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ABSTRACT

Zircon U-Pb and Lu-Hf isotopes, in situ U-Pb monazite geochronology and calculated
metamorphic phase diagrams are used to explore the tectonic settings of regional high thermal
gradient metamorphism as well as the consequences of melt loss on the bulk composition and
reactivity of residual rock packages. Case studies are presented from four high thermal gradient
terranes: the Windmill Islands in Wilkes Land, east Antarctica; the central Aileron Province in
central Australia, the Rayner Complex in east Antarctica and the southern Gawler Craton in South
Australia.

The Windmill Islands region records two stages of high thermal gradient metamorphism between
c. 1320-1300 Ma and c. 1240—1170 Ma. The first stage of metamorphism occurred at conditions
of 3.5-4 kbar and 700730 °C and was associated with the formation of a horizontal fabric. The
second stage of metamorphism is most strongly recorded in the southern Windmill Islands where
it reached conditions of ~4 kbar and 850 °C, coincident with the emplacement of voluminous
isotopically juvenile granitic and charnockitic magmas. The metasedimentary rocks of the Windmill
Islands contain both arc- and craton-derived detrital zircon grains, suggesting that they formed in
a back-arc setting. An extensional setting is consistent with the high thermal gradients and the
formation of a regional horizontal fabric during the first stage of metamorphism. The intrusion of
juvenile charnockite further suggests that the overall tectonic regime was extensional and that the
crust beneath the Windmill Islands contained little evolved material.

The central Aileron Province records long-lived high thermal gradient anatectic conditions between
c. 1590 and 1520 Ma. Peak temperatures were in excess of 850 °C with pressures of 6.5—7.5 kbar,
corresponding to a thermal gradient of >130-140 °C/kbar. The retrograde evolution involved
minor decompression and then slow cooling, culminating with the development of andalusite.
The absence of any syn-metamorphic magmatism and the development of contractional structures
during metamorphism suggest that long-lived high thermal gradient metamorphism was likely
to have been driven to a significant extent by the burial of high heat producing pre-metamorphic
granitic rocks that volumetrically dominate the terrane.

The Rayner Complex in east Antarctica was extensively deformed and metamorphosed during the
Rayner Orogeny between c. 1020 and 900 Ma. Metamorphism was associated with voluminous
granitic and charnockitic magmatism. The earliest phase of metamorphism is recorded in the
southern Rayner Complex and involved pressures of >7.5 kbar. Pervasive metamorphism at
950-900 Ma affected the whole Rayner Complex and involved temperatures of 850880 °C and
lower pressures of 67 kbar. The Rayner Complex is interpreted to be a back-arc basin that was
closed during two-stage collision between the Archean Antarctic cratons to the south and the arc,
followed by collision with the Indian Craton.

High thermal gradient metamorphism can occur in both collisional and extensional regimes and
in both plate margins and intracontinental settings. The primary thermal driver in the Windmill
Islands and the Rayner Complex was likely to have been the thinned lithosphere resulting from
back-arc extension, whereas in the central Aileron Province, the primary thermal driver was likely
to be anomalously high heat producing crust. However, in all three terranes, the attainment of
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ABSTRACT

regional high temperatures was facilitated by the preconditioning (dehydration) of the crust by

prior melt loss events and slow erosion rates.

In all four studied terranes, high thermal gradient metamorphism resulted in melt loss that
significantly altered the compositions and reactivity of the residual rocks. One implication of
melt loss during regional high temperature metamorphism is that it creates a terrane comprising
anhydrous, residual rock compositions that are relatively resistant to reworking during subsequent
metamorphic events. As demonstration of this, the Rayner Complex records a metamorphic event
at c. 540500 Ma that reached peak conditions of 800870 °C and 5.5-6.5 kbar. However, high-T
mineral growth at 540-500 Ma is only recorded in some locations. The spatial distribution of this
mineralogical reworking was controlled by localised rock reactivity that may reflect domains that
had undergone hydrous retrogression at the end of the Rayner Orogeny, locally enhancing the
responsiveness of the rock mass during the Cambrian.

In the southern Gawler Craton, forward modelling of an Fe-rich phyllite sequence shows that melt
loss can also have economic implications by increasing the concentration of iron in the residual
rock package, leading to enrichment in Fe-oxide minerals (magnetite and hematite). Muscovite-
rich rocks with lower iron content are more fertile, produce more melt and therefore show a
more significant increase (up to 35%) in the Fe-oxide content in the residual (melt depleted) rock
package. Rocks with primary Fe-rich compositions are less fertile, lose less melt and therefore
do not experience the same relative increase in the amount of Fe-oxides in the residuum. The
economic implications of the modelling are that the more fertile horizons with lower primary
iron contents may be significantly upgraded as a result of melt loss, thereby improving the overall
grade of the ore system. In the case of southern Gawler Craton, melt loss-driven Fe enrichment
has contributed to the formation of one of Australia’s largest known magnetite resource systems.
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Chapter 1

Introduction and thesis outline

1. Introduction to high thermal gradient
metamorphism

The thermal structure of the Earth’s crust,
that is the rate of change of temperature
with depth, is characteristic for different
geodynamic settings and is encoded by the
mineral assemblages that form in metamorphic
rocks. Therefore, through the study of
metamorphic mineral assemblages and the
determination of pressure—temperature (P—T)
conditions of metamorphic rocks it is possible
to make inferences about the tectonic setting
of metamorphism in the Earth’s past, and to
link the changes in metamorphic conditions
to secular changes in lithospheric geodynamic
regimes (Brown, 2006, 2014).

A number of early papers recognised a
distinctive style of regional metamorphism
different the

from medium  pressure,
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Figure 1: P-T diagram showing thermal gradients
in relation to a normal crustal geotherm. High to
ultrahigh thermal gradients pass through the andalusite
and sillimanite fields. Ultrahigh temperature (UHT;
>900 °C) metamorphism is the most thermally
extreme manifestation of high thermal gradients.
Modified after Brown, 2006, 2014 and Kelsey and
Hand, 2015.

clockwise P—T evolutions that characterise
Barrovian-style metamorphism (Fig. 1). This
different style of regional metamorphism is
characterised by low pressure andalusite- or
sillimanite-bearing assemblages that were
commonly spatially associated with abundant
igneous intrusions (Fig. 1; e.g. Barton and
Hanson, 1989; De Yoreo et al., 1991; Lux et
al., 1986; Miyashiro, 1961; Zwart, 1967).
Metamorphism of this style requires a steep
thermal structure (i.e. high to ultrahigh
geothermal gradients), and was inferred to
occur in a variety of tectonic settings including
continent—continent collision zones, regions of
extension, magmatic arcs and regions of large
aqueous fluid flux above subduction zones (De
Yoreo et al., 1991; Loosveld and Etheridge,
1990; Lux et al., 1986; Sandiford and Powell,
1986, 1991; Wickham and Oxburgh, 1985).
Despite the variations in inferred tectonic
setting, high thermal gradient metamorphism
was ultimately interpreted to derive from
the advectic transfer of heat by magmatic or
aqueous fluids (Barton and Hanson, 1989;
Bohlen, 1991; De Yoreo et al., 1991; Lux et
al., 1986; Sandiford et al., 1991; Sandiford and
Powell, 1991; Wickham and Oxburgh, 1985).
The timescales of metamorphism caused
by magmatic heat advection are likely to be
short (<<10 Myr; e.g. De Yoreo et al., 1991;
Rothstein and Hoisch, 1994; Sandiford et al.,
1991; Westphal et al., 2003), and therefore
high thermal gradient metamorphism was
interpreted to reflect transient perturbations
of the steady-state thermal structure of the
lithosphere. Where high thermal gradient
metamorphism was regionally extensive, it
was not considered to be synchronous across
the whole metamorphic belt and instead was
interpreted to result from multiple temporally
and spatially localised intrusions (e.g. Barton
and Hanson, 1989; De Yoreo et al., 1991).
However, two important developments in the
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investigation of high thermal gradient terranes
have required a reassessment of the accepted
paradigm of transient heat advection as the

driver for metamorphism.

The first development was the recognition of
terranes that record regional-scale ultrahigh
temperatures (UHT; >900 °C) in crust of
relatively normal thickness (Fig. 1; see reviews
by Harley, 1998, 2008; Kelsey, 2008; Kelsey
and Hand, 2015 and references therein). It
is also increasingly recognised that lower-
temperature high thermal gradient terranes
are likely to be underlain by rocks that record
UHT conditions (e.g. Kelsey and Hand, 2015).
Although many of these terranes contain large
volumes of magmatic rocks, the magmatism
is commonly interpreted to be largely the
result of metamorphism rather than the cause
(e.g. Diener et al., 2013; Halpin et al., 2007a;
Korhonen et al., 2015; Smithies et al., 2011).
Therefore, the formation of UHT terranes
requires a primary thermal driver that is able to
generate regionally extensive high temperature
metamorphism as well as large-scale melting of
the lower crust.

The with
the increasing use and sophistication of

second  development came
geochronological techniques. This has given
petrologists the ability to link age constraints
to segments of the inferred metamorphic P—T
path (e.g. Driippel et al., 2012; Kelsey et al.,
2007; Kohn and Malloy, 2004; Reno et al.,
2012; Roberts and Finger, 1997; Rubatto et
al., 2013), or to directly link trace elements
in geochronometers to the growth or break-
down of silicate minerals (e.g. Harley and Kelly,
2007; Hermann and Rubatto, 2003; Johnson et
al., 2015; Kelly et al., 2012; Kylander-Clark et
al., 2013; Rubatto, 2002; Taylor et al., 2015;
Tomkins et al., 2005). A primary result of
these endeavours has been the recognition that

some terranes record extremely long-lived
(>50 Myr) high temperature metamorphic
conditions, in contrast to the traditional
interpretation that high thermal gradient
metamorphism is necessarily short-lived.

These developments have raised a number
the
understanding of high temperature terranes.

of questions in interpretation and
The thermal gradients recorded in these
terranes are sufficiently steep that they
require either mantle heat input or crust
with higher than average heat producing
capability (e.g. Bohlen, 1991; Clark et al.,
2011; Kelsey and Hand, 2015; Sandiford
and Hand, 1998). However, despite the
knowledge that regional-scale high thermal
gradient metamorphism requires an anomalous
thermal regime, the tectonic settings and
requirements for the generation of high to
ultrahigh temperatures are still debated (e.g.
Brown, 2014; Chardon et al., 2009; Clark
etal., 2011; Gorezyk et al., 2015; Kelsey and
Hand, 2015; Santosh and Kusky, 2010; Sizova
et al., 2014). In part, this is due to a lack of
certainty in how terranes behave during high
temperature metamorphism, particularly with
respect to the effects of melt generation and
loss on crustal rheology and composition (e.g.
Diener and Fagereng, 2014; Yakymchuk and
Brown, 2014b). Determining the timescales
of high thermal gradient metamorphism is
also complex, as the ability of a rock to record
all, or part, of the metamorphic evolution
at high temperatures may depend on the closure
temperature of the mineral geochronometer
(e.g. U-Pb in zircon and monazite), the
presence of melt and the reactivity of the
rock (e.g. Kelly et al., 2012; Kelsey, 2008;
Phillips et al., 2007, 2009; Yakymchuk and
Brown, 2014a). A number of these issues
are discussed in more detail below, and
form the subject matter of the chapters in
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this thesis.

2. Thermal drivers and tectonic setting
of high thermal gradient metamorphism
The duration of metamorphism is related to
the longevity of the heat source and the rates
of exhumation, and therefore can provide an
important constraint on the tectonic setting.
Short-lived (<10 Ma) high thermal gradient
metamorphism can be generated by coeval
magmatism or rapid exhumation, whereas
longer-lived (>10 Ma) high thermal gradient
metamorphism is more suggestive of slow
erosion rates and crust that is in approximate
isostatic equilibrium. A number of studies
have attempted to identify the thermal drivers
that allow the attainment and maintenance
of high thermal gradients on a regional scale,
particularly the attainment of UHT conditions
(e.g. Brown, 2007, 2014; Clark et al., 2011;
Gorcezyk et al., 2015; Harley, 2004; Kelsey,
2008; Kelsey and Hand, 2015; Sandiford and
Hand, 1998; Sandiford and Powell, 1986,
1991; Santosh and Kusky, 2010; Sizova et al.,
2014; Wells, 1980; Wickham and Oxburgh,
1985).

The hi gh

temperature terranes exceed the conductive

thermal gradients in  most
limit, assuming normal crustal heat production
of <1.5-2.0 yWm™ and mantle heat flow of
of ~30 mWm” (e.g. Kelsey and Hand, 2015).
Many authors therefore suggest that the
primary thermal driver for high temperature
metamorphism is advective addition of mantle
heat, either through extension or lithospheric
delamination (e.g. Bohlen, 1991; Collins,
2002; Diener et al., 2013; Kemp et al., 2007
Sandiford and Powell, 1986, 1991). A direct
link between mantle magmatism and high
thermal gradient metamorphism is observed
in some terranes (e.g. Clark et al., 2014; Guo

et al., 2012; Johnson et al., 2003b; Kemp et

al., 2007; Westphal et al., 2003), but many
high to ultrahigh temperature terranes do
not record field evidence for significant
mafic magmatism (e.g. Clark et al., 2011).
Nonetheless, extension or thinning of the
lithosphere resulting in increased mantle heat
flow is commonly proposed as a mechanism
high
metamorphism (Currie and Hyndman, 2006;
De Yoreo et al., 1991; Hyndman et al., 2005;
Sandiford and Powell, 1986; Sizova et al.,
2014; Wickham and Oxburgh, 1985). In
the modern Earth, back-arcs are regions of

to  generate thermal gradient

thinned lithosphere and high surface heat
flow that may maintain elevated temperatures
for 300 Myr (Currie and Hyndman, 2006;
Hyndman et al., 2005). Thickening of back-arc
basins or extended crust during subsequent
accretion or continental collision has been
proposed as a mechanism to augment
temperatures by increasing radiogenic heat
production in already hot crust (Brown,
2006, 2007; Clark et al., 2011; Collins, 2002;
Gorczyk et al., 2015; Kemp et al., 2007;
Sizova etal., 2014). 2D geodynamic modelling
has shown that shallow slab breakoff and
syn-extensional magmatism as a result of
decompressional melting of asthenosphic
mantle can generate UHT conditions (Sizova
et al., 2014), as can thickening of a hot,
thin and wide back-arc (Gorczyk et al., 2015).
However, other workers have argued that
granulite terranes preserve anhydrous mineral
assemblages, which are inconsistent with a
back-arc setting that is hydrated as a result of
fluids from the subducting slab (Santosh and
Kusky, 2010). Instead, subduction of an actively
spreading ridge is invoked as a mechanism
to allow upwelling asthenosphic mantle
to come into contact with the base of the
overriding plate, generating UHT conditions
(Santosh and Kusky, 2010; Santosh et al.,

2011, 2012). This mechanism would be likely
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to generate relatively spatially localised UHT

conditions.

An alternative mechanism is the burial of high
heat producing basement to mid-crustal depths,
which can generate the conditions required
for high thermal gradient metamorphism in
the overlying sedimentary rocks (Anderson
et al., 2013; Clark et al., 2011; Sandiford
and Hand, 1998; Sandiford et al., 1998). As
heat production is concentrated in the mid-
crust, this mechanism can allow high thermal
gradient metamorphism in the mid- to upper
crust without causing significant melting of a
refractory lower crust (Sandiford and Hand,
1998). Radiogenic heat production is a long-
lived heat source, allowing high thermal
gradients to be maintained for as long as the
terrane remains buried (Clark et al., 2011).
heat
production to generate high temperatures,

However, for elevated radioactive
erosion must be limited (e.g. by the formation
of plateaux or negligible topography) to allow
the increased heat production associated with
thickened crust time to substantially raise
crustal temperatures via conductive heating
(Chardonetal.,2009; Clark etal.,2011,2015).
For a typical range of crustal thicknesses, it may
take in the order of 30—50 Myr to approach the
conductive limit (Clark et al., 2011). Another
important consideration in the attainment
of high temperatures is the preconditioning
(dehydration) of crust as a result of previous
metamorphism or a prolonged prograde
evolution, which limits the thermal buffering
effect of partial melting during subsequent
events (Brown and Korhonen, 2009; Clark
et al., 2011; Kelsey and Hand, 2015; Stiiwe,
1995; Vielzeuf et al., 1990). Therefore, high
thermal gradient metamorphism is not limited
to regions of high mantle heat flow, but may also
occur in regions of continental collision (e.g.

large hot orogens such as the Tibetan Plateau)

if there is a combination of elevated crustal heat
production, slow erosion and preconditioned
crust (e.g. Chardon et al., 2009; Clark et
al., 2011; Hacker et al., 2000; Jamieson and
Beaumont, 2013).

In many terranes, it is likely that a number
of these mechanisms operate simultaneously
to contribute to the generation of high
temperatures. Therefore, detailed geological
and metamorphic constraints from high thermal
gradient terranes are required to inform the
geodynamic models that seek to understand
the formation of long-lived, high temperature

metamorphism.

Part 1 of this thesis explores the metamorphic
evolution of three well-known, long-lived,
high thermal gradient terranes: the Windmill
Islands, east Antarctica (part of the larger
Albany—Fraser—Wilkes Land orogenic system);
the central Aileron Province, central Australia;
and the Rayner Complex, ecast Antartctica
(Fig. 2). Each of these terranes record very
high thermal gradients of >130 °C/kbar with
elevated temperatures persisting for more than
80 Myr. As the duration of metamorphism
provides an important constraint on the
causative mechanisms of high thermal gradient
metamorphism,  calculated ~ metamorphic
phase diagrams are combined with in situ U—
Pb monazite geochronology to determine
a P—T—t path for these terranes and make
inferences about the likely tectonic setting of
metamorphism. In addition, zircon U-Pb and
Lu—Hf isotopes from the Windmill Islands are
used to investigate the crustal evolution and
provide further constraints on the tectonic
setting of metamorphism. Zircon Lu-Hf
isotopes from syn-metamorphic magmatic
rocks can be used to assess the proportion of
juvenile input, and therefore the role of mantle

magmatism.
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Figure 2: Simplified maps of Australia and Antarctica showing the locations of the high thermal gradient

terranes investigated in this thesis.

3. The role of partial melting during
high temperature metamorphism

The process of partial melting and melt
high

metamorphism is the fundamental process that

migration during

temperature

differentiatesthe continental crustintoaresidual

lower crust and an upper crust that is enriched
in incompatible elements (Rudnick and Gao,
2003). It also results in rheological stratification
(e.g. Diener and Fagereng, 2014; Handy et
al., 2001; Jackson et al., 2004; Yakymchuk
and Brown, 2014b). An understanding of the
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processes of melt generation and melt loss are
therefore necessary for the interpretation of
residual granulites and migmatites, as well as
having implications for P—T modelling due to
the compositional consequences of melt loss

during metamorphism.

3.1. Melt generation and melt extraction

The amount of melting at the fluid-present
solidus is commonly thought to be insignificant,
unless there is the retention or infiltration of
an H O-rich fluid (e.g. Johnson et al., 2003a,
2011; Rubatto et al., 2009; Sawyer, 2010;
Yakymchuk and Brown, 2014b). Instead, the
production of large volumes of melt in the
crust is interpreted to occur as a result of
suprasolidus fluid-absent dehydration melting
With increasing temperature, melting proceeds
via the breakdown of hydrous minerals such as
muscovite, biotite and hornblende and by the
consumption of quartz and feldspar, depending
on protolith composition (e.g. Patifio Douce
and Beard, 1995; Patino Douce and Harris,
1998; Rapp et al., 1991; Vielzeuf and
Holloway, 1988). Mineral equilibria modelling
in melt-bearing systems has provided a better
understanding of the effects of bulk composition
and rock fertility on melt production (e.g.
Brown and Korhonen, 2009; Johnson et al.,
2008; White et al., 2001, 2007; Yakymchuk
and Brown, 2014b) whereas experimental and
petrological observations have provided further
information on the generation and segregation
of melt at both grain and outcrop scale (e.g.
Brown, 2010; Diener et al., 2014; Guernina
and Sawyer, 2003; Handy et al., 2001; Johnson
et al., 2001; Marchildon and Brown, 2002;
Sawyer, 1994, 2001; Yakymchuk and Brown,
2014b; Yakymchuk et al., 2013). Melting is
interpreted to begin at grain boundaries and
accumulate until it reaches a critical threshold,
where itis then lost episodically from the source
rock (Sawyer, 1994; Yakymchuk and Brown,

2014b;Yakymchuk et al., 2013). Each melt loss
event modifies the chemical composition of the
system that generated the melt, and therefore
the fertility of the residual rock (Brown,
2013; Korhonen et al., 2010; Vielzeuf et al.,
1990; White and Powell, 2002; Yakymchuk
and Brown, 2014b). In a static system, melt
loss has been interpreted to occur when the
melt connectivity threshold is exceeded, at
~7% melt (Rosenberg and Handy, 2005).
However, in a system undergoing deformation
this threshold is likely to be much lower (e.g.
Brown, 2010; Handy et al., 2001), and melt
loss may even be continuous (e.g. Johnson et
al., 2011). Therefore, the processes of melt
generation and melt loss in high temperature
metamorphic rocks remains incompletely

understood.

Melt loss has a number of important
consequences for tectonics, crustal rheology
and the long-term thermal character of the
crust (e.g. Brown, 1994; Diener and Fagereng,
2014; Handy et al., 2001; Rapp et al., 1991;
Sandiford etal., 2002; Sawyer, 1994; White and
Powell, 2002; Yakymchuk and Brown, 2014b).
Melt-bearing horizons are extremely weak
and may localise strain or flow in response to
gravitationally or tectonically-induced stresses
(e.g. Beaumont et al., 2001, 2006; Chardon
et al., 2009; Diener and Fagereng, 2014;
Jamieson and Beaumont, 2013; Rey et al.,
2009; Yakymchuk and Brown, 2014b). This has
implications for the timescales that rocks reside
within collisional orogens (e.g. Chardon et al.,
2009). However, the long-term effect of melt
loss is to strengthen the residual lower crust
relative to the unmelted protoliths by replacing
weak mica and quartz with strong garnet and
feldspar-bearing assemblages (Diener and
Fagereng, 2014). Partial melting also results in
the redistribution of heat producing elements
to the upper crust, resulting in long-term
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stabilisation of the lithosphere (Sandiford,
2010; Sandiford and McLaren, 2002; Sandiford
et al., 2002). The redistribution of heat
producing elements into the upper crust
during orogenesis means that they may be
more likely to be eroded and incorporated into
sedimentary basins. The deposition of detritus
enriched in heat producing elements on passive
margins has been proposed as a mechanism
for generating high thermal gradient terranes
during subsequent collision (Clark etal., 2015).
Finally, as discussed above, previous melt loss is
an important consideration when investigating
the P-T evolution of high thermal gradient
terranes, as melt loss limits further melting
reactions and allows the attainment of higher
temperatures (e.g. Brown and Korhonen,
2009; Clark et al., 2011; Stiiwe, 1995; Vielzeuf
etal., 1990).

3.2. Melt and the interpretation of geochronology

Determining the timing of metamorphism
is vital for correlating metamorphic events
across a terrane, but also for determining the
timescale of the high temperature processes.
However, in many suprasolidus terranes, the
interpretation of monazite and zircon U-Pb
geochronology requires an assessment of the
effects of fluid and melt-bearing processes. The
stability of monazite and zircon in suprasolidus
rocks is strongly dependent on the P-T
conditions of metamorphism and the amount
and chemistry of the melt (e.g. Kelsey et al.,
2008; Rapp and Watson, 1986; Stepanov et
al., 2012; Yakymchuk and Brown, 2014a). In
the residual source rock, monazite (and to a
lesser extent, zircon) may be partially dissolved
into melt by prograde metamorphism to high
temperatures (Kelsey et al., 2008; Stepanov
et al., 2012; Yakymchuk and Brown, 2014a).
Therefore, monazite and zircon ages in high
temperature rocks may not record peak
conditions, and instead reflect growth during

melt crystallisation near the elevated solidus
(Brown and Korhonen, 2009; Kelsey et al.,
2008; Roberts and Finger, 1997; Stepanov
et al., 2012; Yakymchuk and Brown, 2014a).
As a result, age variation between samples
in high temperature, melt-depleted terranes
has been explained by differences in solidus
temperatures of the residual rock (Korhonen
et al., 2013b; Reno et al., 2012). An array of
concordant U-—Pb analyses within samples
has been interpreted to reflect either Pb-loss
as a result of prolonged high temperature,
high strain conditions (Halpin et al., 2012),
multiple, discrete thermal events within a short
timescale (e.g. Robb et al., 1999; Smithies et
al., 2011), or continuous growth due to slow
cooling from the point where melt begins to
crystallise to the temperature of the solidus
(Kelsey, 2008; Korhonen et al., 2013b; Walsh
et al., 2015; Yakymchuk and Brown, 2014a).
The interpretation of monazite geochronology
is additionally complicated as monazite is also
susceptible to low temperature fluid flow
processes (e.g. Harlov et al., 2011; Kelly et
al., 2012; Williams et al., 2011), including
the release of aqueous fluids as a result of
the crystallisation of nearby magmatic rocks
or rocks with higher solidi. Therefore, an
understanding of the P—T conditions and volume
of melt generation and melt loss are necessary
for the interpretation of geochronology in high

temperature terranes.

3.3. Melt loss and implications for P—T modelling

Despite the importance of melt loss for the
interpretation of residual granulites and
migmatites, quantifying the effects of melt loss
remains a significant challenge for metamorphic
geologists when inferring the P—T evolution of
a terrane. The open-system process of melt loss
is necessary for the preservation of anhydrous
granulite facies mineral assemblages that
would otherwise be retrogressed on cooling
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in a closed system (Brown, 2002; Guernina
and Sawyer, 2003; White and Powell, 2002).
However, melt loss is likely to significantly
modify the composition of the protolith rock,
meaning that metamorphic geologists cannot
use the residual granulite bulk compositions
to quantify the prograde P—T evolution of such
rocks (e.g. Johnson and White, 2011; Kelsey
and Hand, 2015; White and Powell, 2002).

The effects of step-wise melt loss on the
chemical composition of the residual rock
can be quantified using a series of calculated
P—T pseudosections (Yakymchuk and Brown,
2014b). This can then be used to assess the
effects of melt loss on crustal rheology (Diener
and Fagereng, 2014) or the behaviour of
geochronometers (Yakymchuk and Brown,
2014a). An inverse process can be used to
reconstruct pre-melt loss bulk composition
to model the possible prograde history where
the composition of the protolith is unknown
(Korhonen et al., 2013a).

Part 2 of this thesis uses a sequence of iron-
rich metasedimentary rocks in the southern
Gawler Craton (Fig. 2) that range in grade
from greenschist to granulite facies to model
the effects of melt loss in a situation where
the bulk composition of both the unmelted
protoliths and residual granulites are known.
One compositional implication of melt loss
is that the residual rock becomes enriched in
compatible elements such as iron (e.g. Brown,
2013; Guernina and Sawyer, 2003; Redler et
al., 2013; Sawyer, 1994; Vielzeuf et al., 1990;
White and Powell, 2002; Yakymchuk and
Brown, 2014b). This tendency for compatible
clement enrichment potentially has economic
implications because it can increase the
concentration of metals in rock sequences that
contain primary metal anomalies to the point

where they are economically attractive.

4. Recognising polymetamorphism in
high thermal gradient terranes

The traditional approach to determining
the  tectono-metamorphic  evolution  of
terranes is to use the paragenetic sequence of
mineral growth, including mineral reaction
microstructures, to interpret a likely P—T—t
path and to use this to inform tectonic models.
However, to interpret a P—T path, it is necessary
to first establish that the paragenetic sequence
records the effects of a single, continuous
metamorphic event. This is generally not
possible to do on the basis of petrography
(or calculated phase diagrams) alone. The
increasing use of in situ geochronology has
allowed metamorphic geologists to recognise
that record the
effects of temporally unrelated events (e.g.
Dutch et al., 2005; Goncalves et al., 2004;
Hand et al., 1992; Hensen and Zhou, 1995;
Kelsey et al., 2007; Korhonen et al., 2012;
Yakymchuk etal., 2015). However, recognising

reaction microstructures

polymetamorphism in granulite terranes
that have experienced extensive melt loss
remains difficult and therefore requires care to
unravel. As these terranes typically comprise
rocks with refractory, unreactive chemical
compositions, the paucity of a fluid hinders
the formation of new, overprinting mineral
assemblages and the resetting or new growth
of high-temperature geochronometers such as
monazite and zircon (e.g. Driippel et al., 2012;
Korhonen et al., 2012; Phillips et al., 2007,
2009; Tenczer et al., 2006; White and Powell,
2002). Nonetheless, if an appropriate heat
source exists, these terranes are susceptible to
high-T thermal reworking because they largely
avoid the energetic requirements for melting
(e.g. Brown and Korhonen, 2009; Clark et al.,
2011; Stiwe, 1995;Vielzeuf et al., 1990; Walsh

etal., 2015).

Part 3 of this thesis explores the controls on
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metamorphic reworking and the mechanisms

for recognising cryptically  recorded
polymetamorphism in refractory terranes
that have undergone melt loss. The Rayner
Complex (Fig. 2) is a terrane that records
apparently different P—T paths for spatially
adjacent areas. In situ monazite geochronology
is combined with petrographic interpretation
to investigate the record of polymetamorphism
in a terrane that generally preserves rocks with
residual, metamorphically unreactive chemical

compositions.

5. Thesis outline
The central aim of this thesis is to develop a
framework for how high thermal gradient
terranes behave, from the tectonic setting and
mechanisms for attaining high temperatures,
their ability to record the prograde to
peak metamorphic history, and finally the
of high

metamorphism for bulk compositions and

consequences thermal gradient
reactivity during subsequent metamorphic
events. As high thermal gradient terranes
commonly only record part of their history,

this thesis has three main aims:

1. To explore the tectonic settings required

to achieve and maintain elevated
temperatures using case studies from
three terranes that record long-lived

high thermal gradient metamorphism.

2. To explore the effect of granulite facies
metamorphism and melt loss on the bulk
composition, metamorphic reactivity
and the way economic mineral systems
can be augmented via high temperature
metamorphic processes.

3. To explore the way in which metamorphic
reworking isrecorded in compositionally

resistant terranes.

This thesis has been written as a series of
individual manuscripts addressing specific
aspects of high thermal gradient terranes that
address the aims of the study. Many of these
manuscripts are published in peer reviewed
journals and so have been included in their
original published state. This leads to some
repetition in the methodology sections and
the interpretation of P-T modelling and
geochronology, buthighlights the considerations
that are necessary when determining the P—T—¢
evolution of a high temperature terrane. New
activity—composition (a—x) models for use with
the most recent update of the thermodynamic
dataset used by THERMOCALC, ds62, were
released for public use during the course of
this PhD (Holland and Powell, 2011; Powell
et al., 2014; White et al., 2014a, 2014b).
Therefore, ds62 was used for the calculation of
phase equilibria in Chapters 3 and 6, whereas
Chapters 4, 5 and 7 use ds55 (Powell and
Holland, 1988).

5.1. Part 1: Chapters 2—5

Chapters 2 and 3 provide a case study from
the Windmill Islands, east Antarctica. The
Windmill Islands region is part of a larger, long-
lived, high to ultrahigh temperature orogenic
belt that includes the Albany—Fraser Orogen in
Western Australia and the Musgrave Province in
central Australia. The Windmill Islands record
evidence for two stages of metamorphism and
voluminous high temperature magmatism. A
number of different tectonic scenarios have
been proposed for the Windmill Islands region
prior to the first stage of metamorphism,
ranging from a passive margin that evolves into
a foreland basin to thickening of an extensional
accretionary orogen. Chapter 2 uses U-Pband
Lu—Hf isotopic systems in zircon to investigate
the crustal evolution of the Windmill Islands.
Detrital zircon age data is used to investigate
the likely sources of sedimentation and the

-11-
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Lu—Hf isotopic signature of zircon in magmatic
rocks is used to investigate the possible sources
of magmatism, with the aim of providing
constraints on the tectonic setting. Chapter
3 uses in situ U-Pb monazite geochronology
and calculated metamorphic phase diagrams
from samples that record different stages of
the overall PT history of the Windmill Islands
to unravel the two stages of metamorphism.
This is then used to assess the likely tectonic
setting of the eastern margin of the Windmill
Islands—Albany—Fraser system in the context of
the constraints placed on crustal evolution in
Chapter 2.

Chapter 2 is under review in Precambrian
Research as:

Morrissey, L.]., Payne, J.L., Hand, M., Clark,
C.,Taylor, R., Kirkland, C.L., Kylander-Clark,
A. Linking the Windmill Islands, east Antarctica
and the Albany—Fraser Orogen: insights from
U-—Pb zircon geochronology and Hf isotopes.

Chapter 3 is written for submission to Journal
of Metamorphic Geology as:

Morrissey, L.J., Hand, M., Kelsey, D.E.
Assessing tectonic models for Stage 1-Stage Il
metamorphism in the Antarctica segment of
the Musgrave—Albany—Fraser Orogen using
P—T constraints.

