Expression of Substance P and the Tachykinin NK1 Receptor in the Medullary Serotonergic Network of the Human Infant During Development; Implications for Sudden Infant Death Syndrome (SIDS)

Fiona Maree Bright
Ph.D. in Medicine
December 2016

A thesis submitted to the University of Adelaide in fulfillment of the requirements for the degree of Doctor of Philosophy
Table Of Contents

Thesis Declaration...7
Preface...8
Thesis Dedication...9
Acknowledgements..10
Conference presentations related to thesis..12
Glossary of terminology...13-14
List of figures and tables...15-17
Introduction ...18
Thesis research objectives and methods overview...20-22

Chapter 1: Literature review

1.1 Significance and Epidemiology of SIDS...24-25
1.2 SIDS Definition and diagnosis..26-27
1.3 Pathophysiology of SIDS overview..28
1.4 Underlying vulnerability and the brainstem hypothesis..29
1.5 Brainstem respiratory network overview..30-31
1.6 Respiratory defence mechanisms and arousal failure in SIDS..............................31-32
1.7 Putative role of multi-transmitter homeostatic network dysfunction in SIDS.........33-34
1.8 Neurotransmitters and the critical developmental period in SIDS.........................35-36
1.9 Medullary serotonergic (5-HT) network in SIDS..37-39
1.10 Neuropeptide SP and SIDS..40-45
1.11 Serotonin and substance p in SIDS..46-49
1.12 Synopsis..50

Chapter 2. Normative distribution investigation

Normative distribution of substance p and its neurokinin-1 receptor in the medullary serotonergic network of the human infant during development

2.1 Introduction..54-55

2.2 Materials and methods

2.2.1 Clinicopathological database: Fresh frozen and fixed tissue55
2.2.2 Anatomical identification of nuclei within the medullary 5-HT network.........56
2.2.3 Determination of SP specific binding density to NK1R in normal human infant medullae with $^{[125]I}$ Bolton Hunter SP autoradiography...58
2.2.4 Quantitative analysis of brainstem autoradiograms…………………………………………..58
2.2.5 Photomicrograph production………………………………………………………………..58-59
2.2.6 Normative distribution of SP/NK1R relative to medullary 5-HT network in human infant using fixed tissue immunohistochemistry and immunofluorescence……………………………59
2.2.7 Single label immunohistochemistry in formalin fixed paraffin embedded tissue………………59
2.2.8 Double label immunofluorescence in formalin fixed paraffin embedded tissue………………59-60
2.2.9 Image capture and processing………………………………………………………………..62

2.3 Results
2.3.1 [125I] Bolton Hunter SP binding to NK1R in normal human infant medulla…………………62-63
2.3.2 Normative distribution of NK1R and SP immunoreactivity in human infant medulla using single label immunohistochemistry ………………………………………………………………69
2.3.3 Normative distribution of NK1R and SP relative to 5-HT in medullary serotonergic network of human infant using double label immunofluorescence………………………………………..73

2.4 Discussion
2.4.1 Normative distribution of SP and NK1R immunoreactivity within human infant medulla…………………………………………………………………………………………………78
2.4.2 Normative developmental distribution of NK1R binding in the human infant medullary 5-HT network………………………………………………………………………………78-79
2.4.3 Distribution of SP and NK1R immunoreactivity relative to 5-HT in the medullary serotonergic network of human infant during development …………………………………………..79-82
2.5 Conclusions………………………………………………………………………………………..82

Chapter 3. SIDS vs. Controls investigation: Medullary SP/NK1R study

Developmental abnormalities in substance p neurokinin-1 receptor binding in brainstem nuclei related to prematurity and sex
3.1 Introduction………………………………………………………………………………………..86
3.2 Methods summary………………………………………………………………………………..86-87
3.3 Results
3.3.1 [125I] labelled SP binding to NK1R in human infant medulla in SIDS vs. controls………..88
3.3.2 Analysis of [125I] labelled SP binding to NK1R by age and prematurity status……………88-89
3.3.3 Analysis of [125I] labelled SP binding to NK1R by sex……………………………………..96
3.4 Discussion

