Stochastic Spatial Rainfall Modelling for Hydrological Design: Development of a Parsimonious Simulation Approach and Virtual Hydrological Evaluation Framework

Bree Sarah Bennett

B. Eng Civil & Structural Engineering (Hons)

B. Laws (Hons)

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Adelaide
Faculty of Engineering, Computer and Mathematical Sciences
School of Civil, Environmental and Mining Engineering

-June 2016-
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
</tbody>
</table>

CHAPTER 1

1. Limitations of rainfall data | 1
1.2 Limitations of stochastic rainfall models and their evaluation | 4
1.3 Limitations of spatial rainfall in hydrological modelling | 5
1.4 Overall research objectives | 6
1.5 Thesis organisation | 7

CHAPTER 2

Abstract | 13
2.1 Introduction | 14
2.2 The IFDA approach | 15
2.3 Case study data | 17
2.4 Methodology | 19
2.5 Results | 22
2.6 Discussion and practical implications | 31
2.7 Conclusions | 37
2.8 Acknowledgments | 37
2.9 References | 38
CHAPTER 3 41
Abstract 45
3.1 Introduction 46
3.2 Methodology 48
3.3 Case study 58
3.4 Results 60
3.5 Discussion 71
3.6 Conclusions 74
3.7 Acknowledgements 75
3.8 References 75

CHAPTER 4 81
Abstract 85
4.1 Introduction 86
4.2 Methodology 89
4.3 Case study 95
4.4 Results 96
4.5 Discussion 104
4.6 Conclusions 107
4.7 Acknowledgements 108
4.8 References 108

CHAPTER 5 113
5.1 Research contribution 113
5.2 Limitations 115
5.3 Future work 117
5.4 Final recommendations 118

REFERENCES 119
Abstract

The management of water, viewed either as a natural hazard or a vital resource, is critical for the safety and prosperity of communities. The risks associated with managing water availability, whether in scarcity or excess, are critical concerns for the design and operation of infrastructure as well as the implementation of public policy. The spatial variability of rainfall is a known driving force of catchment dynamics and water availability, but despite this, it is often poorly represented in hydrologic studies and designs.

This thesis focuses on improvements to the estimation, simulation and evaluation of spatial rainfall. Specifically these developments include: (i) the development of a generalised approach for spatial extreme rainfall estimation; (ii) the development of a flexible, continuous, and spatial stochastic model of rainfall and its corresponding evaluation; and (iii) an innovative framework for critically evaluating the performance of stochastic rainfall models via the assessment of simulated streamflow. Australian case study locations, with varying climates, are used to present and investigate these approaches.

A new approach for estimating extreme spatial rainfall intensities and a critical evaluation of current approaches for estimation are presented. Current techniques for estimating extreme spatial rainfall are reliant on areal reduction factors (ARF) to convert intensity estimates of extreme point rainfall to extreme spatial rainfall. It is common practice to ignore spatial variation in rainfall intensity and assume a constant ARF over a large region. Approaches using ARFs for estimating extreme spatial rainfall were demonstrated to be in error by 5% to 15%. A new approach that explicitly incorporates the variation of spatial rainfall over an area, referred to as Intensity Frequency Duration Area (IFDA) was developed to address this issue. IFDAs use spatially interpolated rainfall grids to directly estimate how extreme rainfall intensity varies with frequency, duration and area for a given location. The IFDA approach overcomes the shortcomings of existing approaches by avoiding the need to assume a fixed regional ARF value. IFDA provide direct and unbiased estimates of extreme spatial rainfall.
An alternative approach to spatially interpolated observations of extremes is to use data generated by a stochastic spatial rainfall model. A new model for continuously simulating fields of daily spatial rainfall in a parsimonious manner is developed in this thesis. A Gaussian latent variable approach is used because it is able to simultaneously generate rainfall occurrences as well as amounts. Parameter surfaces are produced via kriging which enables the model to produce stochastic replicates for any location of interest in the catchment. Additional benefits of the model are that it removes the need for interpolation to construct catchment average rainfall estimates, preserves the rainfall’s volumetric properties and can be used with distributed hydrologic models. A comprehensive evaluation approach was developed to identify model strengths and weaknesses. This included a performance classification system that provided a systematic, succinct and transparent method to assess and summarize model performance over a range of statistics, sites and scales. The model showed many strengths in reproducing observed rainfall characteristics with the majority of statistics classified as either statistically indistinguishable from the observed or within 5% of the observed across the majority of sites and seasons.

