et al. 

2013; Jiménez-Muñoz et al. 2013; Mildrexler et al. 2011). It appears to be strongly 

correlated to the density of the canopy of various land covers (van Leeuwen et al. 

2011). Using a combination of these two parameters can provide insight into surface 

energy fluxes and vegetation cover changes at regional and global scales (Coops et 

al. 2007; Coops et al. 2009; Hmimina et al. 2013; Prabakaran et al. 2013). 

Several studies have applied these indices successfully to detect vegetation 

dynamics in broad landscapes including boreal, semiarid, arid and temperate forests 

(Chernetskiy et al. 2011; Coops et al. 2009; Herdianto et al. 2013; Hmimina et al. 

2013; Prabakaran et al. 2013; Stroppiana 2014; Yue et al. 2007). Several studies 

suggest that the combination of measurements of temperature and vegetation 
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indices provides a better classification and observation of land covers in the African 

continent (Ehrlich and Lambin 1996; Lambin and Ehrlich 1996), Sub-Saharan 

Africa (Lambin and Ehrlich 1997) and over the continental United States (Nemani 

and Running 1997). The most recent studies also used these two parameters to 

analyze global vegetation cover changes (Julien and Sobrino 2009; Mildrexler et al. 

2007). In addition to these studies, LST and NDVI has been used to detect changes 

in land covers between non-forested and forest areas in Brazilian tropical forests 

(van Leeuwen et al. 2011). It was found that LST data can provide key information 

for classifying non-forested and forest areas, and can be further used for detecting 

long-term changes in land covers. However, although the combined use of LST and 

vegetation indices has provided better monitoring of land covers at broad scales, 

application of LST and EVI in a wider range of land cover types in tropical regions 

has not been adequately assessed. Frequent cloud cover, high levels of atmospheric 

water, and aerosol haze can be issues when employing these indices in tropical 

forest environments (Grogan and Fensholt 2013; Samanta et al. 2012; van Leeuwen 

et al. 2011). Furthermore, the vegetation cover and soil exposure for different land 

uses can vary substantially from dry to wet seasons. Thus, detecting the 

characteristics, distribution and variation of vegetation cover in tropical forests 

remains challenging. 

In this study, our main goal was to investigate the characteristics and seasonal 

responses of EVI and LST for four different land covers in a tropical location: native 

forest, rubber plantation, mixed wooded/cleared areas and agriculture. This allowed 

us to gain a better understanding of how these tropical land covers influence the 

responses of these indices. We analyzed MODIS EVI and LST 16-day time series 

for a Lao tropical region over the seven-year period from 2006 to 2012. We 

compared monthly transitions of EVI and LST data for these four land covers within 

our study area. We also evaluated whether the combined use of these indices can 

classify these land covers. This knowledge will be potentially useful for further 

detection of deforestation in tropical forests, information which is essential for 

forest management and combating deforestation in developing countries in the 

tropics. 
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2.2 Methods 

2.2.1 Study area 

The focus of our investigations was the tropical forest lands of Champasack 

Province, in the south of Lao PDR. The study site covers an area of 2500 km2, from 

14°44'20"N to 15°25'52"N latitude and from 105°42'7"E to 106°0'30"E longitude 

(Figure 2.1). Comprehensive mapping of land cover types is not yet available for 

Laos, although monitoring of forest resources and land clearance is a high national 

priority, calling for development of suitable remote sensing approaches for land 

cover inventory and monitoring. Champasack Province has experienced rapid 

changes in land cover in recent years including clearance of native forest and large 

expansions of rubber plantations. Consequently it provided an ideal study area to 

test the suitability of our remote sensing land cover discrimination. In addition, we 

needed independent information to validate the MODIS coarse-resolution analysis. 

In the absence of comprehensive field data, Google EarthTM high resolution images 

were the only available source of land cover information, so our specific study area 

was determined by the availability of Google Earth images of the same site for two 

dates, in 2006 and 2012. 

This area covers the northern part of the province and includes five 

administrative districts: Pakse, Xanasomboun, Bachieng, Pathumphon and 

Phonthong. The study area has relatively flat terrain comprising two different 

landscapes: about 10% of the area is upland and 90% is flat lowland. The altitude 

ranges from 10 to 922 m, but the majority of land is between 10 and 250 m above 

sea level. There are two distinct seasons in this location: rainy (May–October) and 

dry (November–April). During the rainy season, it is often windy and humidity is 

high, with average minimum and maximum temperatures of 21 °C and 31 °C 

respectively. Roughly 300–450 mm of precipitation falls per month in this season. 

In the dry season, conditions are mostly sunny, average minimum and maximum 

temperatures are 19 °C and 35 °C respectively and there is little rainfall (less than 

100 mm per month). From the high resolution images we identified four main types 

of land cover: native forest, rubber plantation, mixed wooded/cleared area and 

agriculture. Agricultural lands mainly comprise areas of irrigated rice cultivation. 
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2.2.2 Satellite imagery 

The research made use of two Moderate Resolution Imaging 

Spectroradiometer (MODIS) data products: the 16-day composite time series of 

EVI (MOD13A2) and the 8-day composite of LST (MOD11A2), from 2006–2012, 

both of which have a spatial resolution of 1 km. The study area was covered by 

MODIS tile h28v07. Data was downloaded from the National Aeronautics and 

Space Administration (NASA) website (http://reverb.echo.nasa.gov/reverb). 

MODIS data was reprojected to WGS84, UTM zone 48 North using the MODIS 

reprojection tool (version 4.01). Data quality was checked before further analysis 

and only good quality MODIS EVI and LST data (as rated by the MODIS quality 

flag) was used to reduce noise in our analysis. 

 
Figure 2.1. Location of the study area in the south of the Lao PDR. 

2.2.3 Method overview 

Two major research components were undertaken: (1) examination of long-

term averages of seasonal responses of LST and EVI 16-day composite data and 

the monthly transitions for the four dominant land cover types, and (2) investigation 

http://reverb.echo.nasa.gov/reverb
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of the effectiveness of using MODIS LST and EVI data to discriminate and classify 

these land cover types. 

2.2.4 Temporal response of LST and EVI for different land cover 

types 

We identified the four dominant land cover types on a high resolution colour 

Google EarthTM image from 2012: native forest, rubber plantation, mixed 

wooded/cleared land and agriculture (Table 2-1, Figures 2.2 and 2.3). Their 

distinguishing features are as follows: (1) native forest is usually a dense and 

homogeneous canopy of vegetation containing a number of tree species; (2) rubber 

plantations show consistent canopy patterns and textures comprising similar tree 

ages, with regular planted tree spacing; (3) mixed wooded/cleared areas are 

fragmented, usually with low vegetation cover and may include partly cleared areas, 

with some parts containing a mixture of trees, shrubs, grass and bare soils; and (4) 

agriculture includes mainly paddy fields and minor areas of shrubs, trees and water. 

Table 2-1.Description of the four land cover types in the study area. 

Class Description 

Native Forest 

Native forest is exclusively native vegetation, with little or no clearance. 

It usually comprises a mixture of tree species with a dense homogeneous 

canopy. 

Plantation 

Plantations predominantly comprise trees established through planting 

and/or deliberate seeding of introduced species. Rubber plantations are 

common in this region. They display homogeneous canopy patterns and 

textures comprising similar tree ages and regularly planted spaces. They 

have dense canopies, with texture, pattern and homogeneity easily 

distinguished from natural forests. 

Mixed Wooded/ 

Cleared Area 

Comprises small or moderate patches of shrubs and trees and large areas 

of clearances. It usually has low vegetation cover comprised of small 

trees, grass and bare soils. 

Agriculture 

Exclusively agricultural utilizations. This class includes mainly paddy 

fields and water or irrigation channels. There is a large area of exposed 

soils and it is readily distinguished from other land covers. 
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                 (a)                   (b) 

  

                  (c)                   (d) 

Figure 2.2. Photos of the four land covers taken in the study area by Faculty 

of Forestry team researchers, May–June 2012. (a) native forest, (b) rubber 

plantation, (c) mixed wooded/cleared area, and (d) agriculture. 



 

20 

 
Figure 2.3. Google Earth TM images in 2012 representing the four land 

covers: (a) native forest, (b) rubber plantation, (c) mixed wooded/cleared 

area, and (d) agriculture. 

We digitized the distribution of these four land covers as polygons on the 

2012 image. Next, we used the Hawths Analysis Tools for ArcGIS 10.2.1 software 

to generate 800 random samples of the digitized data, stratified to give 200 samples 

of each of the four land cover types. To ensure sample representation of each land 

cover class, we set selection rules. These rules were: (1) each location must be the 

central point of a MODIS pixel of 1 × 1 km and at least 2 km away from any other 

selected location; and (2) the land cover must be homogeneous and cover 100% of 

the MODIS pixel. These procedures were then repeated for the Google EarthTM 

2006 image of the same site. This was to ensure we selected only samples 

representing the four land covers in both periods (2006 and 2012). Finally, 

corresponding pixel values of both LST and EVI time series (2006–2012) were 

extracted from the samples. In total 161 MODIS EVI (23 per year) and 322 LST 

composite images (46 per year) were used. LST scenes were averaged to 16-day 

composites to ensure an equivalent number of EVI and LST scenes and dates.  

(a) (b) 

(c) (d) 
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Finally, we calculated long-term averages and standard deviations of LST and 

EVI for the 16-day composites for the four different land cover types over the period 

2006–2012. In addition, we further investigated the monthly transitions of these 

indices throughout the year for the four land covers. An analysis was undertaken of 

the hysteresis patterns based on the monthly long-term average of EVI plotted 

against the monthly long-term average of LST. These plots show the relationship 

over time of the two indices. 

2.2.5 Discriminating the different land cover types using LST and 

EVI 

In order to test whether LST and EVI can provide sufficient information to 

separate the four different land cover types, we applied linear discriminant analysis 

(LDA), using the LDA package in R software (Vienna University of Economics 

and Business, in Vienna, Austria, http://www.r-project.org/, 

http://www.statmethods.net/advstats/discriminant.html). We used the overall 

seven-year means of EVI and LST as the two independent variables in our model 

to discriminate and classify the four different land covers. Prior probabilities of 

groups or a number of group variables were equal proportions (25% or 200 samples 

for each land cover type). The resultant confusion matrix and error rate of the land 

cover classification was summarized. 

2.3 Results  

2.3.1 Temporal response of LST and EVI for different land cover 

types 

The 2006–2012 16-day averages and standard deviations of the MODIS EVI 

and LST show the intra-annual responses of the native forest, rubber plantation, 

mixed wooded/cleared areas and agriculture (Figure 2.4a–d). Figure 2.4 shows that 

each of these land cover types has distinctly different EVI and LST trajectories 

throughout the year. 

Long-term annual means of EVI for native forest (0.47) and rubber plantation 

(0.45) were relatively similar (Figure 2.4a,b), higher than those of mixed 

wooded/cleared land (0.39) and agriculture (0.30) (Figure 2.4c,d). 

http://www.wu.ac.at/
http://www.wu.ac.at/
http://www.r-project.org/
http://www.statmethods.net/advstats/discriminant.html
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A strong seasonal pattern of EVI is illustrated in all land cover classes except 

forest lands. The temporal EVI profile of native forests differed substantially from 

the other classes, with only weak seasonality. Although EVI values of native forests 

were highest and generally maintained throughout the year, there were higher 

variations in the signal during the rainy period (May–October) (Figure 2.4a). In 

contrast, EVI values of the other land covers increased from May to Oct (Figure 

2.4b–d) and dropped to their minima between December–April (dry season). 

Rubber plantations and mixed wooded/cleared areas had similar seasonal patterns 

of EVI, but these land cover types could be distinguished in the dry season. EVI for 

the mixed wooded/cleared area was relatively low and closely similar to that of 

agricultural areas in the dry season, while rubber plantations still retained their 

greenness. The EVI was just lower than that of native forest lands. 

The annual average LST of native forests was markedly lower than that of the 

other land cover types (25 °C) (Figure 2.4a–c). In contrast, annual average LST for 

the three other land cover types was relatively similar. Agricultural lands had the 

highest LST (30 °C), followed by that of rubber plantations (29 °C) and mixed 

wooded/cleared areas (28.5 °C). 

The seasonal pattern of LST was quite distinctive for each land cover. Native 

forest LST varied less throughout the year than that of the other land cover types 

(Figure 2.4a), with highest temperatures in late summer (February–April). The 

annual LST pattern of variation for the other three land covers showed some 

similarities. This pattern started to increase gradually from February–March and 

reached a peak (March–April). In contrast, LST was lowest during the rainy season. 

LST for all land cover types appeared to drop from May until October, and then 

repeated the seasonal cycle. Although the three land covers have similar patterns of 

LST, the period of LST maximum differed for each: in March for rubber 

plantations, in early February for mixed wooded/cleared and agricultural areas.  
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Figure 2.4. The average temporal responses of land surface temperature 

(LST) and enhanced vegetation index (EVI) from 2006–2012 in four different 

forest covers: (a) native forest, (b) rubber plantation, (c) mixed 

wooded/cleared area, (d) agriculture (the red line is LST in Celsius and its 

standard deviations (SD), while the black line is EVI and its SD), and (e) 

average temporal responses of rainfall and temperature, (f–i) are hysteresis 

patterns of LST/EVI for these land covers, (j) seasonal transitions of average 

rainfall and temperature. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) Native forest 

(g) Rubber plantation 

(h) Mixed wooded/cleared 

area 

(i) Agriculture 

(j) Rainfall and temperature 

Rainfall (mm) Months 

EVI  Months 
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The LST for agricultural lands tended to increase rapidly after its minimum in May–

October (Figure 2.4d). This may be a result of rice harvesting activities, which start 

from November–January. Agricultural lands are left untouched until land 

preparation in May or June (depending on rainfall), followed by rice cultivation 

activities. The rice growing season usually starts from June–October. 

2.3.2 Monthly transition of LST and EVI 

The monthly transitions of LST and EVI across the four different land covers 

in this study are exhibited in hysteresis plots (Figure 2.4f–i). These plots show the 

complex relationships and intra-annual variation of average LST and EVI for these 

land covers. The hysteresis loop behaviour of all land covers other than forests is in 

the same clockwise direction, but the loops differ in width. The similar pattern of 

rising and falling limbs in the LST and EVI trajectories tends to depend on 

seasonality. The width of the hysteresis loop for each land cover shows some 

variations resulting from the differences in LST and EVI over the course of the 

year. 

The hysteresis loop for native forests shows characteristics that are quite 

different from the other plots. There is little change in EVI and LST across the 

seasons. However, the hysteresis loops for the other land covers depict pronounced 

seasonal transition cycles in their EVI/LST trajectory. LST in the falling limb has 

a higher corresponding EVI value, but in the rising limb LST has a lower 

corresponding EVI. This response type indicates changes in vegetation cover and 

land surface temperature during the annual seasonal cycle. However, the width of 

the hysteresis loops starts to decrease when EVI increases towards 0.45 or at LST 

of 28 °C for rubber plantation and mixed wooded/cleared area. 

The width of the hysteresis loops for three land covers (plantation, mixed 

wooded/cleared area and agriculture) differs and the loops occupy different spaces 

throughout the year. For mixed wooded/cleared lands, the hysteresis loop of 

LST/EVI is wider than those for the other land covers. This indicates more 

variations in LST and EVI in each month of the year (Figure 2.4h). Agriculture and 

plantations have a similar shape and width of LST/EVI trajectory (Figure 2.4i,g). 

This similar hysteresis pattern indicates a similar seasonal transition over time. 
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However, their loops are located in different spaces, which show the different 

values of EVI/LST for these two land covers. 

Figure 2.4e,j show the long-term averages of rainfall and temperature from 

2006 to 2012 and their monthly transitions. The rainy season runs from May–

October and the dry season from November to April. In the rainy season, an increase 

in EVI begins when rainfalls starts while LST starts to decrease, for example in 

rubber plantation, mixed wooded/cleared area and agriculture. A point of inflection 

of the hysteresis loops occurs at the maximum of EVI when LST is close to about 

26 °C–28 °C. During rainy period, the hysteresis loops for these three land covers 

remain stable until late September, as a result of less variation in EVI and LST. 

2.3.3 Discriminating the different land cover types using LST and 

EVI 

The 2006–2012 long-term averages of LST and EVI for the 200 samples of 

the four land covers are illustrated in Figure 2.5. In general, the four land covers 

appear to be well separated in the plot, although there are some overlaps of EVI and 

LST among them. Forests have the highest values of long-term average of EVI but 

the lowest LST. Rubber plantation is the second highest for EVI and the second 

lowest for LST, followed by mixed wooded/cleared area. Agriculture shows the 

highest LST but with lower EVI than the others. Thus this comparison potentially 

enables separation or classification of these land cover classes. 

Table 2-2 summarizes the result of linear discriminant analysis (LDA) on 800 

samples of long-term averages of LST/EVI. The LDA output shows that LST and 

EVI can be used to classify the differences between the four land covers. The first 

discriminant function (LD1) achieved 83.37% separation between the four land 

covers, with the second discriminant function (LD2) improving the separation of 

the groups by a further 16.63%. The variable with the largest standardized 

regression coefficients is the one that contributes most to the prediction of group 

membership. In our case, EVI is clearly the greater contributor to the discrimination 

of the four land covers (coefficients of 19.96 and 29.52 in LD1 and LD2), while 

those of LST were −0.53 and 1.00 respectively. The analysis revealed significant 

differences between the four land cover classes, with 86% overall accuracy in group 

classification. Misclassification occurred in only 14% for the samples overall. 
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The native forest had the highest accuracy of classification (95%), followed 

by agriculture and plantation (92% for both classes). However, mixed 

wooded/cleared class was lowest (67%) (Table 2-2). Misclassification is seen in 4% 

of the native forest class, 7% of rubber plantation, 8% of agriculture and 24% of 

mixed wooded/cleared areas. The findings indicate that there is a high possibility 

of separating these land covers in tropical forests by using a combination of EVI 

and LST. 

 
Figure 2.5. Long-term means (2006–2012) of LST and EVI for 800 MODIS 

samples within the four land cover types. 

 

Table 2-2. Summary of accuracy of classification predicted by LDA. 