3.4.1 Absolute reductions in NK1R binding in NTS and IO medullary nuclei in SIDS..............99-100
3.4.2 Significant differential developmental profile of NK1R binding in SIDS cases related to prematurity...100-101
3.4.3 Significant sexual dimorphism in NK1R binding in medullary nuclei and implications for SIDS...101

3.5 Conclusions..102

Chapter 4. SIDS vs. Controls investigation: Medullary 5-HT study

Serotonin neuron abnormalities in the serotonergic network in a South Australian SIDS cohort

4.1 Introduction..105

4.2 Methods and materials

4.2.1 Clinical database...106
4.2.2 Determination of number, morphology and density of 5-HT neurons in the caudal, mid and rostral medulla...106-107
4.2.3 Statistical analysis..107

4.3 Results

4.3.1 Clinicopathological data..107-108
4.3.2 Risk factors identified in SIDS cohort...108
4.3.3 All medullary levels combined..113
4.3.4 Caudal medullary level..115
4.3.5 Mid-rostral medullary level...116
4.3.6 Rostral medullary level..117

4.4 Discussion..120-122

4.5 Conclusions..123
Chapter 5. General Discussion

5.1 Summary of major thesis outcomes…………………………………………………………126
5.2 General discussion and future research directions………………………………………..127-129
5.3 Concluding remarks………………………………………………………………………………129

Bibliography…………………………………………………………………………………………132-145
Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree of diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work in the future will be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Fiona Maree Bright
Preface

An Australia Postgraduate Award (APA) 2013 to 2016 at the University of Adelaide, School of Medicine, Department of Anatomy and Pathology funded Ms Fiona Bright’s Ph. D. candidature. The entirety of the scientific research was funded by River’s Gift Australia. Professor Roger Byard and Professor Robert Vink provided primary supervision to the candidate at the University of Adelaide, with co-supervision by Dr Anna Leonard. Dr. Jhodie Duncan, University of Melbourne, Florey Institute of Neuroscience, provided external co-supervision. In 2014 Ms Fiona Bright received the River’s Gift International Fellowship and undertook an 18-month fellowship in Boston, MA, USA collaborating with the Kinney Laboratory at Harvard Medical School and Boston Children’s Hospital, under the supervision of Dr David Paterson, with academic support and guidance given by Professor Hannah Kinney. The format of this thesis is a combination of conventional and publication format with each core study written in manuscript style.

Author and Supervisor Affiliations

Fiona M. Bright: ¹Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia ²Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA

Professor Roger W. Byard: ¹Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia ²Forensic Science South Australia.

Professor Robert Vink: Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia

Dr David S. Paterson: Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA

Dr Jhodie R. Duncan: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia

Dr. Anna V Leonard: Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
Thesis Dedication

In memory of

~ River Jak Adam Waddell ~

02.07.2011 - 07.11.2011

And each and every infant lost to unexpected infant death, accidental death
and infants tragically lost to circumstances beyond their control.

This Ph.D. thesis is dedicated sincerely to Alexandra and Karl Waddell, the
extended River’s Gift family and to all of the families and communities
who have tragically lost infants and children suddenly and unexpectedly in
Australia and around the world.

~There is no footprint too small that cannot leave an imprint in this world~
Acknowledgements

First and foremost I would like to express my sincere gratitude to my parents Josephine and Kevin, my brother Ryan and extended family for their unyielding support and utmost belief in my ability to achieve what I set out to accomplish. To my close friends who have been a source of endless support and encouragement to me throughout the course of this doctorate, I thank you sincerely. To Alexandra and Karl Hamilton Waddell and River’s Gift, who in the face of hardship and grief have worked tirelessly to establish a foundation for collaborative SIDS research your dedication and determination is inspirational, thank you for making this research possible.

