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Abstract 

Nanog, an important transcription factor in embryonic stem cells (ESC), is the key factor in 

maintaining pluripotency to establish ESC identity and has the ability to induce embryonic germ 

layers. Nanog is responsible for self-renewal and pluripotency of stem cells as well as cancer 

invasiveness, tumor cell proliferation, motility and drug-resistance. Understanding the underlying 

mechanisms of Nanog evolution and regulation can lead to future advances in treatment of cancers. 

Recent integration of machine learning models with genetics has provided a powerful tool for 

knowledge discovery and uncovering evolutionary pathways. Herein, sequences of 47 Nanog genes 

from various species were extracted and two datasets of features were computationally extracted from 

these sequences. At the first dataset, 76 nucleotide acid attributes were calculated for each Nanog 

sequence. The second dataset was prepared based on the 10480 repeated nucleotide sequences (from 5 

to 50 bp lengths). Then, various data mining algorithms such as decision tree models were applied on 

these datasets to find the evolutionary pathways of Nanog diversion. Attribute weighting models were 

highlighted features such as the frequencies of AA and GC as the most important genomic features in 

Nanog gene classification and differentiation. Similar findings were obtained by tree induction 

algorithms. Results from the second database showed that some short sequence strings, such as 

ACTACT, TCCTGA, CCTGA, GAAGAC, and TATCCC can be effectively used to identify Nanog 

genes in various species. The outcomes of this study, for the first time, unravels the importance of 

particular genomic features in Nanog gene evolution paving roads toward better understanding of 

stem cell development and human targeted disorder therapy.  

Keywords: Gene Evolution; Bioinformatics; Machine Learning; Nanog; Tandem Repeats 
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Introduction 

Embryonic stem cells (ESCs) are derived from inner cell mass (ICM) of the mammalian pre-

implantation embryo (Evans and Kaufman, 1981). ESCs have two important characteristics: an 

unlimited ability of self-renewal and differentiation capacity. They are pluripotent with the capacity to 

differentiate into three embryonic germ layers (endoderm, mesoderm and ectoderm). In addition, 

these cells can integrate into embryos and contribute to functional tissue generation. The pluripotency 

of ESCs seems to be authorized by multiple transcriptional factors. Three core pluripotency factors 

Oct3/4, Sox2 and Nanog have been introduced as essential factors in maintenance of pluoripotency 

and self-renewal of ESCs (Pashaiasl et al., 2013; Ebrahimie et al., 2014; Mansouri et al., 2014). In 

developmental process of embryo, Oct4 activates by Nanog. It has been suggested that the expression 

of Oct4 and Sox2 is regulated by Nanog, and by the loss of Nanog function, cells will enter to 

differentiation status (Boyer et al., 2005; Loh et al., 2006; Ebrahimie et al., 2014; Mansouri et al., 

2014). It has been also shown that over-expression of Nanog increases reprograming efficiency in cell 

fusion through stimulation and activation of gene in somatic cell genome yielding 200-fold more 

colonies than others and resetting pluripotency (Silva et al., 2006). In a recent genome-wide analysis, 

we demonstrated that the common organization of transcription factor binding sites on the non-coding 

promoter regions of Nanog,Oct4 and Sox2 can be used for discovery of novel genes involved in stem 

cell proliferation (irrespective of coding gene sequence)  (Hosseinpour et al., 2013). 

 

The Nanog is a family of homeobox genes which encodes homeodomain proteins and is part of the 

key set of transcription factors with a vital role in the second embryonic cell fate arrangement event 

(Cavaleri and Scholer, 2003; Mitsui et al., 2003). Nanog transcription factor is transcribed in the 

pluripotent cells of human, mouse, monkey, bovine and embryonic germ cells (Mitsui et al., 2009; 

Pashaiasl et al., 2010; Yang et al., 2012). Its over-expression robustly maintains ESC identity and 

proliferation as well as  invasiveness of the cancer cells (Yang et al., 2012; Wang et al., 2013). Nanog 

expression increases in the ICM stage of embryo and is lost around the time of implantation. 