Actual  Predicted 

Agriculture Native Forest Plantation Wooded/Cleared 

Agriculture 0.92 0 0.03 0.05 

Native Forest 0 0.95 0.04 0 

Plantation 0 0 0.92 0.07 

Wood/Cleared 0.14 0.1 0.09 0.67 

Overall accuracy    0.86 

2.4 Discussion 

The analysis of LST and EVI from the MODIS time series in this study 

showed promise in characterizing the temporal responses of the four different land 

cover types. There are distinctly different EVI and LST temporal responses for 

these land covers. Dense vegetation cover such as native forest tends to have the 

lowest LST and the highest EVI throughout the year compared to the others. In 

contrast, agricultural land has the lowest EVI and the highest LST. This finding is 

(A) 

(C) 
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similar to those of previous studies that non-forested areas have higher temperatures 

than forested lands (Chernetskiy et al. 2011; Lambin and Ehrlich 1996; Mildrexler 

et al. 2011). This indicates that if vegetation cover is reduced due to clearance, it 

can contribute to an increase in heat energy transferred from the land surface. Our 

finding was also similar to that of Julien and Sobrino (2009) which suggested that 

the closed canopy of tropical rainforests plays an important role in regulating and 

maintaining its LST constant throughout the year. Native forests maintain their 

leaves or canopies with adequate soil moisture and evapotranspiration throughout 

the year, allowing regulation of temperature. Temporal patterns of EVI and LST for 

rubber plantations and mixed wooded/cleared areas are similar in the rainy season, 

and these land covers can be distinguished only in the dry season, when there is less 

greenness in mixed wooded/cleared areas than rubber plantations. In the dry season, 

rubber plantation may have less greenness than native forests, but still more than 

mixed wooded/cleared areas. The mixed wooded/cleared area consists of some 

deciduous trees and great extent grassland in cleared areas. They become greener 

with higher EVI in the rainy season compared with the dry season. 

We found a complex relationship between monthly averages of LST and EVI 

for the four land covers. The hysteresis loops of LST/EVI for three of the four land 

covers tended to be determined by seasonality, but not for forests (Figure 2.4f–i). 

The study shows that in the rainy season there is more photosynthesis activity of 

vegetation in the three land covers: rubber plantation, mixed wooded/cleared area 

and agriculture than in forests. Native forest shows higher EVI throughout the year, 

while the other land covers show seasonal patterns and more variations. This result 

suggests that the changes in vegetation covers in these three land covers are 

associated with changes in temperature and rainfall. In the hysteresis loops, we 

found that EVI increases as annual precipitation increases, but LST decreases. In 

contrast, when LST begins increasing and reaching its maximum in the dry period, 

EVI correspondingly decreases. However, this synchronization is not found in 

native forest. A similar result was also found in our previous research (Lambin and 

Ehrlich 1997). This suggests that rainfall and the resulting soil moisture and ground 

water from the wet season are sufficient for native forest plants to maintain almost 

full canopy during the dry season. There is approximately 300–450 mm of average 

precipitation per month. However, in dry season from November to April, there is 
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the minimum growth of vegetation (or low EVI) due to low precipitation (less than 

100 mm per month) and high temperature (up to 30 °C–35 °C). Between November 

and December, there is little or no rainfall and coolest temperatures. Mixed 

wooded/cleared areas consist of deciduous trees that usually lose their leaves during 

this period. This hysteresis behavior of LST/EVI was also found similarly in the 

West African woodlands (Lambin and Ehrlich 1996). 

The second research question concerned whether we can use the information 

of EVI and LST to classify the four land covers, which could allow us to identify 

and detect land cover changes in tropical regions. The LDA implemented on the 

long-term averages of LST/EVI shows a high classification accuracy for the four 

land cover classes (86%). This accuracy was similar to a study of Julien et al. (2011) 

which used NDVI/LST for crop type classification (87%), although Landsat-5 data 

time series and different approaches were used. 

2.5 Conclusions 

Detection of land cover change in tropical regions is an important application 

of remote sensing methods. Using a combination of MODIS EVI and LST may 

improve monitoring of changes in tropical vegetation cover. In this study, we 

examined the long-term averages (2006 to 2012) of EVI and LST time-series data 

16-day composites and their intra-annual seasonal transitions for four different land 

covers in Lao tropical forests. Finally, we applied LDA to test whether the 

information from EVI and LST can be used to discriminate the major land covers 

in our study area. The results show that EVI contributed most to discrimination of 

cover types, with LST making a smaller contribution. When used in combination 

with LST and EVI provided detailed information on the characteristics and 

temporal responses of the four land covers. Using these two indices we can classify 

the four land covers with high overall accuracy (86%). The outcomes of this study 

thus contribute to improving our understandings of tropical vegetation changes and 

responses to climate conditions. This study is a pathfinder toward providing an 

improved option for monitoring and detecting land cover changes in tropical 

regions. 
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Chapter 3. Applying the Global Disturbance Index for Detecting 

Vegetation Changes in Lao Tropical Forests 

Phompila, C., Lewis, M., Clarke, K. and Ostendorf, B. (2015). “Applying the 

Global Disturbance Index for Detecting Vegetation Changes in Lao Tropical 

Forests”. Advances in Remote Sensing, 4(1):73-82. 

 

Abstract 

Land cover change is a major challenge for many developing countries. 

Spatiotemporal information on this change is essential for monitoring global 

terrestrial ecosystem carbon, climate and biosphere exchange, and land use 

management. A combination of LST and the EVI indices in the global disturbance 

index (DI) has been proven to be useful for detecting and monitoring of changes in 

land covers at continental scales. However, this model has not been adequately 

applied or assessed in tropical regions. We aimed to demonstrate and evaluate the 

DI algorithm used to detect spatial change in land covers in Lao tropical forests. 

We used the land surface temperature and enhanced vegetation index of the 

Moderate Resolution Imaging Spectroradiometer time-series products from 2006–

2012. We used two dates Google Earth TM images in 2006 and 2012 as ground truth 

data for accuracy assessment of the model. This research demonstrated that the DI 

was capable of detecting vegetation changes during seven-year periods with high 

overall accuracy; however, it showed low accuracy in detecting vegetation 

decrease. 

Keywords: Tropical vegetation change, disturbance index, land surface 

temperature (LST), enhanced vegetation index (EVI), Lao PDR  
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3.1 Introduction  

Global measures of land cover change are important for global terrestrial 

ecosystem carbon schemes, climate and biosphere exchange modeling (Chernetskiy 

et al. 2011; Coops et al. 2007; Mildrexler et al. 2007), and for improving our 

understanding of human and environmental interactions (Klein et al. 2012; Lu et al. 

2004; Xin et al. 2013) with vegetation condition and structure (Coops et al. 2009). 

Biodiversity loss due to land cover change is one of the core management 

challenges at both global and regional scale (Bradshaw 2012; Ghazoul 2013). 

Adequate spatiotemporal information is critical for monitoring this change (Hilbert 

et al. 2001; Ostendorf 2011; Ostendorf et al. 2001). However, obtaining accurate 

spatiotemporal information of the timing and location of land cover change is 

especially challenging under logistically constrained conditions such as tropical 

forests in developing countries.  

A remote sensing approach is essential and such an application has provided 

key information for the comprehension of ecological system dynamics. For 

example, it has been used to study the responses of both the Amazon forest canopy 

to drought (Asner and Alencar 2010), and the intra-annual and inter-annual 

variations of the enhanced vegetation index (EVI) in Brazilian tropical forests 

(Moura et al. 2012). Remote sensing has also been used to predict and map forest 

structure and density in southeastern Madagascar (Ingram et al. 2005), and to 

examine the relationship between Mexican tropical vegetation and rainfall 

(Miranda-Aragón et al. 2012). Moreover, a number of change detection algorithms 

for use with satellite imagery have been tested and applied (Lu et al. 2004).  

Another approach is to use the differential surface heat flux response of bare 

versus vegetated land. This appears to offer a means for the investigation of the 

status of land surface cover, and a number of studies have investigated the 

relationship between temperature and vegetation cover (Jiang and Tian 2010; 

Raynolds et al. 2008; Weng and Lu 2008; Weng et al. 2004; Xiao and Weng 2007; 

Zhang et al. 2010; Zhou et al. 2011). It is widely acknowledged that land surface 

temperature (LST) is determined by different land cover characteristics. Yue et al. 

(2007) suggested that dense vegetation cover might cause relatively higher 

evapotranspiration from the land surface to the atmosphere. This evapotranspiration 
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could reduce land surface heat in comparison with open or bare land. In contrast, if 

vegetation loss occurred (i.e., large-scale forest clearance), this would be likely to 

increase LST.  

Research has proven that using LST and the EVI can be useful for 

distinguishing differences in land cover (Chernetskiy et al. 2011; Coops et al. 2009; 

Mildrexler et al. 2009; Webb et al. 2014). Using LST and EVI time-series data from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) offers the potential 

to detect changes in land covers, such as with the disturbance index (DI). The DI 

was developed by Mildrexler et al. (2007); Mildrexler et al. (2009) to monitor 

global vegetation changes, and the approach was tested and shown to work well in 

forests of the United States and Canada (Coops et al. 2009).  

In theory, the DI uses a combination of the EVI and LST indices for detecting 

and monitoring the changes in land covers on global scales. However, there are 

known problems related to cloud cover, atmospheric water column content, and 

aerosol haze when employing the EVI in tropical regions (Grogan and Fensholt 

2013; Samanta et al. 2012). There has been no implementation or evaluation of the 

DI model in tropical regions (Coops et al. 2007; Mildrexler et al. 2009, 2011) and 

there is little known about whether EVI and LST could be useful in detecting 

changes in land covers in this region. Therefore, the aim of this research was to 

demonstrate and evaluate the DI for detecting spatial change in land covers in the 

south of Lao People’s Democratic Republic (PDR). We used MODIS EVI and LST 

data time series from 2006–2012 in the DI model, and used high resolution Google 

EarthTM images (2006 and 2012) to evaluate the performance of the DI. 

3.2 Methods 

3.2.1 Study area 

The study area is located in Champasack Province in the south of Lao PDR. 

This area was selected because of its reasonably high geographic uniformity and 

large areas of homogeneous land cover. Additionally, this area was selected because 

of the availability of images from Google Earth™ for the evaluation of the success 

of the DI model. 
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The study site shown in Figure 3.1 covers an area of 15,415 km2 (13°55'00"–

15°22'00"N, 105°13'00"–106°55'00"E). Approximately 58% of Champasack 

Province is covered by native forests, which comprise a range of natural ecosystems 

such as dry, mixed evergreen, deciduous tropical forests, savanna, and semi-dry 

evergreen forests. Two of the largest national protected areas of Lao PDR are 

encompassed within the area: Xepian and Dong Houa Sao. Champasack is divided 

by the Mekong River. The majority of the terrain is relatively flat (74%), while 26% 

of the area has higher elevations. Overall, the elevation ranges from 75–1,284 m, 

but the majority of land is around 75–120 m above sea level. There are two distinct 

seasons: rainy (May–October) and dry (November–April). During the rainy season, 

it is often windy; humidity is high, and most of the annual average rainfall of 2,279 

mm occurs. During the dry season, conditions are mostly sunny with average 

temperatures of 21–35°C and little rainfall. The volcanic soil of the area provides 

suitable growing conditions for coffee trees.  

 

Figure 3.1. Location of the study area in Champasack Province, southern Lao 

PDR. 
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3.2.2 Method overview 

Our research comprised three major steps: (1) data collection and image 

preprocessing, (2) application of the DI algorithm to detect vegetation cover 

change, and (3) evaluation of the results of the DI (Figure 3.2). 

3.2.3 Data collection and image preprocessing  

We used the MODIS Terra vegetation index products (MOD13A2 and 

MOD11A2, tile h28v07) from Collection 5 with 1-km spatial resolution. MODIS 

data were retrieved from the Earth Resource Observation and Science Center 

(EROS), National Aeronautics and Space Administration (NASA) using the 

ModisDownload R script. The time series spans the period from January 2006 to 

December 2012 with 16-day intervals (23 time steps) for MOD13A2 and 8-day 

intervals (46 time steps) for MOD11A2. The EVI is a vegetation index using the 

red, blue and NIR reflectance, as shown in Eq. [1]: 

              𝐸𝑉𝐼 = 2.5 𝑥 
(NIR − red) 

(1 +  NIR + 6 𝑥 red − 7.5 𝑥 blue)
                       (1) 

The EVI was selected because the algorithm is improved both for sensitivity 

to regions of high biomass and for vegetation monitoring through a de-coupling of 

the canopy background signal and a reduction in atmospheric influences (Coops et 

al. 2009; Huete et al. 2006; Huete et al. 2008; Senf et al. 2013; Zhang et al. 2005). 

In this research, image preprocessing selected only good quality pixels of the 

MODIS data to avoid bias. Thus, we extracted pairs of MODIS EVI and LST time 

series data and their quality assurance layers (QA). Then, bad quality pixels were 

masked by the QA or via enclosed Pixel Reliability datasets (value = 0; good data, 

use with confidence). Those time-series datasets were subsetted and reprojected to 

WGS84, UTM zone 48N, using the MODIS reprojection tool (version 4.01).  

3.2.4 Applying the DI algorithm  

The DI algorithm was tested for detecting changes in vegetation cover for the 

entire Champasack Province using the MODIS EVI and LST data time series from 

2006–2012. The DI created by Mildrexler et al. (2007) and refined by Mildrexler et 

al. (2009) is calculated as: 
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𝐷𝐼𝑖 =
(

𝐿𝑆𝑇𝑖𝑚𝑎𝑥

𝐸𝑉𝐼𝑖𝑚𝑎𝑥
)

∑ (
𝐿𝑆𝑇𝑚𝑎𝑥

𝐸𝑉𝐼𝑚𝑎𝑥
)

𝑖−1

                                                          (2)  

  

where DIi is the disturbance index value for year i; LSTimax is the annual 

maximum eight-day composite LST for year i; EVIimax is the annual maximum 16-

day EVI for year i; LSTmax is the multiyear mean LST (maximum) up to, but not 

including the analysis year (i−1); and EVImax is the multiyear mean of EVI 

(maximum) up to, but not including the analysis year (i−1). 

 

 

Figure 3.2. Research Steps. 

 

The DI was designed for detecting changes in land covers on a pixel-by-pixel 

basis (Mildrexler et al. 2007; Mildrexler et al. 2009). The output from our pixel 

calculations is unitless. We used the same standard of threshold setting as in 
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previous research (Coops et al. 2007; Coops et al. 2009; Mildrexler et al. 2007; 

Mildrexler et al. 2009), and values of DI were set as the mean ± 1 standard 

deviation (SD). An output map of the DI was classified into three classes: increased, 

stable, and decreased vegetation. Larger the mean (+) 1SD was assigned to 

decreased vegetation, whereas less than the mean (-) 1SD, signified increased 

vegetation. The rest was designated as stable vegetation. Normally, DI values of 

natural variability with no substantial change in land covers or stable vegetation fall 

within a narrow range around 1.0.  

3.2.5 Evaluating the results of the DI model 

The final research step was to evaluate the effectiveness of the DI in detecting 

spatial changes in vegetation cover within the study area. We evaluated the output 

map of the DI by Google Earth TM Images in 2006 and 2012.  

Table 3-1 represents our interpretation of the change in land covers between 

2006 and 2012, from the Google Earth™ images. Firstly, we identified and 

classified land covers from the Google Earth TM imagery into four dominant land 

cover types: native forest, plantation, mixed wooded/cleared area and agriculture. 

Secondly, we digitized these land covers as polygons in order to calculate their 

changes between 2006 and 2012 using ArcGIS10.2.1 software. This vegetation 

change map was assigned into the same three categories corresponding to those 

used in the DI application: (1) Stable vegetation is an area that appears to exhibit 

little or no change between the images; (2) Increased vegetation means an area that 

shows an increase in vegetation cover such as the transition from mixed 

wooded/cleared areas or bare land to plantation; (3) Decreased vegetation indicates 

the clearance or loss of vegetation, i.e., the transition of native forest to mixed 

wooded/cleared areas or agricultural land. This information was used as evaluation 

data for the DI.  

Table 3-1. Matrix of interpreted land cover transitions. 

Transition of Land 

Cover from/to 

Native forest Plantation Mixed 

wooded/cleared 

Agriculture 

Native forest S DV DV DV 

Plantation NA S NA DV 

Mixed wooded/cleared IV IV S DV 

Agriculture NA  IV IV S 

Note: IV = increased vegetation, S = stable vegetation, DV = decreased vegetation, NA = not found 

in our case.  
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Thirdly, the output map of the DI and the evaluation data from the Google 

Earth TM were overlaid (Figure 3.3). This comparison was to evaluate whether the 

DI can detect detailed changes in land covers. We used 1,207 random samples 

within the total assessment area of approximately 2,500 km2. This area was 

determined by the availability of high resolution Google Earth TM images in two 

dates 2006 and 2012 over the same location (Figure 3.4). The unit of comparison 

was based on a pixel of MODIS (1x1 km). Finally, summary of the Disturbance 

Index accuracy assessment was provided. 

3.3 Results and discussion 

3.3.1 DI accuracy assessment 

The DI was implemented to detect spatial changes in land covers within our 

study area during the seven-year period from 2006–2012. The results of its accuracy 

assessment are presented in Table 3-2, and an example of a comparison of the 

results with the Google Earth™ imagery is shown in Figure 3.3. The overall 

accuracy of the DI output is 82% and its Kappa statistic is 0.59, although the user’s 

and producer’s accuracies for individual classes differ. The producer’s and user’s 

accuracies for the class of stable vegetation (areas of little change or minor 

disturbance; 90.37% and 89.95%, respectively) are higher than for the other 

vegetation change classes. Increased vegetation suggested by the DI shows lower 

percentages of both producer’s (66.67%) and user’s accuracy (65.72%), and areas 

of decreased vegetation cover have the lowest accuracy (producer’s 42.42% and 

user’s 48.28%). The DI appears to detect changes in vegetation cover within the 

study area with high overall accuracy, but lower accuracy for areas in which the 

vegetation has decreased. 