Chapter 4 provides a case study from the
Reynolds Range in the central Aileron Province,
central Australia. The Reynolds Range is an
exceptional example of apparently long-
lived high thermal gradient granulite facies
metamorphism where evidence for coeval
magmatism or extension is absent. Existing
zircon and monazite U-Pb isotopic age data
from the Reynolds Range suggest that anatectic
conditions were sustained for up to 30 Myr
during the Early Mesoproterozoic and were
followed by c. 100 Myr of slow cooling (Buick

etal., 1999; Rubatto etal., 2001;Vry and Baker,
2006; Williams et al., 1996). Therefore, a long-
lived, non-magmatic heat source is required
to sustain the elevated temperatures. In situ
U-Pb monazite geochronology from samples
recording specific parts of the P—T evolution is
combined with calculated metamorphic phase
diagrams to document the P—T—t evolution
and constrain the duration of metamorphism
in the Reynolds Range. The duration of high
temperature metamorphism and the inferred
cooling rate provide important constraints
on the mechanisms that can generate high
thermal gradient metamorphism. They suggest
that the Reynolds Range is an example of
metamorphism driven by the burial of high
heat producing crust.

This chapter is published as:

Morrissey, L.J.,, Hand, M., Raimondo,
T., Kelsey, D.E., 2014. Long-lived high-
temperature, low-pressure granulite facies
metamorphism in the Arunta Region, central
Australia. Journal of Metamorphic Geology, 32,
25-47.doi:10.1111/jmg.12056.

Chapter 5 provides a case study from the
Rayner Complex, east Antarctica, which forms
part of a vast high thermal gradient terrane
that includes the ultrahigh temperature Eastern
Ghats Province in India. Detailed P—T—t studies
from the Eastern Ghats suggest that ultrahigh
conditions were sustained for >50 Myr and
may have persisted for as long as 200 Myr
(Korhonen et al., 2013b). Metamorphism
involved an anticlockwise P—T path dominated
by isobaric cooling and was associated
with voluminous granitic and charnockitic
magmatism (Korhonen et al., 2013a, 2013b).
Charnockitic magmatism in the Rayner
Complex appears to be equally long-lived
(Halpin etal., 2012). However, the only studies

from the Rayner Complex that combine in situ

-12-
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geochronology with modern metamorphic
phase equilibria are limited to outcrops along
the coast (Halpin et al., 2007a, 2007b). The
northern Prince Charles Mountains (nPCM)
provide a large region of inland outcrop in the
Rayner Complex. Chapter 5 uses samples of
metapelite from the nPCM to place detailed
P—T—t constraints on metamorphism in the
Rayner Complex, which can then inform
geodynamic models. The Rayner Complex
provides an example of an extremely long-
lived high thermal gradient terrane that is
likely to be the result of thickening of a wide
back-arc, where the maintenance of elevated
temperatures was probably assisted by episodic

magmatism.

This chapter is published as:

Morrissey, L.]., Hand, M, Kelsey, D.E., 2015.
Multi-stage metamorphism in the Rayner—
Eastern Ghats Terrane: P—T—t constraints from
the northern Prince Charles Mountains, east
Antarctica. Precambrian Research,267,137—-163.
doi: 10.1016/j.precamres.2015.06.003.

5.2. Part 2: Chapter 6
Chapter 6

metamorphism and step-wise melt loss on a

explores the process of
sequence of iron-rich metasedimentary rocks
in the southern Gawler Craton that range
in grade from greenschist facies phyllite to
granulite facies gneisses. The greenschist
facies phyllites are not economic but the
granulite facies gneisses contain economic
quantities of magnetite. This chapter uses
a series of calculated metamorphic phase
diagrams to model the change in composition
and proportion of Fe-oxides during high
temperature metamorphism of two samples
of the greenschist facies protoliths. Chapter
6 shows that volume reduction as a result of
granulite facies melt loss is a mechanism to

concentrate iron in the residual rock package

up to economic grades.

This chapter is published as:

Morrissey, L.J., Hand, M, Lane, K., Kelsey,
D.E., Dutch, R.A., 2016. Upgrading iron-
rich sequences to economic grade iron-ore
deposits by melt loss during granulite-facies
metamorphism. Ore Geology Reviews, 74, 101—
121. doi: 10.1016/j.oregeorev.2015.11.012.

5.3. Part 3: Chapter 7
Chapter 7

recognising the effects of high temperature

provides a framework for

reworking in a refractory residual terrane
that has undergone extensive melt loss
and metamorphism. The Rayner Complex
underwent high temperature metamorphism
and melting during the Rayner Orogeny,
the conditions of which are constrained in
Chapter 5. This is used as basis to assess the
metamorphic effects of later reworking of
the Rayner Complex during the Cambrian.
Detailed petrography is combined with in situ
U-Pb geochronology and P—T pseudosections
to investigate the effect of a second high
temperature event on those regions that may
have experienced retrogression at the end
of the Rayner Orogeny. Chapter 7 shows that
adjacent regions that preserve different P—T
paths (clockwise versus anticlockwise) can
be used in conjunction with geochronology
to recognise a second, high temperature
metamorphic  event that is

cryptically

recorded.

This chapter is published as:

Morrissey, L.J., Hand, M., Kelsey, D.E.,
Wade, B.P., 2016. Cambrian high-temperature
reworking of the Rayner—Eastern Ghats
terrane: constraints from the northern Prince
Charles Mountains region, east Antarctica.
Journal of Petrology, 57, 53—92. doi: 10.1093/
petrology/egv082.
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5.4. Key findings and conclusions: Chapter §
Chapter 8 summarises the key findings of
each of the chapters of this thesis and provides
some future research directions to further
understand the origin and evolution of high
thermal gradient terranes.

In addition to the chapters in this thesis, I have
authored or co-authored two other manuscripts
during the course of my PhD. These are loosely
related to the subject matter of this thesis and
are referred to in a number of the following
chapters. Full text versions of these papers are
included in this thesis as Appendix 1. The
manuscripts are published as:

L.J., Hand, M., Wade, B.P,
Szpunar, M., 2013. Early Mesoproterozoic

Morrissey,

metamorphism in the Barossa Complex,
South Australia: links with the
margin of Proterozoic Australia. Australian
Journal of Earth Sciences, 60, 769—795. doi:
10.1080/08120099.2013.860623.

ecastern

Wong, B., Morrissey, L.]., Hand, M., Fields,
C., Kelsey, D.E., 2015. Grenvillian-aged
reworking of late Paleoproterozoic crust
of the southern North Australian Craton,
central Australia: implications for the assembly

Precambrian

10.1016/j.

of Mesoproterozoic Australia.
Research, 270, 100-123. doi:
precamres.2015.09.001.
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ABSTRACT
U-—Pb and Hf isotopic data from metasedimentary and magmatic rocks from the Windmill Islands
in Wilkes Land, East Antarctica, confirm age and crustal evolution links between the Albany—
Fraser Orogen and this part of East Antarctica. Detrital zircon age data indicate that the protoliths
to the metasedimentary rocks of the Windmill Islands were deposited in the interval 1340—-1300
Ma. Metamorphic zircon growth at c¢. 1300 Ma and a crystallisation age of c. 1315 Ma for the
protoliths to an orthogneiss that intrudes the metasedimentary rocks provide a minimum depo-
sitional age. Significant detrital zircon age components are identified at 1790 Ma, 1595 Ma and
1380 Ma. The 13401300 Ma depositional interval and the detrital age components suggest that
the Windmill Islands metasedimentary rocks can be linked to metasedimentary rocks of the Arid
Basin in the Albany—Fraser Orogen. The sediment sources were likely to be derived from the West
Australian Craton as well as a significant component from the c. 1410 Ma Haig Cave Supersuite in
the Madura Province. This combination of sources suggests a back-arc setting for the Arid Basin,
consistent with the short interval between deposition and high thermal gradient metamorphism.
The magmatic rocks in the Windmill Islands have intrusive ages of c. 1315 Ma, 1250-1210 Ma and
12001160 Ma. The first phase of magmatism was likely to be derived from melting of Arid Basin
metasedimentary rocks, based on abundant inherited zircon with similar ages to the surrounding
metasedimentary rocks. The final two phases of magmatism have juvenile € (t) values consistent

with greater asthenospheric sources within these melts.

1. Introduction

Wilkes Land, in East Antarctica (Fig. 1),
was a central component in the formation
of the Rodinia
supercontinents (e.g. Aitken et al., 2014;
Boger, 2011; Fitzsimons, 2000, 2003; Payne

et al., 2009). There is general agreement in

Nuna, and Gondwana

palacogeographical reconstructions that Wilkes
Land and southern Australia were contiguous
during the Mesoproterozoic (e.g. Aitken et al.,
2014, 2016; Boger, 2011; Fitzsimons, 2003; Li
et al., 2008). This reconstruction is supported
by existing geochronology that suggests that
the Windmill Islands in Wilkes Land record
two stages of metamorphism and magmatism
between 1340—1300 Ma and 12401140 Ma,
coeval with Stages I and II of the Albany—Fraser
Orogeny in Western Australia and the Mt West
and Musgrave Orogenies in the Musgrave
Province in central Australia (Clark etal., 2000;
Kirkland etal., 2011, 2013b, 2015b; Post etal.,
1997; Spaggiarietal.,2015; Zhangetal.,2012).

This similarity in geochronology between
Wilkes Land, the Albany—Fraser Orogen and
the Musgrave Province has previously been
used to suggest these regions form part of a
vast Mesoproterozoic orogenic system that
extended from Antarctica to the Musgrave
Province, including perhaps extensions into
the Warumpi Province in central Australia (Fig.
1; e.g. Clark et al., 2014; Fitzsimons, 2003;
Kirkland et al., 2011; Morrissey et al., 2011;
Smits et al., 2014; Walsh et al., 2015; Wong
et al., 2015) and even perhaps relics as far
westward as the Rudall Province on the margin
of the Archean Pilbara Craton (Kirkland et al.,
2013a).

Regional airborne geophysical datasets have
been used to provide geometric constraints on
the original Mesoproterozoic configuration of
this vast orogen and to attempt to reconstruct

links between the Australian and Antarctic parts

of the system (Aitken et al., 2014, 2016). The
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Figure 1: Simplified geological map of Australia and Antarctica showing relevant geological provinces.

Australian elements are modified from Kirkland et al. (2011). Tectonic interpretation of basement geology in

Antarctica inferred from geophysics by Aitken et al. (2014).

paucity of outcrop within both Antarctica and
Australia means there are limited geological
constraints on the reconstruction, and the
links between each of the components of
this large Mesoproterozoic system remain
poorly understood (e.g. Kirkland et al.,
2013b; Smits et al., 2014). Recent extensive
geochronological and isotopic datasets from
the Albany—Fraser Orogen and Musgrave
Province have been used to constrain the
timing and source of sedimentation and
the magmatic history of these regions (e.g.
Kirkland et al., 2011, 2013b, 2015b; Smithies
et al., 2010; Spaggiari et al., 2015; Waddell et
al., 2015). These recent studies suggest that
despite the temporal similarities in orogenesis
and magmatism, the two regions evolved on
different basement. The Albany—Fraser Orogen

is proposed to have formed on evolved crust

that is likely to correspond to the Archean West
Australian Craton, whereas the basement to the
Musgrave Province is proposed to be younger
and more juvenile (Kirkland et al.; 2013b,
2015b). The Madura Province to the south
appears to share similar isotopic characteristics
with the Musgrave Province basement, and
the two regions are proposed to be contiguous
(Fig. 1; Kirkland et al., 2015b). However, the
geochronological and isotopic dataset from
Wilkes Land is more limited and there is little
information on the basement rocks in this
region (Méller et al., 2002; Post, 2000; Post et
al., 1997; Zhang et al., 2012).This has hindered
attempts to link the geology of Wilkes Land
to other components in the Mesoproterozoic
orogenic system. A clear understanding of the
evolution of each of these regions is therefore

pivotal to tectonic reconstructions of both the

-28-



Chapter 2

Crustal evolution qf the Windmill Islands

Australian and Antarctic continents during the

Proterozoic.

This study presents zircon U-Pb and Lu—Hf
isotopic results from metasedimentary rocks
and structurally constrained magmatic rocks
from the Windmill Islands. The Windmill Islands
represent the most areally significant region of
outcrop in Wilkes Land. There has been very
little geochronology and no zircon Lu—Hf data
collected from the metasedimentary rocks
making up the Windmill Islands. The aim of this
study is to assess whether the Windmill Islands
form part of the Albany—Fraser Orogen, and
therefore whether this component of Wilkes
Land has basement corresponding to the West
Australian Craton. Isotopic data from the
metasedimentary rocks are used to establish
the timing and source of deposition and
therefore draw lithostratigraphic correlations
across the now separate Australo—Antarctic
system. Isotopic data from magmatic rocks are
used to investigate the timing and character of
magmatism and tectonic setting.

2. Geological setting

The Windmill Islands are located on the Wilkes
Land Coast and include approximately 400 km”
of exposed outcrop on peninsulas and islands
in the vicinity of the Australian Antarctic Casey
Station (Figs. 1 and 2). The outcrops consist of
high-grade deformed and migmatised pelitic
to psammitic metasedimentary rocks and
orthogneisses that have been intruded by a
charnockite suite, minor porphyritic granite
and late-stage dolerite dykes (Blight and Oliver,
1977; Moller et al., 2002; Post, 2000; Zhang et
al., 2012). Approximately 70% of the outcrop
is made up of garnet-bearing granitic gneiss
or charnockite (Fig. 2; Zhang et al., 2012).
Detailed descriptions of each lithology are
given in Paul et al. (1995) and Post (2000). The
metamorphic grade in the Windmill Islands

increases from upper amphibolite facies in the
north to granulite facies in the south (Fig. 2;
Blight and Oliver, 1977; Moller et al., 2002;
Post, 2000). There is no systematic variation
in Nd isotopic or geochemical composition of
protolith lithologies between the lower and
higher grade areas of the Windmill Islands,
suggesting they are a single terrane with a
common crustal history (Blight and Oliver,
1977; Moller et al., 2002; Post, 2000).

The metasedimentary rocks are intruded by
protoliths to the orthogneiss units and therefore
are the oldest rocks exposed in the Windmill
Islands. The age of the sedimentary protoliths
Inherited
zircon yielding magmatic crystallization ages
of 1450—1350 Ma have previously been found
within magmatic rocks in the Windmill Islands.

has hitherto been unconstrained.

These inherited ages have been interpreted as
maximum depositional ages of the sedimentary
protoliths or an early phase of igneous activity
(Post, 2000; Zhang et al., 2012). The protoliths
to the orthogneisses intruded during two
periods of magmatic activity at c. 1315 Ma and
c. 1250-1210 Ma (Post, 2000; Zhang et al.,
2012), the former of which closely corresponds
to the timing of magmatic activity during
Stage I (13451260 Ma) of the Albany—Fraser
Orogeny (Bodorkos and Clark, 2004; Clark et
al., 2000). The magmatism in Wilkes Land has
been correlated to two tectono-metamorphic
events: M /D, between 1340 and 1300 Ma
and M_/D, between 1240 and 1140 Ma (Post,
2000; Post et al., 1997; Zhang et al., 2012).

The structural history of the Windmill Islands
has been described in detail by previous workers
(Paul etal., 1995; Post, 2000). M /D, involved
the formation of a horizontal fabric and
isoclinal folds defined by aligned leucosomes
(Paul et al., 1995; Post, 2000). Metamorphic
conditions associated with this event reached
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Figure 2: Sketch geological map of the Windmill Islands, from Post (2000). Ages of lithologies are from Post

(2000) and Zhang et al. (2012).

upper amphibolite facies, with the formation
of sillimanite—biotite—cordierite or biotite—
garnet-bearing assemblages in metapeliticrocks
(Blight and Oliver, 1977; Paul et al., 1995) and
the intrusion of granite on Clark Peninsula at c.
1315 Ma (Fig. 2).The thermal and deformation
effects of M,/D, increase progressively to the
south, culminating in granulite facies conditions

in the southern islands. The event occurred in

two stages, D, and D, . Garnet and cordierite-
bearing leucosomes formed early in M, and
were folded in tight isoclinal folds during D
(Blight and Oliver, 1977; Paul et al., 1995;
Post, 2000). Voluminous garnet-bearing granite
was also intruded during D, and was weakly
deformed (Fig. 2; Post, 2000). Zhang et al.
(2012) interpreted samples of garnet-bearing

granitic - gneiss and foliated garnet—bearing
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granite to have magmatic ages of 1250-1240
Ma, whereas Post (2000) suggested a younger
intrusion age for a syn- to post- D Zaorthogneiss
of 1214 £ 10 Ma. Deformation during D,
involved tight southeast plunging folds resulting
in complex fold interference patterns. Partial

melting continued during D_ ., with garnet—

orthopyroxene—cordierite-bezilb*ing leucosomes
forming in the axial plane of D, = structures.
The final stages of the second metamorphic
event involved the intrusion of the Ford Island
Granite and the Ardery Charnockite in the
southern Windmill Islands (Fig. 2). The Ford
Island Granite has an age of 1173 £ 9 Ma and
a weak S~ foliation, consistent with intrusion
during the waning stages of D, (Post, 2000).
Zhang et al. (2012) interpreted the Ardery
Charnockite to be a syntectonic pluton that
contains the regional S, foliation, emplaced at
c. 1200 Ma. However, Post (2000) interpreted
it to still preserve the original igneous flow
fabric and to have intruded after the main phase
of deformation at 1163 = 7 Ma.

3. Sampling and Methods

Eight samples were selected for LA-ICP-
MS U-Pb and Lu—Hf isotopic analysis from
locations throughout the Windmill Islands (Fig.
2; Table 1). Four metasedimentary rocks were

Table 1: Sample locations and lithology.

sampled with the aim of providing constraints
on the provenance and timing of deposition.
Four structurally constrained granitic and
charnockitic samples were selected to provide
constraints on the timing of magmatism and
peak metamorphism. The Lu—Hf isotopic
signature of dated zircon crystals in these rocks
was also investigated to help define source melt

compositions.

Zircons were separated from crushed rocks
using magnetic and heavy liquid techniques. The
separated zircon crystals were hand-picked and
mounted in 1 inch epoxy discs. The epoxy disks
were polished to half grain thickness to expose
grain centres. Mounts were carbon coated and
imaged using a cathodoluminescence (CL)
detector on a Tescan MIRA3 Field Emission
scanning electron microscope (SEM) at Curtin
University, Perth, to identify compositional

domains for analysis.

3.1. U=Pb geochronology

U-Pb isotopic analyses were done at the
University of California Santa Barbara, using
a Photon Machines 193 nm nanosecond laser,
a HelEx ablation cell and a Nu Plasma high
resolution multicollector inductively coupled
plasma-mass the

spectrometer following

Sample Location Easting Northing Rock type

Metasedimentary rocks

WIO7 Cameron Island 49D 482148 2655814  Upper amphibolite facies metasediment
WI40 Mitchell Peninsula 49D 479134 2644765  Granulite facies pelitic gneiss

WI89 Robinson Ridge 49D 481688 2639149  Granulite facies metapelite

WI68 Herring Island 49D 482772 2634855  Granulite facies pelitic gneiss
Magmatic rocks

WI43 Clark Peninsula 49D 480225 2651026 Syn-D, orthogneiss

WI17 Mitchell Peninsula 49D 478144 2645496 Unfoliated biotite granite

WI84 Robinson Ridge 49D 481305 2638236 Coarse-grained Ardery Charnockite
WI85 Robinson Ridge 49D 481332 2638269 Fine-grained Ardery Charnockite
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methods of Kylander-Clark et al. (2013).
Trace element data were collected in ‘split
stream’ mode with an Agilent 7700s ICP-MS
and were used to assist in the assessment of U—
Pb data quality. Each analysis was pre-ablated
with one laser pulse to remove any surface
contamination. The total acquisition time of
cach analysis was 35 s and included 15 s of
background measurement and 20 s of laser
ablation. Ablation was performed with a spot
size of 20 pm and a repetition rate of 4 Hz. Each
analysis involved simultaneous measurement of
masses “*(Pb + Hg), **Pb, *’Pb, **Pb on ETP
discrete-dynode electron multipliers and *Th
and “*U on Faraday cups equipped with 10"

ohm resistors.

Iolite version 3.1 was used to reduce raw
data and calculate U-Th—Pb isotopic ratios
and their uncertainties (Paton et al., 2010,
2011). Uncertainties are quoted at the 26 level
and include contributions from the external
reproducibility of the primary reference
standard for the *’Pb/?*Pb and ’°°Pb/**U
ratios propagated in quadrature. The zircon
standard GJ-1 (TIMS normalisation data:
207ph /2°°Pb = 608.3 Ma, **°Pb /***UI = 600.7 Ma,
27ph/?*U = 602.2 Ma; Jackson et al., 2004)
was used to correct for mass bias, elemental
fractionation and instrument drift. Analyses
of the primary standard GJ-1 over all of the
analytical sessions yielded a mean **Pb/**U
age of 600.8 £ 0.8 Ma (n = 94). Data accuracy
was monitored using repeated analysis of
secondary standards 91500 (**’Pb/’*Pb age =
1065 Ma; Wiedenbeck et al., 1995), Plesovice
(*Pb/?*U age = 337.1 * 0.4 Ma; Slama et
al., 2008) and Mud Tank (732 £ 5 Ma; Black
and Gulson, 1978). Throughout the analytical
sessions, secondary standard 91500 yielded a
*Pb/?*Pb weighted average age of 1064.4 +
2.6 Ma (n = 82, 2s = 19), Plesovice yielded a
*%Pb/”**U weighted mean age of 334.8 £ 1.0

Ma (n = 25, 2s. = 6) and Mud Tank yielded
a “Pb/?*U weighted average age of 720.8
T 1.9 Ma (n = 27, 25, = 13). U-Pb data
were plotted using Isoplot (Ludwig, 2003).
Common Pb corrections were not performed
but analyses were discarded where significant
levels of ***Pb were recognised. Uncertainties
provided in brackets (denoted 2s ) with each
weighted mean age incorporate the systematic
uncertainty of the facility indicated by the
long-term external reproducibilities of the
91500 secondary standard. These are 0.90%
and 0.92% for *Pb/?*Pb and **Pb/**U,
respectively (1SD, n = 220).

3.2. Hfisotopes

The Lu-Hf-Yb isotope compositions were
same MC-ICP-MS at
University of California Santa Barbara in later

measured with the

analytical sessions after the collection of U-Pb
and trace element data. In an effort to obtain Hf
isotope data for the same domains as targeted
for U—Pb, laser ablation spots for Lu—Hf-Yb
were sited on top of the U-Pb spots. Each
analysis was pre-ablated with one laser pulse
to remove any surface contamination. The total
acquisition time of each analysis was 65 s and
included 35 s of background measurement and
30 s of laser ablation. Ablation was performed
using a repetition rate of 12 Hz. A spot size of 40
um was used for the metasedimentary samples
and sample WI43, whereas the large grain size
in samples WI17, WI84 and WI85 allowed
for a correspondingly larger laser spot size of
50 um. Each analysis involved simultaneous
measurement of masses '7'Yb, '*Yb, '"Lu,
TSHE (+ Lu +Yb), '7HE, "PHF, Hf and "°Hf

on Faraday cups.

Data were reduced using lolite version 3.1
(Paton etal., 2011). Hf mass bias was corrected
using a natural '"PHf/"7Hf ratio of 0.7325.
Isobaric interferences of 'Hf by Yb and Lu
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were corrected using the methods of Woodhead
et al. (2004) with direct measurement of
"'Yb/'”Yb fractionation using the Yb isotopic
values of Segal et al. (2003). Assuming the
same mass bias behaviour as Yb, a correction
for Lu isobaric interference on '*Hf used a
7¢Lu/"Lu ratio of 0.02655 (Vervoort et al.,
2004).

Instrument performance and stability were
monitored by analysis of zircon standards Mud
Tank, Plesovice, 91500 and GJ-1.The weighted
average '*Hf/'""Hf value for Mud Tank over all
the analytical sessions was 0.282522 * 9 (20,
n = 65) which is within uncertainty of the
published value of 0.282507 = 6 (Woodhead
and Hergt, 2005). The weighted average
7*Hf/'""Hf values for Plesovice, 91500 and
GJ-1 were 0.282482 + 14, 0.282303 *+ 17
and 0.282014 £ 16 respectively (26, n = 27).
These are within uncertainty of the respective
published values 0f 0.282482 * 13 (Slamaetal.,
2008), 0.282306 £ 8 (Woodhead and Hergt,
2005) and 0.282000 *+ 5 (Morel et al., 2008).
The initial "*Hf/"’Hf in zircon is calculated
using the 'Lu decay constant of 1.865 x
10" units (Scherer et al., 2001). Epsilon
hafnium values (g, (t)) were calculated using
CHUR values of '"*Hf/""Hf = 0.282785 and
7¢Lu/""Hf = 0.0336 (Bouvier et al., 2008).
Model ages were not calculated due to the
uncertainties associated with the appropriate
mantle and crustal composition (Payne et al.,
2016)

4. Results

4.1. U—Pb geochronology of metasedimentary rocks
U-Pb
metasedimentary samples are presented as

geochronology results for
Supplementary Data S2.1. Detailed zircon
descriptions for metasedimentary samples
are presented as Supplementary Data S2.2.
Representative CL images of zircon grains from

cach metasedimentary sample are presented in
Figure 3. *’Pb/’*Pb data are used for all age
determinations in this study. Analyses that are
excluded from the calculation of probability
density plots are shown on the concordia
plots as unfilled, grey dashed ellipses (Fig. 4).
Analyses that targeted metamorphic rims or
grains are shown as filled ellipses. The large
probability density plots in Figure 4 depict
analyses that targeted detrital cores and include
all detrital analyses that are <10% discordant.
However, only those analyses that are within 26
of concordia are used for the interpretation of
maximum depositional ages and metamorphic
populations due to the importance of obtaining
robust age constraints. The small, inset
histograms show concordant analyses that are
interpreted to reflect metamorphic zircon
based on the CL images.

4.1.1. Sample WIO7
Sample WIO7 is an
metapelite from the Swain Group in the

amphibolite facies
northern Windmill Islands. The rocks contain
leucosomes

fabric. The
sample contains garnet, biotite, K-feldspar,

fine- grained discontinuous

that are concordant with the

plagioclase, magnetite, ilmenite, quartz and
accessory zircon and monazite. Zircon grains
in this sample are typically pale pink to pale
yellow, up to 300 um in length and equant to
slightly elongate with aspect ratios up to 1:3.5.
Four zircon morphologies were recognised
in CL images (Fig. 3a). The majority of grains
have dark, homogenous rims (morphology
1) that overgrow bright, oscillatory zoned
cores (morphology 2). In some cases, there is
a thin, bright zone at the boundary between
core and rim, possibly representing minor
recrystallisation of the core (Fig. 3a). The third
morphology is defined as inner rims up to
20 um in width that have a high CL response
and overgrow low CL response cores (Fig.
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Figure 3: Representative CL images of zircon from metasedimentary rocks. The ages given are the 207p, /206ph
age. Asterisks after the age denote analyses that are >10% discordant. (a) Sample WI07. (b) Sample WI140. (c)

Sample WI89. (d) Sample WI68.
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3a). Some grains appear dark and broadly
homogenous in CL and are interpreted to be
equivalent to morphology 1 (Fig. 3a).

Eighty-two U—Pb analyses were collected from
69 grains, targeting both the cores and the
dark homogenous rims. Sixty-five cores that
are interpreted to be detrital and are <10%
discordant yield an array of analyses between c.
3025 and c. 1340 Ma (Fig. 4a). On a probability
density plot these ages define three main peaks
at c. 1370, c. 1595 and c. 1780 Ma, defined by
contributions from 12,7 and 16 analyses. Eight
analyses fall in the range 2300-3025 Ma, with
three at c. 2550 Ma. The youngest concordant
analysis from an oscillatory zoned core has
a *Pb/**Pb age of 1338 £ 24 Ma (Fig. 3a).
Of the seven metamorphic rims analysed, only
three are concordant and have *’Pb/”*Pb ages
between 1295-1325 Ma (Fig. 4a).

4.1.2. Sample WI40

Sample WI40 is a metapelitic gneiss from
Mitchell Peninsula (Fig. 2). The sample
contains garnet, cordierite, biotite, K-feldspar,
plagioclase, sillimanite, magnetite, spinel,
ilmenite and accessory zircon and monazite. A
gneissic fabric is defined by biotite-rich layers
and quartzofeldspathic leucosomes.

Zircon grains in this sample are typically clear
to pale brown, equant to slightly elongate
with aspect ratios up to 1:3. CL images can be
classified into five zircon morphologies. The
first is defined by cores that show oscillatory
zoning or are internal domains clearly separated
by a thin, high CL response zone and are
interpreted as detrital magmatic zircon grains.
The second morphology is defined by grains
with low CL response, homogenous cores that
may contain very small oscillatory zoned relics.
These low CL response zones are interpreted
to be cores that have either been resorbed/

recrystallised or are the result of zircon growth
during metamorphism (Fig. 3b). The third
morphology is defined by rims that are bright
in CL. These bright rims may be overgrown
by the fourth morphology, defined by narrow
secondary rims or zones of resorption that
have little CL response. The fifth morphology
is defined by equant grains that display diffuse
zoning or sector zoning that may be overgrown
by a thin rim (Fig. 3b). These are interpreted to
be metamorphic neoblasts.

Seventy-five analyses were collected from
63 grains targeting all zircon morphologies.
Twenty-seven cores that are interpreted to be
detrital and are <10% discordant define five
*Pb/’*Pb age peaks at c. 1370 Ma, c. 1410
Ma, c. 1460 Ma, c. 1750 Ma and c. 1800 Ma,
defined by 3, 3, 4, 3, and 8 analyses (Fig. 4b).
This sample also yields single, analyses at around
1900 Ma, 2000 Ma and 3200 Ma (Fig. 4b). The
youngest concordant oscillatory zoned zircon
core in this sample yields a *’Pb/**Pb age of
1354 + 22 Ma (Fig. 3b).

Metamorphic zircon in this sample occurs in a
range from 1310 Ma to 1180 Ma. A probability
plot of the *7Pb/**Pb ages of concordant
zircon broadly defines three peaks at c. 1310
Ma, 1250 Ma and 1210 Ma. Age groupings
based on the CL images do not yield single
populations and cannot be used to define these
age peaks further.

4.1.3. Sample WI§9

Sample WI89 is a coarse-grained garnet—
cordierite-bearing  horizon located along
the contact with the Ardery Charnockite on
Robinson Ridge (Fig. 2). At outcrop scale,
the garnet—cordierite gneiss is cross-cut by
leucosomes that contain garnet up to several
centimetres in diameter. The sample contains

garnet, cordierite, plagioclase, K-feldspar,
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Figure 4 (previous page): U-Pb gechronology from metasedimentary rocks. U-Pb Tera—Wasserburg plots
(on the left) and probability plots (on the right) are presented for each sample. On the Tera—Wasserburg plots
the dashed grey ellipses denote analyses that are excluded on the basis of discordance. Interpreted detrital
analyses are shown as black unfilled ellipses. Newly grown metamorphic or recrystallised zircon analyses are
shown as filled ellipses, with varying shades of grey representing different zircon morphologies. Probability
density plots are calculated using the **’Pb/**Pb age. The large probability density plots only include detrital
analyses (<10% discordant), determined on the basis of zircon morphology. The inset probability density plots
include concordant metamorphic and reset analyses. (a) Sample WI07. (b) Sample WI40. (c) Sample WI89; (d)

Sample WI68.

quartz, ilmenite, magnetite and late biotite with

accessory tourmaline, zircon and monazite.

Zircon grains in this sample are typically
clear to pale pink. They are commonly small
(<100 um in diameter) equant and rounded
to subrounded in shape. Rarely, grains may be
slightly elongate with ratios of 1:2.5. In CL,
zircon grains commonly have a core that is of
variable size and morphology but may be very
small (<20 um). These cores are interpreted
to be detrital magmatic zircon. They are
overgrown by an inner rim with bright CL
response and a second rim that has a dark,
homogenous response in CL (Fig. 3c). Both
the bright inner rim and darker outer rim are
interpreted to be metamorphic. Where grains
have a bright core with diffuse or no zoning
that is overgrown by a dark rim, the bright core
is also interpreted to be metamorphic (Fig 3c).
Dark, weakly zoned to unzoned zircon cores
that may have small detrital relics also occur in
this sample, and are interpreted to be partially
to completely resorbed cores.

Seventy four analyses were collected from 63
grains. Twenty-seven analyses are interpreted to
reflect detrital grains and are <10% discordant.
Many of the analyses in this sample are slightly
to moderately discordant and scatter towards
a lower intercept on concordia of around
c. 1200 Ma, the same age as metamorphic
zircon overgrowths. This is consistent with

radiogenic-Pb mobility at the same time as

new zircon precipitation was occurring. Two
main peaks occur at c. 1400 Ma and c. 1550
Ma, defined by 8 and 3 analyses respectively.
Although precises ages of detrital components
in this rock are challenging to determine,
there is clear evidence of a substantial older
detrital component. The youngest concordant
oscillatory zoned core yields a *”’Pb/’*Pb age
of 1399 £ 20 Ma.

Concordant metamorphic zircon in this sample
ranges from 1310 Ma to 1170 Ma. A probability
plot of the *Pb/’*Pb ages of concordant
zircon broadly defines two peaks at c. 1310
Ma and 1190 Ma with a broad shoulder peak at
c. 1250 Ma (Fig. 4c). Age groupings based on
the CL images do not yield single populations
and cannot be used to define these age peaks
further.