Persistence of Nanog expression will delay blastocyst implantation (Chambers et al., 2003; Mitsui et 
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al., 2003).  Interestingly, disruption of the Nanog causes losing pluripotency in both ICM and ESCs. 

Its expression level is crucial for pluripotency and cells expressing high level of Nanog fulfil 

pluripotency. In contrast, low level Nanog expressing cells will move to differentiation procedure 

(Luo et al., 2012; Ebrahimie et al., 2014). 

 

Abnormal expression of Nanog has been observed in several types of tumour and tumorigenic tissues. 

The level of Nanog is linked to the prognoses of tumorogenecity of the cells and its expression could 

support the proliferation and invasiveness of the cancer cells, inhibiting the apoptosis. Knockdown of 

Nanog in liver cancer cells (Zhou et al., 2014) and pancreatic cancer cells (Bluteau et al., 2013) 

significantly decreased pluripotent ability and increased chemosensitivity of cancer cells. 

 

Despite its importance in both stem cell proliferation and cancer pathology, mechanisms underpinning 

Nanog function and regulation in genomic level have been poorly understood.  Increasing the number 

of available gene and protein sequences in different species in line with the recent development of 

advanced mathematical formula such as feature selection (attribute weighting models), decision trees, 

support vector machine (SVM), association rule mining, and neural networks has opened a new 

avenue in genetics for understanding gene function and evolution (Tahrokh et al., 2011; Zinati et al., 

2014; Ebrahimi et al., 2015). For application of the mentioned data mining models in genetics, it is 

essential to convert the gene/protein sequence to a series of attributes (features). Computationally 

calculated nucleotide attributes such as frequency of different nucleotides and di-neucleotides have 

been widely used in this context (KayvanJoo et al., 2014). String of tandem repeats, in view of 

existence and numbers, are another type of employed features. As example, combination of viral 

nucleotide attributes with machine learning successfully predicted the therapy outcome of 

interferon/ribavirin in hepatitis C (KayvanJoo et al., 2014). In another example, decision tree models 

unravelled the evolutionary pathway of ammonium transporters in different organisms based on di-

peptide attributes (Tahrokh et al., 2011). Combination of data mining algorithms with tandem repeat 

features, compared to the common multivariate based models, has resulted in more precise genotype 
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discrimination and oped a new avenue for classification and prediction of different genotypes (Beiki 

et al., 2012; Nasiri et al., 2015; Torkzaban et al., 2015). 

 

In this study, a range of nucleotide features and tandem repeats were calculated for Nanog sequences 

in different organisms, categorised in 2 different datasets. Various machine learning models were 

applied to (1) find the key discriminating genomic attributes governing the differentiation of Nanog 

transcription factors in different organisms, and (2) to find the best combination of nucleotide or 

tandem repeat features for unravelling evolutionary pathways of Nanog in different organisms. 

 

 











AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 
 

 

Table 1. Important genomic attributes of Nanog sequences that gained weight higher or equal to 0.5 by at least 3 weighting model in Nanog’s differentiation 

between different species based Gene Attribute Dataset (GAD dataset)
 *
 

Importance 

ranking of 

genomic attribute 

Genomic attribute Number of weighting  

models which announced 

attribute as important
**

 

 Importance 

ranking of 

genomic attribute 

Genomic attribute Number of weighting  

models which announced 

attribute as important
**

 

1 Frequency of AA 7  15 Frequency of AT 5 

2 Frequency of GC 7  16 Frequency of AG 5 

3 Frequency of GG 6  17 Frequency of Cytosine 5 

4 Frequency of CT 6  18 DS Frequency of carbon 4 

5 Frequency of CG 6  19 Frequency of carbon 4 

6 Frequency of TG 6  20 DS Frequency of hydrogen 4 

7 Frequency of AC 6  21 Frequency of hydrogen 4 

8 Frequency of Adenine 6  22 Frequency of GA 4 

9 Frequency of CA 6  23 Frequency of Thymine 4 

10 salt  0.1M 6  24 DS Frequency of nitrogen 3 

11 Frequency of oxygen 5  25 Frequency of nitrogen 3 

12 Frequency of Guanine 5  26 Frequency of TC 3 

13 Length 5  27 Frequency of GT 3 

14 Frequency of TA 5     

 
* In total, 76 genomic attributes were calculated for each Nanog sequence. 
**

Seven attribute weighting models were tested.  Importance of di- nucleotides of AA and GC were confirmed by all (100%) of tested attribute 

weighting models.  
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Table 2. Tandem repeat sequences which can significantly distinguish Nanog in different organisms 

as they received higher weight (equal to or higher than 0.5) by all weighting models based on 