3.3.2 Visualizing changes in Google Earth™ 

Figure 3.3 shows the spatial changes in land covers detected by the DI model 

and its comparison of changes with high-resolution images from Google Earth™ in 

the same period (2006 and 2012). The model appears to detect and locate patterns 

of change in land covers, especially highlighting areas where vegetation has 

increased or remained unchanged. Increased vegetation is found mostly in 
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plantation areas, but stable vegetation areas are located in agricultural regions and 

some parts of the native forest within the protected areas (Figure 3.4). The DI can 

indicate areas of vegetation decrease; however, some of these areas were not 

detected well, including native forest clearances. The interpretation of the Google 

Earth™ indicates that most forest clearance has occurred in relatively tiny areas, 

due to shifting cultivation practices and small-sized agriculture. Some of these 

small scattered areas of forest clearances went undetected by the model. This 

approach tends to capture large spatial changes in land covers, preferably >1 km2. 

For example, continuous extended areas showing an increase in vegetation cover 

were well detected, such as rubber plantations.  

Table 3-3 indicates that about 2.5% of the total area of vegetation cover was 

lost from 2006 to 2012, while approximately 6.65% of the entire provincial land 

shows an increase in vegetation cover. This increase was the result of the expansion 

of rubber plantations within this area. A large proportion of the vegetation decrease 

was found in native forests, near the protected areas, and in the mixed 

wooded/cleared area in the north of Champasak Province.  

Table 3-2. Summary of the Disturbance Index accuracy assessment. 

IV = increased vegetation, S = stable vegetation, DV = decreased vegetation.  

Table 3-3. Estimated area of vegetation cover changes from 2006–2012. 

Vegetation Cover Changes  Years 2006–2012 Total area (km2) 

 

Area (km2) Percentage (%)* 

Decreased vegetation  386 2.50% 15,415 

 Increased vegetation 1026 6.65% 

*The percentage of vegetation cover change was calculated from numbers of pixels (1 km2) 

indicating change, divided by the total area (15,415 km2), and multiplied by 100. 

 

Google Earth™ 

(2006 and 2012) 

Disturbance Index  Total Producer’s 

Accuracy (%) IV S DV 

IV 186 87 6 279 66.67 

S 59 779 24 862 90.37 

DV 38 0 28 66 42.42 

Total 283 866 58 1207  

User’s Accuracy (%) 65.72 89.95 48.28  82 % 
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Figure 3.3. Comparison of changes in land covers over the seven–year period 

(2006–2012) detected by the Disturbance Index with the evaluation data from 

Google Earth™ images. Red pixels and red striped lines indicate decreased 

vegetation, green pixels and green striped lines indicate vegetation increase, 

and white pixels and white polygons show stable vegetation. 

 

 

Figure 3.4 (e) & (f) 

Figure 3.4 (g) & (h) 

Figure 3.4 (c) & (d) 

Figure3. 4 (a) & (b) 
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Figure 3.4. Example of the Google Earth™ images showing land cover 

changes between 2006 and 2012, from locations in Figure 3.3(a) undisturbed 

forest in 2006, (b) disturbed native forest in 2012; (c) land clearance in 2006, 

(d) rubber plantations in 2012, (e) mixed wood and cleared areas in 2006, (f) 

reduced areas of wood and increased clearances in 2012, (g) & (h) unchanged 

agricultural areas in 2006 and 2012, respectively. 
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3.4 Conclusions 

In this research, we demonstrated and evaluated the global disturbance index, 

which uses a combination of EVI and LST indices. We used MODIS EVI and LST 

time series data (from 2006–2012) to test whether this approach is useful for 

detecting land cover change in Lao tropical forests. An evaluation of the 

performance of the DI was performed by comparing its results with corresponding 

high-resolution images from Google Earth™. The key findings were that the DI 

was capable of detecting vegetation changes within our study area during the seven-

year period with high overall accuracy (82%); however, it showed low accuracy in 

detecting decreases in vegetation (about 42%). Even though this model is 

straightforward and can be used for rapid assessment of land cover changes in the 

tropics, it may not be useful for assessing vegetation loss when high accuracy is 

required. Further investigation is required into the atmospheric and climate effects 

on MODIS LST and EVI in the application of the model.  
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Abstract 

Studies on changes in vegetation are essential for understanding the 

interaction between humans and the environment. These studies provide key 

information for land use assessment, terrestrial ecosystem monitoring, carbon flux 

modelling and impacts of global climate change. The primary purpose of this study 

was to assess whether it is possible to detect temporal vegetation changes in tropical 

forests using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 

imagery. The study investigated the annual vegetation phenological response of 

dominant land cover types across the study area in southern Lao PDR and its 

relationship to seasonal precipitation and temperature. Improved understanding of 

intra-annual patterns of vegetation variation was useful to detect longer term 

changes in vegetation. The Breaks For Additive Season and Trend (BFAST) 

approach was implemented to detect changes in land cover types from 2001-2012. 

We used the enhanced vegetation index (EVI) data from MODIS (MOD13Q1 

products), high resolution multispectral satellite images accessed through Google 

Earth, and local monthly rainfall and temperature data. EVI documented the annual 

seasonal growth of vegetation and clearly distinguished the characteristic 

phenology of four different land cover types: native forest, plantations, agriculture 

and mixed wooded/cleared areas. Native forests maintained high EVI throughout 

the year, while plantations, wooded/cleared areas and agriculture showed greater 

inter-annual variation, with minimum EVI at the end of the dry season in April and 

maximum EVI in September-October, around two months after the wet season peak 

in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in 

the tropical forests, especially in large conversions of mixed wooded/cleared area 
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into plantation. Within the study area from 2001-2012 there was an overall trend of 

decreasing vegetation cover in native forests and mixed wooded/cleared lands, and 

by contrast an increase in cover and area of plantations after 2008. 

Keywords: Lao tropical land covers; vegetation changes; Breaks For 

Additive Season and Trend (BFAST); Moderate Resolution Imaging 

Spectroradiometer (MODIS); enhanced vegetation index (EVI). 
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4.1 Introduction 

Forests play important roles in balancing the global climate, storing or 

exchanging terrestrial carbon, maintaining hydrological systems and in providing 

biodiversity and habitats. Most international attention has been given to changes in 

forest resources because scientific evidence suggests that these changes are 

associated with greenhouse gas emissions, land degradation and loss of biodiversity 

(Setiawan et al. 2014). Information on spatial and temporal changes in vegetation 

at local, regional and global scales is important for improving our understanding of 

human - environment interactions (Zhang et al. 2005; Chernetskiy et al. 2011; 

Huang and Friedl 2014) including alterations to terrestrial ecosystems, carbon 

fluxes and global climate (Viña et al. 2012; Papes et al. 2013). 

Studies of vegetation phenology could provide essential information to 

support modelling and monitoring of climate change. This information is useful for 

detecting and monitoring regional and global environmental change as vegetation 

response is sensitively interrelated to environmental and climate influences 

(Jeganathan et al. 2014) such as temperature, soil moisture and human activity 

(Zhang et al. 2005). Moreover, monitoring and forecasting changes in phenology is 

useful to understand the response of vegetation under changing climatic conditions 

(Prabakaran et al. 2013).  

Although several studies have been done in a wide range of environments, 

little is known about changes in tropical forest regions (Huete et al. 2008; Setiawan 

et al. 2014). The tropical forest is one of the most complex ecosystems on our planet 

(Avitabile et al. 2012). Acquisition of adequate information from on-ground 

observations and samples is difficult. These generally provide only species-specific 

information for specific sites, and lack comprehensive spatial coverage. 

Information captured by earth-observing remote sensing instruments provides 

opportunities to overcome this challenge (Ostendorf et al. 2001; Setiawan et al. 

2014). Information from space is essential for analysing the spatial and temporal 

patterns of vegetation from local to regional and continental scales (Verbesselt et 

al. 2010; Viña et al. 2012; Forkel et al. 2013). For example, multiple-year satellite 

images allow us to understand characteristics and response of vegetation over time 

periods, including changing events and processes. Changes in vegetation can be 
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analysed using remote sensing data time series, such as NDVI (Mao et al. 2011; 

Klein et al. 2012; Forkel et al. 2013) and EVI (Coops et al. 2009; Moreau and 

Defourny 2012). 

Several remote sensing approaches have been tested and successfully applied 

to study changes in vegetation composition, cover and structure (Coops et al. 2009). 

They have used a diversity of satellite datasets, with varying spatiotemporal 

resolutions, and have employed a range of statistical methods (Forkel et al. 2013). 

Amongst these, the BFAST approach is a powerful technique to detect gradual and 

abrupt changes in satellite data time series (Verbesselt et al. 2010; Verbesselt et al. 

2012). It has been successfully tested in south eastern Australia and South Somalia. 

However, there is little known about the performance of BFAST in tropical forests. 

Monitoring vegetation in this region using satellite remote sensing is challenging 

due to atmospheric effects such as frequent cloud cover and high levels of aerosols. 

As a result, vegetation phenology in tropical forests is not well documented 

(Moreau and Defourny 2012).  

Therefore, the primary purpose of this study was to detect intra and inter-

annual changes in the tropical forests and vegetation cover across a study area in 

the southern part of Lao PDR, through analysis of MODIS satellite vegetation index 

data. The response of vegetation phenology to monthly average precipitation and 

temperature was investigated, providing understanding of intra-annual response, 

against which longer term changes in vegetation could be detected. The BFAST 

approach was used to detect vegetation changes in land cover types between 2001 

and 2012. 

4.2 Materials and method 

4.2.1 Study area 

The study area was situated in the north of Champasack Province, in the south 

of Lao PDR. It covered an area of approximately 1,000 km2, from 14°99'00"N to 

15°41'00"N latitude and from 105°77'00" E to 106°00'00" E longitude (Figure 4.1). 

The study area partially covered five districts, Xanasomboun Pakse, Phonetong, 

Phatumphone and Bacheingchalernsouk, and also included about 2% of the Dong 

Houa Sao National Biodiversity Conservation Area. Land use throughout the area 
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is mixed, with predominance of land under plantations, mixed wooded/cleared 

areas, agriculture (mainly irrigated rice) and native forests. While some of the study 

area is mountainous (approximately 10%), the majority is relatively flat lowlands 

(approximately 90%). The altitude ranges from 100-950 m, but the majority of land 

is between 100-130 m above sea level. There are two distinct seasons; rainy (May-

October) and dry (November-April). During the rainy season, it is often windy, 

humidity is high and most of the 2,279 mm average annual rainfall occurs. In the 

dry season, conditions are mostly sunny, average temperatures are 28°C - 31°C and 

there is little rainfall.  

 

Figure 4.1. Location of the study area in the north of Champasack Province, 

Lao PDR. 

4.2.2 Data 

Two primary sources of data were used in this study; MODIS EVI and high 

resolution colour satellite imagery from Google Earth. The MODIS EVI is a 16-
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day composite product (MOD13Q1) with a spatial resolution of 250 m, and is 

available from 2001-2012. NDVI and EVI have been commonly used to study 

changes in vegetation in tropical regions. However, we used only MODIS EVI in 

this study. The EVI was introduced by the MODIS Land Discipline Group as a 

standard satellite vegetation product for MODIS Terra and Aqua. This algorithm 

has improved sensitivity to high biomass regions and improved vegetation 

monitoring through a de-coupling of the canopy background signal and a reduction 

in atmospheric influences (Zhang et al. 2005; Huete et al. 2006; Huete et al. 2008; 

Coops et al. 2009; Ma et al. 2013; Senf et al. 2013). Its formula is as follows: 

𝐸𝑉𝐼 = 2.5 𝑥 
(𝑃𝑁𝐼𝑅 − 𝑃𝑟𝑒𝑑) 

(1 + 𝑃𝑁𝐼𝑅  + 6 𝑥 𝑃𝑁𝐼𝑅 − 7.5 𝑥 𝑃𝑏𝑙𝑢𝑒)
                                    (1) 

where PNIR, Pred and Pblue are near infrared, red and blue reflectance 

respectively.   

The study area was covered by MODIS tile h28v07. The data was 

downloaded from the National Aeronautics and Space Administration (NASA) 

using the MODISTools package in R1, and reprojected to WGS84, UTM projection 

and zone 48 (MODIS reprojection tool version 4.01).  

The high resolution colour satellite images were accessed through Google 

Earth for two periods, 2006 and 2012, and were used for two purposes: to generate 

random samples, and to visualize and interpret the results of the BFAST analysis. 

We also used monthly average rainfall and temperature data (2001-2012) from the 

Lao Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, 

published by the Lao National Statistical Centre. The data was recorded at the Pakse 

meteorological station, in the centre of Champasack Province.   

4.2.3 Analysis 

Processing flow 

Figure 4.2 provides an overview of the processing sequence for the research. 

The analysis was divided into two components; sample preparation and selection, 

and sample analysis. The sample preparation and selection included image 

digitising, selection of random samples and extraction of EVI time series. The 

                                                 
1 http://cran.fhcrc.org/web/packages/MODISTools/index.html 
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sample analysis included calculating long term averages of EVI, comparing them 

with average rainfall and temperature, and finally, applying and interpreting the 

BFAST model. More details are explained in the following sections. 

Image digitizing 

The 2012 Google Earth image was interpreted and digitised to record the 

distribution of dominant land cover types over the whole study area. Four different 

land covers were distinguished and digitised from visual interpretation of the high 

resolution colour imagery; native forest, plantations, mixed wooded/cleared areas 

and agriculture (Figure 4.3).  

Random sample selection 

Samples were randomly generated within the land use/cover polygons 

digitised from the Google Earth 2012 imagery. To ensure that the samples 

represented single homogeneous land covers, only MODIS pixels falling 

completely within the digitised cover class polygons were used. The samples were 

defined by the central point of the 250 x 250 m grid cells corresponding to MODIS 

pixels, and were at least 500 m from each other. In total, 1,000 random samples 

comprising of 250 samples for each land cover were generated using ArcGIS.  

MODIS EVI time series extraction 

These 1,000 random samples were used to extract MODIS EVI time series 

from the 2001-2012 records, which were used consistently throughout the research. 

The resulting MODIS series comprised of 276 16-day EVI composites. A script in 

R was developed to extract these datasets using the raster2 and rgdal3 packages.  

                                                 
2http://cran.r-project.org/web/packages/raster/index.html  
3http://cran.r-project.org/web/packages/rgdal/index.html  



 

50 

 

Figure 4.2: Research processing flow. 

 

Data analysis 

Firstly, we examined the characteristics and seasonal patterns of vegetation 

within the four dominant land cover types by calculating their long term average 

EVI from 2001 to 2012 using the 250 random samples for each land cover. We 

investigated the relationship between the seasonal vegetation responses and 

climatic conditions by comparing the EVI response to monthly average 

precipitation and temperature. Secondly, we applied the BFAST algorithm to detect 

temporal changes in these tropical land covers. BFAST analysis was applied to the 

average EVI time series derived from the 250 samples for each land cover class. 

The BFAST algorithm decomposes input time series datasets into three 

components; trend, seasonal and remainder components (Verbesselt et al., 2010; 

Verbesselt et al., 2012). Its formula is as follows:  

𝒀𝒕 = 𝑻𝒕 + 𝑺𝒕 + 𝒆𝒕                                                              (2) 
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where Yt is the observed data at time t; Tt is the trend component; St is the 

seasonal component; and et is the remainder or residual component.  The result of 

the BFAST analysis was visualized and interpreted against two dates of high 

resolution imagery from Google Earth (2006 and 2012). 

 

Figure 4.3: Four different land cover types digitised from Google Earth: 

native forest is a dense or highly homogeneous canopy of natural 

forests/trees; plantations shows distinctive canopy patterns and textures of 

regularly spaced planted trees with similar ages; mixed wooded/cleared area 

is fragmented and usually of low vegetation cover, which is often comprised 

a mixture of partly cleared areas and some trees, shrubs, grass, and bare soil; 

agriculture mainly includes paddy fields, minor shrubs/trees and water. 

4.3 Results and discussion 

4.3.1 Seasonal patterns of vegetation 

The four land cover types had distinctly different seasonal patterns of 

vegetation response as shown by the average MODIS EVI (Figure 4.4(a)). Native 

forest had the highest overall EVI with the least variation throughout the year, but 

a minor peak in July and then slightly higher EVI maintained through to December. 
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Plantations also had high overall EVI, but with greater seasonal variation. Their 

EVI was lower than that of the native forest for January-June, but higher for August-

November. Mixed wooded/cleared areas showed even greater intra-annual range of 

EVI. It was much lower than forest and plantations for January-July, but with 

similarly high EVI in the latter half of the year. Both plantations and mixed 

wooded/cleared areas showed evidence of two peaks in EVI in August and October. 

By contrast, agricultural land had overall lower EVI, but with greater variation 

between seasons. Its EVI reached a maximum in September-November. 

 

Figure 4.4. Comparison of (a) long term averages of EVI (from 2001-2012) 

for the four land cover types with 12-year monthly average (b) rainfall and 

(c) temperature. 
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The EVI dynamics exhibited systematic differences based on vegetation 

cover, species and management practices in the four land cover types. For example, 

high canopy cover was maintained throughout the year for forests and plantations. 

In contrast, the single-species plantations showed more seasonal variation than 

forest. In mixed wooded/cleared areas, more deciduous trees and shrubs were 

prevalent, resulting in a pronounced seasonal contrast in EVI. Agricultural areas 

displayed a distinct annual cycle of land clearance/preparation (January-April), 

followed by crop planting and growing (June-October), and harvesting (November-

December). During the land preparation, there was greater soil exposure, resulting 

in relatively low EVI. However, it gradually increased during growth of the crops 

(predominantly rice) and reached a maximum in October. 

4.3.2 EVI responses to monthly precipitation and temperature 

Rainfall and temperature are the crucial drivers of vegetation growth in our 

study area. There is clear evidence that intra-annual variations of average EVI are 

strongly influenced by seasonal rainfall. The annual vegetation growth cycles for 

all vegetation/land cover types closely followed the precipitation pattern with a lag 

of two to three months when temperature also reduced. From January to April, 

average rainfall was less than 250 mm (Figure 4.4(b)), while average temperatures 

climbed from a low of 26 oC in January to the annual high of 31 oC in April (Figure 

4.4(c)). During this period, vegetation cover or photosynthesis was lower, resulting 

in lower EVI for all land uses. However, when rainfall increased from late May to 

September (300-400 mm), the greenness of vegetation started to increase and 

peaked in October, two months after the July peak of rainfall. This EVI signal still 

remained high almost for almost two-three months after the end of the rainfall, and 

then gradually declined in November-December. This is possibly due to persistence 

of soil moisture and its availability to the deep-rooted perennial trees and shrubs of 

the forests, plantations, and wooded/cleared areas during this period.  