4.1.4. Sample WI68

Sample WI68 is an orthopyroxene—cordierite-
bearing gneiss from Herring Island in the
southern Windmill Islands. The sample was
collected from a lens of metapelite within a
large area of nebulitic migmatite. It contains
K-feldspar,

plagioclase, quartz, magnetite, minor biotite

orthopyroxene, cordierite,

and accessory zircon and monazite.

Zircon grains in this sample are typically
pale pink to pale yellow, equant to slightly
elongate, and 70-200 pm in length. In CL
images, the majority of zircon grains have well
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preserved high-CL response cores that display
strong oscillatory or fir-tree zoning. They are
overgrown by low-CL response homogenous
rims of variable thickness which truncate core
zonation (Fig. 3d). Rare discrete grains are dark
with homogenous CL response.

Ninety-two analyses were collected from 71
grains, targeting both the cores and the dark
homogenous rims. Sixty-five core analyses are
interpreted to be detrital and <10% discordant.
Three core analyses yielded ages between c.
1730—1670 Ma. The majority of cores yielded
ages between c. 1400-1340 Ma. The two
youngest concordant oscillatory zoned grains
yield ages of 1322 £ 11 Maand 1331 £ 15 Ma
that may provide a maximum depositional age
for this sample. The concordant dark rims yield
*Pb/?*Pb ages between 12501200 Ma, with
the exception of one dark rim that yields an age
of 1300 £ 10 Ma (Fig. 3d). This suggests that
the majority of metamorphic zircon records
the M, event, at 12501200 Ma.

4.2. U—Pb geochronology of magmatic rocks

U-Pb geochronology results for magmatic
samples are presented as Supplementary Data
§2.1. Tera—Wasserburg concordia plots and
representative CL images of zircon grains from
cach magmatic sample are presented in Figure
5. Only analyses that are concordant (within
26 of concordia) are used for the calculation
of weighted average ages. Analyses that are
excluded appear as unfilled, grey dashed

ellipses.

4.2.1. Sample WI43

Sample WI43 is from an orthogneiss on Clark
Peninsula (Fig. 2). It contains a weak S, foliation
and has previously been interpreted to have
intruded the metasedimentary rocks during
D,.The orthogneiss comprises large K-feldspar
augen, plagioclase, quartz and biotite.

Zircon grains in this sample are typically honey
brown to light yellow, 150-250 pym in length
and have aspect ratios that vary from 1:1.5
(stubby grains) to 1:4 (elongate grains). In
CL images, many of the larger, stubby zircon
grains contain high-CL response cores that
show weak oscillatory zoning or diffuse zoning
(Fig. 5a). These cores are overgrown by zircon
that appears dark in CL. The smaller, elongate
zircons appear either weakly concentrically
zoned or unzoned in CL (Fig. 5a).

Thirty analyses were collected from 28 grains.
Ten analyses are discordant. The remaining
20 analyses yield ages between 1400-1300
Ma (Fig. 5a). It is not possible to determine
a clear crystallisation age for this sample. The
older analyses are consistent with the strong
c. 1380 Ma detrital peak in the surrounding
metasedimentary rocks and therefore may
be inherited, with the younger age recording
the timing of magmatism. An alternative
interpretationis that protolith to the orthogneiss
has a c. 1400 Ma crystallisation age, with the
younger ages resulting from metamorphism.
Zircon morphology does not provide a clear
interpretation of the crystallisation age, as the
bright cores and darker rims or grains do not
yield consistent ages. Similarly, there are no

consistent differences in trace element ratios

Figure 5 (facing page): U-Pb geochronology and CL images from igneous rocks. U~Pb Tera—Wasserburg

plots (on the left) and representative CL images (on the right) are presented for each sample. On the Tera—Was-

serburg plots the dashed grey ellipses denote analyses that have been excluded from the calculations on the basis

of discordance. Uncertainties provided in brackets (denoted 2s ) incorporate the systematic uncertainty. The

ages given on the CL images are the **’Pb/?*Pb age. (a) Sample WI43. (b) Sample WI17. (c) Sample WI84. (d)

Sample WI85.
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between the cores and rims. The dark rims and
dark, unzoned acicular grains commonly were
not analysed in this study as they are uranium
rich and contain high concentrations of 206ph,
resulting in tripping of ion counters during
analysis. As no chemical or morphological
difference can be used to define age coherent
groupings, we apply a statistical approach as
an exploratory exercise to resolve potentially
significant zircon growth events. We use the
‘Unmix ages’ function in Isoplot (Sambridge
and Compston, 1994) to statistically identify
two peaks at 1381 = 5 Ma and 1323 = 7 Ma
(relative misfit = 0.527; fractions of 0.65 and
0.35 respectively). Post (2000) interpreted U-—
Pb SIMS data from a similar syn-D. orthogneiss
to suggest crystallisation age of c. 1315 £ 6 Ma
and inherited xenocrystic zircon in the range
14871350 Ma, consistent with the age peaks
in this sample. The range in xenocrystic zircon
ages in that sample may suggest that the c. 1400
Ma age peak in sample WI43 is more likely
to reflect inheritance from the surrounding
metasedimentary rocks rather than a c. 1400
Ma crystallisation age.

4.2.2. Sample WI17

Sample WI17 is from an unfoliated biotite
that
metasedimentary rocks on Mitchell Peninsula.

granite intruded ~ granulite facies
This sample contains quartz, K-feldspar, biotite

and plagioclase.

The zircon grains extracted from this sample
are typically pale amber to honey brown, 50—
250 pm and equant to elongate with aspect
ratios from 1:1 up to 4:1. They show complex
zoning in CL images, with bright oscillatory or
sector zoned grains truncated by zones with a
dark CL response (Fig. 5b).

Thirty-three analyses were collected from
30 grains. All concordant analyses yield a

*Pb/?*Pb weighted average age of 1235
+ 7 Ma (Fig. 5b; n = 23, MSWD = 0.91),
interpreted to be the crystallisation age of this
sample.

4.2.3. Sample WIS4

The Ardery Charnockite outcrops extensively
in the southern Windmill Islands. It has
been interpreted to comprise a complex of
multiple intrusions with subtle differences in
grain size and mineral abundances (Blight and
Oliver, 1977; Zhang et al., 2012). The Ardery
Charnockite typically contains coarse-grained
K-feldspar, plagioclase, orthopyroxene and
quartz and may contain hornblende, biotite
and magnetite. It is interpreted to postdate D,
and preserves a weak igneous flow fabric (Post,
2000). WI84 is a sample of coarse-grained
Ardery Charnockite from Robinson Ridge.

Zircon grains are typically clear to pale brown
in colour, large (up to ~600 pm in length) and
clongate, with aspect ratios varying from 1:2
to 1:6. In CL images, zircons are bright and
display complex zoning patterns but commonly
show oscillatory zoning. This zoning may be
resorbed or overprinted by zones that have low
CL response (Fig. 5c). Some grains appear in
CL as weakly zoned to unzoned dark grains.

Twenty-five analyses were collected from 24
grains. There is no correlation between zircon
morphology and age. The *’Pb/**Pb weighted
average age of concordant analyses 1178 =7 Ma
(Fig. 5¢; n = 23, MSWD = 0.83), interpreted
as the age of crystallisation of the charnockite.

4.2.4. Sample WIS5

Sample WI85 is a sample of fine-grained
Ardery Charnockite from Robinson Ridge. The
morphology of zircon grains in this sample is
very similar to that of sample WI84, though the
zircons analysed in this sample are commonly
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less elongate.

Twenty-nine analyses were collected from
28 grains in sample WI85. The *’Pb/’*Pb
weighted average age of concordant analyses
discordant is 1178 £ 6 Ma (Fig. 5d; n = 28,
MSWD = 0.18).This age is identical to sample
WI84 and is interpreted to be the age of
magmatic crystallisation.

4.3. Hf isotopes of metasedimentary rocks

All Hf isotope data for metasedimentary
rocks are provided in Supplementary Data
S§2.3. Hf isotope analyses were collected from
detrital cores with U-Pb ages that are <10%
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discordant and are large enough to fit a 40 pm
analysis spot; therefore not all detrital analyses
have corresponding Hf isotope analyses.

A number of the detrital analyses in this study
form discordant U-Pb arrays, suggesting that
these samples have experienced ancient Pb-loss
and therefore some grains may yield misleading
*"Pb/**Pb ages (Fig. 4).To assist in identifying
the presence of ancient Pb-loss, Hf isotope
data for metasedimentary rocks are presented
as initial "*Hf/"""Hf versus U-Pb age (Fig. 6),
as it is widely recognised that the Hf isotopic
system has greater resistance to overprinting
events than the U-Pb system. Horizontal

0.28250
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Figure 6: Initial ""Hf/'"Hf ratios of metasedimentary samples. The ratios are plotted against the *’Pb/***Pb
age.The error bars are 2SE. (a) Sample WI07. (b) Sample WI40. (c) Sample WI89. (d) Sample WI168.
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trends in the Hf evolution plots may suggest
age variation of zircons with a consistent initial
Hf isotope composition (e.g. of potentially
initially the same age), and therefore allow for
an assessment of the likelihood of ancient Pb-
loss.

4.3.1. Sample WIO7

Forty-seven Hf isotope analyses of zircon cores
were collected from sample WIO7 (Fig. 6a).
Analyses with ages between 1490-1340 Ma
have initial ""°Hf/"’Hf in the range 0.281853
to 0.282176, corresponding to & (t) of -1
to 10 (n = 18). Three analyses with ages
of 1595-1585 Ma have a range of initial
7*Hf/""Hf values of 0.281765 to 0.281971
with a corresponding & _(t) range of -2 to +7.
Twenty-one analyses between 1840 and 1660
Ma in sample WIO7 have initial "*Hf/"7Hf in
the range 0.281295-0.281780, corresponding
to € (t) of -13 to 6. A single analysis with
an age of 2428 Ma has initial ""*Hf/'7Hf of
0.281457 (g, (t) = 1+9). Four analyses with
ages between 2555 and 3025 Ma have initial
76Hf/"""Hf between 0.281195 and 0.280873,
corresponding to € (t) of -3 to +2.

4.3.2. Sample WI40

Fifteen Hf isotope analyses of zircon cores
were collected from sample WI40 (Fig. 6b). Six
analyses with ages between 1480 and 1350 Ma
have initial "*Hf/'"’Hf in the range in the range
0.281726 to 0.282110 with a corresponding
€,,(t) range of -5 to +9. Analyses in the age
range 1810-1630 Ma (including a number
of partially discordant analyses) have similar
eHE/"HE  of 0.281493-0.281612,
corresponding to € (t) of -7to -2 (n = 8). One

initial

older analysis with an age of 3194 Ma has initial
CHE/7HE of 0.280772 (g, (t) = +2).

4.3.3. Sample WIS9
Thirteen Hf isotope analyses of zircon cores

were collected from sample WI89 (Fig. 6¢). Six
core analyses with ages between 14201320 Ma
in sample WI89 have initial '"*Hf/"""Hf between
0.281905 and 0.282130, corresponding to
€,(t) between 0 and +8. Two analyses with
ages of ¢. 1555 Ma have initial "*Hf/"""Hf of
0.281951 (g (t) = +5). The remaining five
analyses range in age from 19001700 Ma and
have initial "*Hf/""Hf 0.281726 to 0.281922,
corresponding to € (t) of +3 to +8.

4.3.4. Sample WI68

Forty-two Hf isotopes analyses of zircon cores
were collected from sample WI168 (Fig. 6d). Of
these, 40 analyses fall in the age range 1420
1330 Ma and yield initial ""*Hf/'"Hf values
between 0.281702-0.282092, corresponding
to g (t) of -7 to +6 (Fig. 6d). One analysis
with a *Pb/?*Pb age of 1491 + 9 Ma has a
similar initial ""*Hf/"""Hf of 0.281793 (g (t)
= -1.6). An older analysis with a *’Pb/**Pb
age of 1731 X 6 Ma has an initial ""*Hf/"""Hf of
value of 0.281669 (g, (t) = -0.5).

4.4. Hf isotopes of magmatic rocks

Hf isotope data for magmatic rocks are given in
Supplementary Data S2.3. Hf isotope analyses
for magmatic rocks are calculated using the
corresponding **’Pb/**Pb age for each analysis.

4.4.1. Sample WI43

The initial '"°Hf/""Hf ranges  between
0.281839 and 0.282088 with a Corresponding
€,.,(t) of -3 to + 6 (Fig. 7; n = 24). The older
and younger ages show the same range in initial
176Hf/ 177Hf.

4.4.2. Sample WI17

Hf isotopic analyses from sample WI17 have
a range of initial ""*Hf/""Hf values between
0.282010 and 0.282123 (Fig. 7; n = 17). &,(t)
ranges from +1 to +4 with a weighted average
of 1.9+ 1.2 (MSWD = 0.11).
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Figure 7: Initial 7THE/7°Hf ratios of magmatic rocks. The ratios are plotted against the 207pp / 20°Ph age for each

analysis. The error bars are 2SE.

4.4.3. Sample WI§4

Hf isotope analyses from sample WI84 yield a
range of initial '"*Hf/""7Hf between 0.282062
and 0.282166 (Fig. 7; n = 22). g (t) ranges
from +1 to +4 with a weighted average of 2.4
+1.2 (MSWD = 0.13).

4.4.4. Sample WIS5

Hf isotopic analyses from sample WI85 yield
initial '"*Hf/""7Hf ratios in the range 0.282036
t0 0.282184 (Fig. 7; n = 28). € , (t) ranges from
0 to + 5 with a weighted average of 2.6 * 1.1
(MSWD = 0.21).

5. Discussion

5.1. Age and provenance of the metasedimentary
rocks of the Windmill Islands

This study provides new constraints on the
timing of deposition of the metasedimentary
rocks in the Windmill Islands. The youngest
concordant oscillatory zoned cores, interpreted
to reflect magmatic genesis, in this study range
in age between 1354—1322 Ma. These cores
are commonly overgrown by metamorphic
zircon rims that yield ages younger than 1300
Ma (Fig. 3). This suggests that deposition of

the sedimentary protoliths occurred in the

interval 1350-1300 Ma. All samples have
similar maximum depositional ages, suggesting
they could reflect components of the same

depositional system.

The metasedimentary samples from the
Windmill Islands each show slightly different
age distributions. However, the granulite facies
samples in the southern Windmill Islands also
display U—Pb discordance indicative of ancient
radiogenic Pb-loss, which may be the source
of some of the observed differences in detrital
spectra. Sample WI07 is an amphibolite facies
metasedimentary rock that appears to better
preserve detrital zircon populations and is
therefore used a framework to aid in the
interpretation of the discordant analyses from
other samples. Three peaks are defined by
concordant analyses at c. 1380 Ma, c. 1595 Ma
and c. 1790 Ma with minor older components
between c. 32001900 Ma (Fig. 4). These peaks
are used to assess the likely provenance of the
Windmill Islands metasedimentary rocks with
reference to neighbouring terrains (Fig, 1; Fig.

8a).

All metasedimentary samples in this study
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contain a significant population of oscillatory
zoned cores with ages between 14201330
Ma. Inherited populations in magmatic rocks
between 1450-1350 Ma have been noted
elsewhere in the Windmill Islands (Post,
2000; Zhang et al., 2012), consistent with the
widespread occurrence of this age component.
The € (t) signature of the 1490-1330 Ma
detritus in the Windmill Islands metasediments
is between -7 to +10, but dominantly in the
range -4 to +6 (Fig. 8a). Zircons of this age have
no known source within the West Australian
Craton, but are consistent with derivation from
the c. 1410 Ma Loongana Arc in the Madura
Province (Fig. 1), which has € (t) between
-2.5and +11.5 (Fig. 8a; Spaggiari et al., 2014,
2015).

Sample WIO7 contains a concordant zircon
population at c. 1595 Ma (n = 7). Sample
WI89 contains discordant analyses in the
range 1590-1550 Ma (n = 5) that are likely to

correspond to this population (Fig. 4a and c).
As many of the 16101500 Ma aged domains
were small, only five Hf isotope analyses were
collected from this population. Three analyses
have €  (t) ranges of +5 to +7 and two analyses
have CHUR-like values, however, due to the
small number of analyses it is difficult to assign
significance to the € (t) range (Fig. 8a). Zircons
between 1600—1550 Ma are uncommon in the
West Australia Craton. However, one source
could be the along-strike Musgrave Province,
which contains orthogneiss and metagranites
with 1600-1550 Ma protolith ages (Camacho
and Fanning, 1995; Edgoose et al., 2004;
Howard et al., 2015). These are interpreted
to have formed in a juvenile arc setting and
have € (t) values of -1.2 to 0.9, broadly
consistent with the juvenile € (t) data from
this study (Fig. 8a;Wade et al., 2006, 2008). An
alternative source for the c. 1595 Ma detritus
in the Windmill Islands may be the 1595—1575
Hiltaba Suite and coeval (c. 1590 Ma) Gawler

Figure 8 (facing page): Hf evolution diagrams for the Windmill Islands. Part (a): Detrital zircon samples from
this study are plotted as diamonds in shades of red—yellow. Detrital zircon from Arid Basin metasedimentary
units (SDF: Snowys Dam Formation, GCG: Gwynne Creck Gneiss, MM: Malcolm Metamorphics) are plotted
as open circles in shades of blue for comparison, from Spaggiari et al. (2015).The age and isotopic character of
detrital zircon from the Wirku Metamorphics (WM) in the Musgrave Province is also shown for comparison,
from Woodhouse et al. (available from GSWA’s online geochronology database at http://dmp.wa.gov.au/
geochron). The <1400 Ma magmatic rocks of the Musgrave Province have isotopic signatures that fall within
the most radiogenic array of the Wirku Metamorphics. The other filled areas denote the age and isotopic
character of possible source regions. LA: Loongana Arc, from Spaggiari et al. (2015); BZ: Biranup Zone, from
Kirkland et al. (2015b);YC:Yilgarn Craton, from Wyche et al. (2012) and Ivanic et al. (2012); MP: Musgrave
Province 16001550 Ma orthogneisses, € (t) data from Wade et al. (2006) converted to € (t) values using the
crustal array equation € (t) = 1.35 & (t) + 2.82 of Vervoort et al. (1999). Part (b): Magmatic samples from
this study are plotted as circles in shades of blue—green. Detrital zircon from this study with ages <2000 Ma are
plotted as diamonds in shades of red—yellow for comparison with the magmatic samples. Unfilled squares are
€,,(t) magmatic analyses from Zhang et al. (2012). The light grey filled squares are & (t) whole rock data for
Windmill Islands magmatic rocks from Zhang et al. (2012) and Méller et al. (2002) converted to €, (t)values.
The dark grey filled squares are € (t) data whole rock data for Windmill Islands metasedimentary rocks from
Moller etal. (2002) converted to € (t) values. The dark purple and blue filled areas represent the age and € (t)
values for zircon from the Recherche and Esperance Supersuites respectively, from Kirkland et al. (2015b).
The light purple and blue filled areas represent whole rock € (t) values of the Recherche and Esperance
Supersuites from Smithies et al. (2015a) converted to € (t) values. The dark grey filled area represents whole
rock € (t) values of the Moodini Supersuite in the Madura Province from Smithies et al. (2015b), converted

to g, (t)values.
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Range Volcanics (Blissett et al., 1993; Daly et
al., 1998; Hand et al., 2007) within the Gawler
Craton. However, modern stream detrital
zircon data from the Gawler Craton shows
that the c. 1595 Ma zircons have an g _(t) peak
at -2.3 (Belousova et al., 2009), which is not
consistent with the more juvenile g _(t) values
for 1600—1550 Ma detrital zircons in this study.

Samples WIO7 and WI40 have a significant
detrital populations aged between 18001770
Ma. Although it is now discordant, it is likely
that sample WI89 also contains this population.
The zircons within this age range have bimodal
€ ,(t) distributions. The detrital zircons from
samples WI07 and W140 dominantly have € ,(t)
between -2 and -7, whereas sample WI89 and
two analyses from sample WIO7 have € (t)
between +3 and +8 (Fig. 8a). This suggests
that magmatism in the source terrain may have
involved both juvenile input and reworking of an
Archean component. Magmatic rocks between
1800—-1700 Ma are found in the Biranup and
Nornalup zones in the Albany—Fraser Orogen
(Fig. 9), and the € (t) of detrital zircons from
the Windmill Islands isotopically overlaps with
magmatic zircons from these regions (Fig. 8a).

The source of the minor 3000-1900 Ma
detrital components is unclear. In particular,
2550-2450 Ma ages are rare within theYilgarn
Craton (Spaggiari et al., 2015), and the € (t)
of these analyses in the Windmill Islands
samples commonly plots outside the isotopic
envelope of the Yilgarn Craton (Fig. 8a).
Similarly-aged detritus is found within the Big
Red Paragneiss in the c. 1815-1600 Ma Barren
Basin in the Albany—Fraser Orogen (Spaggiari
etal., 2015), suggesting detritus recycled from
the Barren Basin may have been a source for
the Windmill Islands metasedimentary rocks.
The original source of this detritus is still
uncertain. If the source of the 2550-2450 Ma

detritus was proximal during deposition of the
Barren Basin, it has since been eroded or has
not as yet been identified. A more distal source
may be the 2555-2430 Ma granitic gneisses
of the Glenburgh Terrane, on the northern
margin of the Yilgarn Craton (Johnson et al.,
2011), although this is not supported by the Hf
isotopic signature of the zircon. Alternatively,
magmatism from 2555 Ma to 2460 Ma is
common within the Sleaford and Mulgathing
Complexes in the Gawler Craton (Reid et al.,
2014).

The Windmill Islands metasedimentary rocks
appear likely to be derived from a combination
of the West Australian Craton, including the
Yilgarn Craton and the Albany—Fraser Orogen,
and regions in proximity of the Albany—Fraser
Orogen, such as the Musgrave Province and
the Loongana Arc of the Madura Province. The
location of the Windmill Islands between the
West Australian Craton and Loongana Arc is
consistent with these regions being contiguous
at the time of sediment deposition.

5.2. Age and isotopic character of the magmatic
rocks of the Windmill Islands

A range of ages have previously been obtained
for the magmatic rocks of the Windmill Islands
(Post, 2000; Post et al., 1997; Zhang et al.,
2012). Four structurally constrained granitic
and charnockitic samples were selected to
provide further constraints on the timing
and isotopic character of magmatism in the
Windmill Islands.

5.2.1. Timin((] and st)/]e 0fM1 /D1 magmatism
Sample WI43
protolith is interpreted to have intruded into

is an orthogneiss whose

metasedimentary rocks on Clark Peninsula
based on field relationships (Post, 2000).
Although it was not possible to determine an
unequivocal magmatic age from sample WI43,

-46-



Chapter 2 Crustal evolution qf the Windmill Islands

120° 123° Arid Basin units
. Gwynne Creek Gneiss

Gwynne Creek Gneiss : c1670Ma | =70
| Max. dep = 1483 + 12 Ma (s)
| ‘ [ 1533 Ma (g)

-30° | | | |

YILGARN CRATON | \ ! !

| | | |

| | | |

| | |

Barren Basin
Snowys Dam Formation

c 132;30 : : : n=141
L300 | Max. dep = 1332+ 21 Ma (s)
| e 1348 Ma (g)

Qb | | | |

\é’b \ \ \ \

<<O /\/ \ [ [ [

Barren Basin Q}Q QOQ MADURA :,\ | l

NG PROVINCE e
O ! Malcolm Metamorphics

\ ! c. 1450 ‘ ‘ Tn=27
d Malcolm . : Max. deFL =c 14§5 Ma (g)

| ] Metamorphics ! ‘ !

; Basin | | \ |

\ / / €. 1595 | | |

\ , / c1810 | |

‘\ | , 100 km ! ! !

| | | A |

\ L

/
1100 ' E 1200

Windmill Islands

€ 1390 Ma | =183
Max. dep =1322+ 11 Ma (s)
C. 13.?0 Ma (g)

Windmill Islands

¢. 1595 Ma ;

West Mawson Craton

I

I

I

I
A PN IR

1000 2000 3000
Albany Fraser Orogen Arid Basin (1600-1300 Ma)
Northern Foreland (reworked Archean) - Gwynne Creek Gneiss
Barren Basin (1815-1600 Ma) Fraser Zone (inc. Snowys Dam Formation)
Biranup Zone (1800-1625 Ma) - Malcolm Metamorphics
S Eastern Nornalup Zone (1800-1760 Ma) Ragged Basin (1280-1200 Ma)

Includes Recherche (1330-1280 Ma) and
Esperance (1200-1140 Ma) Supersuites

Figure 9: Comparison of detrital zircon spectra and interpreted tectonic elements for the Albany—Fraser
Orogen (Arid Basin) and the Windmill Islands. Inferred paleogeographic reconstruction from Aitken et al.
(2016). Geology of the Albany—Fraser Orogen modified after Spaggiari et al. (2014). Detrital zircon data
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the “‘Unmix’ age of 1326 £ 5 Ma for sample
WI43 (Fig. 4) is broadly consistent with the
oldest metamorphic ages in this study and the
interpreted magmatic age of 1315 = 6 Ma by
Post (2000). The older zircons in both sample
WI43 and the sample dated by Post (2000) range
in age between 14901350 Ma, suggesting that
the younger age is likely to be the magmatic
age. This suggests that magmatism associated
with D /M, occurred very shortly after the
deposition of the sediments, and provides a
minimum depositional age for the protoliths of
the sedimentary rocks in the Windmill Islands.
The syn-D, orthogneiss has € (t) between -3
and +6, which falls within the range in € (t)
of the c. 1400-1350 Ma detrital zircons (Fig.
8b). The & (1315) value for the sample dated
by Post (2000) is -5.4 (Fig. 8b; Moller et al.,
2002). The large number of older zircons,
combined with the similarity in g _(t) between
the orthogneiss and detrital zircons, suggests
that the orthogneiss is crustally derived from a
source rich in c. 1400—1350 Ma zircons, or is
extremely crustally contaminated. Although a
mantle component cannot be ruled out, on the
basis of comparison to the detrital zircon data
this is likely to be limited.

5.2.2. Timing and style (j‘MZ /D, magmatism

The M, biotite granite in this study (sample
WI17) is unfoliated, does not contain garnet,
and yields a crystallisation age of 1235 £ 7
Ma, with juvenile € (t) between 0 and +4
(Figs 7 and 8b). Zhang et al. (2012) dated two
samples of garnet-bearing granitic gneiss and
one sample of garnet-bearing foliated granite
(syn-D,) and suggested similar crystallisation
ages of 1250-1240 Ma, with g (t) values
falling into two groups of -5 to -3 and -1 to +1
(Fig. 8b). The sample of garnet-bearing granite
and one of the granitic gneisses yields € (t)
values of -2.5 and -2.2 respectively. A second
sample of granitic gneiss yields €_ (t) of -18.1,

interpreted to reflect significant assimilation of
the surrounding metasedimentary rocks (Fig.
8b; Zhang et al., 2012). A weakly foliated,
garnet-bearing sample of syn- to post-D
orthogneiss has a younger crystallisation age
of 1214 * 10 Ma (Post, 2000). € (1215) data
from three similar samples yield values between
-5.7and -3.1 (Fig. 8b; Méller etal., 2002).The
range in ages, Hf isotope values and mineralogy
between samples suggests that the D, granites

have multiple, distinct intrusive phases.

The

orthogneisses have high silica values and have

syn-  to post—Dza, garnet—bearing
been previously interpreted to have formed
from the partial melting of Paleoproterozoic
crust (Zhang et al., 2012). Additionally, Zhang
et al. (2012) found inherited igneous zircon at
c. 1370 Ma in these samples and suggested that
this may have been the age of an earlier magmatic
event in the Windmill Islands. However, as in
the case of the syn-D, orthogneiss, these ages
may instead be derived from the Windmill
Islands metasedimentary rocks. This suggests
that the D, granites contain a significant crustal
component. However, the range in € (t) data
between -5.7 and -2.2 is more juvenile than
that of four samples of metasedimentary gneiss
that yield & (1200) of -15.1 to -5.1 (Fig. 8b;
Moller et al., 2002). This, in combination with
the juvenile g (t) values for sample WI17,
suggests that magmatism was associated with
varying degrees of juvenile input and is not

solely the result of crustal melting,

The Ardery Charnockite has been interpreted
to intrude late in M, (Paul et al., 1995; Post,
2000) and is the most juvenile rock suite
in the terrane. The two samples of Ardery
Charnockite in this study (samples WI84 and
WI85) have indistinguishable ages of 1175 &
7 Ma and 1178 £ 6 Ma and the same range in
€,,(t) of 0 to +5 (Figs. 7 and, 8b). Two nearby
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samples of Ardery Charnockite dated by Zhang
etal. (2012) yield ages between 1230 and 1170
Ma, with weighted average ages of c. 1200 Ma,
but an identical € (t) range from 0 to +5 and
whole rock € (t) of -1.6 and -1.1 (Fig. 8b;
Zhang et al., 2012). SHRIMP data from Post
(2000) suggests a younger age of 1163 £ 7
Ma for a sample of Ardery Charnockite, with
slightly more evolved & (1163) between -4.5
and -4.9 (Fig. 8b; Moller et al., 2002).

Thereisaslightincrease in g (t) values between
the M, biotite granite (sample WI17) and the
charnockite samples in this study (samples
WI84 andWI85). This trend in € , (t) is observed
more strongly in the samples of Zhang et al.
(2012), and similarly, there is a minor increase
in & (t) between the charnockites and the
granitic gneisses (Moller et al., 2002; Zhang et
al., 2012). This suggests that to form the more
juvenile Ardery Charnockite, there must have
been either mafic input or melting of a more
juvenile lower crust. The geochemistry of
the Ardery Charnockite has been interpreted
to have been produced by partial melting of
a mafic lower crust by underplated basaltic
magmas (Kilpatrick and Ellis, 1992; Zhang et
al., 2012), consistent with the interpretation
that the charnockites are the most isotopically
‘juvenile’ rock type in the Windmill Islands.
This lower crust may have been generated
during the preceding D, granitoid magmatism
that incorporated mantle-derived melts.

5.3. Tectonic setting of the Wilkes Land—Albany—
Fraser system

Palacogeographical reconstructions based on
geophysics place the Windmill Islands within
the Nornalup Zone of the eastern Albany—
Fraser Orogen to the west of the Rodona Shear
Zone (Aitken et al., 2014, 2016), which is
interpreted to be a suture zone separating the
Madura Province of oceanic affinity from the

West Australian Craton (Fig. 9; Kirkland et
al., 2015b; Spaggiari et al., 2015). Therefore,
the new data obtained in this study allows for
testing the proposed tectonic models for the
Albany—Fraser Orogen.

5.3.1. Magmatism within theWilkes Land—Albany—
Fraser system

The likely timing of M, magmatism in the
Windmill Islands was coeval with intrusion of
the c. 1330-1280 Ma Recherche Supersuite
granites and the coeval Fraser Zone gabbros
during Stage I of the Albany—Fraser Orogeny
(Kirkland et al., 2015b). The Recherche
Supersuite granites have been divided into two
types, the Gora Hill Suite and the Southern Hills
Suite (Smithies et al., 2015a). The Gora Hill
Suite (€, (t) = -5.88 to -4.32) is interpreted
to be derived from a regionally extensive,
lower crustal hot zone that involved mingling
of mafic magmas with partial melts derived
from Biranup Zone or Northern Foreland
sources (Smithies et al., 2015a). The Southern
Hills with
geochemistry that suggests they were derived

Suite comprises synogranites
from partial melting of metasedimentary rocks
(Smithies et al., 2015a). These synogranites
have & (t) of -3.01 to -7.8, consistent with
derivation from metasedimentary rocks with
a significant radiogenic c. 1400 Ma detrital
component (Smithies etal.,2015a) . Thesyn-D1
orthogneiss in the Windmill Islands contains a
large number of inherited zircon grains and has
an g (t) value of -5.5, within the range of the
Southern Hills Suite. Therefore, although no
whole rock geochemistry is available for the
syn-D orthogneiss from the Windmill Islands,
its isotopic signature and age is consistent with
a correlation to the Southern Hills Suite (Fig.
8b).

There is no magmatism between the intrusion

of the 1330-1280 Ma Recherche Supersuite
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granites and the 1200-1140 Ma Esperance
Supersuite in the Albany—Fraser Orogen
(Clark et al., 2000; Kirkland et al., 2011,
2015b). Therefore the 1250-1210 Ma, syn-
to post-D, granites in the Windmill Islands
have no known equivalents in the Albany—
Fraser Orogen and their tectonic significance
is difficult to determine. Minor inheritance
combined with field
observations of metasedimentary rafts included

in some samples,
in the orthogneisses, suggest that there is some
crustal derivation or assimilation. However, the
relatively juvenile €  (t) signature of magmatic
zircons of -5 to +4 (this study; Zhang et al.,
2012) requires either a significant mantle
component, or that the lower crust of the
Windmill Islands was at this stage dominantly
composed of juvenile material with limited
volumes of older, evolved material.