Repeated Sequences Dataset (RSD)
 *
 

Importance ranking of 

tandem repeat attribute 

Tandem repeat attribute Number of weighting  models 

which announced attribute as 

important
**

 

1 TATCCC 7 

2 AGCTATA 7 

3 CCAGAC 7 

4 GACCTG 7 

5 AGATGC 7 

6 GCAGCC 7 

7 ACTACT 7 

8 AGACCT 7 

9 ACTTGG 7 

10 GAAGAC 7 

11 TCCTGA 7 

12 GCAGC 7 

13 CCTGA 7 
* In total, 10480 tandem repeat attributes were calculated for each Nanog sequence. 
**

Seven attribute weighting models were tested.  The importance of above tandem repeates 

were confirmed by all (100%) of tested attribute weighting models.  
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Table 3. New generated datasets by filtering attributes with various attribute weighting models in 

Gene Attribute Dataset and Repeated Sequence Dataset. The detailed list of attributes in each new 

dataset is presented at Supplementary 6. 

 

Attributes weighting model Number of remained 

attributes in Gene Attribute 

Dataset 

Number of remained 

attributes in Repeated 

Sequence Dataset 

Weighting by PCA 1 1 

Weighting by Deviation 1 4 

Weighting by Relief 4 208 

Weighting by SVM 10 1923 

Weighting by Gini Index 11 969 

Weighting by Rule 11 67 

Weighting by Chi Squared 20 105 

Weighting by Info Gain 25 2101 

Weighting by Uncertainty 26 718 

Weighting by Info Gain Ratio 26 1420 

FCdb (Origibnal data set) after data 

cleaning 

30 10479 
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Table 4. Comparison the accuracy of different tree induction model in combination of datasets trimmed with different attribute weighting algorithms to 

predict the origin of Nanog sequences based on the genomic features. Ten-fold cross validation was used for comparison of the models
*
.  
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Chi Squared 
59.50
% 