Temperature also seemed to directly influence EVI. Figure 4.4(c) shows an 

inverse relationship between monthly average temperature and EVI within all four 

land-use covers. The minimum EVI coincided with higher temperatures in the dry 

period (March-April), while the different vegetation types showed more active 

growth during the mid-range temperatures in June-November. From this figure, it 
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is clear that vegetation growth in this region is strongest during the rainy season 

(Jun-November) through to the beginning of dry season because of the relatively 

suitable temperature (26-28C) and availability of soil water after the period of peak 

rainfall.  

4.3.3 Detecting temporal changes of vegetation with the BFAST 

model 

Figure 4.5 shows the time series of mean EVI (250 samples) for each of the 

four different land covers analysed by the BFAST algorithm. The trend component 

of the analysis indicates gradual and abrupt changes in relation to the average EVI 

for the four land cover types. EVI in native forests remained stable from 2001 to 

2010, but there was an abrupt decrease in its response in 2011, after which it 

increased slightly (Figure 4.5(a)). More temporal changes were detected across 

plantation areas. The BFAST trend component suggests that clearing for plantations 

commenced from the beginning of 2004 to late 2007, followed by maturation and 

increase in plantation canopies from 2008 until 2011. Their EVI dropped in early 

2012 and then continued to increase (Figure 4.5(b)). The overall trend of vegetation 

in mixed wooded/cleared areas was downward, with two abrupt changes detected 

in early 2005 and 2010 (Figure 4.5(c)). Figure 4.5(d) shows an overall gradual 

downward trend of vegetation in agriculture areas.  
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Figure 4.5. Temporal changes in vegetation for the four different land covers: 

(a) Native forest (b) Plantations (c) Mixed wooded/cleared areas (d) 

Agriculture. The plots show average EVI, with trends and abrupt changes in 

the time series detected using the BFAST analysis. 

 

The temporal changes in these land covers are illustrated by examples from 

within the study area through comparison of high resolution images from Google 

Earth for 2006 and 2012. As shown in Figure 4.6(a), native forests had dense, 

almost continuous canopy in the 2006 image, with little evidence of disturbance. 

However, more disturbances were observed in 2012 (Figure 4.6(b)). BFAST 

indicated that EVI dropped from 2004 to 2007 and land clearance for plantations is 

clearly shown in the 2012 high resolution image. This activity is illustrated in 

Figures 4.6(c) and 6(d), where land preparation and early-growth plantations were 

seen in 2006, developing into mature plantations in 2012. Expansion of clearance 

from 2006 to 2012 was also seen in mixed wooded/cleared areas (Figures 4.6(e) 

and 4.6(f)). However, only agricultural lands showed no change in both images 

(Figures 4.6(g) and 4.6(h)). The EVI trend in this area was steadily downward, 

suggesting a possible decrease in agricultural production or a change of crop types. 
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Figure 4.6. An illustration of examples of spatial changes from Google Earth 

imagery in 2006 and 2012: (a, b) Native forest (c, d) Plantations (e, f) Mixed 

wooded/cleared areas (g, h) Agriculture. 
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These results show that BFAST was capable of detecting abrupt changes in 

vegetation dynamics in the land covers in this tropical region and that some of these 

changes were related to forest clearance and land use change. The most notable 

changes in the study area were clearance of native forests and conversion of large 

areas of mixed wooded/cleared areas to plantations. 

4.4 Conclusions 

This study aimed to investigate the seasonality of vegetation response and to 

detect temporal changes in tropical land covers across the study area in southern 

Lao PDR, using the enhanced vegetation index time series data of MODIS. Firstly, 

the intra-annual responses of vegetation of different land covers were investigated 

to provide an understanding of typical seasonal patterns. Secondly BFAST was 

applied to examine inter-annual changes in vegetation responses over the 2001-

2012 period. It was found that average EVI distinguished the annual seasonal 

growth and characteristic phenological patterns of four different land covers; native 

forest, plantations, agriculture and mixed wooded/cleared areas. In general, 

maximum vegetation growth occurred two months after the peak of annual 

precipitation, coinciding with mid-range monthly temperatures. This suggests that 

typical seasonal patterns of vegetation growth were primarily determined by water 

availability and temperature. The BFAST analysis revealed an overall trend since 

2001 of decreasing cover or area in native forests and mixed wooded/cleared areas, 

while plantations increased. Independent evidence derived from Google Earth 

image interpretation demonstrated that the BFAST analysis of the MODIS EVI time 

series was capable of detecting areas of known clearance in native forests and their 

replacement by plantations of perennial trees. Thus, it can be concluded that 

BFAST analysis of MODIS EVI is a promising tool for assessing tropical land 

cover type changes.  
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Abstract 

Clearing of native forest for plantation expansion is a significant component 

of land use change in many tropical regions. The continuing expansion of 

plantations has many environmental consequences, including the loss and 

fragmentation of habitat, alteration of nutrient cycling processes, reduction in 

environmentally sequestered carbon, increased soil erosion and land degradation, 

and loss of biodiversity. The primary goal of this research was to demonstrate and 

evaluate a remote sensing method to detect spatial changes in vegetation cover. The 

specific objectives were to map the expansion of plantations in the southern part of 

the Lao People’s Democratic Republic (PDR) and to observe temporal change in 

the extent of those plantations by using annual averages of NDVI. We used Landsat 

satellite imagery acquired between 2003 and 2012. Principal component analysis 

(PCA) was applied to three Landsat temporal image pairs (2003-2006, 2006-2009 

and 2009-2012) to identify areas of change. Change identification accuracy was 

evaluated by comparison against 1,240 random sample locations which had been 

independently classified from Google Earth imagery from 2006 and 2012. It was 

found that one of the principal components detected change in areas of plantation 

in the study area, with producer's accuracy of 92% and user's accuracy of 79%. This 

method was relatively easy to implement, involved no image purchase costs, and 

could be used by ecologists or forestry managers seeking to monitor forest loss or 

plantation expansion.   

Keywords: rubber plantation, tropical forest, changes, Landsat time series, 

principal component analysis, Lao PDR 
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5.1 Introduction 

The forest areas on our planet are continually changing. The agents of change 

can be natural, including natural disasters such as flooding and windstorm, insect 

pests and diseases, or anthropogenic such as land clearing, preparation or 

harvesting, and the building of infrastructure (Coops et al. 2009). However, in 

recent decades, anthropogenic activities have been the major cause of changes to 

forest areas. These activities include agriculture expansion, plantation 

establishment, infrastructure development, hydropower or energy development and 

mining. Conversion to plantation and agriculture represents a significant 

contributor to loss of native forest that has been rapidly increasing in tropical 

regions (Hou et al. 2013; Thapa et al. 2013; Zuidema et al. 2013; Setiawan et al. 

2014). This conversion impacts on energy stability, carbon flux and hydrological 

systems.  

Documentation of land use and land cover change is required. These studies 

are crucial not only for monitoring the climate and biogeochemistry of earth 

systems but also for identifying and implementing appropriate land management 

(Zhu et al. 2012). Knowledge of vegetation cover and patterns, trends and rates of 

change is crucial for the management and can help to evaluate the success of various 

management tools (Czerwinski et al. 2014). The location and time of vegetation 

changes are key elements to analyse management impacts and to identify changes 

of vegetation in ecosystems (Lehmann et al. 2013). 

The investigation of forest cover change due to plantation is important. 

Establishment of plantation is a crucial process in forest environment dynamics. 

Plantations involve clearance and replacement of natural forests with an 

introduction of new plants. This vegetation regrowth represents a case of an 

increase in live green biomass resulting from anthropogenic activities (Main-Knorn 

et al. 2013). However, plantation establishments have impacts on various functions 

of ecological systems such as water balance, carbon cycle, and biodiversity (Senf 

et al. 2013). Thus, the investigation of forest conversion is necessary and useful for 

improving our understanding of land use change and carbon and water cycles. 

The best way to monitor land-use change involves the use of satellite imagery. 

This is particularly true in the rugged and remote areas where forest cover 
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predominates. The free accessibility of high resolution Landsat imagery facilitates 

the detection of loss or recovery of vegetation. The use of frequent Landsat time 

series enables repeated analysis of vegetation change on broad scales (Cohen et al. 

2010; Zhu et al. 2012; Main-Knorn et al. 2013; Sexton et al. 2013; Czerwinski et 

al. 2014) so that anthropogenic disturbances can be recorded. However, there are a 

number of challenges related to the remote sensing of such change in tropical forest 

environments, including frequent cloud cover and atmospheric effects (Dong et al. 

2012; Zhu and Woodcock 2014). A remotely sensed approach needs to be 

developed to overcome these challenges. In this paper, the overall goal was to 

demonstrate and evaluate a remote sensing method in tropical forests using freely 

available satellite imagery. Our primary purpose was to detect spatial changes in 

forest cover in the southern part of Lao People’s Democratic Republic (PDR). The 

specific objectives were to map expansion of rubber plantations, and to observe 

temporal changes in this plantation area over a period of ten years, between 2003 

and 2012 by using NDVI. Knowledge of monitoring Lao vegetation cover changes 

is necessary for local forestry managers and ecologists for forestry policy and 

decision making as well as for measuring appropriate forest and land use 

management.  

5.2 Methods 

5.2.1 Study area  

The research site is within the geographic region 14°50’32” to 16°10’3” N 

latitude and 105°17’2” to 106°47’29” E longitude. It extends from the north of 

Champasack Province to the middle of Salavan Province, the south of Lao PDR 

(Figure 5.1). The study zone covers an area of approximately 12,000 km2 and 

includes 12 administrative districts of these two provinces. The area is characterized 

by a tropical monsoon climate with two seasonal regimes; a hot dry season and a 

warm rainy season. It usually experiences frequent cloud cover and hazy 

atmospheric conditions during the rainy season. Coffee plantations have been 

predominant in this region for several years. However, increasingly rubber 

plantations are being established, particularly in the south. 
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Figure 5.1. The study area, located in Champasack and Salavan Provinces, in 

the south of Lao PDR. (Source: Data i.e. roads, water, administrative district and 

national boundaries were provided by Faculty of Forestry Sciences, National 

University of Laos) 

5.2.2 Data analysis 

The research comprised four main steps as shown in Figure 5.2: (1) dataset 

and image pre-processing; (2) principal component analysis (PCA) to detect 

changes in vegetation cover, (3) accuracy assessment of cover change and (4) 

monitoring of temporal changes in rubber plantations. More details are explained 

in following subsections. 

5.2.3 Dataset and image pre-processing 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery was used in this 

research. Landsat imagery provides the most appropriate remotely sensed spatial  
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Figure 5.2. Research Flow 

 

resolution for forestry dynamics monitoring. Data has been applied successfully in 

a number of studies in various environments including tropical forests (Hilker et al. 

2012; Vogelmann et al. 2012; Zhu et al. 2012; Main-Knorn et al. 2013; Sexton et 

al. 2013). The free Landsat imagery is acquired every 16 days, with spatial 

resolution of 30 meters. Since May 2003 approximately 22% each Landsat ETM+ 

SLC-off scene contains missing lines due to the scan line corrector (SLC) failure. 

This caused all later Landsat ETM+ images to have line gaps (The United States 

Geological Survey 2012). However, these remotely sensed data are useful and 

essential for worldwide researchers. However, a complete temporal record of land 

cover change through Landsat images is almost impossible in tropical regions, due 

to interference by clouds and aerosols (Dong et al. 2012; Thapa et al. 2013; Zhu et 

al. 2014). Therefore, we used Landsat ETM+ data captured annually at a similar 

time of the year to avoid effects from phenology and sun angle, and to select a 

period of minimum cloud cover. These effects have been shown to add noise in 

previous studies of longer-term change (Kennedy et al. 2010; Main-Knorn et al. 

2013). 
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The MODIS observations in the study area (in Chapter 4), indicated that there 

was a massive clearance for plantations in from 2004 to late 2007 and an increase 

in plantation canopies in 2011. In addition, there were noticeable changes in forest 

and land use following introduction in 2004 of government policy on foreign direct 

investment in forestry and agriculture, along with land leases and concessions. 

Therefore, Landsat images corresponding to these pre- and post events were 

considered as the most suitable to investigate spatial changes in forest cover in more 

detail. The three year time interval between imagery was chosen to allow 

observation of significant spatial change within study areas. In addition, fuller time 

series of Landsat data were available due to cloud cover. Therefore, we acquired 

the Landsat ETM + images from December - February for the years between 2003 

to 2012 (Table 5-1). Only images with 0-5% cloud cover from 2003, 2006, 2009 

and 2012 were used. The images were accurately geo-referenced to WGS84, UTM 

zone 48N and co-registered and further rectification was not needed. The Chavez 

(1996) atmospheric correction model was applied before we used principal 

component analysis algorithm. 

Table 5-1. Acquisition dates of Landsat 7 ETM+ data used in this research 

(path 126 and row 49 of the world reference system (WRS)). 

Image Date Image Date 

22 Jan 2003 21 Dec 2008 

22 Dec 2003 22 Jan 2009 

26 Dec 2004 10 Feb 2010 

14 Jan 2006 30 Dec 2011 

02 Feb 2007 16 Feb 2012 

5.2.4 Principal component analysis (PCA) 

Principal component analysis was applied to detect areas of significant 

vegetation cover change in the study area. PCA is often used for change detection 

in remote sensing image analysis (Singh. 1993; Rigina and Rasmussen 2003; Sheen 

2004; Lasaponara 2006; Miranda-Aragón et al. 2012). We used the standardized 

PCA which computed data based on the correlation matrix, providing an equal 

weight to each element within the original data series. We applied PCA to a 

composited stack of six bands from a pair of Landsat image dates (2006 and 2012) 

to highlight vegetation patterns and change between those two dates. In total 12 

principal components were computed for this two-date Landsat stack. One of the 
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principal components was interpreted as showing vegetation cover change between 

the two dates, and was classified into three classes (vegetation stable, vegetation 

increase and vegetation loss) using a threshold. The threshold was determined by 

mean and ±3 standard deviations (SDs) of PC band. Any values ≤ mean and (-) 

3SDs were assigned into a vegetation increase class. Values ≥ mean and (+) 3SDs 

were assigned into a vegetation loss class. The rest was classified as vegetation 

remains stable. We assessed the accuracy of the 2006 – 2012 PC classification prior 

to applying this approach to three other temporal of Landsat 7 ETM+ stacks: 2003 

and 2006; 2006 and 2009; and 2009 and 2012.   

5.2.5 Accuracy assessment 

Field data to validate the accuracy of classification maps of each period of 

change (2003-2006, 2006-2009 and 2009-2012) was not available. Consequently 

the accuracy of the PCA vegetation change classes for the 2006-2012 PC 

classification was assessed by comparison with high resolution colour Google Earth 

TM imagery. To provide reference data we digitised two dates of Google Earth 

imagery in 2006 and 2012 with coverage of 2,500 km2, and produced a vegetation 

cover change map with three classes: vegetation stable, vegetation increase, and 

vegetation loss. Their definitions are: (1) ‘vegetation increase’ refers to areas that 

show an increase in vegetation cover such as a transition from mixed 

wooded/cleared areas or bare land to plantation or to native forests, or 

transformation of agricultural areas to plantation; (2) ‘vegetation stable’ describes 

areas that appear to exhibit little or no change between two periods (2006 and 2012); 

and (3) ‘vegetation decrease’ means areas which experienced the clearance or loss 

of vegetation, e.g. a transition of primary forest to plantation, mixed 

wooded/cleared areas or to agricultural land. Any indication of loss of vegetation 

cover was assigned in this class, including change from plantation to agriculture 

and from mixed wooded/cleared areas to agriculture. Our digitizing was focused on 

native forests, plantation, mixed wooded/cleared and agriculture. We used 1,240 

random pixel samples to compare the Landsat vegetation change classes with the 

reference change map. The resultant error matrix was used to calculate summary 

accuracy measures. 
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5.2.6 Temporal changes in rubber plantations 

The temporal change in plantations is key indicator to allow us to understand 

the planted tree conditions. This helps us to evaluate the development stage of 

plantations since land clearance. We calculated and used annual averages of 

normalized vegetation index (NDVI) of Landsat to investigate the historical 

temporal changes in rubber plantation areas. The NDVI is commonly used to study 

photosynthetic activity and to measure vegetation dynamics in a wide range of 

forest ecosystems. Our interpretation of the Google Earth imagery suggested that 

areas of vegetation increase were mostly associated with establishing rubber 

plantations. These areas of vegetation increase or rubber plantations were identified 

by the classification of PC5 band from a stack of Landsat data of 2006 and 2012. 

The accuracy assessment using 1,240 samples provided us with confidence about 

locations and areas of rubber plantation. Then, we mapped and extracted only 

polygons of rubber plantations and used these to generate 400 random pixel samples 

within these areas. These samples were used to extract Landsat NDVI values for 

each year from 2003-2012. Extracted NDVIs were averaged for each year. The 

annual averages of NDVI time series were expected to allow us to observe temporal 

changes in rubber plantations over time. This was to indicate the times when there 

were increases or decreases in vegetation cover over the ten-year study period.  

5.3 Results and discussion 

5.3.1 Forest cover change detection  

The result from PCA transformation of the two-date Landsat ETM+ images 

(2006 and 2012) shows that the first PC highlights areas or locations of dense 

vegetation and least vegetation in our study area. PC2 of our analysis shows 

additional information on vegetation cover density (low and high). However, its 

loading value indicates opposite to PC1. A low value of PC2 shows high vegetation 

cover, whereas a high value shows less vegetation. Cloud also appears visible in 

PC2. Water is highlighted strongly in PC3 (low value). Both water and cloud are 

captured in PC4, but vegetation pattern is not visualized. 

PC5 of Landsat stack captured less than 2% of variation in the data, however 

it contained significant information related to changes in vegetation cover. Figure 
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5.3 shows the result of the classification of PC5 indicating areas of vegetation 

increase, loss and remaining stable in 2006 and 2012 within the study area. 

Vegetation increase was classified by thresholds of the mean and (-) 3SDs (dark 

green), while vegetation loss was classified by mean (+) 3SDs of PC5 (red). The 

remains of PC5 values were assigned to unchanged vegetation or remaining stable 

(white). The rests of PCs represent less than 2.7% of variability and their 

information content was unclear. These can include sensor artifacts and noise. 