I would like to sincerely thank my supervisors, mentors and colleagues acknowledged below, for their various contributions, scientific teaching, guidance and support throughout my Ph.D. candidature. I have been especially fortunate to have been surrounded by some of the best scientific minds in the fields of pathology, neuroscience and general research practice and have learnt more than I could ever have hoped from each and every one of you.

Professor Roger Byard
Professor Robert Vink
Dr. David Paterson
Professor Hannah Kinney
Dr Jhodie Duncan
Dr Anna Leonard
Dr Kevin Broadbelt
Dr Robin Haynes
Mrs Felicia Tratchenberg
Mr Ryan Harris
Dr Lynn Sleeper

Dr Minmin Liu
Ms Kimberley Mander
Ms Amber Meservey
Ms Katie Kritikos
Ms Kelley Journey
Dr Hoa Tran
Mrs Melissa Walker
Mr Jim Manavis
Ms Kelly McAteer
Ms Marie Anastasi
Conference Presentations Related To Thesis (2013-2016)

Glossary Of Terminology

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC</td>
<td>Arcuate nucleus</td>
</tr>
<tr>
<td>BH-SP</td>
<td>Bolton Hunter Substance P</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COCH</td>
<td>Cochlear nuclei</td>
</tr>
<tr>
<td>DAO</td>
<td>Dorsal accessory olivary nuclei</td>
</tr>
<tr>
<td>DMX</td>
<td>Dorsal motor nucleus of vagus nerve</td>
</tr>
<tr>
<td>DRN</td>
<td>Dorsal Raphe nucleus</td>
</tr>
<tr>
<td>GA</td>
<td>Gestational age</td>
</tr>
<tr>
<td>GC</td>
<td>Gigantocellularis lateralis nuclei</td>
</tr>
<tr>
<td>HG</td>
<td>Hypoglossal nuclei</td>
</tr>
<tr>
<td>IO</td>
<td>Inferior olivary nuclei</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IRZ</td>
<td>Intermediate reticular zone</td>
</tr>
<tr>
<td>MAO</td>
<td>Medial accessory olivary nuclei</td>
</tr>
<tr>
<td>NK</td>
<td>Neurokinin</td>
</tr>
<tr>
<td>NK1R</td>
<td>Tachykinin NK-1 receptor</td>
</tr>
<tr>
<td>NTS</td>
<td>Nucleus tractus solitarii</td>
</tr>
<tr>
<td>PBC</td>
<td>Prebotzinger complex</td>
</tr>
<tr>
<td>PCA</td>
<td>Post-conceptional age</td>
</tr>
<tr>
<td>PGCL</td>
<td>Paragigantocellularis lateralis nuclei</td>
</tr>
<tr>
<td>PIO</td>
<td>Principal inferior olivary nuclei</td>
</tr>
<tr>
<td>PMI</td>
<td>Post mortem interval</td>
</tr>
<tr>
<td>PNA</td>
<td>Postnatal age</td>
</tr>
<tr>
<td>RS</td>
<td>Rett's syndrome</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden infant death syndrome</td>
</tr>
<tr>
<td>5-HT</td>
<td>Serotonin</td>
</tr>
<tr>
<td>SP</td>
<td>Substance P</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtrigeminal nucleus</td>
</tr>
<tr>
<td>SUDC</td>
<td>Sudden unexpected death in childhood</td>
</tr>
<tr>
<td>SUID</td>
<td>Sudden unexpected death in infancy</td>
</tr>
</tbody>
</table>
List of figures and tables

Figure 2.1 Autoradiographic grey scale images of 125I Bolton Hunter SP binding to NK1R in transverse sections of the caudal and rostral human infant medulla..............................57

Figure 2.2 Autoradiograms displaying mean 125I Bolton Hunter SP binding to NK1R in transverse tissue sections of caudal and rostral human infant medulla65

