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Zircon U–Pb and Lu–Hf isotopes, in situ U–Pb monazite geochronology and calculated 
metamorphic phase diagrams are used to explore the tectonic settings of regional high thermal 
gradient metamorphism as well as the consequences of melt loss on the bulk composition and 
reactivity of residual rock packages. Case studies are presented from four high thermal gradient 
terranes: the Windmill Islands in Wilkes Land, east Antarctica; the central Aileron Province in 
central Australia, the Rayner Complex in east Antarctica and the southern Gawler Craton in South 
Australia. 

The Windmill Islands region records two stages of high thermal gradient metamorphism between 
c. 1320–1300 Ma and c. 1240–1170 Ma. The first stage of metamorphism occurred at conditions 
of 3.5–4 kbar and 700–730 ºC and was associated with the formation of a horizontal fabric. The 
second stage of metamorphism is most strongly recorded in the southern Windmill Islands where 
it reached conditions of ~4 kbar and 850 ºC, coincident with the emplacement of voluminous 
isotopically juvenile granitic and charnockitic magmas. The metasedimentary rocks of the Windmill 
Islands contain both arc- and craton-derived detrital zircon grains, suggesting that they formed in 
a back-arc setting. An extensional setting is consistent with the high thermal gradients and the 
formation of a regional horizontal fabric during the first stage of metamorphism. The intrusion of 
juvenile charnockite further suggests that the overall tectonic regime was extensional and that the 
crust beneath the Windmill Islands contained little evolved material.

The central Aileron Province records long-lived high thermal gradient anatectic conditions between 
c. 1590 and 1520 Ma. Peak temperatures were in excess of 850 ºC with pressures of 6.5–7.5 kbar, 
corresponding to a thermal gradient of >130–140 ºC/kbar. The retrograde evolution involved 
minor decompression and then slow cooling, culminating with the development of andalusite. 
The absence of any syn-metamorphic magmatism and the development of contractional structures 
during metamorphism suggest that long-lived high thermal gradient metamorphism was likely 
to have been driven to a significant extent by the burial of high heat producing pre-metamorphic 
granitic rocks that volumetrically dominate the terrane.

The Rayner Complex in east Antarctica was extensively deformed and metamorphosed during the 
Rayner Orogeny between c. 1020 and 900 Ma. Metamorphism was associated with voluminous 
granitic and charnockitic magmatism. The earliest phase of metamorphism is recorded in the 
southern Rayner Complex and involved pressures of >7.5 kbar. Pervasive metamorphism at 
950–900 Ma affected the whole Rayner Complex and involved temperatures of 850–880 °C and 
lower pressures of 6–7 kbar. The Rayner Complex is interpreted to be a back-arc basin that was 
closed during two-stage collision between the Archean Antarctic cratons to the south and the arc, 
followed by collision with the Indian Craton.

High thermal gradient metamorphism can occur in both collisional and extensional regimes and 
in both plate margins and intracontinental settings. The primary thermal driver in the Windmill 
Islands and the Rayner Complex was likely to have been the thinned lithosphere resulting from 
back-arc extension, whereas in the central Aileron Province, the primary thermal driver was likely 
to be anomalously high heat producing crust. However, in all three terranes, the attainment of 



regional high temperatures was facilitated by the preconditioning (dehydration) of the crust by 
prior melt loss events and slow erosion rates.

In all four studied terranes, high thermal gradient metamorphism resulted in melt loss that 
significantly altered the compositions and reactivity of the residual rocks. One implication of 
melt loss during regional high temperature metamorphism is that it creates a terrane comprising 
anhydrous, residual rock compositions that are relatively resistant to reworking during subsequent 
metamorphic events. As demonstration of this, the Rayner Complex records a metamorphic event 
at c. 540–500 Ma that reached peak conditions of 800–870 °C and 5.5–6.5 kbar. However, high-T 
mineral growth at 540–500 Ma is only recorded in some locations. The spatial distribution of this 
mineralogical reworking was controlled by localised rock reactivity that may reflect domains that 
had undergone hydrous retrogression at the end of the Rayner Orogeny, locally enhancing the 
responsiveness of the rock mass during the Cambrian.

In the southern Gawler Craton, forward modelling of an Fe-rich phyllite sequence shows that melt 
loss can also have economic implications by increasing the concentration of iron in the residual 
rock package, leading to enrichment in Fe-oxide minerals (magnetite and hematite). Muscovite-
rich rocks with lower iron content are more fertile, produce more melt and therefore show a 
more significant increase (up to 35%) in the Fe-oxide content in the residual (melt depleted) rock 
package. Rocks with primary Fe-rich compositions are less fertile, lose less melt and therefore 
do not experience the same relative increase in the amount of Fe-oxides in the residuum. The 
economic implications of the modelling are that the more fertile horizons with lower primary 
iron contents may be significantly upgraded as a result of melt loss, thereby improving the overall 
grade of the ore system.  In the case of southern Gawler Craton, melt loss-driven Fe enrichment 
has contributed to the formation of one of Australia’s largest known magnetite resource systems.
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