5.3.2 Accuracy assessment 

Table 5-1 presents a summary of the accuracy of the classified PC5 in 

detecting vegetation cover change for the 2006-2012 image comparison. The 

overall accuracy was 87.02 % with a kappa value of 0.8 (Table 5-2 and Figure 5.4 

and 5.5). Vegetation increase had the highest producer’s accuracy (92.0%), but the 

lowest user’s accuracy (79.8%). Vegetation loss had the lowest producer’s accuracy 

(82.0%), but the second highest user’s accuracy (88.7 %). The user’s accuracy and 

producer’s accuracy for prediction of the areas that remained stable were also 

relatively high (97.5 % and 86.0 %, respectively). Evidence from field information 

and the Google Earth images allowed us to conclude that the vegetation increase is 

a consequence of expansion of rubber plantations. Figure 5.4 shows areas of rubber 

plantations detected by PC5 (using Landsat data acquired in 2006 and 2012) on 

high resolution Google Earth images. Figure 5.5 illustrates photos of rubber 

plantations from some validated field locations in the study area. 

Table 5-2. Error matrix for the change detection analysis, from 2006-2012. 
Google Earth Images 

(2006 and 2012) 

Vegetation 

Increase 

Vegetation 

Stable 

Vegetation 

Loss 

Total User's 

Accuracy 

Vegetation Increase  439 43 68 550 79.82 

Vegetation Stable 4 312 4 320 97.50 

Vegetation Loss  34 8 328 370 88.65 

Total 477 363 400 1240 Overall 

accuracy 

Producer's Accuracy 92.03 85.95 82.00  87.02 
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Figure 5.3. The classification of PC5 showing areas of vegetation increase 

(green), loss (red) and remaining stable (white) in 2006 and 2012 within the 

study area. A large area of vegetation increase appears near the Pakse city 

center and the north of province as well as an opposite side of Mekong River. 

Vegetation clearance is mostly found near the national protected areas; 

Xepieng and Dong Houa Soa. 

 

         

Figure 5.4. Rubber plantations in the Google images 2006 and 2012. Black 

polygons are rubber plantations detected by PC5 using Landsat data in 2006 

and 2012. Gaps are due to missing Landsat 7 data. The Google Earth imagery 

indicated forest removal occurred by the first date and was replaced by rubber 

and regrowth by 2012. Rubber plantations show distinctive patterns and 

spacing of tree canopies. 

2012 2006 
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Figure 5.5. Photos of rubber plantations from a field visit to the areas mapped 

in Figure 5.4 above (Photos: C. Phompila). 

5.3.3 Vegetation cover changes from 2003-2006, 2006-2009 and 

2009- 2012 

The spatial change in vegetation covers over the periods 2003-2006, 2006-

2009 and 2009- 2012 is shown in Figure 5.7. Overall there had been larger areas of 

vegetation increase than vegetation loss from 2003 to 2012. The majority of 

vegetation loss areas were replaced by vegetation increase areas which are rubber 

plantations. Between 2003 and 2006, a large area of vegetation was cleared (in red), 

but only small area of vegetation increase was found (dark green). The natural 

colour composited band of Landsat image shows vegetation loss areas as forests in 

2003 (author interpretation, not shown). Then, information from the Google Earth 

image depicts the clearance in 2006. From 2006 and 2009, there is an increase in 

vegetation in none-forest areas, however more expansion of vegetation loss 
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appears. Our interpretation is confirmed by evidence from the Google Earth image 

in 2006 and original Landsat data in 2009. It indicates there are re-planting activities 

as well as more forest clearances are being implemented in this period. Finally, a 

large area of vegetation increase or rubber plantation occurs between 2009 and 

2012. This is also confirmed by the Google Earth image in 2012 (Figure 5.4). A 

little vegetation loss is detected in this period. These rubber plantations are found 

largely in the Barjieng and Patumphone districts, which are close to the national 

protected areas and Pakse central.   

Figure 5.6a and 5.6b indicates the percentage of mapped pixels that shows 

the proportion of changes in vegetation covers from 2003 to 2012. About 22 % of 

the Landsat scene is not mapped due to missing scan lines. There is a small 

proportion of vegetation increase and loss but the majority of vegetation remained 

stable during this period. The percentage of vegetation increase goes up from 2003-

2006 to 2006-2009 and remains stable in 2009-2012 (0.63% to 1.34% respectively). 

However, the rate of vegetation loss and stable appears to be relatively stable over 

the periods. There is roughly 0.69% - 0.75% of vegetation loss and 98.6%-97.9% 

of vegetation stable. The forest clearance seems to be less than expansion of rubber 

plantations. By the estimation, approximately 137.3 km2 of total study area (12,350 

km2) has an increase in vegetation cover and about 90.1 km2 of the area experienced 

a loss of vegetation cover from 2003 to 2012. 

 

   

(a)                                                            (b) 

Figure 5.6.An estimation of forest cover changes from 2003-2006, 2006-

2009 and 2009-2012; (a) the percentages of vegetation increase and loss, (b) 

the percentage of vegetation remaining stable. This approximate estimation 

excludes missing data of Landsat 7. 
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Figure 5.7.An example of PC5 detecting an increase and decrease in 

vegetation between 2003 and 2006, 2006 and 2009, and 2009 and 2012 in the 

study area. The white linear features are due to missing Landsat 7 data. 

5.3.4 Temporal changes in rubber plantations 

The temporal behavior of annual averages of NDVI for plantations extracted 

from Landsat ETM+ data from 2003 to 2012 is shown in Figure 5.8. This tracked 

historical changes when there were increases or decreases in vegetation cover 

within rubber plantation. From 2003 to 2012 there is a considerable fluctuation in 

NDVI. This fluctuation could be associated with vegetation cover changes or due 

to variation in climatic factors such as temperature and rainfall. From 2003 to 2006, 

there is a small fluctuation in NDVI from year to year. During this period, these 

areas were forested. However there is a dramatic decrease in NDVI in 2007 to a 

value of less than 0.1, indicating bare soil. This plunge is related to intensive 

vegetation clearance in late 2006, as seen in the Google Earth imagery. Post 

clearing, plantation canopy growth results in steadily increasing NDVI values, until 

2003-2006 2006-2009 

2009-2012 

Legend

Vegetation Loss

Vegetation Stable
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maximum of 0.6 is reached in 2011. Healthy rubber plantations display in the image 

of 2012 (Figure 5.4). 

 

Figure 5.8. NDVI changes in rubber plantations from 2003 to 2012. 

 

Figure 5.8 provides more information on when there was increase or decrease 

in vegetation cover within in rubber plantations. For example, Figure 5.7 showed 

that from 2006 and 2009, there was increased expansion of vegetation clearance. 

This was confirmed by high resolution of the Google Earth image in 2006 and 

original Landsat data in 2009. Additionally, Figure 5.8 suggested there was a 

noticeable drop in NDVI during 2006 and 2009.   

5.4 Conclusions 

The objective of this study was to demonstrate and evaluate a simple remote 

sensing approach with freely available Landsat ETM+ data to detect spatial changes 

in vegetation cover. We attempted to map expansion of rubber plantations and 

observe their temporal changes. We applied PCA transformation to pairs of Landsat 

images from 2003 to 2012. We also used annual averages of NDVI for observing 

historical temporal changes in rubber plantation areas. It was evident that PCA was 

useful in the analysis of forest cover change. This technique detected areas of 

vegetation cover change (both vegetation increase and loss) with high overall 

accuracy (87%). PC1 captures most of the variation in the data contrasting areas 

with the highest and lowest cover of vegetation. The most dense vegetation was 

found mostly within the national forest protected areas, whereas less vegetation 
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appeared in agricultural and urban areas near the Mekong River. PC5 of each image 

pair demonstrates significant information that can be used to detect expansion of 

rubber plantations in our study area. Large areas of forests were cleared and then 

converted into rubber plantations. Overall, this study provides an example of the 

use of free Landsat ETM+ data and PCA to detect and map vegetation cover 

changes due to rubber plantations in the Lao PDR. This method should be 

transferable to other areas experiencing similar landscape change. However, the 

specific PC containing the temporal change component is expected to vary, and 

would need to be determined on a case-by-case basis. 
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Chapter 6. Vegetation Cover Changes in Lao Tropical Forests: 

Physical and Socio-Economic Factors are the Most Important 

Drivers 

Phompila, C., Lewis, M., Clarke, K., and Ostendorf, B. (2016). “Vegetation cover 

changes in Lao tropical forests: physical and socio-economic factors are the most 

important drivers”. Forest Policy and Economics. (Under review) 

 

Abstract 

Lao People’s Democratic Republic has been experiencing significant forest 

depletion since the 1980s, but there is little evidence to demonstrate the major 

causes and underlying drivers for the forest cover changes. In this study, we 

investigated the relationship between vegetation decrease and increase in the south 

of Lao PDR between 2006 and 2012 and selected physical and socio-economic 

factors. We used a map of the vegetation cover changes derived from analysis of 

Landsat ETM+ imagery in 2006 and 2012, together with socio-economic and 

physical data from the national authorities. The study area has experienced 

noticeable forest cover changes: both forest decreases and increases were unevenly 

distributed throughout the region. Logistic regression models were used to test 

relationships between vegetation cover decrease or increase and selected socio-

economic factors. Forest clearance was associated strongly with elevation, distance 

to main roads and shifting cultivation practices. Meanwhile, vegetation increase 

was more likely to correlate with rubber plantations. Native forest and shifting 

cultivation lands were vulnerable to being converted into rubber plantations. This 

research can provide key information on which to base forestry policy and decision 

making to minimize and prevent current deforestation, as well as manage potential 

risks in the future. 

Keywords: Lao tropical deforestation, vegetation cover change, Landsat 

ETM+, associated factors, driving forces, logistic regression analysis. 
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6.1 Introduction 

Lao PDR used to be one of the countries with the richest biodiversity in 

Southeast Asia. However the country has undergone profound forest and land cover 

changes over the last few decades. Deforestation has been become a crucial issue 

in the country. The deforestation rate has increased alarmingly since the 1980s 

(Robichaud et al. 2009). Forests covered nearly 50% of the country in 1982, but 

dropped to 41% in 2002, before gradually decreasing to 40% of the total land area 

by 2010 (Department of Forestry 2011; Vongsiharath 2008). This 40% of forest 

cover can be mixed with secondary forests, plantations and bamboo, as indicated 

by a rapid assessment in 2010 (Forest Carbon Partnership Facility 2014), and the 

share of primary forest within this estimation is unclear. To address this forest 

decline, the government of Laos has set an ambitious target to increase forest cover 

up to 70% by 2020 through afforestation, reforestation and stabilization of shifting 

cultivation (Ministry of Agriculture and Forestry 2005). Meanwhile, foreign direct 

investment in forestry and agriculture, along with land leases and concessions, has 

been promoted (The National Land Management Authority 2004). Despite this, the 

country has recently been experiencing forest and land use transformation to 

plantations, resulting in controversies about the decrease in the area of native 

forests. Phimmavong et al. (2009) suggested that between 1990 and 2007 the area 

of plantations, especially rubber plantations, increased dramatically from 1,000 ha 

to over 200,000 ha. In addition, shifting cultivation practices, or mountainous 

agriculture, are considered as a critical environmental issue for forest resources. 

Approximately 6.5 million ha of forest areas were replaced by shifting cultivation 

during the 1990s (Messerli et al. 2009; Sovu et al. 2009).  

There is growing concern over the depletion of the area of tropical forests in 

Laos. Its forests have been declining at an alarming rate, although the causes or 

factors associated with this depletion are poorly understood and the responses of 

tropical forests to environmental changes remain unknown. Both socio-economic 

and physical factors have important influences on forest depletion. Lao PDR has 

made rapid progress in its national socio-economic development (Organisation for 

Economic Cooperation and Development 2013; Asian Development Bank 2015); 

however, much remains unclear in regard to the relationship between this 

development and forest cover changes in the country. This has increased the 
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nation’s efforts to explain the causes of deforestation and conversion of forests to 

other land uses. 

Understanding these spatial relationships and complexities can offer insight 

into the effective maintenance of forest resources. Identifying driving forces for 

forest cover changes is essential, as this would allow policy and decision makers to 

understand ongoing land use management and forest cover change processes and 

their effects on the country as a whole (Meyfroidt et al. 2013; Vu et al. 2014b). This 

research will provide key information on which to base forestry policy and decision 

making to minimize and prevent deforestation, as well as manage potential risks in 

the future. Vu et al. (2014a) suggested that understanding the links between socio-

economic and physical factors and forest cover changes at a national level is 

important for cause-targeted strategies when planning policies for combating 

deforestation. However, these still remain poorly investigated in the Lao context. 

Worldwide, several studies have been undertaken to identify the drivers or 

associated factors of forest cover changes (Casse et al. 2004; Bhattarai et al. 2009; 

Pineda Jaimes et al. 2010; Ryan et al. 2014; Scullion et al. 2014; Vu et al. 2014b; 

Webb et al. 2014), and are useful in developing predictive deforestation models and 

suggesting implications for national forest and land management policy. The key 

factors in changes in vegetation cover are often physical factors, such as elevation 

and slope, as illustrated by studies by Mon et al. (2012) and Bhattarai et al. (2009). 

In addition, socio-economic factors at local and national levels also can also 

influence patterns of tropical deforestation. For example, it was found that 

deforestation in China was associated with rivers and roads (Gao and Liu 2012) and 

with village locations (Mon et al. 2012; Du et al. 2014).  

In Lao PDR, as in many developing countries, identifying and understanding 

the primary causes of these changes remains challenging. There is little evidence to 

understand the causes and underlying drivers of forest cover changes. Detailed and 

in-depth study is still limited and the issue needs to be investigated urgently. 

Therefore, the primary objective of this research was to investigate the relationship 

between the changes in the spatial patterns of forest cover and physical and socio-

economic factors that have taken place in the south of the Lao PDR. This study can 

be useful for providing research-based indicators of appropriate actions and future 

management for Lao PDR’s forest resources. This study is an important step in 
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understanding the relationship between socio-economic and physical 

characteristics and forest cover changes, particularly in Laos, and to illustrate the 

complex interaction between the human and natural environments at national level. 

6.2 Study site  

The study region is located in the south of Lao PDR, covering large areas of 

three provinces: Savannakhet, Salavan and Champasak (Figure 6.1). The area is 

approximately 23,500 km2, including parts of the Annamite mountains (known as 

Xai Phou Luang) and borders Vietnam in the east. The altitude within the area 

ranges from 20-1700 m above sea level, with an average elevation of 300 m. 

The biggest river in the area is the Mekong River. It serves as a significant 

transport channel and essential food source for the Lao people. In addition, there 

are several other important rivers in this region including Xe Bang Fai, Xe Nou and 

Xe Bang Hieng in Savannakhet territory. The Se Don River flows through the 

Salavan province and eventually joins the Mekong River at Pakse, Champasak 

province. 

The main road is Route No. 13, which connects the north to the south. There 

are also four important roads, including Routes 9, 15, 16 and 20, which cross the 

region from west to east. These connect within the provinces, and extend to the 

Vietnam border. A large population is settled closely along the roads. There are a 

total of 1363 villages within the study area. 

The study area covers four national protected areas (NPAs): Dong Phou 

Vieng, Xe Bang Nuan (located in Savannakhet and straddling the border with 

Salavan Province), Phou Xieng Thong (located between Salavan and Champasak), 

and Dong Houa Sao (situated in Champasak). These NPAs are rich in forest and 

wildlife species. The forests located in these areas are evergreen, dry dipterocarp 

and mixed deciduous and are important natural habitats for wildlife. However, a 

majority of forest areas has been the target of heavy logging since the 1980s. 
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Figure 6.1. The location of the study area in the south of Lao PDR, showing 

provincial boundaries, national protected areas, rivers, roads and village 

locations. 

6.3 Data and methods  

6.3.1 Vegetation cover change between 2006 and 2012 

We used a map of vegetation cover changes between 2006 and 2012 

presented in Phompila et al. (2014). This vegetation cover change map covered 
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approximately 23,500 Km2 across 24 districts of three provinces: Savannakhet, 

Salavan and Champasak. The map was derived from Landsat ETM+ images in 2006 

and 2012 using Principal Component Analysis (PCA) and was evaluated using 

high-resolution Google EarthTM images from the same years. The map identified 

areas of vegetation decrease and increase as well as areas where vegetation cover 

appeared unchanged. The overall accuracy of this map was 87%, Kappa = 0.8 

(Phompila et al. 2014). The accuracy was evaluated by high resolution images 

(2006 and 2012) from Google Earth using 1,240 random samples over 2,500 km2. 

The details of this accuracy assessment are shown in Table 5-1 in Chapter 5.   

The map was classified into three vegetation types: vegetation increase, 

vegetation stable and vegetation decrease. Their definitions are: (1) ‘vegetation 

increase’ refers to areas that show an increase in vegetation cover such as a 

transition from mixed wooded/cleared areas or from bare land to plantation or to 

native forests, or agricultural areas transformed to plantation; (2) ‘vegetation stable’ 

defines areas that appear to exhibit little or no change between two periods (2006 

and 2012); and (3) ‘vegetation decrease’ means areas which experienced the 

clearance or loss of vegetation, i.e., a transition of primary forest to plantation, 

mixed wooded/cleared areas or agricultural land. Any indication of loss of 

vegetation cover was assigned in this class, including transition from plantation to 

agriculture and from mixed wooded/cleared areas to agriculture. 

6.3.1.1 Physical and socio-economic factors  

Given the availability of data in our study area, we investigated a total of eight 

physical and socio-economic variables, as shown in Table 6-1. Information on 

elevation and slope can provide an indication of access to forest and land use. Vu 

et al. (2014a) suggested that forest areas located on steep slopes or high elevations 

can create difficulties in access for people utilizing forest resources or transforming 

land into agricultural areas. Thus, we investigated whether elevation and slope 

influence population pressure on the forest.  

Another key element to facilitate access to the forest resources is improved 

infrastructure development, such as road networks and river routes. Many studies 

have found that these factors can increase pressure on forest and land use (Gao and 



 

81 

Liu 2012; Du et al. 2014). Therefore, we examined whether distances from main 

roads and rivers influence vegetation cover changes.  