Figure 2.3 Linear regression displaying NK1R binding density (fmol/mg) with PCA........66

Figure 2.4 NK1R binding density in premature vs. term infants across multiple medullary nuclei...67

Figure 2.5 NK1R binding in male vs. female infants..68

Figure 2.6 Distribution of NK1R immunoreactivity in nuclei of medullary 5-HT network using single label IHC ...70

Figure 2.7 Distribution of SP immunoreactivity in nuclei of medullary 5-HT network using single label IHC ...71

Figure 2.8 Single label IHC images of NK1R, SP and 5-HT immunoreactivity in transverse sections of rostral midline raphe nuclei...72

Figure 2.9 Double label IF images of NK1R and 5-HT immunoreactivity in transverse sections of rostral midline raphe nuclei...74

Figure 2.10 Double label IF images of NK1R and 5-HT immunoreactive neurons in transverse sections of rostral midline raphe (RMID) and extra raphe nuclei (PGCL).................................75

Figure 2.11 Double label IF images showing localization of SP and 5-HT immunoreactive neurons in transverse sections of rostral midline raphe nuclei (RMID).................................76

Figure 2.12 Double label IF images showing localization of SP and 5-HT immunoreactive neurons in transverse sections of rostral midline raphe (RMID) and rostral extra raphe nuclei (PGCL)...77

Figure 3.1 Mean total NK1R binding density (fmol/mg) across medullary nuclei analyzed, presented as highest to lowest binding density..90
Figure 3.2 Autoradiograms displaying NK1R binding (fmol/mg) in medullary nuclei in SIDS vs. control. ..91

Figure 3.3 Autoradiograms displaying NK1R binding (fmol/mg) in select nuclei in a SIDS vs. control case ...92

Figure 3.4 NK1R binding by PCA across diagnoses in multiple medullary nuclei94

Figure 3.5 NK1R binding by prematurity status ..95

Figure 3.6 NK1R binding density in male SIDS compared to male combined controls97

Figure 4.1 The four morphological subtypes of 5-HT expressing neurons within human infant medullary 5-HT network (Kinney et al., 2007) stained for TPH2 (PH8 antibody)109

Figure 4.2 Mean 5-HT neuron count and density adjusted for sex, PMI and PCA across all medullary levels (caudal to rostral) in SIDS vs. controls ..114

Figure 4.3 Distribution of Caudal, Mid-rostral and rostral medullary serotonergic neurons in an infant dying from SIDS and an infant with acute death from a cause other than SIDS control. 118

Figure 4.4 Transverse tissue sections of caudal extra raphe in SIDS vs. control infant medulla ..119

Figure 4.5 Transverse tissue sections of mid-rostral midline raphe nuclei in SIDS vs. control infant medulla ..119

Table 1.1 Previously published research investigating substance P in post mortem human infant brain tissue in SIDS ...45

Table 2.1 Selected antibodies and sources ..61

Table 2.2 Normative distribution of SP and NK1R in the medullary 5-HT network in human infant medulla during postnatal development ..64

Table 2.3 NK1R binding by prematurity status ..67

Table 2.4 NK1R binding by sex ..68

Table 3.1 Clinicopathological data ..87

Table 3.2 Effect of prematurity on NK1R binding ..93
Table 3.3 NK1R binding by sex…………………………………………………………..98

Table 4.1 Epidemiological and Clinicopathological data for SIDS and control cases110-112

Table 4.2 5-HT neuron number, density and morphology in SIDS vs. combined controls across all medullary levels and sub nuclei…………………………………………………………113

Table 4.3 5-HT neuron number, density and morphology in SIDS vs. controls in caudal medulla…………………………………………………………………………………………115

Table 4.4 5-HT neuron number, density and morphology in SIDS vs., controls in mid-rostral medulla ……………………………………………………………………………………………116

Table 4.5 5-HT neuron number, density and morphology in SIDS vs. controls in rostral medulla…………………………………………………………………………………………117
Introduction