63.50
% 

70.50
% 

64.00
% 

64.00
% 

70.00
% 

71.00
% 

62.00
% 

49.00
% 

53.50
% 

49.50
% 

40.50
% 

49.50
% 

74.50
% 

72.50
% 

73.00
% 

74.50
% 

40.50
% 

61.66
% 

Info Gain 
65.50
% 

63.50
% 

73.00
% 

64.00
% 

57.50
% 

61.50
% 

73.00
% 

68.00
% 

49.00
% 

49.00
% 

49.50
% 

40.50
% 

56.00
% 

63.50
% 

64.00
% 

71.00
% 

73.00
% 

40.50
% 

60.53
% 

Deviation 
38.50
% 

28.50
% 

44.50
% 

42.50
% 

38.50
% 

28.50
% 

44.50
% 

42.50
% 

34.00
% 

30.00
% 

39.00
% 

32.00
% 

38.50
% 

40.50
% 

45.50
% 

41.00
% 

45.50
% 

28.50
% 

38.03
% 

Gini Index 
65.50
% 

66.00
% 

77.00
% 

64.00
% 

70.00
% 

66.00
% 

68.50
% 

70.50
% 

49.00
% 

49.00
% 

49.50
% 

40.50
% 

55.50
% 

81.50
% 

72.50
% 

74.50
% 

81.50
% 

40.50
% 

63.72
% 

Info Gain 
Ratio 

65.50
% 

63.50
% 

70.50
% 

64.00
% 

65.50
% 

65.00
% 

68.50
% 

64.50
% 

49.00
% 

53.50
% 

49.50
% 

40.50
% 

43.50
% 

64.00
% 

78.00
% 

69.00
% 

78.00
% 

40.50
% 

60.88
% 

PCA 
38.50
% 

28.50
% 

44.50
% 

42.50
% 

38.50
% 

28.50
% 

44.50
% 

42.50
% 

34.00
% 

30.00
% 

39.00
% 

32.00
% 

38.50
% 

40.50
% 

45.50
% 

41.00
% 

45.50
% 

28.50
% 

38.03
% 

Relief 
61.50
% 

57.50
% 

63.50
% 

57.50
% 

61.50
% 

54.00
% 

63.50
% 

55.50
% 

38.50
% 

38.50
% 

38.50
% 

38.50
% 

46.50
% 

48.00
% 

43.50
% 

49.50
% 

63.50
% 

38.50
% 

51.00
% 

Rule 
66.50
% 

59.50
% 

77.00
% 

68.00
% 

68.50
% 

65.00
% 

69.00
% 

74.50
% 

49.00
% 

49.00
% 

53.50
% 

40.50
% 

49.00
% 

55.00
% 

65.00
% 

68.50
% 

77.00
% 

40.50
% 

61.09
% 

Uncertainty 
65.50
% 

63.50
% 

70.50
% 

64.00
% 

65.50
% 

66.00
% 

71.00
% 

68.00
% 

49.00
% 

53.50
% 

49.50
% 

40.50
% 

43.50
% 

64.00
% 

78.00
% 

69.00
% 

78.00
% 

40.50
% 

61.31
% 

SVM 
64.00
% 

63.50
% 

72.50
% 

70.50
% 

66.50
% 

61.50
% 

70.50
% 

70.50
% 

38.50
% 

43.00
% 

49.50
% 

40.50
% 

55.50
% 

69.00
% 

82.00
% 

79.00
% 

82.00
% 

38.50
% 

62.28
% 

FCdb 
(Original 

65.50
% 

63.50
% 

72.50
% 

66.00
% 

57.00
% 

61.50
% 

72.50
% 

64.50
% 

49.00
% 

53.50
% 

49.50
% 

40.50
% 

47.00
% 

68.50
% 

68.00
% 

62.00
% 

72.50
% 

40.50
% 

60.06
% 
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data set) 

Maximum 
accuracy of 
DT 

66.50% 66.00% 77.00% 70.50% 70.00% 70.00% 73.00% 74.50% 49.00% 53.50% 53.50% 40.50% 56.00% 81.50% 82.00% 79.00% 

   

Minimum 
accuracy of 
DT 

38.50% 28.50% 44.50% 42.50% 38.50% 28.50% 44.50% 42.50% 34.00% 30.00% 38.50% 32.00% 38.50% 40.50% 43.50% 41.00% 

   

Average 
accuracy of 
DT 

59.64% 56.45% 66.91% 60.64% 59.36% 57.05% 65.14% 62.09% 44.36% 45.68% 46.95% 38.77% 47.55% 60.82% 64.95% 63.41% 

   
*
DT is the abbreviation of decision tree. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

25 
 

Table 5. Comparison the accuracy of different tree induction model in combination of datasets trimmed with different attribute weighting algorithms to 

predict the origin of Nanog sequences based on the number of repeated sequence features. Ten-fold cross validation was used for comparison of the models.  
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Chi Squared 66.50% 73.50% 74.00% 67.00% 68.50% 71.50% 76.00% 67.00% 59.00% 44.00% 54.50% 52.00% 69.00% 86.50% 80.50% 82.50% 86.50% 44.00% 

Info Gain 81.50% 75.50% 73.50% 71.50% 81.50% 77.00% 75.50% 79.50% 56.50% 42.00% 61.00% 57.00% 73.00% 72.50% 77.50% 87.00% 87.00% 42.00% 

Deviation 38.50% 28.50% 44.50% 42.50% 38.50% 28.50% 44.50% 42.50% 34.00% 30.00% 39.00% 32.00% 38.50% 40.50% 45.50% 41.00% 45.50% 28.50% 

Gini Index 65.50% 66.00% 77.00% 64.00% 70.00% 66.00% 68.50% 70.50% 49.00% 49.00% 49.50% 40.50% 55.50% 81.50% 72.50% 74.50% 81.50% 40.50% 