The 1200-1160 Ma Ardery Charnockite
temporally corresponds to the Esperance Suite
magmatism in the Albany—Fraser Orogen.
Coeval magmatism also occurs in the Musgrave
Province with the 1220—1150 Ma Pitjantjatjara
Supersuite and in the Madura Province at
12251130 Ma with the Moodini Supersuite.
Each of these suites have similar geochemical
characteristics and are interpreted to be
derived from high temperature melting of
anhydrous lower crust, likely associated with
significant juvenile mantle input as a result of
extension (Kilpatrick and Ellis, 1992; Smithies
et al., 2015a; Zhang et al., 2012). Hf isotopic
data is only available from one sample of the
Esperance Supersuite from the northeastern
Nornalup Zone, which yields nonradiogenic
€,,(t) values from -20 to -10 (Fig. 8b; Kirkland
et al., 2012a). g (1200) from six samples
across the Albany—Fraser Orogen ranges from
-7.34 to -4.87 (Fig. 8b; Smithies et al., 2015a).
The Ardery Charnockite appears to be more
radiogenic than the Esperance Suite, with € (t)

of 0 to +5 and g (1200) of -4.6 to -1.1 (Post,
2000; Zhang etal., 2012). However, Smithies et
al. (2015b) notes that the Moodini Supersuite
granites in the Madura Province show spatial
trends in age and isotopic compositions with
increasing distance from the margin of the
West Australian Craton, with young (1144—
1125 Ma), radiogenic (g (1200) = -1.85 to
-2.7) granites in the eastern Madura Province
and older (1181-1172 Ma), less radiogenic
(€,,(1200) = -7.34 to -3.7) granites in the
west (Smithies et al., 2015b). These older,
westernmost granites are similar to the Ardery

Charnockite (Fig. 8b).

Both the Ardery Charnockite and the c.
1250-1210 Ma magmatism in the Windmill
Islands are relatively juvenile and do not show
evidence for significant amounts of evolved
crust. As the Windmill Islands are interpreted
to be located within the Nornalup Zone in the
Albany—Fraser Orogen (Fig. 9; e.g. Aitken et
al., 2014, 2016), this suggests that magmatism
and metamorphism occurred in crust that was
likely to have been significantly modified by
prior addition of juvenile material. The more
juvenile nature of the Windmill Islands rocks
compared to those from the western Albany—
Fraser Orogen may relate to increasing volumes
of mantle input into attenuated crust with
increasing distance from the margin of the West
Australian Craton. The juvenile magmatism at
c. 1250-1210 Ma may represent an additional
phase of extension between Stage I and Stage II

of the Albany Fraser Orogeny.

5.3.2.  Deposition qf the Windmill Islands/Arid
Basin sedimentar)/ rocks
of the

metasedimentary rocks in the Windmill Islands

The maximum depositional age

is consistent with the timing of deposition
of the youngest units of the c. 1600 to 1305
Ma Arid Basin in the Albany—Fraser Orogen
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(Spaggiari et al., 2015), and the Windmill
Islands metasedimentary rocks share similar
detrital zircon age peaks and g _(t) values with
the Snowys Dam Formation and Malcolm
Metamorphics (Figs. 8a and 9; Spaggiari et al.,
2014, 2015). Although the metasedimentary
rocks in the Windmill Islands share similarities
in depositional age and detrital signature with
some units of the Wirku Metamorphics in
the Musgrave Province, the Hf isotopic array
for the Wirku Metamorphics is very different
(Fig. 8a). Therefore, the Windmill Islands
metasedimentary rocks are interpreted to best
correlate with units in the Arid Basin.

The
for the Albany—Fraser Orogen during the

currently proposed tectonic model

Mesoproterozoic involves the formation of a
marginal ocean basin on the eastern edge of the
Yilgarn Craton after c. 1600 Ma. Continued
extension formed an ocean-continent transition
in the eastern Nornalup Zone, outboard of the
craton margin (Fig. 9; Spaggiari et al., 2015).
The Madura Province (Loongana Arc) rocks
are interpreted to have formed in an oceanic
arc (Kirkland et al., 2015b) that formed via
cast-dipping subduction of the passive margin
of the Albany-Fraser Orogen (Spaggiari et
al., 2014, 2015). The Arid Basin is therefore
interpreted to have formed in a passive margin
setting on the edge of the West Australian
Craton, with the exception of the Malcolm
Metamorphics that have been interpreted as a
forearc basin that formed on the western side
of the emergent Loongana Arc (Spaggiari et
al., 2015). To account for the large volume of
Loongana Arc-derived detritus, the Arid Basin
is interpreted to have evolved into a foreland
basin after soft collision of the arc with the
margin of the Albany-Fraser Orogen at c.
1330 Ma (Spaggiari et al., 2015). However,
the interpretation of east dipping subduction
appears inconsistent with new data from the

Windmill Islands.

Basins containing detrital zircons that are
close in age to the depositional age of the
sediment are considered likely to have formed
in convergent settings (e.g. back-arc, forearc
or trench settings), reflecting the significant
amount of nearby coeval magmatism in that
setting (Cawood et al., 2012). The Windmill
Islands and Snowys Dam Formation have
similar maximum depositional ages of c. 1350
Ma (Fig. 9; Clark et al., 2014; Spaggiari et al.,
2015). Both are dominated by 1400—-1375 Ma
detrital zircon with € (t) values between -2
and +12, interpreted to be derived from the
Loongana Arc (Fig. 8a; Spaggiari et al., 2014,
2015), consistent with a convergent setting.
The Windmill Islands metasedimentary rocks
contain c. 1595 and c. 1790 Ma components
which also occur in the Malcolm Metamorphics
and may be derived from both the Musgrave
Province and the West Australian Craton (Figs.
8a and 9; Adams, 2012; Spaggiari et al., 2014,
2015). Therefore, the detrital zircons in the
Windmill Islands
suggest that the Arid Basin had to form in a

metasedimentary  rocks
setting that allowed both significant craton-
derived and arc-derived detritus. A tectonic
setting involving the development of a foreland
basin would allow for the older components to
be recycled from the Malcolm Metamorphics,
although the lack of a substantial c. 1450 Ma
component in the Windmill Islands means that
this seems unlikely (Fig. 9).

The tectonic setting of the Arid Basin is also
constrained by the observed metamorphic
conditions (Clark et al., 2014). Although
the timing of M metamorphism in the
Windmill Islands is not well constrained, all
metasedimentary samples as well as sample
WI43 contain some concordant zircon rims

at c. 1300 Ma (Figs. 4 and 5a), which are
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interpreted to reflect metamorphic growth.
The of M 1
are poorly constrained but conventional

conditions metamorphism
thermobarometry suggests temperatures of
750 °C at 4 kbar (Post, 2000). In the Malcolm
Metamorphics, ~ monazite  geochronology
suggests M, occurred at c¢. 1310 Ma and
identical P—T estimates of 45 kbar and 750 °C
have been proposed (Adams, 2012; Clark etal.,
2000). In the model of Spaggiari et al. (2014;
2015), this would require the interpreted
forearc basin (Malcolm Metamorphics) and
foreland basin (Windmill Islands and Snowys
Dam Formation) to have seemingly comparable
P—T—t evolutions. However, forearc basins
are commonly characterised by low thermal
gradients (Brown, 2006; Dickinson, 1995),
which may be inconsistent with the high
thermal conditions recorded by the Malcolm
Metamorphics. In the Fraser Zone (Fig. 9), the
time interval between deposition of the Snowys
Dam Formation and metamorphism is similarly
short (Clark et al., 2014). Metamorphism in
the Fraser Zone is interpreted to have involved
high thermal gradients and was associated with
mafic and felsic magmatism (Clark et al., 2014;
Kirkland et al., 2011).The gabbros that intrude
the Snowys Dam Formation have rare inherited
zircons and isotopic signatures consistent with
the assimilation of an older, felsic crust that is
likely to be derived from the West Australian
Craton (Clark et al., 2014; Smithies et al.,
2013). Additionally, the geochemical signature
of mafic intrusives within the Fraser Zone have
been used to suggest a possible back-arc setting
for this region during Stage I of the Albany—
Fraser Orogeny (Clark et al., 2014; Smithies
etal., 2013).

Our
the protoliths to

preferred  interpretation is  that
the Windmill Islands
metasedimentary rocks were deposited in a

back-arc basin. A back-arc basin is consistent

with the detrital zircon spectra that suggest
sediment sourced from both the craton and the
arc, the short time interval between deposition
and M, metamorphism and the attainment
of high thermal gradients throughout the
region. It is also consistent with previous
interpretations of the Fraser Zone as a back-arc
or intracontinental rift setting that developed
on the margin of the West Australian Craton
(Clark et al., 2014; Kirkland et al., 2011;
Smithies et al., 2013). The metasedimentary
rocks of the Windmill Islands include sequences
of psammitic gneiss, pelitic gneiss, calc-silicate,
banded iron formation and manganese-rich
horizons (Paul et al., 1995; Post, 2000).
The Arid Basin comprises similarly variable
sequences including interbedded sandstone
and mudstone, calcareous rocks or marls,
iron rich horizons, and probable volcaniclastic
or volcanic successions (Spaggiari et al.,
2014, 2015). Additionally, boron-bearing
minerals such as tourmaline, kornerupine and
dumortierite are common throughout the
Windmill Islands (Post, 2000). Similar boron-
rich mineral assemblages have been cited as
evidence for a back-arc basin or a continental
rift setting (e.g. Grew etal., 2013; Slack et al.,
1993). The Windmill Islands metasedimentary
rocks also contain abundant iron oxides and are
enriched in manganese, which is commonly
interpreted to reflect an environment with
hydrothermal activity (e.g. Ashley et al.,
1998; Micke, 2005). This is consistent with
an extensional back-arc setting rather than a
compressional foreland basin.

If the Arid Basin was deposited in a back-
arc basin setting, this would necessitate
west-dipping  subduction during  creation
of the Loongana Arc. The Loongana Arc has
previously been proposed to have formed as
a result of east-dipping subduction to account

for the “juvenile, uncontaminated” chemistry
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of the mafic-ultra mafic rocks and low-K
plagiogranites intersected in drill holes, as
well as the lack of tectonic activity in the
Albany—Fraser Orogen at this time (Spaggiari
etal., 2015). The Rodona Shear Zone has been
interpreted as the fundamental suture zone
that separates the Albany—Fraser margin from
outboard crust of the Loongana Arc. Two drill
holes located either side of the Rodona Shear
Zone (holes NSD and MADO002) have both
intersected crust interpreted to be >1400
Ma with chemical characteristics of EMORB
proto-oceanic crust (Smithies et al., 2015b).
It is likely that NSD penetrated an over-thrust
package,
(Spaggiari and Tyler, 2014). Nevertheless, the

transported  back  craton-wards
Rodona Shear Zone may not be a fundamental
terrane boundary between two separate pieces
of crust but rather reflect a broad transition
zone to crust of oceanic affinity. The Madura
Province therefore represents a region of
highly extended crust that has been modified
by repeated addition of juvenile material and
reflects an ocean continent transition zone
(Kirkland et al., 2015a; Smithies et al., 2015b).
The Loongana Arc has been defined based on
samples from a limited number of drill holes.
€,(t) from these samples ranges from -2.5 to
+11.5 (Kirkland et al., 2015b), suggesting a
very juvenile source. Nevertheless, even within
the Madura Province rare isotopically evolved
packages with greater crustal influence can be
found (e.g. Burkin Prospect; Kirkland et al.,
2012b), likely reflecting rifted fragments of
the continental margin. Additionally, detrital
zircons between 1420—1340 Ma in this study
have € (t) as evolved as -7 (Fig. 8a). If zircons
of this age are all derived from the magmatic
rocks of the Madura Province, this suggests
that at least some of the magmatism may
have been crustally contaminated, consistent
with a component being derived directly (e.g.
rifted sliver) off the West Australian Craton.

Furthermore, the abundance of c. 14001350
Ma detrital zircons in pelitic rocks suggests that
there must have been significant volumes of
felsic magmatism to generate the zircons. The
tectonic setting of the Wilkes Land—Albany—
Fraser system at c. 1400—1300 Ma could reflect
a long-lived, highly extended margin.

6. Conclusions

U-Pb geochronology from detrital zircon
from metasedimentary rocks in the Windmill
Islands in Wilkes Land, East Antarctica,
suggests that the protoliths were deposited
in the interval 1350—1300 Ma. The dominant
detrital peaks are c. 1800—1700 Ma, c. 1595
Ma and c. 1380 Ma. These ages correspond to
events in neighbouring terrains, including the
West Australian Craton, Musgrave Province
and the Madura Province (Fig. 1). The location
of the Windmill Islands between the West
Australian Craton and the Madura Province
suggests that they were contiguous at the time
of sediment deposition. The metasedimentary
rocks have been metamorphosed and intruded
by three phases of magmatism at c. 1325-1315
Ma, c. 1250-1210 Ma and c. 1200-1170 Ma.
The first phase of magmatism is likely to have
been crustally derived, whereas the second
and third phases of magmatism are associated
with varying amounts of juvenile addition. The
relatively juvenile Hf isotopic signature of these
magmaticrocksis consistent with the location of
the Windmill Islands above relatively thin crust
that contains little evolved material. The short
interval between deposition of the sediments
and high thermal gradient metamorphism,
combined with the lack of evolved material
in the lower crust, suggests that the Windmill
Islands may have formed in a back-arc setting
in a highly extended part of the West Australian
Craton. This interpretation therefore suggests
that the Albany—Fraser Orogen was bounded
to the east by west-dipping subduction,
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represented by the c¢. 1410—1350 Ma Loongana
Arc.
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Supplementary Data S2.1:LA-ICP-MS zircon U—Pb ana])/ses

Chapter 2
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Chapter 2 Supplementary Data S2.2: Zircon spot descriptions for metasedimentary rocks

Spot number Interpretation  Zircon description

WI07: Cameron Island

WI07-1 D Bright oscillatory zoned core

WI07-2 D Bright homogenous core

WI07-4 M Dark homogenous rim

WI07-5 D Dark homogenous core (surrounded by thin bright zone, likely resorption)
WI07-6 D Bright unzoned core

WI07-7 D Bright weakly zoned overgrowth on dark resorbed core

WI107-8 D Dark resorbed core

WI07-9 D Dark homogenous core (surrounded by thin bright zone, likely resorption)
WI07-10 D Dark weakly zoned core

WI07-11 D Dark inner rim on dark core (surrounded by thin second dark rim)
WI07-12 D Dark homogenous core

WI07-13 D Bright rim

WI07-14 D Core with swirly zoning

WI07-15 M Dark homogenous rim

WI07-16 D Dark homogenous core (surrounded by bright weakly zoned inner rim)
WI07-17 M Rim of homogenous dark grain

WI07-18 D/ MD Oscillatory zoned core

WI07-19 D Dark homogenous core (surrounded by thin bright zone, likely resorption)
WI107-20 D Bright weakly oscillatory zoned core

WI07-21 D Dark, weakly zoned core

WI07-22 D Weakly oscillatory zoned core

WI07-24 D Weakly sector zoned core

WI07-25 D Bright, patchy zoned core

WI07-26 M Dark homogenous rim

WI107-27 D Oscillatory zoned core

WI07-28 D Bright inner rim (surrounded by second thin dark homogenous rim)
WI07-29 D Dark weakly zoned core

WI07-30 D Dark unzoned core (surrounded by thin bright zone- likely resorption)
WI07-31 D Weak, diffusively zoned core

WI07-32 D Bright weakly zoned core

WI107-33 D Weakly oscillatory zoned core

WI07-34 D Dark diffusively zoned core

WI07-35 M Dark homogenous zone (discontinous rim)

WI07-36 D Weakly zoned core, zoning truncated by dark homogenous rim
WI107-37 D Brightinner rim

WI07-39 D Brightinner rim

WI07-40 D Core with swirly zoning

WI07-41 D Dark unzoned core (surrounded by thin bright zone- likely resorption)
WI07-42 D Weakly oscillatory zoned core

WI107-43 M Rim of dark homogenous grain

WI07-44 D Dark weakly sector zoned core

WI07-45 M Dark homogenous rim

WI07-46 D Weakly oscillatory zoned core

WI07-47 D Dark weakly oscillatory zoned core

WI07-48 D Bright weakly zoned core

WI07-49 D Dark unzoned core (surrounded by thin bright zone- likely resorption)
WI07-51 D Bright weakly oscillatory zoned overgrowth on dark resorbed core
WI07-52 D Dark unzoned core (surrounded by thin bright zone- likely resorption)
WI07-53 D Dark unzoned core (surrounded by thin bright zone- likely resorption)
WI07-54 D Bright, patchy zoned core
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Chapter 2 Supp]ementar)/ Data S2.2: Zircon spot descriptions for metasedimentar)/ rocks

Spot number Interpretation  Zircon description

WI07: Cameron Island (continued)

WI07-55 D Bright weakly zoned overgrowth on oscillatory zoned core
WI07-56 D Oscillatory zoned core

WI07-57 D Bright weakly zoned overgrowth on oscillatory zoned core
WI07-59 D Oscillatory zoned core

WI07-61 M Homogenous dark grain

WI07-62 D Dark oscillatory zoned core

WI07-65 D Dark weakly zoned core

WI07-68 D Bright rim

WI07-69 D Bright oscillatory zoned core

WI07-70 D Patchy zoned core

WI07-71 D Oscillatory zoned core

WI07-72 M Homogenous dark rim

WI07-73 D Dark inner rim on weakly zoned core (surrounded by thin bright zone- likely resorption)
WI07-74 D Bright weakly zoned core

WI07-75 D Bright inner rim, surrounded by second homogenous dark rim
WI07-77 D Bright weakly zoned core

WI107-78 D Dark unzoned core

WI07-79 D Patchy zoned core

WI07-80 M Dark homogenous rim

WI107-81 D Bright inner rim on dark core

WI07-82 D Bright zoned core

WI107-83 D Weakly zoned core

WI07-86 D Bright unzoned core

WI107-87 D Oscillatory zoned core

WI107-89 D Dark unzoned core

WI07-90 D Oscillatory zoned core

WI07-91 D Oscillatory zoned core

WI107-92 D Dark weakly oscillatory zoned core

WI107-93 D Bright unzoned core

WI107-94 D Dark resorbed core

WI107-95 M Dark homogenous rim

WI40: Mitchell Peninsula

WI140-1 D Dark weakly oscillatory zoned core

WI140-2 D Dark oscillatory zoned core

WI40-3 M Diffusively zoned grain

WI140-4 M Dark homogenous outer rim

WI140-5 M Diffusively zoned core

WI140-7 M Bright rim

WI40-8 D Dark core

WI140-10 M Bright rim

WI140-11 M Dark weakly zoned core (likely resorbed, zoning poorly preserved)
WI40-12 M Diffusively zoned core

WI140-15 D Bright, weakly oscillatory zoned core (thin zone of very bright CL response around core)
WI140-16 D Dark weakly oscillatory zoned core

WI140-17 M Bright rim

WI140-18 M Bright rim

WI140-19 M Dark homogenous inner rim (likely resorbed core)
WI140-20 D Bright oscillatory zoned core

WI140-21 M Diffusively zoned grain

WI140-22 D/ MD Dark oscillatory zoned core
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Chapter 2 Supp]ementar)/ Data §2.2: Zircon spot descriptionsfor metasedimentar)/ rocks

Spot number Interpretation  Zircon description

WI40: Mitchell Peninsula (continued)

WI140-23 M Dark homogenous outer rim
WI40-24 M Diffusively zoned grain

WI140-25 D Dark weakly oscillatory zoned core
WI40-26 M Diffusively zoned grain

WI140-29 M Dark homogenous outer rim
WI140-30 M Dark homogenous inner rim (likely resorbed core)
WI140-31 M Bright rim

WI140-32 M Bright rim

WI140-33 M Dark diffusively zoned core
WI140-34 M Bright rim

WI140-35 M Bright rim

WI140-36 D Dark weakly zoned core

WI140-37 D Dark weakly zoned core

WI140-38 M Bright rim

WI140-39 M Diffuse resorbed core

WI140-40 M Dark homogenous discontinuous rim
WI140-41 M Dark homogenous inner rim (likely resorbed core)
WI140-42 D Bright zoned core

WI140-44 D Dark oscillatory zoned core
WI140-45 M Diffusively zoned core

WI140-46 M Diffusively zoned grain

WI140-47 M Diffusively zoned grain

WI140-49 M Diffusively zoned core

WI40-51 M Bright rim

WI40-52 M Diffuse resorbed core

WI140-53 M Bright rim

WI140-54 D Dark oscillatory zoned core
WI140-55 D Bright oscillatory zoned core
WI140-56 M Homogenous dark grain

WI140-57 D Bright oscillatory zoned core
WI140-58 D Bright oscillatory zoned core
WI140-59 M Dark homogenous inner rim (likely resorbed core)
WI140-60 D Bright oscillatory zoned core
WI140-61 M Diffusively zoned grain

WI140-63 D Dark weakly oscillatory zoned core
WI140-65 D Dark oscillatory zoned core
WI140-67 D Bright oscillatory zoned core
WI140-68 M Bright rim

WI140-70 M Dark homogenous resorbed rim
WI140-71 D Bright oscillatory zoned core
WI140-72 D Dark homogenous core

WI140-73 D Dark weakly oscillatory zoned core
WI140-74 M Dark homogenous core (likely resorbed)
WI140-75 M Dark homogenous outer rim
WI40-76 D Dark core

WI140-77 M Bright rim

WI140-78 D Dark weakly oscillatory zoned core
WI140-79 M Bright inner rim

WI140-80 M Bright inner rim

WI140-81 D Dark homogenous core
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Chapter 2 Supp]ementar)/ Data S2.2: Zircon spot descriptions for metasedimentar)/ rocks

Spot number Interpretation  Zircon description

WI40: Mitchell Peninsula (continued)

WI140-82 D Dark oscillatory zoned core

WI140-83 M Dark homogenous core, likely resorbed
WI140-86 D Dark oscillatory zoned core

WI140-87 M Homogenous dark outer rim
WI140-88 M Bright rim

WI140-89 D Bright weakly oscillatory zoned core
WI140-90 M Diffusively zoned grain

WI89: Robinson Ridge

WI89-1 M Bright inner rim

WI189-2 D Dark weakly zoned core (may be reset core)- spot may straddle zones
WI89-3 D Dark oscillatory zoned core

WI89-4 M Dark weakly zoned core (likely resorbed core)
WI189-5 M Bright inner rim

WI189-6 M Homogenous dark grain

WI189-7 D Dark oscillatory zoned core

WI189-10 M Bright unzoned core

WI189-9 M Homogenous dark grain

WI89-11 D Bright inner rim

WI89-12 D Dark oscillatory zoned core

Wi89-14 M Dark rim

WI189-15 D Dark oscillatory zoned core

WI89-16 M Bright unzoned core

WI189-17 M Bright unzoned core

WI189-18 M Bright unzoned core

WI89-19 D Dark unzoned core

WI189-20 M Dark rim

WI189-21 D Dark oscillatory zoned core

WI189-22 D Diffusively zoned core (likely partially reset core with small detrital relic)- spot may straddle zones
WI89-23 D Dark unzoned core

WI189-24 D Bright inner rim

WI89-25 D Dark unzoned core

WI189-26 M Homogenous dark grain

WI189-27 D Dark oscillatory zoned core

WI189-28 M Bright inner rim

WI89-29 D Dark unzoned core

WI189-30 D Dark oscillatory zoned core

WI189-31 D Oscillatory zoned core

WI189-32 D Bright oscillatory zoned core
WI189-33 D Dark weakly oscillatory zoned core
WI189-34 M Bright inner rim

WI89-35 D Dark unzoned core

WI189-36 D Oscillatory zoned core

WI189-38 M Bright unzoned core

WI189-39 M Homogenous dark grain

WI189-40 M Weakly zoned core (likely partially resorbed core with small detrital relic)- spot may straddle zones
WI89-42 M Dark rim

WI189-43 M Homogenous dark grain

WI189-44 M Homogenous dark grain

WI189-45 M Homogenous dark grain

WI189-47 M Bright inner rim
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Chapter 2 Supp]ementar)/ Data §2.2: Zircon spot descriptionsfor metasedimentar)/ rocks

Spot number Interpretation  Zircon description

WI89: Robinson Ridge (continued)

WI189-53 D/MD Dark oscillatory zoned core

WI189-54 D Oscillatory zoned core

WI189-55 M Brightinner rim

WI189-56 M Bright diffusively zoned core

WI189-57 D Dark oscillatory zoned core

WI189-59 D Bright oscillatory zoned core

WI189-60 D Oscillatory zoned core (with resorbed edges)
WI89-61 M Dark rim

WI189-62 M Bright unzoned core

WI189-63 M Dark unzoned core (likely resorbed core)
WI189-65 M Brightinner rim

WI89-67 M Dark rim

WI189-68 M Dark unzoned core (likely resorbed core)
WI89-69 M Dark rim

WI189-70 M Bright inner rim

WI89-71 D Dark weakly zoned core

WI89-73 M Bright inner rim

WI89-74 M Bright unzoned core

WI89-75 M Dark rim

WI89-76 M Bright unzoned core

WI189-77 D Oscillatory zoned core

WI189-78 D Oscillatory zoned core

WI89-79 M Dark rim

WI89-80 M Dark unzoned core (likely resorbed core)
WI189-81 M Dark rim

WI189-82 M Bright inner rim

WI89-83 M Dark weakly zoned core (likely resorbed core)
WI68: Herring Island

WIi68-1 D Dark, partially oscillatory zoned core
WI168-2 D Bright oscillatory zoned core

WI168-3 D Small very bright zone overgrown by dark rim (spot likely to straddle zones)
WI168-4 M Dark homogenous rim

WI168-5 D Bright oscillatory zoned grain

WI168-6 D Oscillatory zoned grain

WI168-7 D/MD Bright oscillatory zoned grain

WI168-8 M Dark homogenous rim

WI68-11 D Dark weakly zoned grain

WI168-12 D Bright oscillatory zoned core

WI168-13 D Bright oscillatory zoned core

WI168-14 D Bright oscillatory zoned core

WI168-15 M Dark homogenous rim

WI168-16 D Bright oscillatory zoned core

WI168-17 D Bright oscillatory zoned core

WI168-18 D Bright oscillatory zoned core

WI168-19 D Bright oscillatory zoned grain

WI168-20 D Bright homogenous core

WI168-21 M Dark homogenous rim

WI168-22 M Dark homogenous zone (resorbed zone)
WI168-23 D/MD Bright oscillatory zoned core (embayed)
WI168-25 D Oscillatory zoned rim
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Chapter 2 Supp]ementar)/ Data S2.2: Zircon spot descriptions for metasedimentar)/ rocks

Spot number Interpretation  Zircon description

WI68: Herring Island (continued)

WI168-26 M Dark homogenous rim

WI168-27 D Bright oscillatory zoned core
WI168-28 D Oscillatory zoned grain

WI168-29 D Dark oscillatory zoned rim

WI168-30 D Bright oscillatory zoned core
WI168-31 D Dark weakly zoned rim

WI168-32 D Bright oscillatory zoned core
WI168-33 D Bright oscillatory zoned inner rim
WI168-34 M Dark homogenous rim

WI168-35 D Bright oscillatory zoned core
WI168-36 M Dark homogenous rim

WI168-37 M Dark homogenous rim

WI168-38 D Bright fir-tree zoning

WI168-39 D Bright oscillatory zoned core
WI168-40 M Dark homogenous rim

WI168-41 D Bright oscillatory zoned core
WI168-42 D Bright oscillatory zoned core
WI168-43 D Oscillatory zoned core

WI168-44 M Dark homogenous rim

WI168-45 D Bright oscillatory zoned overgrowth on bright core
WI168-46 D Bright core

WI168-47 M Dark homogenous rim

WI168-48 D Bright oscillatory zoned core
WI168-49 M Dark homogenous rim

WI168-50 D Bright oscillatory zoned core
WI168-51 D Dark oscillatory zoned core
WI168-52 D Bright oscillatory zoned core
WI168-53 M Dark homogenous rim

WI168-54 D Dark oscillatory zoned core
WI168-55 D Bright oscillatory zoned grain
WI168-57 D Bright oscillatory zoned core
WI168-58 M Dark homogenous rim

WI168-59 D Dark weakly zoned core

WI168-60 D Dark oscillatory zoned core
WI168-61 D Bright oscillatory zoned core
WI168-62 M Dark homogenous rim

WI168-64 D Bright oscillatory zoned core
WI168-65 D Bright oscillatory zoned core
WI168-66 M Dark homogenous rim

WI168-67 D Dark oscillatory zoned core
WI168-68 D Partially oscillatory zoned core (likely partially resorbed)
WI168-70 D Bright oscillatory zoned core
WI168-71 D Dark weakly oscillatory zoned core
WI168-73 D Bright oscillatory zoned core
WI168-74 D Large, bright oscillatory zoned core
WI168-75 D Bright oscillatory zoned inner rim
WI168-76 D Dark homogenous core

WI168-77 D Dark weakly oscillatory zoned grain
WI168-78 D Bright weakly oscillatory zoned core
WI168-79 D Bright oscillatory zoned core
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Chapter 2 S upp]ementar)/ Data §2.2: Zircon spot descriptions for metasedimentary rocks

Spot number Interpretation ~ Zircon description

WI68: Herring Island (continued)

WI168-80 D Bright homogenous core (small)
WI168-81 M Dark homogenous rim

WI168-82 M Dark homogenous rim

WI168-83 D Bright oscillatory zoned core
WI168-84 D Dark weakly zoned core
WI168-85 D Dark diffusively zoned core
WI168-86 D Bright oscillatory zoned core
WI168-87 D Bright oscillatory zoned core
WI168-88 D Bright oscillatory zoned core
WI168-90 D Bright oscillatory zoned core
WI68-91 D Sector zoned core

WI168-92 D Dark oscillatory zoned rim
WI168-93 D Bright homogenous core
WI168-94 D Dark oscillatory zoned rim
WI168-95 D Bright oscillatory zoned core
WI168-96 D Dark homogenous grain
WI168-97 M Dark homogenous rim

WI168-98 D Oscillatory zoned grain

WI168-99 D Bright homogenous core
WI168-101 M Dark homogenous inner rim (likely resorbed core)

D = detrital core, MD = used for maximum depositional age (youngest concordant detrital grain), M = metamorphic rim
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Chapter 2