Protected areas are rich in biodiversity. We assumed that the abandonment of 

forest resources without a strong protection mechanism could increase the risk of 

illegal forest timber exploitation. It is essential to examine whether this is a factor 

associated with deforestation. The location of villages is also important for 

assessing how people achieve access to forest resources (Bhattarai et al. 2009; Mon 

et al. 2012; Getahun et al. 2013; Du et al. 2014). Closer distances to the forest 

resources may increase the rate of deforestation. Thus, we hypothesized that the 

village locations would have some degree of correlation with a decrease in 

vegetation cover. 

6.3.1.2 Elevation and slope 

Elevation data was obtained from the Global Digital Elevation Model 

(GDEM), derived from Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) images. This data is under the administration of the Ministry 

of Economy, Trade, and Industry (METI) Earth Remote Sensing Data Analysis 

Center (ERSDAC) in Japan and the National Aeronautics and Space Administration 

(NASA) in America. The data was downloaded from the NASA site in a Geo-

referenced Tagged Image File Format (GeoTIFF) (http://earthexplorer.usgs.gov/). 

The data comes with the 1984 World Geodetic System (WGS84)/1996 Earth 

Gravitational Model (EGM96) projection. Slope data was generated from this 

GDEM data using the Spatial Analyst tool in ArcGIS 10.2 software. 

6.3.1.3 Distance to main roads, rivers, protected areas and villages 

The road and river data was collected from the Research Division, Faculty of 

Forestry Sciences (FFS), at the National University of Laos. The locations of 

villages were derived from population census data, distributed by the Lao National 

Statistic Centre. The population survey was conducted in 2011/2012 by the 

Department of Forestry (DOF), Ministry of Agriculture and Forestry. Villages were 

categorized into three groups: villages without rubber plantations or shifting 

cultivation, villages with rubber plantations and villages with shifting cultivation. 

A protected area map was also obtained from the DOF. The distances of vegetation 

http://earthexplorer.usgs.gov/
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increase and decrease to main roads, rivers, protected areas and villages were 

extracted using the “Near” tool in ArcGIS10.2 from four different GIS layers 

derived from this data: main roads, rivers, protected areas and village locations. The 

WGS84, UTM zone 48 North projection was used for these GIS layers. 

Table 6-2. A summary of the spatial data used to produce variables for our 

logistic regression models of factors associated with vegetation increase and 

decrease in the south of Lao PDR. 

Data Source Unit 

Dependent Variables   

Vegetation increase from 2006 to 2012 Landsat ETM+  

(Phompila et al., 2014) 

Categorical data (Yes=1 

, No=0) 

Vegetation decrease from 2006 to 2012 Landsat ETM+  

(Phompila et al., 2014) 

Categorical data (Yes=1 

, No=0) 

Independent Variables   

Elevation NASA m 

Slope NASA % 

Distance to main roads FFS km 

Distance to rivers FFS km 

Distance to villages without rubber 

plantations or shifting cultivation 

 

NSC 

 

km 

Distance to villages with rubber 

plantations 

 

NSC 

 

km 

Distance to villages with shifting 

cultivation 

 

NSC 

 

km 

Distance to protected areas DOF km 

Sources: NASA = National Aeronautics and Space Administration, NGD= National Geographic 

Department, NSC=National Statistic Centre, DOF= Department of Forestry, FFS=Faculty of 

Forestry Sciences 

6.3.2 Sampling procedure 

We established a random sampling system within the study area using the 

Random Point tools in ArcGIS 10.2.1, producing a total of 5,000 sample points. To 

ensure the spatial distribution of samples and minimize the effects of spatial 

autocorrelation, each sample point was at least 1 km from another. This is similar 

to the method of avoiding spatial autocorrelation performed by Linkie et al. (2004), 

Mon et al. (2012) and Vu et al. (2014a). Ultimately 4998 sample points were used 

due to missing values from the elevation dataset. The attributes of both dependent 

and independent variables were extracted for each random sample and then 

analyzed using R scripts and packages in RStudio software.  
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6.3.3 Data analysis 

6.3.3.1 Data transformation 

The normal distribution of data is important as the logistic regression model 

assumes that the variables are normally distributed. Therefore, before we applied 

the logistic regression analysis, we tested for normality of our sampling data. 

Variable data was transformed by log10. and then tested for normality through a 

Chi-squared test using the chisq.test () function in R.  

6.3.3.2 Examining collinearity of variables 

Several studies suggest that strong collinearity between the independent 

variables creates a problem when applying a logistic regression model. Midi et al. 

(2010) suggested that the existence of collinearity inflates the variances of the 

parameter estimates, and consequently suggests incorrect inferences about 

relationships between explanatory and response variables. Thus, the collinearity 

between each independent variable was tested by using Pearson's correlation 

coefficients using the cor() function in the R software. 

6.3.3.3 Logistic regression model 

We applied logistic regression models to investigate the relationship between 

vegetation cover change and the chosen physical and socio-economic factors. 

Logistic regression allowed us to evaluate the odds (or probability) of membership 

in one of the groups, based on the combination of the independent variables.  

Vegetation increase and decrease between 2006 and 2012 was used as two 

binary dependent variables, each expressed as two categories: change and no 

change. We used two separate regression models because we expected different 

factors contributing to forest clearance or abundance. A total of seven socio-

economic variables were used in the analysis including elevation, slope, distance to 

main roads, distance to rivers, distance to villages without rubber plantations or 

shifting cultivation, distance to villages with rubber plantations and distance to 

villages with shifting cultivation. The distance to protected areas variable was 

excluded due to its non-normal distribution. We noted if there were any outliers in 
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our data using Cook’s Distance in R, because outliers can create statistical problems 

in logistic regression models (Mon et al. 2012). No outliers existed in our data. We 

examined the levels of statistical confidence in each independent variable in the 

results. We also used the receiver operating characteristic (ROC) statistics and the 

Hosmer and Lemeshow test to measure the goodness-of-fit of the logistic regression 

model, as suggested by recent experts Mon et al. (2012) and Vu et al. (2014a). The 

ROC curve is constructed by plotting the true positive rate against the false positive 

rate that is accumulated by the frequencies across a rank ordering. It is shown in the 

ROC graphical plot, as a value closes to 1 indicates a better fit of a model. In the 

Hosmer and Lemeshow test, if the p-value of the test is high (p > 0.05), it may 

simply be a consequence of the test having lower power to detect mis-specification. 

This is indicative of poor fit. Our analysis was conducted using statistical analysis 

in R software.  

6.4 Results  

6.4.1 Distribution of changes in vegetation cover between 2006 and 

2012 

Figure 6.2 is a map from the previous study by Phompila et al. (2014) that 

shows vegetation cover changes between 2006 and 2012 within the study area. 

Overall, it appears that a large proportion of the vegetation areas remained stable 

between 2006 and 2012 (94.6%). However, forest cover in the study area decreased 

by 2.8% and increased by 2.6%. Vegetation increase is found in all three provinces: 

Savanakhet, Salavan and Champasak. Noticeable areas of increase are located in 

Phin, Sepon, Thapanthong and Bachiangchaleunsouk districts. This increase is 

close to the national protected areas (NPA): Dong Houa Soa and inside the Dong 

Phou Vieng and Xe Bang Nouan NPA. There are about 37 villages located inside 

the NPAs that contributed to the increase in forest cover, including 21 shifting 

cultivation villages. A majority of shifting cultivation areas in these two NPAs was 

transformed to rubber plantations, resulting increase in forest cover. 

However, vegetation decrease is notable in Champasak and Savanakhet 

provinces. The areas of most significant decrease appear in LaoNgam district, 

Salavan province and Bachiangchaleunsouk, and Pakxong district near Pakse city 
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centre and the north of Champasak province, as well as in Champhon and Xonbouli 

district, Savanakhet province.  

 

Figure 6.2. Vegetation cover changes from 2006 to 2012 derived from 

Landsat ETM+ images and evaluated by high-resolution Google Earth TM 

images: white indicates no change, red indicates vegetation decrease and 

green indicates vegetation increase (Phompila et al. 2014; Phompila et al. 

2015). Vegetation remains stable are areas that appear to exhibit little or no 

change between the images; vegetation increase indicates areas that shows an 

increase in vegetation cover such as the transition from mixed wooded/cleared 

areas or bare land to plantation; vegetation decrease indicates the clearance or 

loss of vegetation, i.e., the transition of native forest to mixed wooded/cleared 

areas, shifting cultivation areas, or agricultural land.  
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Using high resolution Google images in 2006 and 2012, we found that vegetation 

increase appears to have resulted largely from the establishment of plantations, 

especially rubber: rubber plantations were recognized by their regular tree canopy 

patterns and spacing. Forest removal occurred around 2006 and was replaced by 

rubber and regrowth later (Figure 6.3a, 3b, 3c and 3d). Meanwhile, vegetation 

decrease was likely to have been derived from forest transformation into shifting 

cultivation lands or to rubber plantations

 

Figure 6.3. GoogleTM Images showing vegetation cover changes from 2006 

to 2012 in two locations: (a) land preparation in 2006, (b) full canopy of 

rubber plantations in 2012, (c) forest and shifting cultivation areas in 2006, 

and (d) massive forest and land clearances apparent in 2012. 

 

6.4.2 Collinearity of independent variables 

The existence of collinearity in independent variables can cause unstable 

estimates and inaccurate variances which affect the confidence intervals and 

hypothesis tests in statistical models (Hosmer and Lemeshow 2000; Midi et al. 

2010; Mon et al. 2012; Vu et al. 2014a). It has been suggested that the level of 

collinearity of the independent variables must be below an acceptable threshold of 

(a) (b) 

(c) (d) 



 

87 

0.7 (Mon et al. 2012; Vu et al. 2014a). Results of the simple procedure of examining 

paired independent variable correlation values are shown in Table 6-2. 

In our case, none of our independent or explanatory variables exceeded this 

collinearity level. Only three pairs of variables showed a moderate degree of 

collinearity: elevation and distances to villages without rubber plantations or 

shifting cultivation (r = 0.41), distance to main roads and distance to villages with 

shifting cultivation (r = 0.40), and elevation and distance to rivers (r = 0.32). Thus, 

all the variables were considered to be acceptable for use in the logistic regression 

analysis.  

Table 6-3. Collinearity of the seven predicted variables used in the logistic 

regression analyses. 

Elevation        

0.24 Slope      

0.14 0.09 Distance to main roads     

0.32 0.07 -0.03 Distance to rivers   

0.41 0.17 0.21 0.20 
Distance to villages without rubber plantations or shifting 

cultivation 

-0.09 0.02 0.15 0.00 -0.04 Distance to villages with rubber plantations 

0.08 0.04 0.40 -0.09 0.11 0.11 
Distance to villages with shifting 

cultivation 

*The bold figures in the table indicate the highest collinearity found among seven predicted 

variables 

6.4.3 Factors associated with vegetation cover changes  

Table 6-3 shows the result of a logistic regression used to investigate the 

probability of vegetation decrease between 2006 and 2012 and its correlation with 

the seven variables.  

Three physical and socio-economic variables have significant effects on the 

spatial extent of vegetation cover decrease, including elevation, distance to main 

roads, and distance to villages with shifting cultivation. These were the most 

important predictors of vegetation decrease in the periods 2006 and 2012. The 

logistic regression model showed that elevation was significantly correlated with 

the likelihood of vegetation decrease in the study area (p < 0.01; and highest Wald 

value, Table 6-3). This positive correlation revealed that land at higher elevations 
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was more likely to decrease in vegetation cover, especially in the south of the study 

area. The vegetation decrease was found to correlate negatively with distances to 

main roads (p < 0.05): there was more disturbance to native forests closer to roads. 

In addition, the distances to villages with shifting cultivation was the third strongest 

influential factor for forest depletion (p < 0.05). Forests located at a closer distance 

to these villages were more likely to be disturbed. However, other variables were 

not significant in the logistic regression analysis, including slope, distance to rivers, 

distance to villages without rubber plantations or shifting cultivation, and distance 

to villages with rubber plantations. 

Both the Hosmer and Lemeshow and ROC tests indicate the results of the 

model are acceptable. The goodness-of-fit test statistics are acceptable, according 

to the criteria of Mon et al. (2012) and Vu et al. (2014a), whilst the Hosmer and 

Lemeshow test provides a non–significant value (p = 0.589). The area under the 

ROC curve (theoretically ranging from 0.5 to 1.0) was used as the basis for 

evaluating the model’s performance (Vu et al. 2014a). In our case, the area values 

of 0.848 (p > 0.001) demonstrate excellent performance. 

Table 6-4 shows the results of a logistic regression used to investigate the 

correlation of vegetation increase between 2006 and 2012 with the seven variables. 

The logistic regression model indicated that the probability of forest cover increase 

in the study area from 2006 to 2012 was significantly correlated to distances to 

villages with rubber plantations and distances to villages with shifting cultivation 

variables used in the regression model (p < 0.05 and p < 0.1 respectively; Table 6-

4). We found that these variables were negatively associated with an increase in 

vegetation cover. A closer distance to these villages was related to a greater increase 

in vegetation cover. However, in our analysis, the following factors were not 

significantly associated with vegetation increase: elevation (p = 0.369), slope (p = 

0.929), distance to main roads (p = 0.369), distance to rivers (p = 0.929), and 

distance to villages without rubber plantations or shifting cultivation (p = 0.929). 

The Wald statistics also indicated that distances to villages with rubber 

plantations was the most important variable (highest negative value) for forest 

increase in the study area during 2006-2012, followed by distances to villages with 

shifting cultivation. Similar to the logistic regression model for deforestation, the 
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value of the Hosmer and Lemeshow test (P = 0.50) and Area under ROC = 0.817 

(p < 0.001) indicated that the model fit was acceptable. 

Table 6-4.Results of regression analyses for identifying associated factors of 

vegetation decrease between 2006 and 2012 in our study area. 

Variables B S.E Z-value p-Value  

Elevation 3.578 0.917 3.903 0.000 *** 

Slope -2.209 1.954 -1.130 0.258  

Distance to main roads -0.781 0.374 -2.086 0.037 ** 

Distance to rivers -0.623 0.432 -1.443 0.149  

Distance to villages without rubber 

plantations or shifting cultivation 0.142 0.671 0.212 0.833  

Distance to villages with shifting 

cultivation  -1.030 0.519 -1.987 0.047 ** 

Distance to villages with rubber 

plantations 0.216 0.501 0.431 0.667  

(Intercept) -4.265 3.824 -1.115 0.265  

Null deviance= 260.76 on 4997 degrees of freedom 

Residual deviance=223.71 on 4990 degrees of freedom 

AIC= 239.71 

n = 4998; B= coefficient; S.E.=standard error; Z-value= Wald z-statistic 

Nagelkerke r2 = 0.15 

Hosmer and Lemeshow test= X-squared = 6.5256, df = 8, p-value = 0.589 

Area under ROC = 0.848 (p < 0.001) 

Note: *  Statistical significance at 90% (p < 0.1). 

**  Statistical significance at 95% (p < 0.05). 

***  Statistical significance at 99% (p < 0.01). 
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Table 6-5.Results of regression analyses for identifying associated factors of 

vegetation increase between 2006 and 2012 in our study area. 

Variables B S.E Z-value p-Value  

Elevation -0.820 0.915 -0.896 0.370  

Slope -0.161 1.950 -0.082 0.934  

Distance to main roads -0.051 0.427 -0.119 0.905  

Distance to rivers 0.670 0.521 1.285 0.199  

Distance to villages without rubber 

plantations or shifting cultivation 1.055 0.708 1.491 0.136  

Distance to villages with shifting 

cultivation  -0.905 0.502 -1.802 0.072 * 

Distance to villages with rubber 

plantations -1.512 0.487 -3.104 0.002 ** 

(Intercept) 0.025 3.595 0.007 0.995  

Null deviance= 293.43 on 4997 degrees of freedom 

Residual deviance=262.98 on 4990 degrees of freedom 

AIC= 278.98 

n = 4998; B= coefficient; S.E.=standard error; Z-value= Wald z-statistic 

Nagelkerke r2 = 0.11 

Hosmer and Lemeshow test= X-squared = 7.3362, df = 8, p-value = 0.5008 

Area under ROC = 0.817 (p < 0.001) 

Note: *  Statistical significance at 90% (p < 0.1). 

**  Statistical significance at 95% (p < 0.05). 

***  Statistical significance at 99% (p < 0.01). 

6.5 Discussion 

The results indicate that the areas of decreased vegetation were associated 

with higher elevations, shifting cultivation and main roads within our study area. 

The flat areas had less deforestation whilst high elevation areas were more likely to 

suffer higher deforestation. Although there are a greater number of human 

settlements on the lower land when compared with those on high elevation 

mountainous areas, the impact of human activities was mainly found in high 

elevation areas. This finding differs from a number of studies, which suggest that 

the likelihood of vegetation decrease is greater at a low elevation (Fox et al. 2000; 

Mas et al. 2004; Gao and Liu 2012; Mon et al. 2012). In those cases, expansion of 

the cultivated land was associated with the distance to towns in low elevation areas 

which provide better accessibility and ease of access to markets. Our analysis 

suggests that forest clearance in mountainous areas in southern Lao PDR was 

(A) 

(C) 
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associated with shifting cultivation. The majority of shifting cultivation land is 

located in mountainous areas, whereas permanent agricultural lands are largely 

found in lowland areas. In these areas, infrastructure is better developed and little 

forest remains to be cleared. Slash-and-burn agriculture or shifting cultivations are 

widely practiced and important food production systems for the minority ethnic 

groups in Laos (Shi 2008; Sovu et al. 2009; Inoue et al. 2010). Shifting cultivators 

rely completely on the availability of the upper farming land and forests for their 

income and self-subsistence due to their poverty. Thus, we infer that population 

increases can simultaneously lead to an increase in forest and land use, which in 

turn leads to expansion in forest clearance. The shifting cultivation practice is 

recognized as a serious threat to biodiversity (Geist and Lambin 2002; Rasul and 

Thapa 2003; Li et al. 2014).  

Our study suggests that roads are also a very important factor associated with 

vegetation decrease during 2006-2012 in the southern part of Laos. The area of 

greatest deforestation is found where the land is easily accessible with good road 

systems nearby. Logging activities frequently happen when markets and timber saw 

factories are easily accessible. The improved road networks create greater ease for 

travel: this can lead to a relative increase in the transportation of timber. As a result, 

forests located at close distances to roads are more likely to be disturbed. This was 

similar to several studies which report that deforestation has a link with distance to 

roads (Ali et al. 2005; Etter et al. 2006; Bhattarai et al. 2009; Gao and Liu 2012; Du 

et al. 2014). However, other studies suggest that there is no link between 

deforestation and ease of road access (Deng et al. 2011). 