Info Gain Ratio 65.50% 63.50% 70.50% 64.00% 65.50% 65.00% 68.50% 64.50% 49.00% 53.50% 49.50% 40.50% 43.50% 64.00% 78.00% 69.00% 78.00% 40.50% 

PCA 38.50% 28.50% 44.50% 42.50% 38.50% 28.50% 44.50% 42.50% 34.00% 30.00% 39.00% 32.00% 38.50% 40.50% 45.50% 41.00% 45.50% 28.50% 

Relief 61.50% 57.50% 63.50% 57.50% 61.50% 54.00% 63.50% 55.50% 38.50% 38.50% 38.50% 38.50% 46.50% 48.00% 43.50% 49.50% 63.50% 38.50% 

Rule 66.50% 59.50% 77.00% 68.00% 68.50% 65.00% 69.00% 74.50% 49.00% 49.00% 53.50% 40.50% 49.00% 55.00% 65.00% 68.50% 77.00% 40.50% 

Uncertainty 65.50% 63.50% 70.50% 64.00% 65.50% 66.00% 71.00% 68.00% 49.00% 53.50% 49.50% 40.50% 43.50% 64.00% 78.00% 69.00% 78.00% 40.50% 

FCdb 65.50% 63.50% 72.50% 66.00% 57.00% 61.50% 72.50% 64.50% 49.00% 53.50% 49.50% 40.50% 47.00% 68.50% 68.00% 62.00% 72.50% 40.50% 

SVM 64.00% 63.50% 72.50% 70.50% 66.50% 61.50% 70.50% 70.50% 38.50% 43.00% 49.50% 40.50% 55.50% 69.00% 82.00% 79.00% 82.00% 38.50% 

Maximum 

accuracy of 

DT 

81.50% 75.50% 77.00% 71.50% 81.50% 77.00% 76.00% 79.50% 59.00% 53.50% 61.00% 57.00% 73.00% 86.50% 82.00% 87.00% 81.50% 

 

Minimum 38.50% 28.50% 44.50% 42.50% 38.50% 28.50% 44.50% 42.50% 34.00% 30.00% 38.50% 32.00% 38.50% 40.50% 43.50% 41.00% 38.50%  
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accuracy of 

DT 

Average 

accuracy of 

DT 

61.73% 58.45% 67.27% 61.59% 61.95% 58.59% 65.82% 63.59% 45.95% 44.18% 48.45% 41.32% 50.86% 62.73% 66.91% 65.73% 61.73% 

 
*
DT is the abbreviation of decision tree. 
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Table 6. Comparative statistics of 10 important features selected by attribute weighting models in 