Sudden infant death syndrome (SIDS) is a devastating and unexpected event in which a seemingly healthy infant dies in the first year of life during a sleep period, with no warning or prior indication of any adverse pathology to cause alarm (Kinney and Thach, 2009a). It is one of the most significant causes of post neonatal mortality in developed countries, profoundly affecting families and their communities. SIDS is complex, heterogenous and a diagnosis based solely on exclusion where the exact cause of death remains largely unexplained following complete post mortem examination and investigation of the circumstances of death (Krous 2004). By attempting to identify those children who may be at risk, medical professionals and scientific researchers endeavour to uncover and understand the pathogenesis of SIDS not only to prevent its occurrence, but also to provide some form of closure for families who are left to make sense of not only the death of their child but the heartache and stigma that comes with the “nonentity” of SIDS (Thach, 2008, Wender, 2012).

Multiple definitions, theories, animal and human studies have been established in an attempt to decipher the pathogenesis of SIDS. Unfortunately there are no available biomarkers for SIDS; no single universally accepted definition or theory and the direct cause remains relatively unknown. However, multiple neuropathologic studies have provided evidence that a certain subset of SIDS infants are not entirely ‘normal’ prior to death (Filiano and Kinney, 1994, Takashima and Becker, 1985, Sridhar et al., 2003, Paterson et al., 2006b). Instead these infants possess some form of underlying vulnerability exposing them to an increased risk for sudden death (Kinney, 2009a, Kinney and Thach, 2009a, Paterson et al., 2006b). It is thought that SIDS or a certain subset of SIDS is caused by some form of underlying neural or systematic abnormality in medullary homeostatic control that impairs critical responses to life-threatening challenges such as hypoxia during a sleep period (Kinney and Thach, 2009a). This failure is thought to result from abnormalities in a multi-neurotransmitter network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Indeed abnormalities in various brainstem neurochemicals including catecholaminergic, nicotinic, muscarinic, cholinergic, glutamatergic and neuropeptide systems have been reported (Kinney, 2009b, Kinney et al., 2009b). Abnormalities in the medullary serotonergic (5-HT) system have been the most significantly and consistently observed in the brainstem of SIDS infants, however it remains unclear whether these abnormalities are the primary event in SIDS or an epiphenomenon, with the underlying pathogenesis of these specific abnormalities still undetermined.

The neuropeptide substance P (SP) functions within key medullary nuclei to regulate cardiorespiratory and autonomic function in conjunction with 5-HT and other neurochemicals.
Actions of SP are primarily mediated by tachykinin NK1 receptors (NK1R) in the CNS and SP is recognized as a primary excitatory neurotransmitter and central mediator of cardiovascular reflexes such as baroreceptor sensitivity and chemoreceptor reflex modulation in response to hypoxia. Abnormalities in SP neurotransmission may play, therefore, a role in homeostatic dysfunction in SIDS. Previous studies analyzing SP and NK1R in the brainstem in SIDS have, however, been inconsistent and inconclusive. Furthermore a potential functional relationship between the 5-HT and SP neurotransmitter systems may be of critical importance to the pathogenesis of SIDS, where deficiencies in 5-HT which is already well established in the literature, may stimulate a compensatory response by SP. Previous animal studies and post-mortem human infant tissue research have investigated both 5-HT and SP individually in relation to homeostatic control and failure underlying the pathogenesis of SIDS, however the role of SP in association with the medullary 5-HT network in SIDS has not been fully examined.