Our results also reveal that distances to villages with rubber plantations are 

an important factor related to an increase in vegetation cover. We assume that most 

of the vegetation increase is a result of the establishment of rubber plantations in 

these villages. In recent decades, investment in rubber plantations had been 

promoted by the Lao Government, which aims to stimulate greater foreign 

investment in the country in order to reduce poverty, while managing natural forest 

resources and land use (Shi 2008; Phimmavong et al. 2009). However, this can 

potentially increase rates of forest and land use change, due to massive land 

preparation and clearance, when governance is ineffective and monitoring systems 

are insufficient. There are a number of concerns related to rubber investment 
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promotions, including the destabilization of rubber prices in the international 

market, and environmental issues due to large areas of natural forest being 

converted to rubber plantations, which leads to a loss of biodiversity and wildlife 

displacement (Sirirak Ara Trakorn et al. 2006; Beukema et al. 2007; Yi et al. 2014). 

Furthermore, another factor associated with vegetation increase was distance to 

villages with shifting cultivation areas. There are two potential hypotheses for this: 

firstly, it was assumed that after a harvest, the cultivated area would be left 

untouched, which would create an opportunity for vegetation recovery. Secondly, 

shifting cultivation areas in these villages were converted into rubber plantations 

due to high demand for rubber products in this region.  

6.6 Conclusions 

In this research, we investigated the relationship between the physical and 

socio-economic factors in terms of vegetation decrease and increase from 2006 to 

2012 in the south of Lao PDR. We used vegetation cover change maps derived 

Landsat ETM+ imagery, together with physical and social-economic data from the 

Lao Government, in a logistic regression model. There are noticeable changes in 

forest cover within the study area, with regional and local patterns of vegetation 

decrease and increase. Key findings in this research showed that vegetation 

decrease was associated with both physical and socio-economic components, 

including elevation, access to roads and shifting cultivation practices. Meanwhile, 

vegetation increase was more likely to be linked with rubber plantation investments 

in the southern region. Native forest and shifting cultivation lands were vulnerable 

to transformation into rubber plantations when rubber prices were booming. The 

goals of poverty alleviation and eradication of shifting cultivation through foreign 

investments requires more attention in order to reduce potential pressures on forest 

and land use. Our study should be useful for obtaining a greater understanding of 

socio-economic and physical drivers of forest cover change at a local level. This 

should also be helpful in ensuring the effectiveness of the land management policies 

being implemented on uplands, especially where such policies are created in 

response to the natural and socio-economic conditions of this region. 



 

93 

6.7 Acknowledgments 

This study was supported by the Australian Agency for International 

Development (AusAID). The authors would like to thank Miss Alison-Jane Hunter, 

from the University of Adelaide, for her editing services for this manuscript. Special 

acknowledgement is also due to the National Aeronautics and Space Administration 

(NASA), Google EarthTM and the Government of Laos for providing freely 

available images and statistical data which were used for this research.  

6.7.1 Conflicts of Interest 

The authors declare no conflict of interest. 

  



 

94 

  



 

95 

Chapter 7. Conclusions and Recommendations 

7.1 Introduction 

Native forests around the globe are under imminent threat from deforestation, 

especially in developing countries in tropical regions. There are many forms of 

tropical deforestation such as slash-and-burn for agriculture, infrastructure and 

industrial development, urbanization and unsustainable timber extraction. The 

changes in forest cover have adverse effects on a range of Earth’s ecosystems, 

including global climate change. Appropriate monitoring approaches and tools are 

urgently required to gain a better understanding of the characteristics and responses 

of tropical vegetation and to detect these changes at a range of geographic scales in 

order to achieve positive and effective management of forest resources. 

Remote sensing technology has become an essential tool for understanding 

vegetation’s characteristics and responses, along with reliable mapping and 

monitoring of forest cover changes at different scales. However, the range of 

limitations and challenges in tropical environments needing to be taken into account 

is broad.  Factors such as atmospheric conditions and geographical constraints (e.g. 

cloud cover, haze and rough terrain) all impact significantly on applications of 

remote sensing. As a result, detailed spatiotemporal information on deforestation in 

developing countries is often unavailable or inconsistent, including for the Lao 

People’s Democratic Republic (PDR). Therefore, improving appropriate remote 

sensing tools for this context is urgent and essential.  

The overall goal of this study was to demonstrate and evaluate remote sensing 

methods for assessing and monitoring forest cover changes in tropical 

environments, particularly in the context of the Lao PDR. The objective of this 

research was to understand tropical vegetation phenology, which can be useful for 

detecting temporal changes in tropical forests, to explore and test selected 

parameters (LST and EVI) in a remote sensing approach that can be used to improve 

the classification accuracy of land covers in tropical environments, to test the use 

of time series data for detecting spatial and temporal changes in forest cover in 

tropical environments, to detect and map vegetation cover changes at a high 

resolution, and finally, to examine the spatial relationship between vegetation cover 

changes and associated physical and socio-economic factors. These objectives have 
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been addressed in the papers and chapters that comprise this thesis. The key 

contributions of this research to mapping and monitoring forest cover changes in a 

tropical region are summarized below. 

7.2 Key research contributions 

7.2.1 New information on monitoring of forest phenology for 

different land covers, improving accuracy of land cover 

classification in a tropical region 

The exploration and use of MODIS LST and EVI time series data has 

provided valuable understanding of the seasonal characteristics and temporal 

responses of tropical forests and land covers involved in deforestation and land-use 

conversion. The use of these indices to improve the classification accuracy of land 

cover in tropical environments was presented in “MODIS EVI and LST Temporal 

Response for Discrimination of Tropical Land Covers”; Chapter 2. This knowledge 

is essential for improving remote sensing approaches for land use inventory and 

detecting deforestation in tropical regions. 

This study reveals the distinguishing characteristics and temporal responses 

of LST and EVI within and across tropical forests and three different types of land 

cover associated with deforestation and replacement land-uses. Each land cover 

shows distinctly different intra-annual LST and EVI variations. For example, native 

forests have the highest EVI, and the lowest LST throughout the year, as opposed 

to agriculture which has the lowest EVI and highest LST throughout the year. The 

monthly transition of LST/EVI for partially cleared forests, agricultural lands and 

rubber plantations demonstrated recognizable seasonality, while by contrast, 

LST/EVI of native forests varied little throughout the year. 

The results show that, by using long-term means of these two indices, we can 

classify the four land covers with high overall accuracy (86%). EVI contributed the 

most to the discrimination of cover types, with LST made a much smaller 

contribution. When used in combination with LST, EVI provided detailed 

information on the characteristics and temporal responses of the four land covers. 

The outcomes of this study thus contribute to improving our understanding of 

tropical vegetation seasonal growth characteristics and responses to climatic 
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conditions. This study is a pathfinder towards providing an improved option for 

detecting and monitoring land cover changes in tropical regions. It indicates that 

there is scope for use of these MODIS indices, EVI in particular, for broadscale 

mapping and inventory of land cover and land use in these environments. 

7.2.2 A new application and evaluation of remote sensing 

approaches for monitoring of spatiotemporal changes in Lao 

tropical forests 

Spatiotemporal information on the changes in tropical land cover is essential 

for monitoring the global terrestrial ecosystems for carbon, climate and biosphere 

exchanges, and land use management. Using the richness of time series data for 

monitoring this change has rarely been applied and evaluated in tropical 

environments. The demonstration and evaluation of a remote sensing model, the 

disturbance index (DI) was implemented in a Lao tropical forest and presented in 

“Applying the Global Disturbance Index for Detecting Vegetation Changes in Lao 

Tropical Forests”; Chapter 3.  

In this chapter, MODIS EVI and LST time series data (from 2006–2012) were 

used to test whether this DI is useful for detecting spatial change in different land 

covers. Whereas the initial demonstration of DI averaged EVI and LST over two 

years to provide ‘baseline’ conditions against which changes in cover were detected 

(Mildrexler et al. 2007), I used seven years of MODIS data. This longer term 

incorporated more inter-annual variability in defining the characteristic EVI/LST 

signals, and hence provided a firmer basis for detecting significant changes. Areas 

of land cover change identified by the DI model were evaluated against high-

resolution images from Google Earth™. It was found that the DI was capable of 

detecting spatial changes in vegetation cover with high overall accuracy (82%). 

However, it showed forest clearance was not well detected (about 42% accuracy). 

The areas of forest clearance within my study area are often small and fragmented, 

caused by shifting cultivation and small-scale agriculture, which may not be 

detected at the MODIS resolution (1km). This limitation in detecting localized 

forest harvesting was also noted by Coops et al. (2009) in an application of the DI 

across Canada. My study suggested that implementation of the DI model is 

straightforward and that it can be used for rapid assessment of broad-scale land 
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cover changes in the tropics. However, it may not be suitable for detecting small or 

fragmented deforestation areas when high accuracy is required. A limitation of the 

model is the use of an annual maximum composite index for comparison with the 

longer-term mean (Mildrexler et al. 2007; Coops et al. 2009). This makes it 

sensitive to annual fluctuations or noise in the MODIS signal, and possibly unable 

to accommodate short-term intra-annual tropical forest changes, as noted by Coops 

et al. (2009).  

Time series data from MODIS EVI alone was used to detect temporal changes 

in tropical land covers across the study area in southern Lao PDR. The paper titled 

“Monitoring temporal vegetation changes in Lao tropical forests” forms Chapter 4. 

Here the Breaks For Additive Season and Trend (BFAST) model was applied in a 

new context: tropical forest environments. It was found that the BFAST analysis of 

MODIS EVI is a promising tool for assessing tropical forest cover changes. Abrupt 

temporal changes in vegetation in the tropical forests were well captured; for 

example, the model indicates the time when large areas of mixed wooded or cleared 

areas were converted into plantations. This study is of practical use and contributes 

significantly to efforts in monitoring deforestation in Lao PDR, while the DI and 

BFAST models may also be more widely applicable in other tropical regions. 

7.2.3 New, updated information on forest clearances in the south 

of Lao PDR  

Three sets of Landsat data were used to detect forest cover changes within a 

12,000 km2 study area spanning two provinces in southern Lao PDR. The paper 

entitled “Monitoring expansion of plantations in Lao tropical forests using Landsat 

time series” was included in Chapter 5. Lao PDR has recently been experiencing 

forest and land use transformation to plantations and shifting cultivation, resulting 

in controversies about the decrease in the area of native forests. However, precise 

and up-to date information on the forest cover changes is unavailable in many parts 

of the country. This study provides new knowledge of vegetation cover and 

patterns, trends and rates of change, which is crucial for management purposes and 

can help to evaluate the success of forest and land use management. A standard 

remote sensing method, principal component analysis (PCA), provided good results 

in identifying areas of change during 2003-2006, 2006-2009 and 2009-2012. 
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Overall accuracy in mapping vegetation changes from 2006-2012 (the period for 

which independent validation data was available) was 87%. User’s classification 

accuracy for areas of vegetation loss was 89%, while that for vegetation increase 

was 80%. The findings suggested that although a majority of forest areas remained 

stable over the study periods, some areas have experienced increases and decreases 

in vegetation covers. There was a decrease of approximately 90.1 km2 of forest area, 

and 137.3 km2 of vegetation cover increase from 2003 to 2012 in the 9,360 km2 of 

the study area covered by non-missing data in the Landsat 7 scene. This area of 

vegetation increase largely resulted from new rubber plantations. To our 

knowledge, this was the first and the most recent objective documentation of forest 

cover change implemented at local level in Laos.  

7.2.4 Improving understanding of underlying drivers of forest 

cover changes in the south of Lao PDR 

The spatial relationships between local physical and socio-economic factors 

and forest cover changes were investigated within a 23,500 km2 study area spanning 

three provinces in southern Laos. The paper entitled “Vegetation cover changes in 

Lao tropical forests: physical and socio-economic factors are the most important 

drivers” was included in Chapter 6. 

The depletion of the area of tropical forests in Laos has been increasing 

significantly. However, the causes or factors associated with this depletion are 

poorly understood. The underlying drivers of changes have yet to be assessed, at 

both local and national levels. Thus, the causes and factors influencing deforestation 

and conversion of forests to other land uses require identification. 

This chapter provides basic understandings of ongoing land use management 

and land cover change processes. The key result suggests that elevation, distance to 

main roads and shifting cultivation practices are the main factors associated with 

forest clearance in the study region. In contrast, rubber plantations are the major 

contributors to the increase in vegetation cover. Native forest and shifting 

cultivation areas were more likely to be converted into rubber plantations. This 

study provides key information for policy and decision makers to use in order to 

minimize deforestation and deal with potential risks to land covers. Additionally, 
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understanding of the drivers of vegetation cover changes can also be useful for 

developing predictive deforestation models. 

7.3 Recommendations for future applications and research 

Changes in forest cover are a serious problem and growing concern in Lao 

PDR as well as throughout the global community. Appropriate tools are required to 

combat tropical deforestation, such as understanding forest characteristics and 

responses, approaches for mapping and monitoring the spatial and temporal 

changes in forest cover over time periods and at different scales (regional, national 

and local), and investigations of underlying causes or associated factors of the 

changes to create better management of the forest and land use, thereby preventing 

further deforestation. Such monitoring tools were evaluated and demonstrated in 

this thesis. The following are recommendations for future applications and 

development of this research.  

This study has used MODIS EVI and LST data to improve our understandings 

of tropical forest seasonal growth characteristics and phenology phases of four 

different land use types: native forest, rubber plantation, mixed wooded/cleared 

areas and agriculture. This study and approach should be expanded to other land 

use types or sub-classes associated with tropical deforestation and land-use 

conversion, such as savanna, secondary forest, bamboo and built-up areas. This 

would provide more understanding of the remote sensing responses of a wider range 

of land use and land cover types associated with tropical regions undergoing 

deforestation and development. It is expected that these would also have 

characteristic EVI and LST seasonal signatures, because of differences in forest 

canopy or types, tree density, composition of species, and rock and soil background. 

Such a task was not implemented in this research due to the lack of reference data, 

and remains to be completed in the future. In addition, although the use of LST and 

EVI provided information on the characteristics and temporal responses of these 

land covers, a comparison of LST and EVI alone, or with other vegetation and land 

cover indices for monitoring of forest cover change in tropics requires further 

investigation. 

This study showed that accurate classification of these four land cover types 

was possible using MODIS EVI and LST averaged over seven years. However, in 
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an environment where land cover is changing rapidly, it would be desirable to use 

shorter time averages of these indices for classification and mapping. Consequently 

further research is needed to determine classification accuracies for discrimination 

of the land cover classes with other temporal samples of the MODIS data, for 

example annual means. In addition, use of the distinctive seasonal signatures for 

land cover classes may improve classification accuracies. Lack of time-specific 

ground reference data prevented these investigations in this research.  

Applying MODIS time series data in the global disturbance index model has 

shown good results at continental scale (Mildrexler et al. 2007; Coops et al. 2009; 

Mildrexler et al. 2009). However, my study suggested that this model has low 

accuracy in predicting fragmented deforestation in tropical regions. While mean 

EVI with some contribution from LST was shown to be able to discriminate some 

of the predominant land covers in the southern Laos tropical forests (Chapter 2), 

the most effective use of these indices as time series data to detect deforestation in 

tropical forests requires further research. Thus, there is scope for further testing or 

modification of the model in tropical contexts.  

In our research, applying the BFAST analysis was useful to detect rapid 

temporal changes in vegetation in the tropical forests. There was an abrupt change 

in time series signals when mixed wooded/cleared areas were largely converted into 

plantations. In our analysis, 250 random samples were averaged to represent each 

land cover, in order to encompass variations in land cover response. However, the 

approach may be applied to targeted study areas or single pixels to capture detailed 

changes in the time series for smaller or more specific geographic areas. This 

requires further investigation, and an automated interpretation approach needs to be 

developed for this task. Moreover, near-real time detection of significant 

deforestation and land use change using BFAST may be possible to implement in 

tropical regions, but will rely on adequate ancillary or supporting data, and remains 

to be conducted in the future. In addition, MODIS 16 day composite time series 

was used across the decade, although meteorological data at the same temporal 

resolution was not compared to this data. As a result, a comparison between trends 

and breaks of spectral response and rainfall and temperature time series was not 

fully investigated in my research, and requires future investigation.  
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In Chapter 5, the use of Landsat 7 data to detect changes in forest cover 

showed considerable success. The utilization of freely available of Landsat 7 data 

provided the data-rich satellite imagery for this research. However, there are some 

limitations, including cloud-free data availability and scan-line errors in the Landsat 

EMT+ sensor, and therefore the data has to be compiled along with that from other 

sensors such as Landsat 8 in order to complete the time series. The USGS provides 

freely available, calibrated Landsat 8 time series data. This will also enable the 

wider application of this approach. Recently, the first high-resolution global map 

of forest cover and its changes from 2000 to 2014 has been made freely available 

through the University of Maryland’s webserver (Hansen et al. 2014). This is one 

step towards high-resolution monitoring of forest cover changes at global scale, 

which will benefit developing countries, including Laos. However, this product still 

needs to be evaluated for local contexts and integrated with national and local forest 

cover assessments or analysis. Comparison of this product with the forest mapping 

and change conducted in my research would be a valuable focus of future research. 

An investigation of the spatial relationship between the changes in forest 

cover and physical and socio-economic factors was carried out locally in the south 

of the Lao PDR (Chapter 6). Our results provide better understandings of socio-

economic and physical drivers of forest cover change at a local level, which is 

useful for policy makers to ensure the effective management of land use and forest 

resources. Expanding the social and environmental factors (e.g. income and timber 

species) included could improve the analysis and provide deeper understanding of 

factors driving forest clearance, but is dependent on availability of suitable data. 

Additionally, there is scope to apply this model in different geographic areas in 

Laos, which may provide insights into the underlying causes of deforestation in 

contrasting locations and populations. This is desirable for further research.  