different organisms  

Important genomic feature Organism Count Mean StDev Variance CoefVar 

salt 0.1M Birds 3 87.6 0.987 0.975 1.13 

 
Domestic Mammals 18 83.356 1.611 2.594 1.93 

 
Felis catus 2 85.93 0 0 0 

 
Fish 5 86.558 1.751 3.065 2.02 

 
Mouse 11 84.716 0.935 0.875 1.1 

 
Primates 8 83.7 1.221 1.491 1.46 

Frequency of Adenine Birds 3 0.246 0.00346 0.00001 1.41 

 
Domestic Mammals 18 0.28028 0.01786 0.00032 6.37 

 
Felis catus 2 0.297 0 0 0 

 
Fish 5 0.2606 0.00695 0.00005 2.67 

 
Mouse 11 0.24645 0.00792 0.00006 3.21 

 
Primates 8 0.2726 0.0457 0.0021 16.75 

Frequency of AA Birds 3 0.04933 0.00751 0.00006 15.21 

 
Domestic Mammals 18 0.09061 0.01039 0.00011 11.46 

 
Felis catus 2 0.086 0 0 0 

 
Fish 5 0.0624 0.00631 0.00004 10.11 

 
Mouse 11 0.069 0.00557 0.00003 8.07 

 
Primates 8 0.086 0.0304 0.0009 35.36 

Frequency of AC Birds 3 0.06467 0.00404 0.00002 6.25 

 
Domestic Mammals 18 0.05628 0.00627 0.00004 11.14 

 
Felis catus 2 0.065 0 0 0 

 
Fish 5 0.0722 0.00841 0.00007 11.65 

 
Mouse 11 0.054091 0.00164 0.000003 3.03 

 
Primates 8 0.058 0.00782 0.00006 13.48 

Frequency of CA Birds 3 0.10233 0.00924 0.00009 9.03 

 
Domestic Mammals 18 0.078 0.01231 0.00015 15.78 

 
Felis catus 2 0.096 0 0 0 

 
Fish 5 0.0956 0.01078 0.00012 11.28 

 
Mouse 11 0.07355 0.00559 0.00003 7.6 

 
Primates 8 0.07288 0.0123 0.00015 16.88 

Frequency of CG Birds 3 0.02467 0.00289 0.00001 11.7 

 
Domestic Mammals 18 0.014778 0.003828 0.000015 25.9 

 
Felis catus 2 0.025 0 0 0 

 
Fish 5 0.0376 0.00627 0.00004 16.67 

 
Mouse 11 0.01627 0.00388 0.00002 23.81 

 
Primates 8 0.014 0.00659 0.00004 47.07 

Frequency of CT Birds 3 0.07667 0.00577 0.00003 7.53 

 
Domestic Mammals 18 0.07556 0.00511 0.00003 6.77 

 
Felis catus 2 0.066 0 0 0 

 
Fish 5 0.0634 0.00677 0.00005 10.67 

 
Mouse 11 0.09018 0.00412 0.00002 4.57 

 
Primates 8 0.08375 0.01565 0.00024 18.68 

Frequency of GC Birds 3 0.08033 0.00751 0.00006 9.34 

 
Domestic Mammals 18 0.04533 0.00683 0.00005 15.08 
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Felis catus 2 0.063 0 0 0 

 
Fish 5 0.0704 0.00844 0.00007 11.99 

 
Mouse 11 0.05927 0.0066 0.00004 11.14 

 
Primates 8 0.04525 0.00518 0.00003 11.44 

Frequency of GG Birds 3 0.07967 0.01155 0.00013 14.49 

 
Domestic mammals 18 0.055 0.00941 0.00009 17.1 

 
Felis catus 2 0.049 0 0 0 

 
Fish 5 0.0614 0.01519 0.00023 24.74 

 
Mouse 11 0.060091 0.003145 0.00001 5.23 

 
Primates 8 0.0535 0.01707 0.00029 31.91 

Frequency of TG Birds 3 0.065 0.00346 0.00001 5.33 

 
Domestic mammals 18 0.068778 0.003606 0.000013 5.24 

 
Felis catus 2 0.061 0 0 0 

 
Fish 5 0.0676 0.00643 0.00004 9.51 

 
Mouse 11 0.076909 0.002386 0.000006 3.1 

 
Primates 8 0.07487 0.00631 0.00004 8.43 
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Figures 

 

Figure 1. Pattern recognition in differentiation of Nanog genes between different organisms via 

Decision Tree Random Forest ran with Gain Ratio criterion on dataset pre-filtered with Gini Index 

attribute weighting models. 

 

Figure 2. Pattern recognition in differentiation of Nanog genes between different organisms via 

Decision Tree Random Forest ran when ran with Gini Index criterion on dataset pre-filtered with SVM 

attribute weighting model. 

 

Figure 3. Complete differentiation/prediction of Nanog genes between different organisms via 

Decision Tree algorithm ran on repeated sequence features with Gini Index criterion 

 

Figure 4. Clustering of Nanog sequences based on the 10 fist important attributes of attribute 

weighting models.
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Figure 2  
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Figure 3  
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Figure 4  
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Abbreviation 

DT decision tree  

ESC embryonic stem cells  

GAD Gene Attribute Dataset   

ICM inner cell mass  

PCA Principle component analysis  

RSD Repeated Sequences Database (dataset)  

SVM support vector machine  
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Highlights 

 Evolution study of key transcription factor in stem cell and tumor progression 

 Pattern recognition of Nanog evolution by application of machine learning  

 Finding the key genomic features governing Nanog evolution in different 

organisms 

 Discovery of organism specific repeated sequences in Nanog gene sequences 

 Documenting the high efficiency of Decision Tree Random Forest in Nanog 

evolution 