In a collaborative effort combining two independent cohorts of human infant brainstem tissue and associated digital autopsy databases from Australia and the USA, the overall objective of this research was to investigate the expression of SP and its NK1R in the medullary 5-HT network during neurodevelopment, with specific investigation of the potential role of both neurotransmitter systems in contributing to a multi-transmitter medullary homeostatic network dysfunction in a subset of SIDS cases. The thesis is comprised of three core studies, each of which are closely interrelated. Collectively these studies resulted in significant outcomes that contribute immensely to the continued investigation of the underlying pathogenesis of SIDS and have provided a foundation for promising future research directions.
Thesis Research Aims and Methods overview

Chapter 2: Normative distribution investigation

Normative distribution of substance P and its tachykinin NK-1 receptor in the medullary serotonergic network of the human infant during development

Specific Aim:

Characterization of the normative distribution of SP and the NK1R in the medullary 5-HT network of the human infant medulla during development in control cases (non-SIDS).

Hypothesis:

The NK1R and SP are extensively co-distributed but do not co-localize with 5-HT neurons in the nuclei of the medullary 5-HT network.

Methods:

1. Descriptive analysis using formalin-fixed paraffin-embedded human infant medullae specimens (non-SIDS controls) (N=10) obtained from Forensic Science South Australia (FSSA). Single labelled immunohistochemistry (IHC) was performed for TPH2 (5-HT neurons), SP and NK1R and double label immunofluorescence (IF) performed for SP relative to 5-HT and NK1R relative to 5-HT respectively. Descriptive immunohistochemical distribution of SP and NK1R was assessed within the medullary 5-HT system.

2. Quantitative analysis using fresh frozen human infant medullae specimens (non-SIDS controls) (N=15) accrued from autopsy services at the Department of Pathology, Boston Children’s Hospital and the office of chief medical examiner San Diego, CA. SP specific binding density was performed using 0.15nM [125I]- Bolton Hunter labelled SP autoradiography and quantitative densitometry analysis of total and non-specific binding density performed using MCID core computer based software, to determine the normative distribution of SP binding to NK1R in medullary 5-HT network nuclei.
Chapter 3. SIDS vs. Controls study: Medullary SP/NK1R study

Developmental abnormalities in SP NK-1 receptor binding in brainstem nuclei in sudden infant death syndrome related to sex and prematurity

Specific Aim:

Determination of NK1R binding density in the medullary 5-HT network in the human infant medulla in SIDS vs. non-SIDS control cases.

Hypothesis:

NK1R binding density, and thus putatively SP neurotransmission, is significantly altered in key autonomic and respiratory control nuclei in the medulla oblongata of SIDS cases compared to controls.

Method:

Quantitative analysis using fresh frozen infant brainstem specimens (n=76) accrued from the Office of the Chief Medical Examiner in San Diego, from three separate tissue datasets over the period 2004-2015. Tissue section autoradiography with 0.15nM [125I] Bolton Hunter labelled SP and quantitative densitometry with MCID core software, was used to determine NK1R binding density (fmol/mg) in 14 medullary nuclei in 55 SIDS and 21 non-SIDS control infant brainstems. Binding results were adjusted for age, sex, prematurity and post-mortem interval.
Chapter 4. SIDS vs. Controls study: Medullary 5-HT study

Serotonin neuron abnormalities in the medullary serotonergic network in a South Australia SIDS cohort

Specific Aim:
To determine if the number and density of 5-HT neurons in the medullary 5-HT network is altered in an independent cohort of SIDS cases from South Australia replicating the same methodology as previously published by Paterson et al., 2006.

Hypothesis:
A significant medullary 5-HT abnormality exists in South Australian SIDS cases characterized by a significantly higher number and density of 5-HT neurons and altered neuron morphology in SIDS cases compared to controls.

Method:
Formalin-fixed paraffin-embedded medullae from infants who died from SIDS (41) and control cases (39) who died from definitive causes of death other than SIDS, were obtained from FSSA. Sections of medulla (4μm) were cut and immunostained for tryptophan hydroxylase (TPH2) using PH8 antibody to label 5-HT neurons. Quantitative 5-HT neuron cell count analysis was then performed using the Neurolucida (MBF bioscience) computer based software. Number, density and different morphological types of 5-HT neuron were compared in SIDS cases to controls. Results were adjusted for age, sex, prematurity and post-mortem interval.