Supp]ementar)/ Data S2.3: Zircon Lu—Hfana])/ses

207/206 176Hf/ 176Lu/ 176Yb/ 178Hf/ 176Hf/

Spot Age 177Hf 2SE. 177Hf 177Hf 177Hf 2S.E. 177Hf (i) eHf 1s
WI07: Cameron Island, detrital analyses
WI07-1 1379 0.282100 0.000120 0.001680 0.083400 1.467160 0.000120 0.282056 5.20 4.20
WI07-2 1358 0.282138 0.000086 0.002341 0.102960 1.467140 0.000110 0.282078 5.49 3.01
WI07-6 1389 0.281940 0.000075 0.001086 0.049700 1.467180 0.000093 0.281912 0.28 2.63
WI07-9 2484 0.281508 0.000081 0.001080 0.055000 1.467060 0.000100 0.281457 9.43 2.84
WI07-10 1821 0.281573  0.000055 0.001890 0.086500 1.467150 0.000078 0.281508 -4.13 1.93
WI07-12 1407 0.281909 0.000076  0.002090 0.085300 1.467170 0.000075 0.281853 -1.36 2.66
WI07-14 1746 0.281503 0.000067 0.000785 0.034680 1.467190 0.000079 0.281477 -6.95 235
WI07-16 1376 0.282214 0.000079 0.003313 0.152500 1.467160 0.000074 0.282128 7.67 2.77
WI07-18 1338 0.282102 0.000070 0.001075 0.049440 1.467140 0.000090 0.282075 492 245
WI07-20 1773 0.281569 0.000079 0.001132 0.050880 1.467150 0.000091 0.281531 -4.42 2.77
WI07-21 3025 0.280942 0.000081 0.001184 0.055440 1.467100 0.000110 0.280873 1.37 2.84
WI07-22 1777 0.281660 0.000100 0.001581 0.070860 1.467130 0.000110 0.281607 -1.64 3.50
WI07-25 1726 0.281632  0.000074 0.000907 0.041650 1.467090 0.000082 0.281602 -2.96 2.59
WI07-27 1403 0.282226 0.000093 0.001879 0.084200 1.467150 0.000100 0.282176 10.00 3.26
WI07-29 1587 0.281789  0.000079 0.000799 0.037900 1.467070 0.000087 0.281765 -0.38 2.77
WI07-30 1369 0.281994  0.000075 0.002119 0.099500 1.467100 0.000082 0.281939 0.81 2.63
WI07-31 1430 0.282044 0.000075 0.001383 0.069700 1.467080 0.000093 0.282007 4.61 2.63
WI07-32 1586 0.281746  0.000076  0.000657 0.031260 1.467090 0.000100 0.281726 -1.78 2.66
WI07-33 1486 0.282080 0.000077 0.001201 0.058600 1.467130 0.000085 0.282046 7.29 2.70
WI07-34 1747 0.281650 0.000072 0.001028 0.046090 1.467110 0.000084 0.281616 -2.00 2.52
WI07-36 1814 0.281606 0.000078 0.000831 0.034040 1.467110 0.000099 0.281577 -1.82 2.73
WI07-40 1370 0.281940 0.000088 0.001654 0.079000 1.467170 0.000093 0.281897 -0.65 3.08
WI07-41 1381 0.281953  0.000085 0.002270 0.100800 1.467060 0.000088 0.28189%4 -0.52 298
WI07-42 1789 0.281620 0.000057 0.001030 0.049650 1.467080 0.000077 0.281585 -2.12 2.00
WI07-44 1780 0.281497 0.000089 0.000685 0.030810 1.467160 0.000100 0.281474 -6.29 3.12
WI07-46 1455 0.282117 0.000094 0.003579 0.142300 1.467060 0.000096 0.282019 5.59 3.29
WI07-47 1799 0.281532  0.000060 0.001093 0.048200 1.467150 0.000082 0.281495 -5.11 2.10
WI07-48 1593 0.282037 0.000099 0.002188 0.107500 1.467030 0.000110 0.281971 7.07 347
WI07-49 1376 0.282160 0.000100 0.002876 0.150700 1.467080 0.000110 0.282085 6.17 3.50
WI07-50 1788 0.281487 0.000084 0.000801 0.036570 1.467100 0.000093 0.281460 -6.59 294
WI07-52 2556 0.281229 0.000071  0.000706  0.034430 1.467130 0.000086 0.281195 1.77 249
WI07-54 1808 0.281583  0.000065 0.000718 0.033280 1.467140 0.000085 0.281558 -2.63 2.28
WI07-56 1808 0.281524 0.000070 0.001216 0.053720 1.467140 0.000074 0.281482 -5.35 245
WI07-59 1766 0.281818 0.000075 0.001171 0.043810 1.467120 0.000081 0.281779 423 2.63
WI07-65 1362 0.281988 0.000081 0.001792 0.081800 1.467130 0.000079 0.281942 0.76 2.84
WI07-69 1658 0.281556  0.000079 0.001862 0.083800 1.467110 0.000095 0.281498 -8.24 2.77
WI07-70 2546 0.281236 0.000082 0.001361 0.061900 1.467060 0.000088 0.281170 0.66 2.87
WI07-71 1796 0.281560 0.000067 0.001444 0.068200 1.467090 0.000077 0.281511 -4.60 235
WI07-78 2633 0.281179  0.000099 0.003150 0.159500 1.467060 0.000100 0.281020 -2.62 347
WI07-79 1401 0.281911 0.000084 0.001766 0.076600 1.467150 0.000110 0.281864 -1.11 294
WI07-83 1714 0.281503 0.000080 0.000756 0.036980 1.467090 0.000092 0.281478 -7.63 2.80
WI07-86 1762 0.281360 0.000110 0.001934 0.089100 1.467170 0.000160 0.281295 -13.03 3.85
WI07-89 1783 0.281525 0.000086 0.001159 0.050180 1.467130 0.000094 0.281486 -5.79 3.01
WI07-91 1838 0.281834 0.000086 0.001540 0.063700 1.467110 0.000100 0.281780 5.92 3.01
WI07-92 1353 0.282053  0.000088 0.001952 0.089600 1.467010 0.000086 0.282003 2.71 3.08
WI07-93 1783 0.281462 0.000069 0.000301 0.013690 1.467120 0.000084 0.281452 -7.00 242
WI07-94 1364 0.282031 0.000082 0.002023 0.081800 1.467170 0.000088 0.281979 2.1 2.87
WI40: Mitchell Peninsula, detrital analyses
WI40-1 1482 0.281890 0.000090 0.000486 0.022960 1.467010 0.000110 0.281876 1.16 3.15
WI40-16 1452 0.281826  0.000076  0.000673 0.028640 1.467020 0.000100 0.281808 -1.97 2.66
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Supp]ementar)/ Data S2.3: Zircon Lufoana])/ses

Spot  207/206 176Hf/ 176Lu/ 176Yb/ 178Hf/ 176Hf/

Age 177Hf 2S.E. 177Hf 177Hf 177Hf 2S.E. 177Hf (i) eHf 1s
WI40: Mitchell Peninsula, detrital analyses (continued)
WI40-22 1354 0.281993 0.000085 0.000819 0.032000 1.466920 0.000110 0.281972 1.64 2.98
WI40-25 1633 0.281652 0.000074 0.001309 0.062600 1.466940 0.000090 0.281612 -4.78 2.59
WI40-36 1782 0.281539 0.000073 0.001567 0.068400 1.466980 0.000086 0.281486 -5.82 2.56
WI40-37 1376 0.281956 0.000069 0.001073 0.037270 1.467020 0.000082 0.281928 0.59 242
WI140-42 3194 0.280848 0.000071 0.001243 0.057670 1.466970 0.000096 0.280772 1.75 249
WI40-44 1806 0.281616  0.000081 0.001213 0.051400 1.467010 0.000092 0.281574 -2.12 2.84
WI40-63 1747 0.281641 0.000079 0.001190 0.047540 1.466950 0.000110 0.281602 -2.51 2.77
WI40-71 1450 0.282170 0.000100 0.002192 0.090100 1.466950 0.000098 0.282110 8.72 3.50
WI40-72 1808 0.281510 0.000098 0.000483 0.020600 1.467060 0.000120 0.281493 -4.94 343
WI40-73 1429 0.281741 0.000076  0.000560 0.024920 1.467000 0.000075 0.281726 -5.39 2.66
WI40-81 1664 0.281651 0.000098 0.003830 0.167400 1.467020 0.000093 0.281530 -6.95 343
WI40-82 1746 0.281598 0.000058 0.001418 0.057400 1.467020 0.000099 0.281551 -4.32 2.03
WI40-89 1790 0.281565 0.000070 0.000603 0.030670 1.467060 0.000076 0.281545 -3.55 245
WI89: Robinson Ridge, detrital analyses
WI89-15 1418 0.282036 0.000082 0.001528 0.070700 1.467140 0.000098 0.281995 3.92 2.87
WI89-21 1413 0.282057 0.000062 0.002001 0.091290 1.467150 0.000076 0.282004 4.1 217
WI89-25 1762 0.281836 0.000083 0.001615 0.075700 1.467120 0.000085 0.281782 4.23 291
WI89-27 1335 0.282106 0.000072 0.002925 0.119710 1.467050 0.000080 0.282032 3.35 2.52
WI89-30 1387 0.282157 0.000070 0.001049 0.045000 1.467040 0.000110 0.282130 7.99 2.45
WI89-36 1894 0.281848 0.000079 0.001890 0.083600 1.467190 0.000081 0.281780 7.22 2.77
WI89-49 1816 0.281767 0.000078 0.001188 0.051800 1.467110 0.000087 0.281726 349 2.73
WI89-53 1399 0.281948 0.000069 0.001617 0.072700 1.467020 0.000092 0.281905 0.30 242
WI89-57 1741 0.281974 0.000066 0.002545 0.100800 1.467150 0.000086 0.281890 7.59 2.31
WI89-59 1550 0.282031 0.000083 0.002736 0.104500 1.467050 0.000088 0.281951 5.37 291
WI89-71 1553 0.281993 0.000067 0.001660 0.072400 1.467130 0.000092 0.281944 5.20 2.35
WI89-77 1702 0.281983 0.000066 0.001904 0.082870 1.467190 0.000083 0.281922 7.82 2.31
WI68: Herring Island, detrital analyses
WI68-1 1349 0.282052 0.000084 0.001792 0.084200 1.467030 0.000086 0.282006 2.75 2.94
Wi68-2 1366 0.281938 0.000086 0.001060 0.051300 1.467090 0.000094 0.281911 -0.26 3.01
WI68-6 1346 0.281931 0.000070 0.001210 0.053610 1.467090 0.000091 0.281900 -1.09 245
Wi68-12 1345 0.282139 0.000099 0.001854 0.074100 1.466920 0.000110 0.282092 5.68 347
WI68-13 1388 0.281909 0.000090 0.001628 0.078700 1.467110 0.000099 0.281866 -1.33 3.15
Wi68-14 1341 0.281907 0.000071 0.002100 0.094800 1.467050 0.000092 0.281854 -2.84 2.49
Wi68-17 1326 0.281898 0.000087 0.001802 0.086200 1.467060 0.000091 0.281853 -3.21 3.05
WI68-19 1491 0.281840 0.000110 0.001654 0.067800 1.467140 0.000100 0.281793 -1.58 3.85
WI68-27 1371 0.282033 0.000080 0.001714 0.084230 1.467090 0.000110 0.281989 2,61 2.80
WI68-28 1410 0.281922  0.000091 0.001814 0.090300 1.467080 0.000090 0.281874 -0.57 3.19
WI68-29 1378 0.281926  0.000072 0.001256 0.060190 1.467110 0.000097 0.281893 -0.60 2.52
WI68-32 1383 0.281847 0.000075 0.001907 0.089100 1.467080 0.000078 0.281797 -3.90 2.63
WI68-35 1386 0.281754 0.000082 0.001969 0.096300 1.467030 0.000084 0.281702 -7.19 2.87
WI68-38 1390 0.281920 0.000120 0.001402 0.072300 1.467070 0.000130 0.281883 -0.69 4.20
WI68-39 1374 0.281950 0.000130 0.001910 0.099500 1.467110 0.000160 0.281900 -0.44 4.55
WI68-41 1417 0.281876  0.000086 0.001519 0.069400 1.466950 0.000110 0.281835 -1.77 3.01
WI68-42 1731 0.281722  0.000064 0.001607 0.075200 1.467050 0.000053 0.281669 -0.47 2.24
WI168-43 1347 0.281940 0.000079 0.001093 0.049400 1.467090 0.000090 0.281912 -0.64 2.77
WI68-48 1402 0.281814 0.000079 0.001115 0.051060 1.467080 0.000091 0.281784 -3.92 2.77
WI68-48 1402 0.281814 0.000079 0.001115 0.051060 1.467080 0.000091 0.281784 -3.92 2.77
WI68-50 1363 0.281919 0.000075 0.001299 0.057000 1.467020 0.000100 0.281886 -1.22 2.63
WI68-51 1387 0.281954 0.000090 0.001598 0.082500 1.467060 0.000087 0.281912 0.28 3.15
WI68-52 1420 0.281964 0.000086 0.001543 0.068400 1.467040 0.000090 0.281923 1.39 3.01
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Supp]ementar)/ Data S2.3: Zircon Lu—Hfana])/ses

207/206 176Hf/ 176Lu/ 176Yb/ 178Hf/ 176Hf/
Spot Age 177Hf 2S.E. 177Hf 177Hf 177Hf 2S.E. 177Hf (i) eHf 1s
WI68: Herring Island, detrital analyses (continued)
WI68-54 1409 0.281947  0.000091 0.002786 0.132900 1.467010 0.000110 0.281873 -0.63 3.19
WI68-55 1407 0.281930 0.000100 0.002480 0.123300 1.467030 0.000100 0.281864 -0.98 3.50
WI168-57 1383 0.281942 0.000086 0.001687 0.080500 1.467140 0.000096 0.281898 -0.33 3.01
WI68-64 1394 0.281961 0.000093 0.003140 0.157000 1.467090 0.000085 0.281878 -0.77 3.26
WI168-68 1421 0.281983  0.000068 0.001886  0.081300 1.466980 0.000078 0.281932 1.75 2.38
WI168-70 1373 0.281883 0.000094 0.001305 0.058900 1.467100 0.000100 0.281849 -2.28 3.29
WI168-71 1404 0.281890 0.000100 0.001920 0.090000 1.467000 0.000130 0.281839 -1.94 3.50
WI168-73 1403 0.281956  0.000067 0.001837 0.089200 1.467020 0.000073 0.281907 0.46 235
WI168-76 1396 0.281920 0.000095 0.002110 0.108000 1.467130 0.000110 0.281864 -1.21 3.33
WI168-83 1400 0.281904 0.000084 0.001757 0.086700 1.467100 0.000110 0.281858 -1.38 2.94
WI68-84 1366 0.281961 0.000079 0.001642 0.076700 1.467030 0.000095 0.281919 0.02 2.77
WI168-85 1338 0.281877  0.000077 0.001458 0.065600 1.467120 0.000096 0.281840 -3.40 2.70
WI168-86 1380 0.282002  0.000087 0.001700 0.078500 1.466930 0.000094 0.281958 1.73 3.05
WI168-87 1388 0.281995 0.000080 0.001661 0.078900 1.467060 0.000100 0.281951 1.69 2.80
WI168-88 1345 0.281886 0.000087 0.001573  0.079300 1.467090 0.000100 0.281846 -3.03 3.05
WI168-90 1359 0.281863 0.000087 0.001570 0.078300 1.467100 0.000098 0.281823 -3.54 3.05
WI168-91 1391 0.281892  0.000088 0.002230 0.103100 1.467070  0.000096 0.281833 -2.44 3.08
WI168-95 1387 0.281874 0.000092 0.001410 0.067700 1.467020 0.000120 0.281837 -2.39 3.22
WI168-96 1396 0.281966  0.000081 0.001926 0.094570 1.467000 0.000100 0.281915 0.58 2.84
WI168-98 1385 0.281938 0.000076 0.001510 0.064580 1.466990 0.000080 0.281898 -0.26 2.66
WI43: syn-D1 orthogneiss
Wi43-2 1310 0.281877  0.000080 0.000507 0.020770 1.467140 0.000110 0.281864 -3.18 2.80
Wi43-6 1362 0.282124 0.000096 0.001700 0.065500 1.466940 0.000100 0.282080 5.66 3.36
Wi43-7 1383 0.282053  0.000087 0.002256  0.104000 1.466960 0.000093 0.281994 3.08 3.05
WI43-10 1394 0.281936  0.000067 0.001958 0.095800 1.467120 0.000082 0.281884 -0.56 235
WI43-13 1404 0.281900 0.000072 0.001272 0.061900 1.467190 0.000085 0.281866 -0.97 2.52
Wi43-14 1371 0.282128 0.000078 0.001559 0.061360 1.467040 0.000100 0.282088 6.13 2.73
WIi43-16 1375 0.282097 0.000064 0.002415 0.101400 1.467080 0.000085 0.282034 4.33 2.24
Wi43-21 1375 0.282096 0.000082 0.001196  0.057900 1.467100 0.000088 0.282065 542 2.87
Wi43-22 1365 0.282064 0.000072 0.001505 0.070600 1.467110 0.000093 0.282025 3.78 252
WIi43-23 1369 0.281992  0.000073 0.001102 0.050400 1.467190 0.000088 0.281963 1.69 2.56
Wi43-24 1395 0.281940 0.000088 0.001568 0.074340 1.467130 0.000097 0.281899 -0.02 3.08
WI43-25 1380 0.282018 0.000084 0.001429 0.059100 1.467140 0.000091 0.281981 2.53 2.94
WIi43-26 1301 0.282035 0.000087 0.000964 0.041400 1.467170 0.000093 0.282011 1.83 3.05
WIi43-27 1316 0.282047 0.000073 0.001195 0.054400 1.467130 0.000110 0.282017 2.39 2.56
WI43-30 1342 0.282054 0.000086 0.001539 0.069300 1.467090 0.000110 0.282015 2.89 3.01
WIi43-31 1338 0.282035 0.000064 0.002099 0.083550 1.467050 0.000076 0.281982 1.63 2.24
Wi43-34 1321 0.281988 0.000057 0.001036 0.041800 1.467210 0.000078 0.281962 0.54 2.00
WIi43-38 1375 0.282015 0.000062 0.000934 0.043140 1.467150 0.000082 0.281991 2.78 217
WIi43-40 1326 0.282146  0.000098 0.002484 0.094800 1.467010 0.000099 0.282084 4.98 343
WIi43-42 1401 0.282049 0.000092 0.002590 0.126700 1.467100 0.000077 0.281980 3.01 3.22
WI17: M2 granite
WI17-3 1234 0.282053 0.000073 0.000306 0.014990 1.467140 0.000096 0.282046 1.55 2.56
WI17-10 1211 0.282129 0.000074 0.000269 0.015430 1.467100 0.000092 0.282123 4.28 2.59
WI17-12 1230 0.282018 0.000061 0.000329 0.013580 1.467130 0.000067 0.282010 0.29 2.14
WI17-16 1234 0.282077 0.000076  0.000194 0.008960 1.467060 0.000074 0.282072 2.50 2.66
WI17-18 1214 0.282065 0.000068 0.000297 0.013670 1.467050  0.000092 0.282058 1.98 2.38
WI17-19 1216 0.282094 0.000087 0.000172 0.008950 1.467050 0.000097 0.282090 3.12 3.05
WI17-20 1214 0.282063 0.000069 0.000376 0.017010 1.467050 0.000092 0.282054 1.85 242
WI17-23 1244 0.282036 0.000072 0.000402 0.017600 1.467120 0.000067 0.282027 0.87 2.52
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207/206 176Hf/ 176Lu/  176Yb/  178Hf/ 176Hf/

Spot Age 177Hf 2S.E. 177Hf 177Hf 177Hf 2S.E. 177Hf (i) eHf 1s
WI17: Mz granite (continued)

WI17-24 1234 0.282044 0.000077 0.000182 0.009500 1.467120 0.000080 0.282040 1.33 2.70
WI17-26 1208 0.282087 0.000065 0.000210 0.010460 1.467060 0.000083 0.282082 2.84 2.28
WI17-31 1221 0.282081 0.000065 0.000346 0.016230 1.467140 0.000078 0.282073 2.51 2.28
WI17-32 1228 0.282056  0.000074 0.000438 0.018130 1.467070 0.000085 0.282046 1.55 2.59
WI17-33 1199 0.282092 0.000076  0.000270 0.013350 1.467060 0.000089 0.282086 2.96 2.66
WI17-36 1232 0.282071  0.000077 0.000213 0.010420 1.467090 0.000079 0.282066 2.27 2.70
WI17-37 1301 0.282050 0.000065 0.000249 0.010500 1.467090 0.000080 0.282044 1.49 2.28
WI17-39 1227 0.282083  0.000085 0.000177 0.008740 1.467060 0.000083 0.282079 2.72 2.98
WI17-40 1231 0.282075 0.000061 0.000312 0.014420 1.467100 0.000083 0.282068 233 2.14
WI84: Ardery Charnockite

WIi84-1 1173 0.282107 0.000077 0.001067 0.053400 1.467130 0.000095 0.282083 1.58 2.70
Wi84-2 1178 0.282190 0.000090 0.001264 0.062920 1.467140 0.000098 0.282162 4.37 3.15
Wi84-4 1167 0.282119  0.000079 0.001258 0.064200 1.467070 0.000092 0.282091 1.86 2.77
Wi84-5 1193 0.282160 0.000100 0.000920 0.042000 1.467080 0.000110 0.282140 3.58 3.50
WI84-6 1175 0.282080 0.000078 0.000802 0.039600 1.467140 0.000098 0.282062 0.83 2.73
Wi84-7 1190 0.282141 0.000087 0.000965 0.046800 1.467140 0.000093 0.282120 2.87 3.05
Wi84-8 1180 0.282130 0.000087 0.001235 0.065100 1.467100 0.000110 0.282103 2.27 3.05
Wi84-9 1173 0.282121  0.000080 0.001197 0.059390 1.467120 0.000088 0.282094 1.98 2.80
Wi84-11 1164 0.282139 0.000094 0.000814 0.040100 1.467120 0.000100 0.282121 292 3.29
Wi84-12 1158 0.282153  0.000096 0.001304 0.069900 1.467020 0.000110 0.282124 3.03 3.36
WIi84-13 171 0.282155 0.000072 0.001291 0.066820 1.467100 0.000100 0.282126 3.1 2.52
Wi84-14 1173 0.282102  0.000088 0.001041 0.051600 1.467110 0.000100 0.282079 143 3.08
WI84-15 1185 0.282143 0.000084 0.000573 0.027460 1.467170 0.000084 0.282130 3.25 2.94
WI84-16 1177 0.282113  0.000078 0.000800 0.041300 1.467090 0.000090 0.282095 2.01 2.73
Wi84-17 1184 0.282114 0.000086 0.000900 0.043700 1.467110 0.000090 0.282094 1.96 3.01
WI84-19 1174 0.282122 0.000075 0.000454 0.020700 1.467130 0.000087 0.282112 2.60 2.63
WI84-20 1172 0.282083  0.000091 0.000605 0.028030 1.467150 0.000110 0.282070 1.10 3.19
Wi84-21 1170 0.282096  0.000087 0.000680 0.032000 1.467180 0.000110 0.282081 1.50 3.05
WIi84-22 1177 0.282129 0.000091 0.001310 0.065600 1.467120 0.000090 0.282100 217 3.19
WI84-23 1180 0.282169 0.000080 0.000875 0.044100 1.467100 0.000094 0.282150 3.93 2.80
Wi84-24 1164 0.282134 0.000091 0.001189 0.058600 1.467130 0.000085 0.282108 244 3.19
WI84-25 1173 0.282183  0.000085 0.000781 0.037400 1.467080 0.000100 0.282166 4.50 2.98
WI85: Ardery Charnockite

WI85-1 1169 0.282081 0.000090 0.001199 0.058480 1.467130 0.000096 0.282054 0.56 3.15
WI85-2 1191 0.282080 0.000110 0.001178 0.057700 1.467140 0.000120 0.282054 0.54 3.85
WI85-3 1170 0.282135 0.000082 0.001111  0.054000 1.467150 0.000095 0.282110 254 2.87
WI85-4 1185 0.282152  0.000096 0.000812 0.037220 1.467080 0.000100 0.282134 3.38 3.36
WI85-5 1173 0.282162 0.000079 0.001196 0.060200 1.467100 0.000091 0.282135 343 2.77
WI85-6 1174 0.282105 0.000081 0.000877 0.042800 1.467170 0.000083 0.282086 1.66 2.84
WI85-7 1182 0.282130 0.000100 0.000639 0.028890 1.467130 0.000110 0.282116 2.74 3.50
WI85-8 1188 0.282168 0.000078 0.000555 0.025730 1.467090 0.000096 0.282156 4.15 2.73
WI85-9 1182 0.282185 0.000091 0.001224 0.060000 1.467070 0.000100 0.282158 4.23 3.19
WI85-10 1183 0.282136  0.000077 0.001229 0.060510 1.467030 0.000096 0.282109 248 2.70
WI85-11 1180 0.282092 0.000092 0.000405 0.017030 1.467170 0.000110 0.282083 1.57 3.22
WI85-12 1180 0.282142 0.000072 0.001223 0.060660 1.467080 0.000086 0.282115 2.70 2.52
WI85-13 1181 0.282161  0.000078 0.001320 0.067100 1.467050  0.000085 0.282132 3.30 2.73
WI85-14 1174 0.282120 0.000097 0.000982 0.049400 1.467140 0.000110 0.282098 2.1 3.40
WI85-15 1186 0.282208 0.000085 0.001095 0.054200 1.467100 0.000093 0.282184 5.14 2.98
WI85-16 1173 0.282186 0.000061 0.001139 0.057600 1.467020 0.000078 0.282161 4.33 2.14
WI85-17 1172 0.282125  0.000088  0.000798  0.037720  1.467110__ 0.000110 0.282107 243 3.08
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Supplementary Data S2.3: Zircon Lu—Hf analyses

207/206 176Hf/ 176Lu/ 176Yb/ 178Hf/ 176Hf/

Spot Age 177Hf 2S.E. 177Hf 177Hf 177Hf 2S.E. 177Hf (i) eHf 1s
WI85: Ardery Charnockite (continued)

WI85-21 1189 0.282124  0.000078 0.000607 0.027730 1.467100 0.000091 0.282111 255 273
WI185-23 1174 0.282151 0.000069 0.000833  0.040810 1.467120 0.000085 0.282132 333 242
WI185-24 1172 0.282150  0.000084 0.001073 0.051830 1.467100 0.000100 0.282126 3.10 2.94
WI85-25 1180 0.282127  0.000083 0.000814 0.037600 1.467180  0.000090 0.282109 2.49 291
WI85-26 1165 0.282064  0.000087 0.000790 0.040500 1.467180 0.000100 0.282046 0.28 3.05
WI185-27 1181 0.282108 0.000071  0.000616 0.028880 1.467170  0.000080 0.282094 1.97 2.49
WI185-28 1181 0.282160 0.000100 0.000516  0.023090 1.467070 0.000120 0.282149 3.90 3.50
WI185-29 1172 0.282049 0.000089 0.000567 0.025120 1.467140 0.000086 0.282036 -0.08 3.12
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Chapter 3 P—T constraints on Stage I-Stage Il metamorphism in the Windmill Islands

ABSTRACT
In situ U-Pb monazite geochronology and calculated metamorphic phase diagrams from
the Windmill Islands in Wilkes Land, east Antarctica, show that the region experienced two
phases of high thermal gradient metamorphism during the Mesoproterozoic. The first phase of
metamorphism is recorded by monazite ages in two widely separated samples, and occurred at
13201300 Ma. This event was regional in extent and reached conditions of 3.5—4 kbar and 700
730 °C, corresponding to a very high thermal gradient. The elevated thermal regime is interpreted
to reflect a period of accelerated extension in a back-arc setting that existed prior to c. 1330 Ma.
The first metamorphic event was overprinted by granulite facies metamorphism that increases
in intensity to the south. This event involved peak temperatures of >850 °C and pressures of ~4
kbar and was followed by isobaric cooling. Monazite age populations of c. 1180 Ma suggest that
the second event was coeval with the intrusion of charnockite. A phase of granitic magmatism at
c. 1250—1210 Ma, prior to the intrusion of the charnockite, is interpreted to reflect a phase of
compression within an overall back-arc setting. The metamorphic evolution of the Wilkes Land
region is very similar to that of the eastern Albany—Fraser Orogen and Musgrave Province in
Australia and further demonstrate the remarkable consistency in the timing of metamorphism and

the thermal gradients along the ~5000 km strike length of this system.

1. Introduction

Metamorphic  rocks  record  pressure—
temperature (P—T) signatures that reflect
the  specific ~ thermal environment of
metamorphism, and can therefore be used to
characterise the likely tectonic setting (e.g.
Brown, 2007, 2014; Stitwe, 2007). Terranes
that record metamorphism at high thermal
gradients that significantly exceed normal
steady-state crustal conditions are of interest
because they require a mechanism that allows
the large-scale generation of high temperatures
(e.g. Bohlen, 1991; Clark et al., 2011; De
Yoreo et al., 1991; Harley, 2004; Kelsey and
Hand, 2015; Morrissey et al., 2015; Schmitz
and Bowring, 2003; Sizova et al., 2014). These
terranes provide real geological examples of
processes such as lithospheric extension or
convergence that have long-term effects on
the chemical and thermo-mechanical evolution

of the crust (Brown, 2007, 2014; Fyfe, 1973;
Vielzeuf et al., 1990).

The Musgrave—Albany—Fraser—Wilkes Orogen

is an example of an extensive, high thermal
gradient orogenic system that formed during
The
Mesoproterozoic metamorphism extends for
at least 5000 km from the Bunger Hills and
Windmill Islands in east Antarctica to the

the  Mesoproterozoic. footprint  of

Musgrave and Warumpi Provinces in central
Australia (Fig. 1; e.g. Clark et al., 2014;
Kirkland et al., 2011; Morrissey et al., 2011;
Smits et al., 2014; Tucker et al., 2015; Walsh
et al., 2015; Wong et al., 2015). Despite the
vast strike distance of the orogen, each of the
regions are characterised by a very similar
two-stage metamorphic and magmatic history
between 1340-1300 Ma and 1240-1140
Ma (e.g. Howard et al., 2015; Kirkland et
al., 2011, 2013, 2015; Smithies et al., 2011;
Zhang et al., 2012). Metamorphism in each
region was long-lived and occurred at high to
very high thermal gradients, with UHT rocks
outcropping in much of the Musgrave Province
(Clark et al., 2014; Morrissey et al., 2011;
Smithies et al., 2011; Tucker etal., 2015; Walsh
et al., 2015; Wong et al., 2015). However,
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despite the importance of this system as an
example of long-lived, high thermal gradient
metamorphism, the conditions and overall
tectonic setting of metamorphism in each of the
segments of this belt are not well defined, with
models ranging from intracratonic (Gorezyk et
al., 2015; Gorezyk and Vogt, 2015; Smithies et
al., 2011) to accretionary (Smits et al., 2014)
to a back-arc setting (Clark et al., 2014; Walsh
etal., 2015;Wong et al., 2015).

The Windmill Islands are located along the
Wilkes Land coast in east Antarctica and
provide some of the only Antarctic outcrop of
the system. Paleogeographic reconstructions
based on geophysics suggest that the Wilkes
Land geology was contiguous with the
Nornalup Zone, on the eastern margin of
the Albany—Fraser Orogen (Fig. 1; Aitken et

al., 2014, 2016). Importantly, the Windmill
Islands region also records the effects of both c.
1340—1300 Ma (M1) and c. 1240-1140 (M2)
metamorphism within the Musgrave—Albany—
Fraser system. This allows an assessment of the
conditions of the two stages of metamorphism.

This study presents calculated metamorphic
P—T pseudosections from four samples that each
record a different part of the overall P-T history
of the Windmill Islands. The pseudosections
are combined with in situ LA-ICP-MS (laser
ablation inductively coupled plasma mass
spectrometry) monazite geochronology to
constrain the timing of formation of the silicate
mineral assemblages. The purpose of this study
is to unravel the conditions of the two stages of
metamorphism. This is then used to provide a
metamorphic framework with which to assess

Australian Elements
Archean Cratons
|:| Proterozoic orogenic belts (undifferentiated)
I:I Madura-Forrest-Coompana Provinces

ca 1500-1400 Ma
m Albany-Fraser Orogen

|:| Proterozoic sedimentary basins

/7] ca 1300-1140 Ma reworking

'AUSTRALIAN

) . CRATOM
Antarctic Elements

m Wilkes Land

|:| West Mawson Craton
|:| East Mawson Craton

Wirjd

N 500km

110 E

Fraser Zone ' < §OUTH AN
AUSTRAUAN
9 CRATON 30°5

WEST MAWSO|
\ ___—t
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\Warumpl Proyince //

usgrave Provinge
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N

Figure 1: Simplified geological map of Australia and Ant.

arctica showing relevant geological provinces and the

extent of Mesoproterozoic reworking. Australian elements are modified from Kirkland et al. (2011). Tectonic

interpretation of basement geology in Antarctica inferred from geophysics by Aitken et al. (2014).
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tectonic models for Wilkes Land, and the
Albany—Fraser system as a whole.

2. Geological setting

The Windmill Islands are located along the
Wilkes Land coast near Australia’s Antarctic
Casey Station. They include approximately
400 km” of exposed outcrop on peninsulas
and islands (Figs. 1, 2). The outcrops consist of
high-grade deformed and migmatised pelitic to
psammitic metasedimentary rocks, granitic to
mafic orthogneisses, a voluminous charnockite
suite and minor porphyritic granite and late-
stage dolerite dykes (Blight and Oliver, 1977;
Moller et al., 2002; Post, 2000; Zhang et
al., 2012). Garnet-bearing orthogneiss and
charnockite are the dominant rock types and
make up ~70% of the outcrop (Fig. 2; Zhang
et al., 2012). Detailed descriptions of each
lithology and their distribution are given in
Paul et al. (1995) and Post (2000).

The metasedimentary rocks are the oldest units
in the Windmill Islands and were deposited
in the interval 1350-1300 Ma (Morrissey
et al., in review (Ch. 2); Post, 2000). The
metasedimentary rocks were intruded by
protoliths to the orthogneisses that formed
during two periods of magmatic activity at c.
1315 Ma and c. 1250-1210 Ma (Post, 2000;
Post et al., 1997; Zhang et al., 2012). These
periods of magmatism were broadly coeval
with two tectono-metamorphic events, M,
and M, respectively. The structural and
metamorphic history of the Windmill Islands
has been described in detail by previous
workers (Paul et al., 1995; Post, 2000) and is

briefly summarised below.

The overall metamorphic grade in the Windmill
Islands increases from upper amphibolite facies
in the north to granulite facies in the south
(Fig. 2; Blight and Oliver, 1977; Moller et al.,

2002; Post, 2000). M /D, is interpreted to
have occurred at 1320—-1300 Ma and is only
preserved in the northern part of the Windmill
Islands (Fig. 2). D, involved the formation of
a horizontal S, fabric parallel to compositional
layering and F isoclinal folds defined by folded
leucosomes (Paul et al., 1995; Post, 2000).
Metamorphic conditions associated with this
event reached upper amphibolite to lower
granulite facies conditions, with the formation
of sillimanite—biotite—cordierite or sillimanite—
biotite—garnet-bearing assemblages in pelitic
rocks (Blight and Oliver, 1977; Paul et al.,
1995) and the intrusion of granite at c. 1315
Ma (Fig. 2). Conventional thermobarometry
and qualitative estimates based on mineral

parageneses suggest peak conditions of ~750
°C and 4 kbar (Post, 2000).

The second phase of tectono-metamorphism,
M//D, ., occurred at 1240-1140 Ma and
involved two stages of deformation. The effects
of the M, event increase progressively to the
south, culminating in high grade granulite
facies conditions in the southern islands (Fig.
2). In the south, garnet- and cordierite-bearing
leucosomes formed early in M, and were then
folded in tight isoclinal folds during D, (Blight
and Oliver, 1977; Paul et al., 1995; Post, 2000).
Map-scale F, folds occur in metasedimentary
units on Clark, Bailey and Mitchell Peninsulas,
trend E-W and are generally upright in the
northern part of the region and more inclined
in the southern part of the region (Post, 2000).
Voluminous syn- to post-D,  garnet-bearing
granite intruded between 1250-1210 Ma
(Fig. 2; Post, 2000; Zhang et al., 2012). These
granites have variable ages, mineralology
and Hf isotopic values, suggesting there are
multiple, distinct intrusive sources (Morrissey
et al., in review (Ch. 2); Post, 2000; Zhang et
al., 2012). Deformation during D, involved
open to tight southeast plunging folds, which

-93.