A significant challenge when evaluating rainfall models is that the key variable of interest is resultant streamflow, not generated rainfall. Typical evaluation methods use a variety of rainfall statistics, but they provide limited understanding on (i) how rainfall influences streamflow generation; (ii) which rainfall characteristics are most important; and (iii) the trade-offs made when one or more features of rainfall are poorly reproduced. An innovative virtual hydrological evaluation framework is developed to evaluate whether deficiencies in simulated rainfall lead to deficiencies in resultant streamflow. The key feature of the framework is the use of a hydrological model to compare streamflow derived from observed and simulated rainfall at the same location. The framework allows the impact of an influencing month of simulated rainfall on streamflow in an evaluated month of interest to be isolated. Application of the virtual hydrological evaluation framework identified the importance of transition months May and June (late autumn/early winter) in the ‘wetting-up’ phase of the catchment cycle. Despite their low monthly flow volumes, the transition months contributed significantly to error in the annual total flow.

With improved representation and evaluation of spatial rainfall, this thesis ultimately demonstrates more realistic and accurate methods for hydrological estimation.
Statement of Originality

I, Bree Sarah Bennett, certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

______________________________ ___________________
Bree Sarah Bennett Date
Acknowledgements

‘Far and away the best prize that life has to offer is the chance to work hard at work worth doing.’

– Theodore Roosevelt 1903

I feel honoured and privileged to have been able to experience the pleasure of research. For this my most sincere gratitude goes to my supervisory team, Professor Martin Lambert, Associate Professor Mark Thyer, Professor Bryson Bates and Dr Michael Leonard, who have provided me with great support, inspiration and guidance throughout my candidature. Your combined skill, expertise and passion for research have been invaluable.

I would like to thank my family, friends and colleagues who have shown interest in my research. Particular thanks go to Nicole Arbon who has been especially steadfast in her support and encouragement.

Finally, thanks go to my husband, Phil, for his unwavering encouragement and understanding.
List of Figures

Fig. 1-1 AWAP interpolated daily rainfall. 3
Fig. 2-1. Schematic of IFDA area designation. 17
Fig. 2-2. Location of study regions with annual rainfall isohyets (mm) 18
Fig. 2-3. Sydney region IFDA 1-day. 23
Fig. 2-4. Melbourne region IFDA 1-day. 24
Fig. 2-5. ARF_c boxplots for 1-day, 50 year ARI rainfall. 25
Fig. 2-6. ARF_{pi} boxplots for 1-day, 50 year ARI rainfall. 26
Fig. 2-7. $\%Err_c$ for 1-day, 50y ARI rainfall. 27
Fig. 2-8. $\%Err_{pi}$ for 1-day, 50y ARI rainfall. 28
Fig. 2-9. Sydney ARF and percentage error boxplots for 25y ARI, 1-day rainfall comparing results of the long and short series analysis. 29
Fig. 2-10. Comparison of coefficient of variation of at-site ARFs against catchment area for 10y ARI, 1-day rainfall. 30
Fig. 2-11. Mean $\%Err_c$ against ARI for 1-day rainfall. 31
Fig. 3-1 Illustration of performance classification. 57
Fig. 3-2 Locations of rainfall observation sites, Onkaparinga catchment and study region. 59
Fig. 3-3 At site daily statistics for all sites and months. 61
Fig. 3-4 Distribution of event lengths (a) wet spell length distribution and (b) dry spell length distribution. 62
Fig. 3-5 At site monthly totals for all sites and months. 63
Fig. 3-6 At site annual totals for all sites and months. 64
Fig. 3-7 At site annual mean wet day amounts (a) means and (b) standard deviations; number of wet days for all sites (c) means, (d) standard deviations. 65
Fig. 3-8 At-site correlations (a) monthly rainfall totals and (b) annual rainfall totals. 66
Fig. 3-9 Simulated and observed annual maxima example from site 6. 67
Fig. 3-10 Distribution of number of jointly wet sites for (a) ‘sparse’ rain, (b) ‘patchy rain’ and (c) ‘dense’ rain. 68
Fig. 4-1 Schematic of the virtual hydrologic evaluation framework. 92
Fig. 4-2 Onkaparinga catchment, South Australia. 95
Fig. 4-3 Integrated test, comparing observed-rainfall evaluation (left) with the virtual hydrologic evaluation (right). 98
Fig. 4-4 Lobethal (Site 12) comparison of observed-rainfall evaluation, integrated test and splice test. 101
Fig. 4-5 Happy Valley (Site 10) comparison of observed-rainfall evaluation, integrated test and splice test. 103
List of Tables

Table 2-1. Comparison of ARF-based and IFDA Approaches.

Table 3-1 Comparison of the number of parameters required to simulate at N sites per season modelled.

Table 3-2 Performance classification criteria.

Table 3-3 Cumulative performance classification criteria.

Table 3-4 Site names and locations.

Table 3-5 Comparison of ‘all data’ and ‘cross-validation’ performance. Overall performance measure summarised to the right of each bar using Table 3-3 classification scheme.

Table 4-1 Site names and locations.