A limitation to my study was the availability of adequate reference data, 

especially recent and historical data from the Government of Laos. Adequate 

ground reference data is needed to validate the selected remote sensing approaches 

and any further application of them in this region. This drawback limited the extent 

of my study areas as well as the timing and duration of study periods. The approach 

adopted throughout this research was to use true colour satellite images from 

selected dates available through Google Earth. These very high resolution images 
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allowed visual discrimination and digitizing of relevant land cover classes as a 

source of independent information to validate the other MODIS and Landsat 

derived maps of forest cover change. This source of information provided adequate 

details of land cover to achieve this purpose, although it limited the location and 

size of study areas. As more such high resolution, free satellite imagery becomes 

available, there will be scope to use it for wider validation of broad scale remote 

sensing products. 

At present, producing up to date, reliable data on land use and ground cover 

is becoming more feasible due to developing technologies such as unmanned aerial 

vehicles (UAV). UAV mapping techniques have been applied recently in many 

aspects of conservation and mapping projects in tropical and other regions (Koh 

and Wich 2012; Anderson and Gaston 2013; Dandois et al. 2015). Although UAVs 

can only cover relatively small areas, they may be useful to capture high resolution, 

cloud free observations of current field conditions, for inaccessible areas or areas 

where there is an absence of reference data. Such technology may provide detailed 

spatiotemporal information on the characteristics of vegetation and quantify 

vegetation conditions at finer scales. This approach shows promise for further 

research and experiment in the future. 

Satellite radar data such as ALOS PALSAR are now freely available. This 

may be integrated with Landsat images to overcome cloud cover problems in 

tropical environments, and requires further evaluation. In addition, a recent remote 

sensing technique, called “CLASlite” has been demonstrated as a successful model 

for estimating deforestation from 2000 to 2011 in Amazon forests, Peru (Asner et 

al. 2009). This model is in an initial stage of development for tropical forests, thus 

it is still required further investigation and a comparison to my results.  

Finally, given the state of depletion of forest cover in Lao PDR, improved 

spatial and temporal mapping and monitoring of changes is urgently required. 

However, there are still several challenges for the country to overcome. These 

include the limited national experience in assessment of vegetation conditions and 

low existing capabilities to detect forest cover changes. Availability of cloud free 

remote sensing data is limited and reference data is out of date or non-existent for 

most of the country. To overcome these challenges, improving capacities of 

national institutions and organizations, and collecting and further developing 



 

104 

existing data are necessary. It is essential to strengthen better coordination among 

them to engage their monitoring activities to avoid any duplication, and to share 

and develop existing ecological data. This data sharing can be done through internet 

platforms, such as open access datasets which is important and require 

development. Effective development of these pathways will be keys to improve 

mapping and monitoring of forest resources in Lao PDR.  

7.4 Conclusions 

This research thesis contributes to the development and evaluation of remote 

sensing methods that can be used for assessing and monitoring forest cover changes 

in tropical forests. This task was carried out specifically in the context of the Lao 

People’s Democratic Republic (PDR). One of the major challenges of applying 

remote sensing in Lao tropical forests is cloud cover. While microwave remote 

sensing has the advantage to overcome this issue due to its capability to penetrate 

the atmosphere in any conditions, optical satellite images were chosen for this 

research because of the suitability of their spatial, spectral and temporal resolutions 

and availability of data for the relevant time periods.  

Understanding of tropical forest characteristics and phenology was an 

essential first step for this research. This is an important pathway for the use of 

remote sensing to identify and track changes in forest cover. Applications and 

evaluation of the global disturbance index and the BFAST models for detecting 

spatial and temporal changes in Lao tropical forests are considerable achievements 

in the thesis. The former model may be suitable for wide application of regional 

and/or national monitoring of land cover, whereas the latter model can be applied 

either locally or nationally. The DI uses the resolution of 1 km of MODIS LST and 

EVI, while the BFAST uses the higher resolution (250m) of MODIS EVI alone. 

The BFAST may be suitable for small targeted or specific geographic areas. 

Moreover, free Landsat data and a standard image analysis approach (PCA) were 

applied to capture detailed changes at a local scale. This technique detected areas 

of vegetation cover changes with high overall accuracy (87%). Finally, factors 

associated with forest cover change in the study area were investigated. This final 

output assists with evaluating on going land cover change processes and land use 

management. This knowledge can be useful for policy and decision makers and 
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ecologists to deal with current deforestation issues and prevent potential threats to 

forest resources in the future.  
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APPENDIX  

The appendix contains scripts and steps for implementing software used by 

author to derive some results of this research. Key steps and scripts are explained 

briefly in the following sections. 

1. Performing geographic transformation/re-projection of MODIS data time 

series 

The MODIS Reprojection Tool (MRT) was used to reproject and subset the 

MODIS data time series in this research project. After MRT installation, three main 

steps are implemented to prepare the MODIS data’s projection: creating a 

parameter file, creating MRT batch file, and running a batch command. More 

details are found in MRT user manual: 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool  

1.1. Creating a parameter file  

1. "Open MRT4.0 GUI 

2. Open input files: selecting .hdf file that we want to reproject/subset 

i.e. MOD13Q1.A2000049.hdf 

3. In selected bands: choose only file that we need: NDVI & EVI 

4. Leave corner coordinates as default, if subset is not required 

5. Change other parameters if necessary, for example: Output Files : .hdf or 

.TIF 

6. Select Output Projection Type : UTM,  then 

7. Save a parameter file in output directory: (E:\Test_Chittana\Para\) 

8. Leave Output Pixel Size default  

9. Save Parameter File (jit.prm) in : E:\Test_Chittana\Para\ 

10. Run the test and wait until finish & Exit MRT4.1 GUI 

 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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1.2. Creating a MRT batch file 

In order to create a MRT batch file, we require Java software in window or Mac. 

After completing the Java installation, these steps were followed:  

1. Copy Java.exe into the MRT installed directory, i.e. D:\MODIS_Tool\bin 

where there is MRTBatch.jar file 

2. Then creating the MRTBatch.bat by type: 

java –jar MRTBatch.jar –d input_directory –p parameter_directory\ 

input_parameter_file  

Where 

input_file_directory is the directory in which all input files are placed 

(e.g., E:\Test_Chittana\Test_MODIS); parameter_file_directory  is the 

directory where the parameter file created using the GUI (i.e. 

E:\Test_Chittana\Para\jit.prm) was saved earlier.  

  

To create a MRT batch file, we used the below script in command prompt in 

Window. In command prompt, please type:  

1. An example of the correct command line is " D:\MODIS_Tool\bin\Java – 

jar MRTBatch.jar -d E:\Test_Chittana\Test_MODIS -p 

E:\Test_Chittana\Para\jit.prm "  

2. Then, press Enter 

3. Now, this writes a file, mrtbatch.bat in the D:\MODIS_Tool\bin directory 

1.3. Running a batch command 

After creating a MRT batch file, now we ready to run the batch scrip. Follow 

these steps: 

1. Navigate to D:\MODIS_Tool\bin, then execute “mrtbatch.bat” by double 

click  

2. Now, wait for results. This batch execution can takes up to two days, 

depending on a volume of dataset. This was tested 20th Oct 2012, it works! 
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3. Output files will be located in a subdirectory of the input files, such as 

“\prm”  in E:\Test_Chittana\Test_MODIS. Example:  

 

 
 

java –jar MRTBatch.jar –d input_directory –p parameter_directory\ 

input_parameter_file  

 

 

  

After press 

ENTER, it 

appears 
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2. Masking MODIS time series data 

Masking MODIS time series data was to exclude unwanted pixels or noises 

in each data scene. In this project, we selected only good quality of pixels data, thus 

unwanted pixels were masked. There are two steps (implemented in R-studio 

software): firstly creating QA mask layers and secondly masking QA and raw data 

of MODIS, as follows: 

2.1. Creating QA mask layers 

>>setwd("E:\\TEst") # setting working directory in a local hard drive 
>>library(rgdal)  # using rgdal and raster library 
>>library(raster) 
 
>>files <- list.files(pattern="*pixel_reliability") # listing files from a working directory 
>># files      # if you want to see whether all files are 
listed 
 
>> for(i in 1:length(files)){    #Creating a loop of command 
     file <- readGDAL(files[i])   #Read all files from a list 
     rast <- raster(file)    #Creating a raster file for a list 
     qa1 <- rast     #Renaming a file 
     qa1[qa1 != 0] <- NA #Assigning a new value, any value differs to 

0 are NA 
qa1[qa1 == 0] <- 1 #Assigning a new value, any value equals to 

0 are 1 
     filename <- as.character(paste("QA_", files[i])) #Giving new name for each new raster  
     writeRaster(qa1, filename, format="GTiff", overwrite=TRUE)} # Saving a raster as .tiff 

file, finished! 

Note: 

###################################################################### 

# Using MOD13A2 Pixel Reliability & Selecting ONLY Good Data /Use with confidence (0): 

#Codes: 

# -1    Fill/No Data  Not Processed 

# 0  Good Data  Use with confidence 

# 1  Marginal data  Useful, but look at other QA information 

# 2  Snow/Ice  Target covered with snow/ice 

# 3  Cloudy  Target not visible, covered with cloud 

###################################################################### 
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3. Masking QA and raw data of MODIS 

>>setwd("E:\\TEst") # setting working directory in a local hard drive 
>>library(rgdal)  # using rgdal and raster library 
>>library(raster) 
 
>>files <- list.files(pattern="*EVI")        # Listing all EVI datasets 
>>maskfiles <- list.files(pattern="^QA_")    # Listing all mask layers 
>>head(files) ; head(maskfiles)              # Checking those files 
>>length(files); length(maskfiles)           # how many files? 
 
 
>>for(i in 1:length(files)){     # Masking each pair of files by a loop 
function: 
    file <- readGDAL(files[i])    #Read all files from a list 
    ras.file <- raster(file)    #Creating a raster file for a list 
    mask <- readGDAL(maskfiles[i])   # Read all mask files from a list 
    mask.file <- raster(mask)   #Creating a raster file for a list of mask files 
    r.mask <- mask(ras.file, mask.file)  #Masking each QA and raw data by mask 
function 
    filename <- as.character(paste("FinalQA_", files[i]))  #Giving new name for each new 
raster 
    writeRaster(r.mask, filename, format="GTiff", overwrite=TRUE)}  # Saving a raster as .tiff 
file, finished! 
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4. Extracting pixel values of MODIS time series data by samples 

4.1. Creating a layer stack of rasters 

## Setting a working directory, where data is located: 
>> 
setwd("F:\\BFAST_Appraoch\\Pre_pocessing_data\\MOD13Q1_h28_v07_reproject_UTM_z47_C
LIP_EVI")  
 
## Getting raster files & staking them as one layer: 
>> require(raster) 
>> myfile.list <- list.files() 
>> rasStack = stack(myfile.list) 
 
## Checking a stacked raster data 
## head(rasStack) ; nlayers(rasStack) 
 

4.2. Opening random points shapefile 

## Getting a point data in "shapefile" format 
require(rgdal)   # Using rgdal library 
 
>> wd = "F:\\BFAST_Appraoch\\Extraction_Raw_EVI data"   # Setting a working 
directory 
>> point.extra <- readOGR(dsn = wd, layer="random")   # giving path & shapefile 
name 
 
## Preforming the raster values extraction by points: 
rasValue=extract(rasStack, point.extra) 
 
## Then, combining those points values with its corresponding coordinates: 
>> rasValue <- (rasValue) * 0.0001 
>> combine.extr=cbind(coordinates(point.extra), rasValue)  
>> head(combine.extr[,1:4]) 
 
#Save an output file as ".csv" 
>> write.table(combine.extr,file="F:\\BFAST_Appraoch\\Extraction_Raw_EVI 
data\\Raw_EVI_random.csv", append=FALSE, sep= ",",row.names = FALSE, col.names=TRUE) 
 
>>End ! 
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5. Linear Discriminant Analysis Scripts  

5.1. Reading .csv file 

>> data <- read.csv("AllData_discriminantAnalysis_Updated.csv") 
>> head(data) 
>> summary(data) 
 

5.2. Perform the LDA on data by using LDA in Mass package 

>> require(MASS)  
 
## run lda to discriminate LCs 
>> output_discriminant_analysis <- lda(data$Class ~ data$EVI + data$LST, CV= TRUE, data = data)  
>> output_discriminant_analysis                           # Showing an output from running 
the LDA 
>> prediction <- predict(output_discriminant_analysis, data)   # running a predictoin for our data 
>> tab <- table(data$Class, prediction$class) ; tab       # Summarizing them in a table 
 
## This is our prediction of land cover classes based on EVI/LST 
>> plot(data[,c(1,2)],col=as.factor(data[,3]),pch=as.numeric(prediction$class))  # 
Showed LCs in a plot 
>> legend("topright", legend=c("Agriculture", "Native forest", "Mixed wooded-cleared area", 
"Plantation"),  
       col=c(1,2,4,3), pch=c(1,2,4,3)) 
 
## Calculating the percent of prediction classes in a table: 
>> PC_prediction <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2, ]), tab[3, ]/sum(tab[3, ]), 
tab[4, ]/sum(tab[4, ])) 
 
## Labelling the table (using land covers' names) 
>> dimnames(PC_prediction) <- list(Actual = c("Agriculture", "Forest", "Plantation", 
"Wood/Cleareed"), "Predicted (cv)" = c("Agriculture", "Forest", "Plantation", "Wood/Cleareed")) 
>> print(round(PC_prediction, 3))      # Showed them in 3 digit 
numbers 
>> prediction.final <- round(PC_prediction, 2) ; prediction.final  # Showed them in 2 digit 
numbers 
 

5.3. Saving a result 

>> write.table(prediction.final,file="prediction_save.csv", append=FALSE, sep= ",",row.names = T, 
col.names=T) 
 
## Calculating overall accuracy (%) of the prediction 
>> table_class <- table(data$Class, prediction$class); diag(prop.table(table_class, 1))    
>> sum(diag(prop.table(table_class))) # Overall accuracy (%)  
 
## Showed overlapping of land cover classes (using proportion of trace) 
>> plot(output_discriminant_analysis)     # Showed overlapping of land 
cover classes 
>> plot(output_discriminant_analysis, dimen=1, type="both")  # Showed overlapping in each land 
cover 
 
##pairs(data[c(1,2)], main="My Title ", pch=22, bg=c("red", "yellow", "blue", 
"green")[unclass(data$Class)]) ############## 
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6. Using BFAST Scripts  

6.1. Opening & preparing files 

>> a <- read.csv("Raw_EVI_Agriculture_random.csv", head=F, sep=",") 
>> b <- read.csv("Raw_EVI_BareArea_random.csv", head=F, sep=",") 
>> c <- read.csv("Raw_EVI_Built_up_random.csv", head=F, sep=",") 
>> d <- read.csv("Raw_EVI_Forests_random.csv", head=F, sep=",") 
>> e <- read.csv("Raw_EVI_plantation_random.csv", head=F, sep=",") 
 
# Giving column names for each file then combine them into one matrix: 
>> colnames(a) <- paste0("Agr", 1:ncol(a)) 
>> colnames(b) <- paste0("Bare", 1:ncol(b)) 
>> colnames(c) <- paste0("Built", 1:ncol(c)) 
>> colnames(d) <- paste0("Forest", 1:ncol(d)) 
>> colnames(e) <- paste0("Plant", 1:ncol(e)) 
 
##Creating ts objects: 
>> a.ts <- ts(a, start=c(2000, 4), frequency=23) 
>> b.ts <- ts(b, start=c(2000, 4), frequency=23) 
>> c.ts <- ts(c, start=c(2000, 4), frequency=23) 
>> d.ts <- ts(d, start=c(2000, 4), frequency=23) 
>> e.ts <- ts(e, start=c(2000, 4), frequency=23) 
 
## Average all 250 points over LCs, using row mean function: 
>> a.ts.mean <- ts(rowMeans(a.ts), start=c(2000, 4), frequency=23) 
>> b.ts.mean <- ts(rowMeans(b.ts), start=c(2000, 4), frequency=23) 
>> c.ts.mean <- ts(rowMeans(c.ts), start=c(2000, 4), frequency=23) 
>> d.ts.mean <- ts(rowMeans(d.ts), start=c(2000, 4), frequency=23) 
>> e.ts.mean <- ts(rowMeans(e.ts), start=c(2000, 4), frequency=23) 
 

6.2. Applying BFAST scripts 

require(bfast)   #using bfast library 
## Creating objects to make them easier to read: 
>> Agri <- a.ts.mean 
>> Bare <- b.ts.mean 
>> Built <- c.ts.mean 
>> Forest <- d.ts.mean 
>> Plantation <- e.ts.mean 
 
##Plotting bfast showing temporal changes in different land covers: 
>> plot(bfast(Agri,h=0.15, season="dummy", max.iter=1), main="Agriculture") 
>> plot(bfast(Plantation,h=0.15, season="dummy", max.iter=1), main="Plantation") 
>> plot(bfast(Forest,h=0.15, season="dummy", max.iter=1), main="Forest") 
>> plot(bfast(Bare,h=0.15, season="dummy", max.iter=1), main="Woody") 
 
##Showing one of results: 
>> summary(bfast(Bare,h=0.15, season="dummy", max.iter=1))  
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7. Extracting and Geo-referencing Google Earth TM Images 

High resolution images from the Google EarthTM were important for this research, 

used as reference data. In order to use these images in any GIS software, we geo-

rectified these images. To do this, two open source software packages were used: 

Google Earth and Elshayal Smart Web on Line Software. After installation, these 

steps were followed: 

7.1. Settings in Google Earth program: 

In Google Earth, go to option >> turn off terrain or 3D image 

 
Now, zoom in an area of interests which we want to geo-reference. 

7.2. Now, opening the Elshayal Smart Web on Line Software 

1. Click on download from Google Earth 

2. Login Google Earth, now Google Earth is connected 

3. Click on Go to & refresh Coords, Lon & Lat, Scale Zoom values will be 

appeared. 

 
4. Click on Import Rectified Image, and save this image in your favour folder 

5. Now, new downloaded image will be appeared in a view of Elshayal 

Smart Web on Line program 
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6. Now go back to Google Earth, click on File >> Save >> save image, 

replace this image to the imported rectified image which we saved earlier. 

 
7. Confirm when you are asked “Do you want to replace it?” Yes 

8. Now, go back to the Elshayal Smart Web on Line program, right click on 

image name >> Reload Layer 

 
9. The output is a colour georectified image suitable for use with other maps.  
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