Chapter 3

P—T constraints on Stage I-Stage I metamorphism in the Windmill Islands

| \ |
470 000F WINDMILL ISLANDS #90000E
=
4= DONOVAN
90° 180° o [SLANDS e
SWAIN GROUP @y 115°
—2650000N  _ _ — — — — —_ _UEPEEAMPHIBOLITE
g GRANULITE
(o]
0 . ~
270
r- i 750
Legend: 12640 000N 2640 000N—|
Moraine T, T O ot
Ardery Charnockite =
(ca 1200-1160 Ma)
Ford Granite { t ;>“h%>
(ca 1170 Ma) 2 &S
q
Intermediate-mafic gneiss [} N
. —2630 000N 2630 000N —|
Syn- to post-D,, orthogneiss 7
(ca 1250-1210 Ma) L )ke
. + BROWNING
Syn'D'| OI’thOgneISS PENINSULA Q
(ca 1315 Ma) ot
Metasedimentary rocks =
Sample location and number|®| 0 5km
480 000E 490 000

Figure 2: Sketch geological map of the Windmill Islands, from Post (2000). Ages of lithologies are from Post

(2000) and Zhang et al. (2012).

resulted in complex fold interference patterns.

Partial melting continued during D_ . with

)
garnet—orthopyroxene—cordierite—}ibearing
leucosomes forming in the axial plane of D
folds. High temperatures are interpreted to
have outlasted the deformation, suggested by
structurally discordant orthopyroxene-bearing
leucosomes on Bailey and Mitchell Peninsulas

(Paul et al., 1995; Post, 2000). Conventional

thermobarometry suggests that peak M,
conditions in the southern Windmill Islands
reached 5-7 kbar and 850-900 °C. The final
stages of M, involved the intrusion of the c.
1170 Ma Ford Granite and the voluminous
c. 1200-1160 Ma Ardery Charnockite suite
in the southern part of the terrane (Fig. 2;
Post, 2000; Zhang et al., 2012). The Ardery
Charnockite is interpreted to have crystallised
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at temperatures of 960—1100 °C and pressures
of 3—4 kbar (Kilpatrick and Ellis, 1992). € (t)
values show that it is the most juvenile rock
type in the region and it is interpreted to be
derived from the melting of mafic lower crust
(Kilpatrick and Ellis, 1992; Morrissey et al., in
review (Ch. 2); Zhang et al., 2012). Monazite
ages of 1170-1140 Ma from samples of
orthogneiss were interpreted to date the final
stages of partial melting (Post, 2000). Garnet
Sm—Nd ages from a variety of rock types range
between 1153 and 1123 Ma, interpreted to date
initial cooling (Moller etal., 2002; Post, 2000).
The final stage of deformation involved the
formation of cross-cutting, discrete retrograde
D, shear zones that resulted in greenschist

Table 1: Sample locations in UTM (WGS84).

facies recrystallisation of the granulite facies
rocks (Post, 2000).

3. Sample description and petrography
Four metapelitic samples were chosen to
examine the change in metamorphic grade from
upper amphibolite facies in the north to high-
grade granulite facies in the south (Fig. 2). One
sample was selected from the northern part of
the Windmill Islands, interpreted to reflect M,
two samples were selected to investigate the
overprinting relationships between M, and M,
and one sample was selected from the southern
Windmill Islands, interpreted to record only
M, . The location of each sample is presented
in Table 1. A summary of the petrography of

Sample Location Zone Easting Northing
WI12 Cameron Island (northern Windmill Islands) 49D 482480 2655956
WI40 Mitchell Peninsula (central Windmill Islands) 49D 479134 2644765
WI29 Mitchell Peninsula (central Windmill Islands) 49D 478651 2645187
WI68 Herring Island (southern Windmill Islands) 49D 482772 2634855
Table 2: Summary of petrography.
Post-

Sample M, assemblage M, assemblage Peak M,
WI12 g+ pl+ksp+bi+cd+mt+ilm+sill +q — -
WI40 g+ pl +ksp + bi + mt + ilm +sill + q pl, + ksp + bi, + cd + sp + mt, + ilm, + (g,) —

. . bi+qz 2>
WI29 — gl+p1+ksp+mt+1]m+q+opxibl cd+qg2
WIl6e8  — pl + ksp + opx + cd + mt +ilm + q bi

Minerals Modal proportion

WI12 g:pl:ksp:bi:cd:mt/ﬂm:sill:q 2 17:4:27:9:5:12:21
WI40 g:pl:ksp:bi:cd:Sp:mt/ﬂm:sﬂl:q 18:20:15:17:20:2:3:1:4
WI29  g:pl:ksp:opx:bi:cd:mt/ilm:q 9:18:18:1:27:0.5:6.5:20
WI68  pl:ksp:opx:bi:cd:mt/ilm:q 20:22:11:12:17:3:15
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each sample is presented in Table 2. The modal
proportion of minerals in each sample was

Visually estimated and is also summarised in

Table 2.

3.1. WI12: Cameron Island (Swain Group)
Sample WI12 contains an S 1 fabric defined by
alternating quartzofeldspathic  leucosomes

and layers containing biotite and sillimanite

cd
_ Mt ksp
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MY g 9
: -
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q g
ksp g
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ks
P bi cd pl
bi
ksp opX
opX cd
1000 ym

that define a strong foliation (Fig. 3a). The
leucosomes are 3—5 mm in width and are
dominantly composed of euhedral to subhedral
plagioclase grains (up to 1 mm in diameter)
that commonly contain aggregates of foliation-
parallel acicular sillimanite. K-feldspar, quartz
(~250-500 pm), minor cordierite (<1 mm)
and rare biotite also occur in the leucosomes.

In the biotite—sillimanite-rich  domains,
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Figure 3 (previous page): Photomicrographs illustrating important mineralogical relationships. (a)
Sample WI12: garnet and aggregates of quartz are wrapped by a strong fabric defined by biotite and fine-
grained sillimanite. (b) Sample WI40: garnet is partially replaced by cordierite—spinel-magnetite reaction
microstructures. The cordierite is outlined with a dashed line. Fine-grained garnet occurs within the reaction
microstructure. (c) Sample WI40: coarse-grained garnet and sillimanite are partially replaced by spinel—
magnetite—plagioclase symplectites. In places plagioclase and spinel are separated by a thin corona of a mineral
that is now altered (brown in colour) but is interpreted to have been cordierite. (d) SampleWI29: symplectites
of bladed biotite and quartz form defined grain shapes and are interpreted to be pseudomorphing another
mineral. Fine-grained garnet occurs intergrown with the biotite—quartz symplectites on the margins of coarse-
grained garnet. (e) Fine-grained orthopyroxene occurs at the margins of the biotite—quartz symplectites and
is interpreted to be relict. The biotite—quartz symplectites contain inclusions of magnetite. (f) Sample WI68:
orthopyroxene occurs as ragged grains in the matrix and included in magnetite, where it is separated by a

corona of plagioclase. Biotite is coarsest and most abundant in domains with orthopyroxene and magnetite.

sillimanite is predominantly acicular but
may also occur as coarser-grained prismatic
needles that are up to 2 mm in length (Fig.
3a). Biotite occurs intergrown with sillimanite
and as coarser, tabular grains (>1 mm; Fig.
3a) that contain inclusions of sillimanite.
Euhedral garnet porphyroblasts (1-3 mm) are
commonly wrapped by the sillimanite-bearing
foliation (Fig. 3a), though in places garnet also
appears to overgrow coarse-grained sillimanite.
The garnet grains contain rare inclusions of
sillimanite, biotite and quartz. Cordierite
occurs intergrown with sillimanite needles and
may form poikiloblasts up to 1.5 mm. Elongate
aggregates of quartz (500—1500 pm in length)
are wrapped by the sillimanite-bearing fabric
(Fig. 3a). Fine-grained plagioclase and Fe—
Ti-oxides (up to 500 um) also occur in these
domains. Magnetite is the dominant oxide and
ilmenite occurs as small, anhedral grains in
direct contact with magnetite. Magnetite may
contain inclusions of sillimanite, or be cross-
cut by coarse-grained sillimanite (Fig. 3a).
Minor amounts of apatite occur throughout the
sample.

3.2. WI40: Mitchell Peninsula

Sample WI40 contains a gneissic fabric defined
predominantly by leucosomes up to 5 mm
in width and biotite-rich layers with varying
abundances of plagioclase and cordierite. The

leucosomes contain perthitic K-feldspar (up to
2 mm), plagioclase and antiperthite (250-2000
um). Quartz is rare and occurs as inclusions
within feldspar grains in the leucosomes. In
the plagioclase—biotite-rich layers, abundant
plagioclase and K-feldspar occur together with
euhedral garnet (500-1000 pm) and biotite
flakes of variable orientation and size (typically
750—1500 um). These layers do not contain
cordierite or sillimanite and Fe-oxides are
rare. Other layers are dominantly composed
of coarse-grained cordierite (up to 1.5 mm
in diameter), together with coarse-grained
magnetite (up to 2 mm), spinel and minor
anhedral ilmenite. Sillimanite is relatively
abundant in these layers as acicular, foliation-
parallel inclusions in cordierite, but it does not
occur as a matrix mineral. Angular, anhedral
garnet is fine-grained (typically 150-200 um)
and occurs as inclusions in cordierite. Biotite
occurs as small, anhedral flakes between 100—
500 um in length, and is less abundant and
finer-grained in areas that contain sillimanite
inclusions. This sample also contains biotite-
rich layers that contain feldspar as well as
cordierite, garnet and Fe—Ti-oxides. In these
layers, garnet is up to 1.5 mm in diameter
and commonly in contact with coarse-grained
biotite flakes (up to 1.5 mm in length) that
are randomly oriented. Fe-oxides (dominantly
magnetite with rare ilmenite) occur as anhedral
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grains up to 2 mm in diameter and may
contain rare inclusions of sillimanite, garnet or

cordierite.

The sample contains two different mineral

reaction microstructures involving  spinel
(together with lesser amounts of magnetite
and ilmenite). The first mineral reaction
microstructure  involves  symplectites  of
that

garnet (Fig. 3b). Cordierite in these reaction

cordierite—spinel-magnetite surround
textures comprises an aggregate of small grains
that have been variably altered to pinite (Fig.
3b). Spinel is typically fine-grained, anhedral
and very dark in colour. Magnetite occurs as
small, anhedral grains and also as coarser grains
1-2 mm in diameter (Fig. 3b). Ilmenite is much
less common and occurs as small domains
intergrown with magnetite. Small, anhedral
garnets may be surrounded by cordierite
(Fig. 3b). The first reaction microstructure
is commonly surrounded by unoriented,
coarse-grained biotite and plagioclase (Fig.
3b). The

involves coarse-grained sillimanite and garnet

second reaction microstructure

which are partially replaced by symplectites
of plagioclase, spinel, magnetite and ilmenite
(Fig. 3c). Coarser-grained relics of anhedral
sillimanite (up to 1 mm in length) occur within
these reaction microstructures (Fig. 3c). These
reaction microstructures also contain thin
(<50 pm) coronas that separate magnetite
and spinel from plagioclase (Fig. 3c). The
mineral that makes up these coronas has now
been replaced, but has a similar appearance to
domains of highly altered (pinitised) cordierite
elsewhere in the sample.

3.3. WI29: Mitchell Peninsula

Sample WI29 contains a gneissic fabric
defined by alternating biotite-rich layers and
quartzofeldspathic leucosomes. At outcrop
scale, the leucosomes contain garnet and

coarse-grained magnetite. Anhedral garnet
porphyroblasts (up to 5 mm) typically occur
in discrete layers together with coarse-
grained biotite and the two minerals occur
in direct contact. Garnet grains contain rare
inclusions of acicular sillimanite that are
parallel to the gneissic foliation as well as
inclusions of magnetite, ilmenite, biotite and
quartz. A second, fine-grained morphology of
garnet also occurs on the margins of garnet
porphyroblasts, intergrown with symplectites
of bladed biotite and quartz (Fig. 3d). This
finer-grained garnet contains inclusions of
bladed quartz that are aligned with the
that the
The
bladed biotite and quartz symplectites are

symplectitc quartz, suggesting

garnet overgrew the symplectite.
abundant and commonly form ecuhedral
grain shapes with well-defined edges and
may be several millimetres in diameter (Fig.
3d). The symplectites contain inclusions
of euhedral magnetite and ilmenite (250—
500 pym) and quartz (500—1000 pm) (Fig. 3d
and ¢). Orthopyroxene occurs in this sample as
small grains (no larger than 50-100 um) that
are typically located on the edge of the biotite—
quartz symplectites or near magnetite (Fig.
3e). Fine-grained biotite—quartz intergrowths
also occur at the margins of coarse-grained
biotite, and are in optical continuity. Magnetite
and ilmenite aggregates are abundant and
occur throughout the sample as anhedral
grains that are up to 3 mm in length. They are
coarsest at the margins between garnet and the
biotite—quartz symplectites. Magnetite may
contain inclusions of exolved spinel. In some
parts of the sample, garnet and magnetite are
separated by thin coronas of a mineral that has
now been replaced. This mineral has a different
alteration character to the feldspars observed
elsewhere in the sample. Although it cannot
be definitively proven, it is possible that this

mineral was cordierite. The remainder of
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the sample comprises

that are

quartzofeldspathic
leucosomes partially  wrapped
by the garnet-biotite-bearing layers. The
quartzofeldspathic leucosomes contain coarse-
grained perthitic K-feldspar (2.5-3 mm in
diameter), finer-grained plagioclase (<1.5

mm in diameter) and quartz.

3.4. WI6S: Herring Island
Sample WI68 is from Herring Island in the
southern Windmill Islands. At outcrop scale, it
contains cordierite and orthopyroxene-bearing
leucosomes that are concordant with the
gneissic fabric. The sample contains cordierite,
K-feldspar,

biotite, magnetite, ilmenite and quartz (Fig.

orthopyroxene, plagioclase,
3g). Orthopyroxene occurs as anhedral, ragged
grains (<500 pym across, commonly ~250 pm)
in close proximity to biotite and cordierite (Fig.
3g). Cordierite grains are up to 1.5 mm and
may contain inclusions of biotite. Biotite occurs
throughout the matrix as small (150 pm) flakes,
but it is more abundant and coarser-grained
(up to 500 pm) in regions with cordierite,
orthopyroxene and the Fe—Ti-oxides, where
it may form coronas. Fe—Ti-oxides are most
abundant in the relatively biotite-rich areas
of the sample and are dominantly magnetite
rather than ilmenite (Fig. 3g). The majority of
the sample is comprised of K-feldspar, which
occurs as grains up to 500 um and may be
perthitic (Fig. 3g). Plagioclase (up to 250 pm)
and less common quartz make up the remainder

of the sample.

4. Sampling and Methods

4.1. U-Pb monazite geochronology

U-Pb isotopic data was collected using LA-
ICP-MS on in situ monazite grains in thin
section. Prior to LA-ICP-MS analysis, monazite
grains were imaged using a back-scattered
electron detector on a Phillips XL30 SEM to

determine their microstructural locations and

any compositional variations.

LA-ICP-MS analyses were done at the
University of Adelaide, following the method
of Payne et al. (2008). U-Pb isotopic analyses
were acquired using a New Wave 213 nm Nd—
YAG laser coupled with an Agilent 7500cs ICP-
MS. Ablation of monazites was performed in a
He-ablation atmosphere with a frequency of 4
Hz.A spotsize of 12 um was used for all samples.
The total acquisition time of each analysis
was 100 s. This included 40 s of background
measurement, 10 s of the laser firing with the
shutter closed to allow for beam stabilisation,
and 50 s of sample ablation. Isotopes measured
were “*Pb, 2°Pb, *’Pb and ***U for dwell times

of 10, 15, 30 and 15 ms, respectively.

Monazite data were reduced using Glitter
software (Griffin et al., 2004). Elemental
fractionation and mass bias was corrected
using the monazite standard MAdel (TIMS
normalisation data: *’Pb/?*Pb = 491.0 *
2.7 Ma, **Pb/**U = 518.37 = 0.99 Ma and
*Pb/>*U = 513.13 * 0.19 Ma: updated
from Payne et al. (2008) with additional
TIMS analyses). Throughout the course of this
study, MAdel yielded weighted mean ages of
27pb/?Pb = 489 + 8§ Ma (MSWD = 0.33),
206ph /B8] = 518 + 2 Ma (MSWD = 0.48),
and 27Pb/?U = 513 + 2 Ma (MSWD = 0.44)
(n = 80). Data accuracy was monitored using
monazite standard 94-222/Bruna-NW (c.
450 Ma: Payne et al., 2008). As a secondary
standard, 94-222 yielded weighted mean ages
of ’Pb/*™Pb = 441 £ 12 Ma (MSWD =
0.75), 2Pb/>*U = 452 + 2 Ma (MSWD =
0.98), *Pb/?*U = 450 £ 2 Ma (MSWD =
1.10) (n = 30).

4.2. Mineral equih'bria mode]]ing
P—T pseudosections were calculated for four
metapelitic samples using THERMOCALC
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v3.40, using the internally consistent dataset,
ds62, of Holland and Powell (2011) and
the activity—composition (a—x) models re-
parameterised for metapelitic rocks in the
MnNCKFMASHTO system (Powell et al.,
2014; White et al., 2014a, 2014b). Calculated
phase diagrams were contoured for the
abundance and composition of phases using TC
Investigator (Pearce et al., 2015).

Whole-rock chemical compositions for the
calculation of metamorphic phase equilibria
were determined by crushinguparepresentative
amount of each sample using a tungsten
carbide mill. Analyses of bulk-rock chemical
compositions were conducted by Franklin and
Marshall College, Pennsylvania. Major elements
were analysed by fusing a 0.4 g portion of the
powdered sample with lithium tetraborate for
analysis by XRF. Trace elements were analysed
by mixing 7 g of crushed rock power with
Copolywax powder and measurement by XRF.
The whole rock chemistry for each sample
used in the calculation of the mineral equilibria
pseudosections is given in Supplementary Data
S3.1.

The amount of H O and Fe O, in the bulk
chemical composition that relates to the
formation of the preserved metamorphic
mineral assemblages can be difficult to
determine, due to hydration and oxidation
during low-T processes such as weathering and
exposure of rock powders to air (e.g. Johnson
and White, 2011; Kelsey and Hand, 2015;
Lo Po and Braga, 2014). The oxidation state
can have a significant effect on the stability
of Fe-Ti oxide minerals such as magnetite,

ilmenite(“ and rutile, as well as some silicate

)
minerals (e.g. Boger et al., 2012; Diener and
Powell, 2010; Morrissey et al., 2016b; White
et al., 2002). The proportion of Fe O, to FeO

for all samples was evaluated based on the

modal abundance of Fe3+-bearing minerals and
an appraisal of the ferric iron content of those
minerals as determined for measured mineral
compositions using the stoichiometric method
of Droop (1987). For the bulk compositions of
these samples, the main effect of increasing the
oxidation state is to increase magnetite stability
to higher pressures and decrease garnet stability
at lower pressures. However, the topology
and P—T conditions of the main fields on the
pseudosections are not significantly affected
by small variations in oxidation state. The H,O
content for all samples was also estimated
based on the modal proportion of H O-
bearing minerals (biotite and cordierite) and
a conservative estimate of the H O content of
these minerals in granulites, based on electron
microprobe totals (e.g. Bose et al., 2005;
Cesareetal., 2008; Deer etal., 1992; Rigby and
Droop, 2011). The main effect of decreasing
the H O content of the bulk composition is
to elevate the solidus, whereas increasing the
amount of H O favours the stability of silicate
melt at the expense of diminishing K-feldspar
stability and to lower the temperature of the
solidus. The interpreted peak conditions in
these samples are not significantly affected by

small variations in HQO.

5. Results

5.1. U—Pb monazite geochronology

U-Pb isotopic data and information on
microstructural location for all monazite
analyses are presented in Supplementary Data
§3.2. Representative BSE images of monazite
grains are shown in Figure 4. Tera—Wasserburg
plots for all samples are presented in Figure 5.
Analyses that are shown as dashed grey ellipses
are >5% discordant and have been excluded
from the calculation of concordia ages and
weighted average ages.

5.1.1. Sample WI12
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Figure 4: BSE images of representative monazite grains from each sample. The ages shown are the **’Pb/***Pb
ages. (a) Sample WI12. (b) Sample WI40. (c) Sample WI129. (d) Sample WI168.

Twenty-two analyses were collected from
twelve grains. Monazite grains are located
throughout the biotite—sillimanite foliation and
within the quartzofeldspathic leucosomes. They
are typically 2060 um in diameter and appear
unzoned in BSE images (Fig. 4a). The monazite
analyses form a spread along concordia from
1300 Ma to 1150 Ma (Fig. 5a). There is no link
between microstructural location and age. It is
not possible to define two populations on the
basis of *’Pb/**Pb ages. However, a probability
density plot of the **Pb/?**U ages suggests that
the analyses broadly define two peaks at c. 1200
Ma and c. 1260 Ma (Fig. 5a).

5.1.2. Sample WI40

Thirty-one analyses were collected from
fourteen grains. Monazite grains are located
throughout the sample, including as inclusions
in garnet and coarse-grained feldspar as well as
within the reaction microstructures. Monazite
grains are typically 40—80 um in diameter and
some grains display weak, patchy zoning in

BSE images (Fig. 4b). Four analyses that are

>5% discordant are excluded from further
interpretation. The remaining 27 analyses form
a spread along concordia from c. 1320 to 1170
Ma (Fig. 5b).The dark, patchy zones commonly
yield older ages but grains that appear unzoned
in BSE also yield multiple ages (Fig. 5b).
Monazite grains included in coarse-grained
feldspar or garnet commonly yield older ages
whereas those located within cordierite or
along grain boundaries yield a range of ages
(Fig. 5b). Multiple age populations cannot be
clearly defined on the basis of the *’Pb/**Pb
ages. However, a probability density plot of
the **Pb/***U ages suggests the analyses define
two age peaks at c. 1290 Ma c. 1220 Ma, with
a younger ‘shoulder” at c. 1190 Ma (Fig. 5b).

5.1.3. Sample WI29

Thirty-one analyses were collected from
fourteen grains located throughout the matrix
of the sample and within the biotite—quartz
symplectites. The grains are 50-200 pm in
diameter and show patchy zoning in BSE images

(Fig. 4c). All 31 analyses yield a concordia
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Figure 5: Tera—Wasserburg concordia plots for each of the samples in the study. Analyses denoted by dashed
grey lines are excluded from the calculations based on discordance. Weighted mean ages are the 207p, /206ph
ages. (a) Sample WI12. (b) Sample WI40. (c) Sample WI29. (d) Sample WI168.

age of 1177 = 2 Ma (Fig. 5¢; MSWD i
= 0.66, probability(conc T 0.98) and a
*"Pb/**Pb weighted average age of 1173 £ 10
Ma (MSWD = 0.37).

5.1.4. Sample WI68

Twenty-five analyses were collected from
twenty grains located along grain boundaries
or included within biotite. The grains are
20-80 pm in diameter and appear unzoned
in BSE images (Fig. 4d). Six analyses that are
>5% discordant are excluded from further
interpretation. The remaining 19 analyses
yield a concordia age of 1182 * 3 Ma (Fig. 5d;

MSWD = 0.61, probability =
(conctequiv) (conctequiv)
0.97) and a **’Pb/?*Pb weighted average age of

1178 + 15 Ma (MSWD = 0.35).

5.2. Mineral chemistry

Representative electron microprobe analyses of
the compositions of minerals in each sample are
presented in Table 3. The compositional ranges
for selected minerals are summarised in Table
4. The calculated end member proportions
discussed below are defined in Table 4.

5.2.1. Garnet
Garnet occurs in samples WI12, WI29 and
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WI40. Garnet cores in all three samples have
similar X of 0.54-0.59 and Xgrs of 0.02—
0.04. Garnet grains in sample WI12 have lower
Xpy of 0.12-0.14 and higher XSPS of 0.27-0.28
whereas garnet grains in sample WI29 have
higher Xpy of 0.29-0.34 and lower XSPS of 0.10.
Garnet grains in sample WI40 have Xp,v of
0.21-0.24 and XSPS of 0.10-0.16.

Inclusions of magnetite and biotite in garnet
cause a large spread in the core values for X
and X particularly in sample WI29. Despite
the range in core values, all samples do show
minor zoning trends in some elements. Garnet
grains in samples WI40 and WI29 show a minor
increase in X from core to rim, whereas all
samples show a decrease in X from core to
rim. None of the samples show significant
zoning trends in Xgrs and XSPS. Sample WI29
contains a second, fine-grained morphology
of garnet that occurs at the margin between
coarse-grained garnet and the biotite—quartz
symplectites. The fine-grained garnet has a
composition that is very similar to the rim

analyses for the garnet porphyroblasts.

5.2.2. Biotite

Titanium content of biotite from all samples
varies from 0.17 to 0.29 cations p.f.u. Biotite
shows a decrease in X _ with increasing
metamorphic grade, from 0.50-0.57 in sample
WI12 to 0.37-0.42 in samples WI40 and WI29
and 0.24-0.29 in sample WI68. Conversely, F
contents increase with increasing metamorphic
grade from 0.05-0.07 anions p.f.u. in sample
WI12 to 0.39-0.54 anions p.f.u. in sample
WI6S.

5.2.3. Orthopyroxene
Orthopyroxene occurs in sample WI29 and
sample WI68. Sample WI29 has X, in the

range 0.36-0.39 and y(opx) of 0.07-0.12.
Orthopyroxene in sample WI68 has X, in the

range 0.22-0.36 and y(opx) predominantly in
the range 0.08-0.11.

5.2.4. Magnetite and ilmenite

Magnetite and ilmenite commonly occur in
direct contact, with magnetite the dominant
oxide. Ilmenite in all samples contains
appreciable Mn, ranging from 0.07-0.32
cations p.f.u. [lmenite in all samples is typically
pure ilmenite, with i(ilm) values between

0.80-1.00.

5.2.5. Spinel

Spinel is abundant in sample WI40 and is
dominantly hercynitic (X, = 0.70-0.81) with
0.02—0.05 cations p.f.u Mn and 0.03 cations
p-f.u Zn. In sample WI29 spinel is exolved
from magnetite and contains 0.01 cations p.f.u
Mn and 0.05-0.11 cations p.f.u Zn.

5.2.6. Feldspars

K-feldspar occurs in all samples and shows a
general increase in X with metamorphic grade
from 0.07-0.13 in sample WI12 to 0.12—0.35
in sample WI68. X of plagioclase in samples
WI29 and WI68 varies from 0.26-0.31 and
from 0.31-0.39 in samples WI12 and WI40.

5.2.7. Sillimanite

Sillimanite occurs in samples WI12 and WI140.
Sillimanite in sample WI12 contains 0.91—1.64
wt% Fe O, (measured as FeO). In sample
WI40, sillimanite within the plagioclase—
magnetite—spinel reaction textures contains
0.99-1.27 wt% Fe O, whereas sillimanite
included in garnet has a higher Fe O, content
of 2.39 wt%.

5.3. Pressure temperature conditions
5.3.1.
microstructures

Samples WI40 and WI29 contain mineral

reaction microstructures. One interpretation

Interpretation of the mineral reaction
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Table 4: Range of chemistry for selected minerals.

WI12 WI40 WI29 WIe68

Garnet (core)
X 0.55-0.58 0.56-0.59 0.54-0.58 —
KXoy 0.12-0.14 0.21-0.24 0.29-0.34 —
KXoy 0.03-0.04 0.03 0.02-0.03 —
Xops 0.27-0.28 0.16-0.18 0.10 —
Garnet (rim)
X 0.55-0.58 0.59-0.60 0.55-0.60 —

by 0.11-0.13 0.19-0.23 0.27-0.33 —
Xgs 0.03-0.04 0.03 0.02-0.03 —
Xops 0.28-0.29 0.16-0.18 0.10 —
Garnet (symplectite)
X — — 0.58-0.62 —
Xoy — — 0.25-0.30 —
KXoy — — 0.02-0.03 —
Xops — — 0.10-0.11 —
Biotite
Xe. 0.50-0.57 0.37-0.42 0.37-0.39 0.24-0.29
Ti (cpfu) 0.17-0.23 0.21-0.25 0.25-0.29 0.19-0.25
F (apfu) 0.05-0.07 0.30-0.36 0.30-0.37 0.39-0.54
Cordierite
Xe. 0.32-0.35 0.23-0.25 — 0.18-0.19
Orthopyroxene
Xr. — — 0.36-0.39 0.22-0.36
y(opx) — — 0.07-0.12 0.08-0.11
Magnetite
p(mt) 0.99-1.00 0.97-0.99 0.99-1.00 0.96-1.00
IImenite
i(ilm) 0.96-0.99 0.93-0.99 0.92-0.96 0.80-1.00
Mn (cpfu) 0.14-0.20 0.09-0.10 0.07-0.08 0.11-0.32
Spinel
Mn (cpfu) - 0.02-0.05 0.01 -
Zn (cpfu) - 0.03 0.05-0.11 -
Cr (cpfu) — 0.003-0.005 0.004-0.006 —
K-feldspar
X\, 0.07-0.13 0.11-0.18 0.17-0.23 0.12-0.35
Plagioclase
X 0.32-0.36 0.31-0.39 0.26-0.29 0.29-0.31

Ca

X, = Fe/(Fe + Mg + Ca + Mn)
X,, = Mg/(Fe + Mg + Ca + Mn)

X = Ca/(Fe + Mg + Ca + Mn)
Xy = Mn/(Fe + Mg + Ca + Mn)

X;. = Fe/(Fe’" + Mg)
J(OpX) = Xuu

Xy, = Na/(Na + Ca + K)
X, = Na/(Na + Ca + K)
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of reaction microstructures is that they
reflect an arrested attempt to produce a new
equilibrium assemblage, with the partially
replaced minerals comprising disequilibrium
relics (Kelsey and Hand, 2015). An alternative
interpretation is that the newly formed
minerals were in effective equilibrium with the
relict minerals, producing a composite mineral
assemblage in which the modal proportion of
the reactants was simply reduced (Kelsey and
Hand, 2015; Morrissey et al., 2016a; White et
al., 2002).

In sample WI40, the mineral reaction
microstructures are characterised by the partial
replacement of garnet by a cordierite—spinel—
magnetite-bearing assemblage and garnet and
sillimanite by a plagioclase—cordierite—spinel—
magnetite—ilmenite-bearing assemblage.
Sillimanite only occurs as inclusions or
relict grains within the mineral reaction
microstructures (Fig. 3c) and is therefore not
interpreted to form part of the M, equilibrium
assemblage. The presence of a significant
amount of MnO in spinel suggests that garnet
was also partially replaced (Tables 3 and 4).
However, garnet remains relatively abundant
in the reaction microstructures (Fig. 3b and c)
as well as in parts of the sample that do not
have reaction microstructures, suggesting that
it was part of the M, equilibrium assemblage
(Table 2).

In sample WI29, biotite—quartz symplectites
appear to have pseudomorphed another
mineral. Small, rare grains of orthopyroxene
occur near the biotite—quartz reaction
microstructures (Fig. 3e). Similar biotite—
quartz symplectites have been interpreted to
represent replacement of a ferromagnesian
mineral such as orthopyroxene or garnet in
the presence of silicate melt (Sawyer, 2008).

Isobaric P—T paths with limited melt escape

allow back reaction (sensu lato), where
reactions crossed along the prograde path are
recrossed during the retrograde evolution
(Brown, 2002; Kriegsman, 2001). Therefore,
we interpret the biotite—quartz symplectites
in sample WI29 to represent back reaction of a
continuous fluid-absent melting reaction of the
general form bi + q = melt * opx = g £ ksp
(Vielzeuf and Holloway, 1988), whereby the
modal abundance of biotite and quartzincreases
with cooling at the expense of melt and other
phases on the right hand side of the reaction.
Garnet is interpreted to have decreased in
abundance, as the bi + q symplectites surround
garnet grains, but is interpreted to form part
of the peak assemblage (Table 2). Locally, fine-
grained younger-generation garnet contains
inclusions of bladed quartz, suggesting that
garnet abundance may have increased slightly
in some domains after the formation of
the bi + q symplectites. Orthopyroxene is
uncommon and therefore the remaining small
grains of orthopyroxene are interpreted as
disequilibrium relics of the peak assemblage
(Table 2).

5.3.2. Assumptions and limitations of the P—T
modelling

A number of limitations and assumptions in
the P-T modelling must be acknowledged
before interpreting the pseudosections. One
limitation is that some of the components
occurring in natural rocks, such as ZnO,
Cr,O, and PO, cannot be effectively
modelled. Small amounts of apatite occur in
some samples in this study. Apatite cannot be
modelled in the MnNCKFMASHTO system
(or any other system currently) but affects
the calcium budget of the rock, resulting in
models showing increased stability of Ca-
bearing phases such as garnet and plagioclase.
However, the bulk compositions of most
samples contain very little P.O_ (Appendix

-108-



Chapter 3

P—T constraints on Stage I-Stage Il metamorphism in the Windmill Islands

1), and all samples contain monazite, so the
amount of apatite is interpreted to be minor
(<<0.5%). Additionally, components such as
ZnO, Cr O, and MnO are not incorporated
into the a—x models for spinel, but are known
to increase spinel stability to higher pressures
and lower temperatures (Guiraud et al., 1997,
Nichols et al., 1992; Tajcmanova et al., 2009;
White et al., 2000, 2002). Spinel in this study
contains minor amounts of these components
(Tables 3 and 4) and therefore spinel-bearing
fields cannot be used to provide absolute
constraints on the P—T conditions.

Calculated P—T pseudosection models may
result in large fields that provide very little
quantitative P—T information. The range of
P—T conditions can be further constrained
using mineral proportion and compositional
contours, particularly in cases where
composition or mineral proportions change
rapidly across a field (e.g. Powell and Holland,
2008). However, in high temperature terranes
diffusive-related processes continue to operate
during cooling, meaning that minerals in
granulite facies rocks commonly do not record
their original peak metamorphic chemical
compositions (e.g. Fitzsimons and Harley, 1994;
Frost and Chacko, 1989; Pattinson et al., 2003;
Pattison and Begin, 1994; Powell and Holland,
2008). Fe-Mg exchange thermometers may
underestimate  temperatures by >100 °C
(Pattison and Begin, 1994), limiting their utility
as a further constraint on peak conditions.
However, temperature-sensitive net transfer or
coupled-exchange (Tshermaks) equilibria such
as aluminium in orthopyroxene (y(opx)) are
believed to be more robust at high temperatures
(e.g. Fitzsimons and Harley, 1994; Pattison and
Begin, 1994).

Melt  loss

metamorphism allows the preservation of

during prograde to  peak

anhydrous granulite-facies mineral assemblages
that would otherwise be retrogressed during
cooling (Brown, 2002; White and Powell,
2002). Therefore, at least in samples that do not
contain significant development of retrograde
symplectites or coronas, the modelled modal
proportions should approximate the preserved
mineral assemblage in the rock and may
provide more robust constraints on the peak
metamorphic conditions than the mineral
compositions (Palin et al., in press; Powell and
Holland, 2008). One limitation of this approach
relates to natural petrographic variation at
the sample and thin section scale (Palin et
al., in press). Another is that determining
the appropriate equilibration volume and
therefore the effective bulk composition in
high grade rocks is difficult, as it is likely to
vary throughout the metamorphic evolution as
aresult of melt loss, changing temperature and
different diffusion rates of elements (Guevara
and Caddick, 2016; Kelsey and Hand, 2015).
These factors may result in a mismatch
between the mineral proportions observed
in a 2D thin section and those present in the
3D, hand sample-sized volume used for XRF
analysis. In addition, the modal proportions
of minerals provided by THERMOCALC are
mole proportions normalised to one oxide total
basis and therefore are not a direct equivalent
of the volumetric abundance of the mineral in
the rock, but are approximately comparable.

We acknowledge that these uncertainties in
the modelling place limitations on providing
absolute constraints on the conditions of
metamorphism (e.g. Palin et al., in press).
However, wehave selected samples with varying
bulk compositions and mineral assemblages
to minimise both systematic errors relating
to a—x models and geological error. We have
also provided P-T pseudosection models
contoured for modal proportions and y(opx)
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values, to further constrain conditions and
also as a way of assessing the correspondence
between bulk composition and the observed
petrographic relationships at thin section scale.
The aim of the P—T modelling is therefore to
provide general constraints on the conditions
and thermal gradients of metamorphism.

5.3.3. Sample WII2: Cameron Island

The peak assemblage in sample WI12 is
interpreted to be garnet + plagioclase +
K-feldspar + biotite + cordierite + magnetite
+ ilmenite + sillimanite + quartz + silicate
melt (Fig. 3a;Table 2).This assemblage occurs in
a narrow field over a large range of conditions,
from 690-800 °C and 2.9-5.9 kbar (Fig. 6a).
This field is bounded by the elevated solidus and
absence of cordierite at lower temperatures and
pressures and by the absence of sillimanite at
higher temperatures and pressures. The region
of P—T space that bests matches the observed
proportions of garnet, plagioclase, biotite,
cordierite and sillimanite (Table 2) is between
3.7-4.2 kbar and 710740 °C, in the region of
the white star (Fig. 6a). This sample does not
contain mineral reaction microstructures that
could provide further information on the P-T

evolution.

5.3.4. Sample WI40: Mitchell Peninsula

Sample WI40 contains well preserved reaction
microstructures and textural evidence for two
distinct mineral assemblages, an M, quartz—
sillimanite-bearing assemblage and an M,
cordierite—spinel-bearing assemblage (Table 2,
Fig. 3b and c). However, likely melt loss during

M, and M, metamorphism means that the
current bulk composition is only appropriate
for modelling the M| mineral assemblage, and
no quantitative constraints can be placed on the
conditions of M, metamorphism.

The interpreted M assemblage in sample WI40
is cordierite + spinel + magnetite + ilmenite
+ plagioclase + K-feldspar + biotite + silicate
melt. Garnet is also interpreted to form part
of the peak assemblage, but in decreased
abundance compared to M . This assemblage
occurs over a wide range of conditions from 2.3
to 5.9 kbar and 830 to 900 °C (Fig. 6b). Garnet
and cordierite proportions in thin section are
approximately 18% and 20 % respectively,
suggesting that peak pressures were likely
to have been in the region of 3.5-4.5 kbar.
The calculated proportions of plagioclase and
K-feldspar in the interpreted peak field do
not correspond to observations and so do not
provide further constraints. This discrepancy
may be due to the incorporation of different
amounts of K-feldspar-rich leucosome in
the rock volume analysed for the XRF whole
rock composition compared to the thin
section domain. Spinel in this sample contains
significant MnO and minor amounts of Cr O,
and ZnO, so the spinel stability field does
not provide a robust temperature constraint.
However, cordierite and plagioclase abundance
decreases  with increasing temperature,
whereas the abundance of garnet increases (Fig.
6b). This is inconsistent with our interpretation
of the petrographic observations, which is that
the spatial arrangement of the minerals suggests

Figure 6 (facing pages): Calculated P—T pseudosection models for each sample. The bulk-rock composition

in mol.% is given above each pseudosection. The bold dashed line in each pseudosection is the solidus. TC

Investigator diagrams showing modal proportion contours for minerals of interest are presented for each

sample. The white line on each diagram represents the value that corresponds with (or is closest to) the

estimated proportion of the mineral in the sample as provided in Table 2. The white star represents the most

likely P—T conditions for each sample within the peak field, based on the modal proportion contours. (a)
Sample WI12. (b) Sample WI40. (c) Sample WI129. (d) Sample WI68.
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Figure 6: Calculated P—T pseudosection models for each sample.
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H20 Si02 AIl203 CaO MgO FeO K20 Na20 Ti0O2 MnO O
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Figure 6 (Continued).
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H20 Si02 AI203 CaO MgO FeO K20 Na20 Ti0O2 MnO O
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Figure 6 (continued).
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H20 Si02 AI203 CaO MgO FeO K20 Na20 Ti0O2 MnO O
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Figure 6 (Continued).
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that cordierite and plagioclase form at the
expense of garnet. If this is correct, the lower-
temperature part of this field corresponds
better to the petrographic observations.

5.3.5. Sample WI29: Mitchell Peninsula

Sample WI29 contains the assemblage garnet
+ plagioclase + K-feldspar + magnetite +
ilmenite + quartz. It also contains small grains
of orthopyroxene and abundant reaction
microstructures consisting of bladed biotite
and quartz, interpreted to be retrograde
replacement of peak orthopyroxene and garnet
(Table 2, Fig. 3d and e). The peak assemblage
with orthopyroxene occurs over a wide
interval at pressures in excess of 3.9 kbar
and temperatures in excess of 805 °C (Fig.
6¢). The absence of peak cordierite provides
a lower pressure constraint. Determining the
likely proportion of orthopyroxene at peak
conditions is difficult due to the extensive
development of biotite—quartz symplectites
and the likelihood that some of the symplectites
have replaced garnet. However, biotite is
abundant in this sample and can be coarse-
grained, suggesting that both biotite and
orthopyroxene were present at peak conditions
and therefore temperatures were below ~
850 °C. Orthopyroxene in this sample has a
large range of y(opx) values between 0.07
to 0.12, which corresponds to the modelled
orthopyroxene compositions in the peak field
but does not further constrain conditions (Fig.

6C).

The
orthopyroxene-absent assemblage occurs in a
large field that extends from 800-830 °C and
pressures above 3.9 kbar (Fig. 6¢). This sample

currently  preserved,

effectually

also contains a second stage of retrograde
mineral reaction microstructures. Fine- grained,
younger-generation garnet appears to locally
overgrow the biotite—quartz symplectites. In

addition, garnet and magnetite may be separated
by a thin corona of a mineral that has now
been replaced, interpreted to be cordierite.
Low modal proportions of cordierite can be
produced at pressures below 4.2 kbar, which
may suggest some decompression. However,
the development of younger-generation
garnet precludes significant decompression
during the post-peak evolution. In addition,
these second-stage reaction microstructures
are likely to have developed in compositional
micro-domains and so cannot be effectively
modelled using the whole rock composition. A
near-isobaric cooling evolution from the peak
orthopyroxene-bearing field at pressures of
~4.5-5 kbar is the most consistent with the
observed and interpreted petrography and the
mineral modes (Fig. 6¢).

5.3.6. Sample WI68: Herring Island

The peak assemblage in sample WI68 is
plagioclase + K-feldspar + orthopyroxene +
cordierite + magnetite + ilmenite + quartz +
silicate melt. The absence of garnet provides
an upper pressure constraint of 5.3—5.6 kbar
(Fig. 6d). Biotite occurs as small flakes that
are commonly in contact with magnetite,
cordierite or orthopyroxene and is interpreted
to be retrograde. The absence of peak biotite
and the elevated solidus provide a lower
temperature constraint of 800-840 °C. This
assemblage occurs over a wide range of P—T
space and therefore compositional contours of
orthopyroxene were used to further constrain
conditions. Orthopyroxene in this sample
has y(opx) values between 0.08-0.11, which
does not significantly constrain conditions
but suggests pressures below 5 kbar and
temperatures in excess of 830 °C (Fig. 6d). The
calculated modal proportions of orthopyroxene
and cordierite in the peak field correspond to
observations (11% and 17% respectively), but
do not significantly constrain conditions further
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(Fig. 6d). The modal proportion of K-feldspar
varies significantly across this field and suggests
that at pressures of ~4 kbar, temperatures
were less than 900 °C based on the observed
abundance of K-feldspar (~22%;Table 2). The
calculated abundance of plagioclase in the peak
field does not correspond to observations.
This sample does not contain mineral reaction
microstructures that could provide further
information on the P—T evolution.

6. Discussion
6.1.
metamorphism

Samples WI12 and WI40 contain concordant
monazite U-Pb ages that range from c. 1320
1160 Ma (Fig. 5a and b). The oldest ages
correspond to the timing of syn-D, magmatism
at c. 1315 Ma (Post, 2000). The youngest ages
in samples WI12 and WI40 correspond to the
single c. 1180 Ma age populations in samples
WI29 and W68 (Fig. 5c and d) and the intrusion
of the c¢. 1200-1160 Ma Ardery Charnockite
in the southern Windmill Islands (Morrissey et
al., in review (Ch. 2); Post, 2000; Post et al.,
1997; Zhang et al., 2012).

Monazite growth and the timing (y“

It is well established that monazite is resistant
to thermally induced Pb-loss to temperatures
in excess of 900 °C (Cherniak, 2010; Cherniak
et al., 2004; Sajeev et al., 2010; Schmitz
and Bowring, 2003). However, it is far more
reactive in the presence of fluid or melt (e.g.
Harlov etal., 2011; Hégdahl et al., 2012; Kelly
et al., 2012; Kelsey et al., 2008; Kirkland et
al., 2016; Rapp and Watson, 1986; Rubatto et
al., 2013; Stepanov et al., 2012; Williams et
al., 2011; Yakymchuk and Brown, 2014). This
means that at high temperatures, monazite ages
may record growth during melt crystallisation
along the cooling path (e.g. Johnson et al.,
2015; Kelsey et al., 2008; Korhonen et al.,
2013; Stepanov et al., 2012; Yakymchuk and

Brown, 2014). Alternatively, they may reflect
partial to complete resetting of monazite
during low-T fluid infiltration (e.g. Harlov
et al., 2011; Kelly et al., 2012; Kirkland et
al., 2016; Seydoux-Guillaume et al., 2002;
Williams et al., 2011). In the Windmill Islands,
syn to post-D_  granites with emplacement
ages between 1250 and 1210 Ma dominate the
outcrop south of Clark Peninsula (Morrissey
et al., in review (Ch. 2); Post, 2000; Zhang
et al., 2012). It is possible that emplacement
and crystallisation of these granites resulted in
fluid flow events and that the young monazite
ages, particularly in the northern Windmill
Islands, reflect fluid-induced partial resetting
of monazite rather than new growth during
M,. Therefore, to address the ambiguities in
the interpretation of monazite geochronology,
each of the samples must be considered in
the context of the preserved silicate mineral
assemblages, existing zircon geochronology
and preserved structural relationships.

Detailed structural work shows that the
northern Windmill Islands region (Cameron
Island and northern Clark Peninsula) preserves
S, foliations that are parallel to compositional
layering and metamorphic evidence for
M, (Paul et al., 1995; Post, 2000). South
of Clark Peninsula, the M
are interpreted to have been progressively

assemblages

overprinted by the higher-grade M, event.
The structural interpretation is supported
by zircon geochronology. LA-ICP-MS zircon
geochronology from a metasedimentary
sample on Cameron Island yields discordant,
c. 1300 Ma ages with no evidence for younger
ages (Morrissey et al., in review (Ch. 2)).
Similarly, LA-ICP-MS and SHRIMP U-Pb
zircon geochronology from two samples of c.
1315 Ma D, orthogneiss and a sample of S
leucosome on Clark Peninsula (Fig. 2) shows
no evidence for M, zircon growth, though the

-116-



Chapter 3

P—T constraints on Stage I-Stage Il metamorphism in the Windmill Islands

monazite geochronology for these samples
is dominated by younger ages (Morrissey et
al., in review (Ch. 2); Post, 2000). Therefore,
despite the array of monazite ages in sample
WI12, there is no structural evidence or zircon
geochronology that suggests that the northern
Windmill [slands record evidence for D /M,
nor does sample WI12 contain any reaction
microstructures to suggest that it records two
phases of metamorphism. Instead, the spread
of monazite ages in sample WI12 is interpreted
to reflect fluid induced partial to complete
resetting. In contrast, sample WI40 is from
Mitchell Peninsula, within the zone that is
structurally overprinted by M,. This sample
contains reaction microstructural evidence for
two metamorphic events, with the formation
of spinel-bearing reaction microstructures, as
well as monazite and zircon evidence for M,
and M, (Fig. 5b; Morrissey et al., in review
(Ch. 2)). Samples WI29 and WI68 contain
single monazite populations at c. 1180 Ma that
are identical within error, and are interpreted
to reflect the timing of M, (Fig. 5c and d).

The reasons why sample WI40 preserves older
monazite whereas sample WI29 does not are
not clear but may relate to the amount of
melting during the upper-amphibolite facies
M, event. The amount of melt produced is
dominantly a function of the temperature
attained and the amount and species of
mica, particularly muscovite (e.g. Brown,
2010; Morrissey et al., 2016b; Patifio Douce
and Harris, 1998; Vielzeuf and Holloway,
1988). Although it is difficult to reconstruct
appropriate protolith compositions for samples
WI40 and WI29, sample WI40 is significantly
more aluminous than sample WI29, suggesting
that it was probably more melt fertile during
M. A significant amount of melt loss during
M, would have meant that sample WI40 had

a more refractory composition during MZ,

limiting further melting and allowing for the
preservation and partial resetting of older
monazite and the formation of localised
mineral reaction microstructures. In contrast,
the monazite in sample WI29 may have been
completely dissolved and recrystallised during
cooling, consistent with the melt crystallisation
microstructures developed in this sample.

6.2. Overall P-T—t evolution of the Windmill
Islands

Each of the samples in this study preserves a
different part of the overall P-T evolution
of the Windmill Islands, as recorded by the
silicate mineral assemblages and the monazite
geochronology. Samples WI12 and WI68 are
interpreted to record the peak conditions
during M, and M, respectively. Samples WI40
and WI29 are from outcrops 650 m apart and
are therefore likely to have experienced the
same metamorphic conditions. These samples
are interpreted together and are used to
provide information on the interplay between
M, and M.

The metasedimentary rocks in the Windmill
Islands have maximum depositional ages of
1350-1340 Ma (Morrissey et al., in review
(Ch. 2)). The timing of M, at c. 1320-1300
Ma provides a constraint on the minimum
depositional age and suggests that deposition
was closely or immediately followed by
metamorphism. The occurrence of c. 1320—
1300 Ma monazite (Fig. 5a and b) and zircon
(Morrissey etal., inreview (Ch. 2)) throughout
the Windmill Islands region suggests that M,
was a regional event that reached conditions of
710—740°Cand 3.7—4.2kbar, corresponding to
very high thermal gradients of >>150 °C/kbar
(Fig. 6a). The event also involved the intrusion
of the c. 1315 Ma syn-D, felsic orthogneiss
on Clark Peninsula, which is interpreted to
be derived from melting of the surrounding
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metasedimentary rocks (Morrissey et al., in
review (Ch. 2); Post, 2000), and formation of
a horizontal fabric and concordant antatectic
leucosomes (Paul et al., 1995; Post, 2000).
Following M, the Windmill Islands region
was intruded by voluminous granitic rocks at
c. 1250-1200 Ma (Morrissey et al., in review
(Ch. 2); Post, 2000; Post et al., 1997; Zhang
etal., 2012). These granitic rocks have a range
of ages, Lu—Hf isotope values and mineralogy,
suggesting that they have multiple, distinct
intrusive sources. The granitic rocks contain
some inherited zircon suggesting a crustal
component, but they have radiogenic € , (t) and
€,,(t) values, suggesting that magmatism may
have been associated with varying degrees of
juvenile input (Méller et al., 2002; Morrissey
et al., in review (Ch. 2); Zhang et al., 2012).
Alternatively, the varying isotopic values of the
granites could be consistent with derivation
from a heterogeneous crustal source. The
metasedimentary rocks of the Windmill Islands
contain a significant proportion of c. 1400
Ma radiogenic zircons, providing a possible
radiogenic crustal source for the relatively

juvenile magmatism.

Sample WI40 contains a spread of monazite
ages from c. 1320—1160 Ma and also contains

mineral reaction microstructures, suggesting

that it records both the M, and M, events.
Likely melt loss during M, and M, means the
current bulk composition cannot be used to
provide quantitative P—T constraints on the M :
quartz—garnet—sillimanite-bearing assemblage.
The M, assemblage in sample WI40 was likely
to have formed at temperatures of ~830-840
°C (Fig. 6b). Sample WI29 contains a single
monazite population with a concordia age of
1177 £ 2 Ma, and microstructures consistent
with melt crystallisation that suggest this
sample did not lose significant amounts of melt
during M, meaning it is difficult to determine
a peak temperature for this sample. However,
the crystallisation of melt to form biotite—
quartz symplectites and growth of late garnet
suggests that the retrograde evolution was
likely to have involved near isobaric cooling at
pressures above 4 kbar (Fig. 6¢).

The peak conditions achieved during M, are
poorly constrained by the most southerly
located sample WI68 but the y(opx) contours
suggest that maximum pressures were below 5
kbar and temperatures were approximately 840
°C, very close to the elevated solidus (Fig. 6d).
The pressures recorded by sample WI68 and
samples WI29 and WI40 are similar to within 1
kbar, suggesting that the southward increase in
M, metamorphic grade is not due to differences

Figure 7 (facing page): Tectonic evolution of the eastern margin of the Albany—Fraser Orogen. Parts (a) and
(b) represent two possible geodynamic settings for the region at c¢. 1410 Ma. (a) After Spaggiari et al. (2015),
where the Arid Basin is a passive margin with east-dipping subduction that evolves into a foreland basin after
accretion of the Loongana Arc. This model is likely to result in low thermal gradients. (b) After Morrissey et al.
(in review (Ch. 2)), where west-dipping subduction places the Arid Basin is in a back-arc setting at c. 1410 Ma.
This model is likely to result in high thermal gradients. Parts (c to e) represent a possible tectonic evolution
using the data in this study. (c) Horizontal fabrics and high thermal gradients in the Windmill Islands suggest that
M, was extensional. In this scenario, the Windmill Islands was located in the footwall. An extensional system is
consistent with the orogen-wide mafic and felsic magmatism between c. 13301290 Ma (see text for details).
This magmatism may have been focussed into the Fraser Zone, resulting in high temperature metamorphism
and abundant mafic magmatism at c. 1290 Ma. (d) Upright folding and granitic magmatism between c. 1250—
1210 Ma may represent a phase of compressional deformation (D, ). The Fraser Zone was exhumed and thrust
over the margin of the West Australian Craton by c. 1260 Ma. (e) Widespread charnockitic magmatism in the
Wilkes Land—Albany—Fraser—Madura Province between 12201140 Ma suggests a period of extension (M.).
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in exhumation. The c. 1180 Ma age for M,
metamorphism (Fig. 5c¢ and d) corresponds
to the age of the high—T Ardery Charnockite,
which dominates the outcrop in the southern
Windmill Islands and is interpreted to have
multiple intrusion phases between 1200 and
1160 Ma (Fig. 2; Morrissey etal., in review (Ch.
2); Post, 20005 Post et al., 1997; Zhang et al.,
2012).The Ford Granite has a similar intrusion
age of c. 1170 and is interpreted to be coeval
with the Ardery Charnockite (Fig. 2; Post,
2000; Post et al., 1997). Episodic magmatic
activity, particularly if each episode occurs
within a short interval, is capable of generating
relatively localised, high-T metamorphism
(e.g. Robb et al., 1999; Rothstein and Hoisch,
1994; Tucker et al., 2015; Westphal et al.,
2003). The increase in M, metamorphic grade
to the south, the cooling dominated post-peak
P-T evolution and observation that the M,
thermal peak outlasted deformation (Paul et
al., 1995; Post, 2000) are all consistent with
a dominantly thermal overprint caused by the
Ardery Charnockite.

6.3. Tectonic setting of metamorphism in the Wilkes
Land—Albany—Fraser system

Geophysical interpretations have suggested
that the Windmill Islands are representative of
the ice covered outcrop elsewhere in Wilkes
Land and that Wilkes Land basement geology
correlates to the Nornalup Zone in the eastern
Albany—Fraser Orogen (Fig. 1; Aitken et al.,
2014, 2016). The metasedimentary rocks of
the Windmill Islands have similar depositional
ages to the youngest metasedimentary rocks
of the c. 1600—1305 Ma Arid Basin in the
Albany—Fraser Orogen (Morrissey et al., in
review (Ch. 2); Spaggiari et al., 2014, 2015).
M, metamorphism in the Windmill Islands
corresponds to the Albany—Fraser Orogeny
Stage I between c. 1345-1260 Ma and M,
metamorphism corresponds to the Albany—

Fraser Orogeny Stage Il between c. 1225-1140
Ma (Clark et al., 2000, 2014; Kirkland et al.,
2011, 2015; Spaggiari et al., 2015). Despite
an extensive geochronological and isotopic
dataset from the Albany—Fraser Orogen (e.g.
Kirkland et al., 2011, 2015; Smithies et al.,
2013, 2015; Spaggiari et al., 2015), there have
been few modern metamorphic studies to
provide a framework for the tectonic setting
for the Albany—Fraser Orogen (e.g. Clark et
al., 2014).

The currently proposed tectonic setting for the
castern Albany—Fraser Orogen (Arid Basin)
involves the formation of a passive margin
on the edge of the West Australian Craton,
which evolves into a foreland basin at c. 1330
1410
Ma Loongana Arc (Fig. 7a; Spaggiari et al.,
2014, 2015). However, recent detrital zircon

Ma after collision with the exotic c.

geochronology from the Windmill Islands
suggests that the metasedimentary rocks of
the Windmill Islands contain detritus sourced
from both the West Australian Craton and the
Loongana Arc (Morrissey et al., in review (Ch.
2)). Therefore, an alternative interpretation is
that the margin of the Albany—Fraser Orogen
(represented by Wilkes Land and the Nornalup
Zone) was in a wide back-arc setting at this
time, and was bounded to the east by west-
dipping subduction, represented by the c. 1410
Ma Loongana Arc (Fig. 7b; Morrissey et al., in
review (Ch. 2)). The purpose of constraining
the overall P—T conditions in the Windmill
Islands is to provide a framework with which
to assess tectonic models for Wilkes Land, and
the Albany—Fraser system as a whole.

In the Albany-Fraser Orogen, Stage I was
associated with voluminous mafic and granitic
magmatism, represented by the c. 1330-1280
Ma Recherche Supersuite granites and the c.
1290 Ma Fraser Zone gabbros (Clark et al.,
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2000, 2014; Kirkland et al., 2011, 2015).
There is a general increase in P—T conditions
and decrease in age from east to west across
the Albany—Fraser Orogen (Clark et al.,
2000; Smithies et al., 2015). The eastern
Nornalup Zone (Fig. 1) yields conventional
thermobarometry estimates of 750 °C and
4 kbar and old (c. 1330-1310 Ma) ages
for Recherche granites (Clark et al., 2000;
Smithies et al., 2015), very similar to the
timing and P-T estimates for M, in Wilkes
Land. In the Fraser Zone to the west (Fig. 1),
Stage 1 metamorphic conditions reached 850
°C and 7-9 kbar and were associated with
mafic and felsic magmatism at c. 1290 Ma
(Clark et al., 2014). The mafic magmas have
isotopic signatures consistent with assimilation
of older basement, likely to be the West
Australian Craton (Smithies et al., 2013). The
Fraser Zone has previously been interpreted
as a back-arc or continental rift (Clark et al.,
2014; Smithies et al., 2013). However, more
recently the Fraser Zone mafic rocks have been
proposed to be the result of mingling of mafic
magmas with felsic partial melts in an orogen-
wide lower-crustal hot zone (Smithies et al.,
2015). The decrease in age from the Nornalup
Zone in the southeast to the Fraser Zone in
the northwest has been used to suggest that
the magmatically active part of this hot zone
migrated westwards during Stage I (Smithies
et al., 2015). The higher proportion of mafic
magmatism  in the Fraser Zone compared
to the Nornalup Zone has been interpreted
to reflect increasing extension, though the
higher metamorphic pressures recorded in
the Fraser Zone may instead suggest that it is
simply more deeply exhumed (Clark et al.,
2000, 2014; Smithies et al., 2015). The hot
zone is proposed to have initiated as a result
of orogenic collapse following overthrusting
of the Loongana Arc during collision with the
West Australian Craton (Smithies et al., 2015).

However, at present there is no metamorphic
P—T path evidence to support the notion of
orogenic collapse, nor is there any overt reason
why orogenic collapse should lead to mantle
melting. Alternatively, back-arcs are regions
of thinned lithosphere and high heat flow that
may remain hot and weak for upwards of 50
Myr and can accommodate deformation during
collision or accretion at the adjacent margin
(e.g. Collins, 2002; Currie and Hyndman,
2006; Hyndman et al., 2005). Notwithstanding
the interpretation of Smithies et al. (2015),
a back-arc setting for the eastern Albany—
Fraser—Wilkes Land system is consistent with
the short interval between deposition and
high thermal gradient metamorphism, the
orogen-wide mafic and felsic magmatism of
the Recherche Supersuite and the observation
that magmatism and deformation tend to be
concentrated in the Nornalup and Fraser Zones
(Kirkland et al., 2011; Smithies et al., 2015).
The structural fabrics formed during M in the
Windmill Islands are horizontal and formed
at high temperatures and shallow depths (~4
kbar) during M, metamorphism (Fig. 7c).
Whereas this does not unequivocally point to
an extensional regime, it is suggestive of one.
In this scenario, the Fraser Zone was the focus
for mafic magmatism and deformation and was
therefore a thermo-mechanically weak zone
whereas the Windmill Islands were located in
the footwall of the extensional system (Fig. 7c).

Between M, and M, the Windmill Islands
region was intruded by voluminous, isotopically
juvenile granites at c. 1250-1210 Ma. The
isotopically juvenile nature of the granites may
reflect that the lower crust beneath the Windmill
Islands
consistent with a highly extended back-arc

contained little evolved material,

setting. These granites are interpreted to be
syn- to post-D, deformation, which involved

mesoscopic isoclinal folding and the formation
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of a composite S —S, foliation in the southern
Windmill Islands. Map-scale F, folds are tight
to isoclinal, upright in the north and inclined in
the south and trend approximately E-W (Post,
2000). Granites with ages of c. 12501210
Ma have not been found in the Albany—Fraser
Orogen, although much of the eastern Albany—
Fraser Orogen is obscured by younger cover
and therefore the basement geology in some
parts is still unclear. However, the apparently
localised spatial record of the c. 1250—1210 Ma
granites means that their tectonic significance
is difficult to determine. One alternative is that
the magmatism at c. 1250-1210 Ma records a
phase of compressional deformation (Fig. 7d),
as suggested by the D, upright folding (Post,
2000). In the Albany—Fraser Orogen, the Fraser
Zone does not record evidence for Stage II
metamorphism and is interpreted to have been
exhumed by c. 1260 Ma (Clark et al., 2014;
Fletcher et al., 1991; Kirkland et al., 2011). If
there wasa phase of compressional deformation,
the exhumation of the Fraser Zone could be a
consequence of shortening strains partitioned
into this comparatively low strength region.
The direction of maximum stress recorded by
the upright folding in the Windmill Islands is
generally cratonwards and is consistent with
the northwest-directed thrusting observed in
the Fraser Zone (Bodorkos and Clark, 2004b;
Kirkland et al., 2011).

Stage Il in the Albany—Fraser Orogen (c. 1225~
1140 Ma) isinterpreted torecord amajor change
in geodynamic setting with tectonism occurring
within the newly assembled Australo—Antarctic
system (Bodorkos and Clark, 2004a; Clark et
al., 2000; Smithies et al., 2015). Tectonism
is thought to be associated with extension,
perhaps driven by delamination of the recently
assembled lithospheric mantle. Evidence for
Stage Il high-temperature metamorphism
occurs throughout the Biranup and Nornalup

Zones but is not recorded in the Fraser Zone,
suggesting the Fraser Zone was exhumed after
Stage 1, whereas the Biranup and Nornalup
Zones were not (Bodorkos and Clark, 2004a;
Clark etal., 2014; Kirkland et al., 2011). Stage
Il is also characterised by high temperature
Esperance Supersuite magmatism between
1200—-1140 Ma in the eastern Nornalup Zone.
The Esperance Supersuite intrusions have
distinctive compositional features similar to the
Ardery Charnockite and have been interpreted
to reflect extension and partial melting of an
anhydrous, mafic lower crust (Kilpatrick and
Ellis, 1992; Smithies et al., 2011, 2015; Zhang
etal., 2012). The Ardery Charnockite appears
to post-date the main phases of deformation
in the Windmill Islands region, and may
therefore reflect a phase of post-collisional
extension (Fig. 7e). The M, thermal overprint
in the Windmill Islands region is likely to reflect
this event.

Although there remains debate as to whether
the Albany—Fraser Orogen and the along-
strike  Musgrave Province are lithospheric
equivalents (Smits et al., 2014), or are built on
different basement (Kirkland et al., 2015), the
Musgrave Province experienced a similar two-
stage tectono-metamorphic history, with the
1345-1293 Ma Mount West Orogeny and the
12201150 Ma Musgrave Orogeny (Howard et
al., 2015; Kirkland et al., 2013) corresponding
in age and thermal style to the record in the
Windmill Islands. The Musgrave Province has
been the subject of several recent metamorphic
and geodynamic studies and is therefore
considered here for comparison (Gorezyk et
al., 2015; Tucker et al., 2015; Walsh et al.,
2015). At c. 1300 Ma, during the Mt West
Orogeny, the Musgrave Province is interpreted
to have been a back-arc, associated with the
ongoing development of an overall convergent
setting (Gorezyk et al., 2015; Smithies et al.,
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in press). The Musgrave Orogeny involved
regional, mantle-driven high thermal gradient
metamorphism between c. 1220—1150 Ma that
reached UHT conditions of >1000 ° C and
7—8 kbar (Smithies et al., 2011; Walsh et al.,
2015). Voluminous, high-T magmatism of the
Pitjantjatjara Supersuite intruded throughout
this interval and caused short-lived, more
localised UHT metamorphism (Smithies et al.,
2011; Tucker et al., 2015). The Pitjantjatjara
Supersuite shares compositional similarities
with the Esperance Supersuite and Ardery
Charnockite and is also interpreted to reflect
extension (Kilpatrick and Ellis, 1992; Smithies
etal., 2011, 2015; Zhang et al., 2012).

7. Conclusions

Calculated metamorphic phase diagrams
combined with in situ geochronology from
Wilkes Land, east Antarctica, suggest that the
region experienced two phases of high thermal
gradient metamorphism. M, was a regional,
upper amphibolite facies event that occurred
at c. 1320—1300 Ma and reached conditions of
710—740 °C and 3.7—4.2 kbar. The M , mineral
assemblages are progressively overprinted
by granulite facies M, assemblages related to
the intrusion of the c. 1200-1160 Ma Ardery
Charnockite. M, involved similar pressures
to M, and reached peak conditions of ~850
°C. This metamorphic history is remarkably
similar to that preserved in the eastern Albany—
Fraser Orogen and the Musgrave Province.
Each of these regions records a metamorphic
and magmatic evolution that is consistent
with a long-lived subduction setting, involving
back-arc extension at ¢. 1300 Ma prior to M, /
Stage I. The unique geochemistry of the high
temperature magmas in each of these regions is
consistent with melting of a mafic lower crust,
which may have been generated as a result of
the back-arc setting established prior to M.
The attainment of high temperatures in all cases

may be a result of advective heat transfer from
charnockitic magmatism in an already elevated

thermal regime.
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Chapter 3 Supp]ementar)/ Data S3.1:Whole rock geochemistr)/

W2 WI140 WI29 WI168
Major elements (wt%)
SiO2 62.19 47.26 65.50 68.4
TiO2 1.17 1.50 1.08 0.58
Al2Os3 17.08 21.74 11.96 14.14
Fe20s(rotan) 9.86 13.90 10.85 5.89
MnO 0.59 1.17 0.35 0.13
MgO 292 5.18 3.31 4.46
Ca0 1.23 1.62 1.13 0.9
Na.O 1.26 1.85 1.85 1.46
K20 3.41 473 3.61 3.39
P20s 0.16 0.26 0.06 0.07
LOI 3.45 1.55 1.42 0.96
Total 99.87 100.76 101.12 100.38
Trace elements (ppm)
Rb 225.8 333.6 183.7 228.4
Sr 158 212 102 60
Y 29.1 40.8 26.6 18.4
Zr 136 79 188 193
\Y 187 201 171 98
Ni 79 113 69 17
Cr 160 309 97 15
Nb 19.9 22.6 323 12.1
Ga 18.9 27.8 24.8 17.5
Cu 56 13 14 22
Zn 103 135 175 74
Co 33 70 35 15
Ba 1220 943 754 758
La 15 21 27 26
Ce 30 70 65 62
u <0.5 <0.5 <0.5 0.5
Th 10.5 335 353 203
Sc 34 26 16 1
Pb 30 14 20 14
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Chapter 4

High-temperature, low-pressure metamorphism in the Central Aileron Province

ABSTRACT
In situ LA=ICP—MS U-Pb monazite geochronology from the Boothby Hills in the Aileron
Province, central Australia, indicates that the region records more than 80 Ma of high-temperature,
low-pressure (HTLP) anatectic conditions during the Early Mesoproterozoic. Monazite ages from
granulite facies rocks and leucosomes span the interval 15761542 Ma. Pegmatites that overprint
the regional gneissic fabric and are interpreted to record the last vestiges of melt crystallisation
give ages between 1523-1513 Ma. Calculated P—T pseudosections suggest peak metamorphic
conditions in excess of 850 °C at 0.65-0.75 GPa. The retrograde evolution was characterised by a
P—T path that involved minor decompression and then cooling, culminating with the development
of andalusite. Integration of the geochronological dataset with the inferred P—T path trajectory
suggests that suprasolidus cooling must have been slow, in the order of 2.5 to 4 °C Ma'. In
addition, the retrograde P—T path trajectory suggests that HTLP conditions were generated within
crust of relatively normal thickness. Despite the long duration over which anatectic conditions
occurred, there is no evidence for external magmatic inputs or evidence that HTLP conditions
were associated with long-lived extension. Instead, it seems probable that the long-lived HTLP
metamorphism was driven to a significant extent by long-lived conductive heating provided by

high crustal heat production in voluminous pre-metamorphic granitic rocks.

1. Introduction

Regional-scale high temperature metamorphism
involving high thermal gradients (>1300 °C
GPa') represents a significant departure from
normal crustal thermal conditions (Fig. 1). The
most dramatic manifestation of such thermally
extreme conditions is the development of low
to medium-pressure, ultrahigh-temperature
(UHT; >900 °C) metamorphic terranes (e.g.
Brown, 2006; Harley, 2004; Kelsey, 2008). The
evolution and thermal drivers of these terranes
have been the subject of significant attention
(e.g. Clark et al., 2011; Currie and Hyndman,
2006; Harley, 2004; Hyndman et al., 2005;
Kelsey, 2008; Kelsey et al., 2007; Sizova et al.,
2014). However, there are also a large number
of lower temperature terranes that preserve
mineralogical evidence for anomalously high
thermal gradients (Fig. 1). Such terranes may
simply represent the upper crustal levels of
currently unroofed high thermal gradient UHT

terranes.

In some cases the high-temperature, low-

pressure (HTLP) metamorphism was caused
by heat transfer from magmatic processes (e.g.
De Yoreo et al., 1991; Westphal et al., 2003).
Orogenic-scale examples of magmatically
driven HTLP metamorphism include the
Namaqualand Metamorphic Complex, South
Africa, and the Grenvillian-aged Musgrave
Province, Australia (e.g. Robb et al., 1999;
Smithies et al., 2011). In other instances,
petrological and structural evidence suggests
that HTLP conditions were attained during
either exhumation within thickened crust, or
within crust that was undergoing extension
(e.g. Cubley etal., 2013; Goscombe and Hand,
2000; Rey et al., 2009; Rubatto et al., 2013;
Sandiford and Powell, 1986).

The duration of metamorphism provides an
important constraint for determining the
causative mechanism of HTLP metamorphism.
Short-lived (<10 Ma) HTLP metamorphism
typically involves coeval magmatism in mid-
to upper-crustal levels, or rapid exhumation

that is documented by distinctive petrological
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Figure 1: Figure of thermal gradients found in the
crust, after Brown, (2006). High thermal gradient
metamorphic conditions plotted on are: (a) Reynolds
Range (this study); (b) Mawson Coast, Rayner
2007); ()
in press);
2011); (e)
2011); (8
Broken Hill, Curnamona Province (White et al.,

2004).

Complex, east Antarctica (Halpin et al.,
Eastern Ghats Province (Korhonen et al.,
(d) Musgrave Province (Smithies et al.,

Warumpi Province (Morrissey et al.,

evidence such as decompressional reaction
microstructures. Longer lived (>10 Ma) HTLP
metamorphism is more suggestive of limited
exhumation and crust that is in approximate
isostatic equilibrium. However, longer-lived
metamorphism is also usually associated with
coeval, voluminous magmatism. Ancient
examples of regionally extensive, long-lived
HTLP metamorphism include the ultrahigh-
temperature terranes of the Napier Complex,
Antarctica (Hokada et al., 2004; Kelly and
Harley, 2005; Suzuki et al., 2006), the Eastern
Ghats Province—Rayner Complex (Boger et
al., 2000; Boger and White, 2003; Halpin et al.,
2007; Korhonen etal., 2013) and the Musgrave
Province, Australia (Smithies et al., 2010,
2011). The cause of HTLP metamorphism in
examples where there is little or no coeval

magmatism or evidence for extension is less

obvious. A long-lived, non-magmatic heat
source is required to sustain the elevated
temperatures and thermal gradient.

The Reynolds Range in the Aileron Province,
central Australia, is an exceptional example of
apparently long-lived HTLP granulite facies
metamorphism where evidence for coeval
magmatism or extension is absent (Fig. 2).
Existing zircon and monazite U-Pb isotopic
age data from the Reynolds Range suggest that
anatectic conditions were sustained for up to 30
Ma during the Early Mesoproterozoic (Rubatto
2001; Williams et al., 1996), and were
followed by approximately 100 Ma of slow
cooling (Buicketal., 1999;Vryand Baker, 2006).
Metamorphism resulted in the development

et al.,

of a spectacular regional HTLP metamorphic
field gradient (Fig. 2), from greenschist facies
assemblages in the NW, through andalusite-
cordierite-bearing amphibolite facies mineral
assemblages, and culminating in fluid-absent
anatectic granulite facies assemblages in the SE
(Dirks et al., 1991; Hand and Buick, 2001).
The HTLP metamorphism preserved in the
Reynolds Range is intriguing as it appears to be
amagmatic and associated with contractional
deformation (Buick et al., 1998; Dirks et al.,
1991; Hand and Buick, 2001).

The purpose of this paper is to use in
situ’ U-Pb monazite geochronology and
metamorphic phase equilibria modelling to
establish the duration and thermal conditions
of metamorphism in the Boothby Hills region
in the SE Reynolds Range (Fig. 3). The results
of this work, coupled with existing age data,
suggest that regional suprasolidus HTLP
metamorphic conditions were maintained for
at least 80 Ma. Such a long-lived, amagmatic
thermal = structure challenges conventional
notions concerning the generation of high
temperature, high thermal gradient conditions
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Figure 2: Simplified geological map of the Reynolds and Anmatjira Ranges adapted from Williams et al. (1996).

References for the age of each unit are provided in the geological setting.

in the crust. We propose that the suprasolidus
HTLP conditions
Province were sustained for such a lengthy

in the central Aileron

period due to slow exhumation of high-heat

producing crust.

2. Geological setting
The Reynolds-Anmatjira Ranges (Fig. 2) are a
NW—trending structural domain in the Aileron

Province of the Arunta Region, central Australia
(Clarke and Powell, 1991; Collins and Vernon,
1991; Collins and Williams, 1995; Dirks and
Wilson, 1990; Hand et al., 1992). Rocks of
the Reynolds-Anmatjira Ranges record a series
of deformational, metamorphic and magmatic
events ranging in age from Proterozoic to
Palacozoic (Cartwright et al., 1999, 2001;
Hand and Buick, 2001; Raimondo et al., 2011,
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2012; Vry et al., 1996). The oldest rocks in
the Reynolds Range are pelitic and psammitic
metasediments of the Lander Rock Formation,
which have depositional ages between 1860
and 1840 Ma (Fig. 2, 3; Claoue-Long et al.,
2008a; Dirks et al., 1991; Dirks and Wilson,
1990; Donnellan, 2008; Hand and Buick, 2001;
Vry et al., 1996). These were deformed and
metamorphosed under high thermal gradient
conditions associated with voluminous granitic
magmatism at 1810-1790 Ma (Buick et al.,
1999; Cartwright et al., 1999; Collins and
Vernon, 1991; Collins and Williams, 1995;
Rubatto et al., 2001, 2006; Worden et al.,
2008).

The Lander Rock Formation and c. 1810 Ma
granitic rocks are unconformably overlain by
shallow marine (meta)sediments of the c. 1780
Ma Reynolds Range Group (Fig. 2, 3; Claoue-
Longetal., 2008a; Dirks etal., 1991; Dirks and
Wilson, 1990; Hand and Buick, 2001; Vry et
al., 1996). Voluminous magmatism at c. 1780—
1770 Ma intruded the Lander Rock Formation
as well as the Reynolds Range Group, causing
minor deformation and localised amphibolite
facies contact metamorphism (Buick et al.,
1999; Collins and Williams, 1995; Hand and
Buick, 2001; Smith, 2001). Together, the two
generations of magmatism make up 60% of the
exposed area of the region (Fig. 2; Hand and
Buick, 2001).

The Reynolds-Anmatjira region underwent
another period of high thermal gradient
metamorphism during the c¢. 1590—1560 Ma
Chewings Orogeny (Hand and Buick, 2001;
Rubatto et al., 2001; Scrimgeour, 2003, 2004;
Vry et al., 1996; Williams et al., 1996). This
event involved NE-SW shortening to form
upright, NW-SE-trending, tight to isoclinal
upright folds and a steep NW-SE-trending
foliation (Buick et al., 1999; Hand and Buick,

2001). Estimates of metamorphic conditions
based on conventional thermobarometry and
rudimentary qualitative phase equilibria for
granulite facies rocks in the south east Reynolds
Range suggest medium to low pressures (0.4—
0.6 GPa) at maximum temperatures of 700—
800 °C (Buick et al., 1998; Dirks et al., 1991;
Vry and Cartwright, 1994).

The Chewings Orogeny in the Reynolds Range
region has been recognised as a moderately
long-lived (c. 30—50 Ma) event based on
differences between U-Pb metamorphic ages
from zircon and monazite from different rocks
(Rubatto et al., 2001; Williams et al., 1996).
U—Pb zircon ages range from 1594 £ 6 Ma
in granulite facies metapelites to 1564 £ 4
Ma in discordant leucosomes (Rubatto et al.,
2001; Williams et al., 1996). U-Pb monazite
geochronology yields ages from 1585 + 5 Ma to
1557 £ 2 Ma, with the oldest ages coming from
the peak fabric and concordant leucosomes, and
the younger ages from discordant leucosomes
(Rubatto etal., 2001;Vry etal., 1996;Williams
etal., 1996). Coupled with an additional U-Pb
rutile age of 1544 £ 8 Ma (Vry and Baker,
2006) and a Pb—Pb garnet age of 1576 £ 6
Ma (Buick et al., 1999), this large temporal
spread has been interpreted as evidence of slow
cooling from peak metamorphic conditions
(Buick etal., 1999; Kelsey et al., 2008;Vry and
Baker, 2006; Williams et al., 1996). However,
despite the body of existing geochronological
data, there has been no modern metamorphic
work, nor studies that integrate in situ
geochronology with the evolving metamorphic
conditions in the region, suggesting that the
total duration of melt-bearing conditions is

uncertain.

The final event affecting the Reynolds-
Anmatjira Ranges was the Mid-Palacozoic
Alice Springs Orogeny at 450300 Ma (Collins

-142-



Chapter 4

High-temperature, low-pressure metamorphism in the Central Aileron Province

and Shaw, 1995; Dunlap and Teyssier, 1995;
Haines et al., 2001; Shaw et al., 1992).This
event produced discrete northwest-trending,
hydrous shear zones up to several hundred
metres wide (Cartwright et al., 1999; Collins
and Teyssier, 1989; Raimondo et al., 2011,
2012) and resulted in differential exhumation
of the terrane (Buick et al., 1998; Cartwright
and Buick, 1999; Dirks et al., 1991; Hand
and Buick, 2001). The consequence of this
differential exhumation was to create a
regional metamorphic gradient expressed by
the early Mesoproterozoic assemblages, which
ranges from greenschist facies in the northwest
Reynolds Range to granulite facies towards the
southeast (Fig. 2).

3. Sample selection and petrography

The samples chosen for petrographic analysis,
phase equilibria modelling and geochronology
are located in the Boothby Hills in the SE
Reynolds Range (Fig. 3, Table 1). Three
locations were selected from within the Aileron
Metamorphics (Fig. 3). The selected samples
represent different stages of the evolving
metamorphic and thermal system during the
Early Mesoproterozoic Chewings Orogeny.
Samples displaying the regional gneissic fabric
were taken from locations north and south
of Mount Boothby. Pegmatites that cross-cut
the regional gneissic fabric were sampled to
constrain the timing of crystallisation of the
last melt, and thus place a lower age limit on

Table 1: Summary of sample locations and geochronology.

Sample Easting Northing Textural location Age (Ma)
Boothby-09-1 325078 7505909 Gt-cd gneissic fabric 1576 £ 10
Boothby-09-2A 325078 7505909 Gt-cd gneissic fabric 1572 £ 10
RR-01 322372 7497549 Whole rock: matrix and segregations -

RR-03 322372 7497549 Gt-cd-bi matrix 1563 £ 11
RR-04 322372 7497549 Opx-gt-cd melt segregation 1560 £ 10
RR-05 322372 7497549 Bi-cd-pl retrogressed assemblage 1542 £ 12
BPG-01 325039 7503826 Qz-bi-ksp pegmatite 1522+ 9
BPG-03 325039 7503826 Qz-bi-ksp pegmatite 1510 £ 12

%Q Paleozoic
Q o ® [ ] Retrograde schist

WAILERON

° 9

— Alice Springs aged shear zones

Proterozoic

I Napperby Gneiss

| Undifferentiated felsic intrusives
[ | Boothby Orthogneiss

[ Aileron Metamorphics

[ | Lander Rock Beds

B Mt Freeling Schist

[ Nolans Dam Metamorphics

W LOCALITY
QO Sample location

Figure 3: Detailed map of sample area showing key lithologies, after Raimondo et al. (2011).
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Figure 4: Field photographs. (a) Samples RR-03, RR-04: Coarse-grained orthopyroxene-K-feldspar
bearing segregation within cordierite-garnet-biotite bearing metapelites. (b) Samples RR-04, RR-05: Partial
replacement (outlined) of orthopyroxene-K-feldspar bearing segregation by biotite, cordierite and plagioclase.
(c) Sample Boothby-09-2A: Early formed garnet-bearing migmatitic segregation in layered metapelites
enclosed within a foliation defined by biotite and cordierite. (d) Sample Boothby-09-2A: Early sillimanite is
armoured within cordierite and is not part of the foliation defining assemblage. (¢) Pegmatite from west of Mt

Boothby cross-cutting the regional gneissic foliation at a high angle.

suprasolidus conditions. 7497549 mS), the granulite-facies outcrop is

dominated by cordierite-rich gneiss, cross-cut
3.1. South of Mount Boothby by volumetrically minor (5-10% of outcrop)
At this location (WGS84, 53K 322372 mE, orthopyroxene T garnet bearing segregations
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that are up to 50 cm long and 20 cm wide (Fig.
4a). The segregations are variably retrogressed
to biotite-rich mineral assemblages (Fig. 4b). In
some instances, the development of biotite has
proceeded to the extent that orthopyroxene-
garnet has been completely replaced.

To allow links to be drawn between the
petrology and the calculated phase diagrams
and geochronology, descriptions are given
in terms of three separate rock domains. The
overall rock is represented by sample RR-01,
which contains all three domains. Following
the development of the orthopyroxene-
garnet bearing segregations, the matrix and
segregations are interpreted to have been
chemically discrete domains, on the basis that
they develop contrasting mineral assemblages
(see below). These domains have been treated
as separate samples for the purposes of phase
diagram calculations and geochronology.

3.1.1. Sample RR-03

Sample RR-03 represents the cordierite-rich,
gneissic host rock and comprises medium-
to coarse-grained cordierite, garnet, quartz,
plagioclase, biotite, K-feldspar and fine- to very-
fine grained magnetite, ilmenite, sillimanite,
fibrolitic sillimanite and rare andalusite.
The mineralogy of the gneiss is dominantly
cordierite, quartz and biotite. Alternating
biotite-rich and biotite-poor layers define the
gneissic fabric (Fig. 4a); however, biotite grains
themselves do not have a preferred orientation
at thin section scale. Cordierite porphyroblasts
(>1 mm) contain rare inclusions of unoriented
patches of sillimanite (Fig. 5a). Cordierite
grain boundaries are commonly decorated
with very fine-grained, unoriented, fibrolitic
(Fig. 5a).
anhedral, commonly <3 mm and usually occur

sillimanite Garnet grains are

in contact with cordierite and quartz (Fig. 5a).
They are occasionally partially surrounded by

large, optically continuous cordierite grains.
Magnetite most commonly occurs either as
inclusions within biotite or along biotite grain
boundaries. However, magnetite also occurs
with quartzand in contact with garnet. Ilmenite
occurs intergrown with magnetite. Andalusite
is fine-grained (<0.1 mm), anhedral and occurs
in partial replacement of biotite (Fig. 5b).

3.1.2. Sample RR-04

Sample RR-04 represents the discordant
and undeformed segregations that overprint
the gneissic fabric. They contain coarse- to
very coarse-grained orthopyroxene (<5 cm
diameter), plagioclase, garnet (<1.5 cm),
cordierite and biotite, and less abundant, finer-
grained magnetite, ilmenite and K-feldspar
(Fig. 5c). Orthopyroxene commonly either
mantles garnet or contains inclusions of garnet
(Fig. 5¢); these observations can be seen both
at outcrop and thin section scale. Garnet
also occurs as inclusions within large grains
of cordierite and plagioclase. At the outcrop
scale, biotite occurs in patchy ‘clumps’ in the
segregation. The presence of biotite in sample
RR-04 is interpreted to represent partial
retrogression of the (essentially) anhydrous
leucosome assemblage (Fig. 5¢). Anhedral, fine-
grained andalusite occurs in the biotite-rich
areas of the segregation (Fig. 5c). Secondary
garnet occurs on the rims of relict garnet
grains, and is associated with the replacement
of orthopyroxene.

3.1.3. Sample RR-05

Sample RR-05 represents segregations that
are extremely biotite-rich. In this sample,
orthopyroxene and garnet have been entirely
replaced, and the mineralogy is biotite,
cordierite, plagioclase, magnetite and ilmenite
* andalusite. These biotite-rich parts are
interpreted to be retrogressed segregations,
and may represent crystallised melt pockets

-145-



Chapter 4

High-temperature, low-pressure metamorphism in the Central Aileron Province

(a)

cd

gt

cd

pl

ksp.,

gt

gt

cd—>

(b)
cd
gt
mnz
q
od g
d S
> cd
Si”»
cd o q
1000 pm
pl gt
gt P
pl
cd
gt
cd d
gt
gt
qz
gt
q (e)
mnz
d
bi ¢ gt
sill
q
d
qz cd ¢ 1000 um

cd

gt

and

cd

qz

ksp + pl

ksp

200 um

qz

qz

2mm

ksp
qz

1000 um

-146-



Chapter 4

High-temperature, low-pressure metamorphism in the Central Aileron Province

Figure 5 (previous page): Photomicrographs of key petrological relationships. (a) Sample RR-03: anhedral
garnet occurs in contact with biotite, cordierite and quartz. The cordierite contains patches of fine-grained
sillimanite (shown inside the dashed box). Fibrolite occurs at the boundaries of cordierite grains (shown in
the inset box on the right hand side of the image). (b) Sample RR-03: Fine-grained, retrograde andalusite
grows in association with biotite and magnetite. (c) Sample RR-04: Garnet-orthopyroxene bearing leucosome.
Coarse garnet is rimmed by coarse orthopyroxene, which is in turn rimmed by porphyroblasts of cordierite
and plagioclase. Magnetite is separated from orthopyroxene by rims of cordierite. Smaller garnet grains are
also included within large cordierite grains. The edges of the segregation have been partially retrogressed by
a biotite-rich assemblage. Anhedral, fine-grained andalusite occurs in association with the biotite. (d) Sample
Boothby-09-2A: anhedral garnet contains patches of fine-grained sillimanite (shown inside the dashed boxes).
Garnet is enclosed by a quartz-cordierite-biotite-rich matrix. At the bottom of the image, a small garnet grain
is completely enclosed by cordierite. (e) Sample BPG-01: The pegmatites are dominantly made up of coarse-

grained K-feldspar and biotite. Fine-grained plagioclase and quartz also occur in direct contact with finer-

grained K-feldspar. Coarse-grained monazite and zircon are also common.

(e.g. Spear et al., 1999; White and Powell,
2002). In both the hydrous and anhydrous
segregations, cordierite grain boundaries are
decorated with very fine-grained, unoriented,

fibrolitic sillimanite.

3.1.4. Overall outcrop

For the overall outcrop, the peak mineral
assemblage is interpreted as cordierite +
garnet + orthopyroxene + plagioclase +
biotite + magnetite + ilmenite + silicate melt
+ K-feldspar. Within the segregations that are
comparatively biotite poor, the abundance of
garnet is interpreted to have decreased through
time, commensurate with the formation of
orthopyroxene, cordierite and plagioclase. In
the segregations that contain abundant biotite
(especially in RR-05), andalusite and fibrolitic
sillimanite are additionally interpreted to be

retrograde (post-peak) in origin.

3.2. North of Mount Boothby

North of Mount Boothby (WGS84, 53K
325078 mE, 7505909 mS), metapelitic gneisses
contain garnet-bearing felsic segregations that
are wrapped by a cordierite + biotite bearing
foliation (Fig. 4c and d). At outcrop scale, layers
rich in cordierite contain folia of sillimanite.
However, sillimanite is always armoured by

cordierite, and is not in contact with the biotite

grains defining the mineral foliation in the

outcrop (Fig. 4d).

3.2.1. Sample Boothb)/—09—]
Boothby-09-1
biotite,

K-feldspar and plagioclase. Garnet grains are

Sample comprises  garnet,

cordierite, quartz and  minor
porphyroblastic, commonly ~4 mm, but can be
up to 8 mm in diameter, and contain unoriented
inclusions of biotite and ovoid quartz. Biotite
makes up a large proportion (~30%) of the
sample. There appears to be two generations of
biotite. One generation has well defined grain
shapes and forms part of a foliation that wraps
garnet. The second generation is green-brown
and has a less well defined grain shape, but has
a similar orientation to the brown biotite and
forms part of the foliation. Magnetite occurs
most commonly along biotite grain boundaries.
Quartz is the second-most abundant mineral
and occurs throughout the matrix. Cordierite
(0.5—1 mm) occurs with quartz and biotite
and its grain boundaries are pronounced by the
presence of fine-grained fibrolitic sillimanite
intergrown with fine-grained biotite. Fibrolitic
sillimanite also occurs occasionally along grain

boundaries of garnet.

3.2.2. Sample Boothby-09-24
Sample Boothby-09-2A  comprises garnet,
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K-feldspar,  biotite,  cordierite,

plagioclase and magnetite. Garnet occurs

quartz,
in K-feldspar-bearing felsic = segregations
wrapped by a cordierite-rich foliation. Garnet
is anhedral and medium grained (~5 mm
diameter), and occasionally contains randomly-
oriented inclusions of sillimanite (Fig. 5d). The
matrix assemblage comprises coarse-grained
K-feldspar, cordierite and quartz, along with
two generations of biotite. Brown biotite
is more common and is probably part of the
prograde-peak assemblage, whereas green
biotite is finer grained and possibly part of the
retrograde assemblage. Magnetite grains (up
to 0.2 mm diameter) usually occur in contact
with biotite. Cordierite is of variable size, but
can be up to 1 mm in diameter. Extremely
fine-grained fibrolitic sillimanite occurs along
cordierite grain boundaries. Andalusite is fine
grained with a poorly developed grain shape

and occurs intergrown with green biotite.

3.2.3. Overall outcrop

For the overall outcrop, the peak mineral
assemblage is interpreted to be garnet +
cordierite + plagioclase + K-feldspar +
magnetite + quartz T biotite. The prograde
evolution is interpreted to have involved the
formation of garnet and cordierite at the
expense of sillimanite and biotite (Fig. 4c
and d). Post-peak, the retrograde evolution
involved the increasing abundance of biotite
and cordierite. Andalusite and fibrolite are also
interpreted to be retrograde in origin and post-
date cordierite.

3.3. Mount Boothby region pegmatites

3.3.1. Samples BPG-01 and BPG-03

Samples BPG-01 and BPG-03 (WGS84, 53K
325039 mE, 7503826 mS) are coarse-grained
pegmatites immediately east of Mount Boothby.
These pegmatites are metre scale in width and
trend for several tens of metres. They cross-cut

the regional gneissic foliation at a high angle (Fig.
4¢). They comprise K-feldspar, biotite, quartz
and minor plagioclase (Fig. 5¢). K-feldspar is
coarse-grained (1-5 cm) and occurs as both
microcline and mesoperthite. Biotite is of
varying size. Coarse biotite (up to 2 mm) occurs
as platy grains which do not show a preferred
orientation. Finer-grained biotite (<0.5 mm)
occurs as more elongate grains which appear
to wrap K-feldspar porphyroblasts. Monazite
occurs as large grains, up to 1 mm in diameter
(Fig. 5e). Other accessory minerals include

apatite, rutile, zircon, xenotime and allanite.

4. Methods

4.1. Monazite Geochronology

In situ Laser Ablation—Inductively Coupled
Plasma—Mass Spectrometry (LA—ICP—MS) U~
Pb monazite geochronology was performed on
all samples described above except the ‘whole
rock/outcrop’ sample RR-01. Monazite grains
were imaged using a back-scattered electron
detector on a Phillips XL30 SEM to determine
their microstructural location and any internal
compositional variation. Representative BSE

images are shown in Figure 6.

LA—ICP—MS analyses were performed at the
University of Adelaide, following the method
of Payne et al. (2008). U-Pb isotopic analyses
were acquired using a New Wave 213 nm Nd—
YAG laser coupled with an Agilent 7500cs
ICP-MS. Ablation of monazites was done in a
He-ablation atmosphere with a frequency of 4
Hz for the metapelitic samples and a frequency
of 5 Hz for the pegmatite samples. A spot size
of 12 ym was used for all samples except RR-
05, where larger monazite grains allowed for
a spot size of 15 pm. The total acquisition
time of each analysis was 80 s. This included
30 s of background measurement, 10 s of the
laser firing with the shutter closed to allow for
beam stabilisation, and 40 s of sample ablation.
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(a) (b) (0
(d) (e) (f)
°
°
°
(9) ° Figure 6: BSE images of selected monazite grains. The ages shown on the

BSE images are *”’Pb/**Pb ages. (a) Sample RR-03. (b) Sample RR-04. (c)

® Sample RR-05. (d) Sample Boothby-09-1. (e) Sample Boothby-09-2A. (f)

Sample BPG-01. Some analyses in the pegmatites are discordant, and so

yield apparently young 207p, /206ph ages. This discordance was taken into

o account when calculating the weighted average age, and highly discordant

analyses were excluded. (g) sample BPG-03. The large spread in ages and

apparent young 207pl, /206ph ages are due to the effects of discordance.

Isotopes measured were ***Pb, **Pb, **’Pb and
28U for dwell times of 10, 15, 30 and 15 ms,

respectively.

Monazite data were reduced using Glitter
software (Griffin et al., 2004). Elemental
fractionation and mass bias was corrected
using the monazite standard 44069 for the
metapelitic samples [TIMS normalisation data:
207ph/2%Ph = 425.3 £ 1.1 Ma, **Pb/**U
= 42486 t 0.36 Ma and *Pb/**U =
424.89 * 0.35 Ma: Aleinikoff et al. (2006)]
and the monazite standard MAdel for the
pegmatite samples (TIMS normalisation data:
207ph /2%Ph = 490.7 Ma, **Pb/**U = 514.8
Ma and *Pb/**U = 510.4 Ma: Payne et al.
(2008) with an overestimated uncertainty
of 1% attached to each normalisation age).
Throughout the course of this study, 44069 as a
primary standard yielded weighted mean ages

of *’Pb/?*Pb = 425.9 + 7.4 Ma, **Pb/**U =
424.6 £ 1.5 Maand *Pb/?*U =424.8 £ 1.5
(n = 86). MAdel yielded weighted mean ages
of 27Pb/2Ph = 501 + 13 Ma, 2Pb/>*U =
513 £ 2.8 Ma, and *Pb/**U = 510.8 £ 2.6
Ma (n = 32).

Data accuracy was monitored using monazite
standard MAdel as an internal standard for the
metapelitic samples, while 94-222/Bruna-
NW (c. 450 Ma: Payne et al. 2008) was used
for the pegmatites and as an additional standard
for RR-03. As a secondary standard, MAdel
yielded weighted mean ages of *”Pb/**Pb
= 502 £ 10 Ma, *Pb/?**U = 516.6 + 2.5
Ma, 27Pb/?"U = 513.5 + 2.4 Ma (n = 42),
while 94-222 yielded weighted mean ages of
27pb/206Pb = 441 £ 18 Ma, **Pb/**U =
449 4 + 3.7 Ma, *Pb/**U = 448.3 = 3.6 Ma
(n=12).
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Isotopic age data for all samples were anchored
to a lower intercept of 360 * 25 Ma. This age
corresponds to the timing of Alice Springs
Orogeny shear zone activity in the Reynolds-
Anmatjira Ranges, as established by several
previous studies (Cartwright et al., 1999,
2001; Raimondo et al., 2011, 2012). It was
considered that the use of this value as a lower
anchor would provide consistency between
samples as some of the samples display poorly
defined discordance. The wupper intercept
ages calculated using free regression and
anchored regression are similar, so the use
of a lower anchor is not considered to have a
significant effect on the age. All monazite U-—
Pb age data from this study are tabulated in
Supplementary Data $4.1.

4.2. Bulk rock and mineral chemistry

Bulk-rock chemical compositions for use in
the calculation of metamorphic phase diagrams
were obtained from Amdel Laboratories,
Adelaide (Supplementary Data $4.2). For
RR-01, approximately 20 kg of fresh rock
was crushed. This encompassed the matrix,
orthopyroxene-bearing segregations and some
retrogressed (biotite-rich) segregations. For
samples RR-03, RR-04 and RR-05, bulk-rock
chemistry was obtained by crushing small
amounts of these domains (several centimetres
in size). For Boothby-09-2A, a representative
amount of rock was crushed. The crushed
rock was then homogenized using a tungsten
carbide mill. Major elements were analysed by
fusing a 0.1 g portion of the powdered sample
with lithium metaborate before dissolution
and analysis using Inductively Coupled Plasma-
Optical Emission Spectroscopy (ICP—OES).
Rare Earth elements were analysed by digestion
of the analytical pulp in HF acid before analysis
using ICP—MS. Wet chemistry methods were
used to determine the amount of FeO and
Fe O,.

Chemical analyses of minerals were obtained
using a Cameca SX51 electron microprobe at
the University of Adelaide. A beam current of
20 nA and accelerating voltage of 15 kV was
used for all point analyses. Representative
analyses for each mineral are given inTable 2.

4.3. Mineral equilibria modelling
