Toll-like receptor 4-dependent barrier dysfunction and its impact on irinotecan-induced gut toxicity and pain

A thesis submitted in fulfillment for degree of

DOCTOR OF PHILOSOPHY

in

The Discipline of Anatomy and Pathology

School of Medicine

The University of Adelaide

by

Hannah Rose Wardill

22/08/16
Declaration

“This work contains no material that has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.”

I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopy.

Hannah Rose Wardill

22/08/16
Table of Contents

Declaration ... ii

Table of Contents .. iii

Acknowledgements .. x

Publications arising from this thesis ... xii

Contributions made by co-authors .. xiv

Additional studies and publications ... xxxii

Co-authored publications ... xxxiii

Thesis explanation ... xxxiv

Nomenclature .. xxxv

Chapter 1 General introduction .. 1

1.1 Chemotherapy-induced alimentary toxicity ... 1

1.2 Pathobiology .. 3

1.2.1 Common mechanisms underpin oral and gut toxicity .. 3

1.2.2 The 5-phase model of alimentary toxicity ... 3

1.3 Irinotecan hydrochloride .. 4

1.3.1 Irinotecan-induced diarrhoea .. 5

1.3.2 Intestinal barrier dysfunction ... 6

1.4 Gut dysbiosis: the catalyst for barrier dysfunction and innate immune activation 9

1.5 Toll-like receptors .. 10

1.5.1 TLR4-mediated glial activation and pain .. 12

1.6 Hypotheses and aims .. 13

Chapter 2 Chemotherapy-induced mucosal barrier dysfunction: an updated review on the role of tight junctions .. 17

2.1 Abstract ... 17
2.2 Introduction .. 18
2.3 Mucosal barrier function .. 19
 2.3.1 Molecular structure of tight junctions .. 19
2.4 Are alterations in intestinal tight junctions pivotal to CIGT development? 20
 2.4.1 Clinical studies ... 21
 2.4.2 Preclinical studies .. 22
2.5 Regulators of tight junctions constitute key steps in the pathophysiology of gut toxicity 25
 2.5.1 Proinflammatory cytokines disrupt barrier function .. 25
 2.5.2 The extracellular matrix maintains mucosal homeostasis .. 26
2.6 Potential involvement of tight junctions in chemotherapy-induced diarrhoea 27
2.7 Where to now? .. 30

Chapter 3 Irinotecan disruptions tight junction proteins within the gut: implications for
chemotherapy-induced gut toxicity ... 33
3.1 Abstract .. 33
3.2 Introduction ... 34
3.3 Materials and Methods .. 36
 3.3.1 Animals and ethics ... 36
 3.3.2 Experimental design .. 36
 3.3.3 Clinical assessment of gut toxicity .. 37
 3.3.4 Tissue preparation ... 37
 3.3.5 Real-time polymerase chain reaction (RT-PCR) .. 38
 3.3.6 Statistical analysis ... 40
3.4 Results ... 41
 3.4.1 Irinotecan causes severe gut toxicity characterised by diarrhoea and weight loss 41
 3.4.2 Irinotecan causes severe histopathological damage in the small and large intestine.... 41
 3.4.3 Irinotecan causes molecular defects in intestinal tight junction proteins 44
 3.4.4 RT-PCR efficiency and housekeeping gene stability (UBC) .. 48
3.5 Discussion ... 49
3.6 Conclusion ... 53

Chapter 4 Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer ... 56

4.1 Abstract ... 56
4.2 Introduction ... 57
4.3 Materials and Methods ... 60
 4.3.1 Patients ... 60
 4.3.2 Clinical assessment of oral toxicity ... 61
 4.3.3 Histopathological analysis of the oral epithelium .. 63
 4.3.4 Immunohistochemical analysis of tight junctions and inflammatory markers 63
 4.3.5 Statistical analysis ... 68
4.4 Results .. 69
 4.4.1 Chemotherapy causes significant epithelial atrophy consistent with oral toxicity 69
 4.4.2 Chemotherapy increases proinflammatory cytokines and alters MMP profiles 72
 4.4.3 Tight junction defects are seen in the buccal mucosa following chemotherapy 72
4.5 Discussion ... 78
4.6 Conclusion ... 82

Chapter 5 Toll-like receptor 4 signalling: a common biological mechanism of regimen-related toxicities – an emerging hypothesis for neuropathy and gastrointestinal toxicity......... 85

5.1 Abstract ... 85
5.2 Introduction ... 86
5.3 Indirect neuromodulation through glial activation .. 88
 5.3.1 The emerging role of glia in neuropathic pain .. 88
 5.3.2 TLR4-mediated glial activation .. 91
 5.3.3 TLR4 in the central nervous system .. 92
5.4 TLR4 and neuropathic pain ... 94
5.4.1 Peripheral tissue damage activates central TLR4 ... 94
5.5 Blood brain barrier disruption permits central pathology 96
5.6 Clinical translation .. 98
5.7 Conclusions and future directions .. 100

Chapter 6 Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms .. 104

6.1 Abstract .. 104
6.2 Introduction ... 105
6.3 Materials and Methods .. 108
 6.3.1 Animal model and ethics .. 108
 6.3.2 Experimental design ... 108
 6.3.3 Clinical assessment of gut toxicity .. 109
 6.3.4 Facial grimace criteria .. 109
 6.3.5 Tissue preparation ... 110
 6.3.6 Bacterial diversity profiling ... 110
 6.3.7 Histopathological and immunohistochemical analysis 111
 6.3.8 Assessment of in vivo intestinal permeability .. 115
 6.3.9 Tissue cytokine protein quantification using the Luminex multiplex platform 116
 6.3.10 Statistical analysis ... 116
6.4 Results ... 117
 6.4.1 Bacterial diversity profiling ... 117
 6.4.2 BALB/c-Tlr4^{−/−}billy mice have attenuated clinical manifestations of irinotecan-induced gut toxicity ... 121
 6.4.3 BALB/c-Tlr4^{−/−}billy mice have improved histological architecture in the small intestine 121
 6.4.4 TLR4-dependent signalling contributes to intestinal barrier disruption 125
 6.4.5 BALB/c-Tlr4^{−/−}billy mice exhibit a muted inflammatory response 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.6</td>
<td>Irinotecan-induced pain is associated with TLR4-dependent astrocytic GFAP expression</td>
<td>130</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Irinotecan increases blood brain barrier permeability to albumin</td>
<td>130</td>
</tr>
<tr>
<td>6.5</td>
<td>Discussion</td>
<td>134</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>139</td>
</tr>
</tbody>
</table>

Chapter 7 TLR4-dependent claudin-1 internalisation and secretagogue-mediated chloride secretion regulate irinotecan-induced diarrhoea

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Abstract</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>Materials and Methods</td>
<td>146</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Animal model and ethics</td>
<td>146</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Experimental design</td>
<td>146</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Clinical assessment of gut toxicity</td>
<td>147</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Tissue preparation</td>
<td>147</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Tight junction analysis</td>
<td>147</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Electrophysiological analysis using Ussing chambers</td>
<td>151</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Statistical analysis</td>
<td>152</td>
</tr>
<tr>
<td>7.4</td>
<td>Results</td>
<td>153</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Cytoplasmic redistribution of claudin-1 contributes to TLR4-dependent barrier disruption</td>
<td>153</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Irinotecan increases chloride secretion in the distal colon via TLR4-independent mechanisms</td>
<td>160</td>
</tr>
<tr>
<td>7.5</td>
<td>Discussion</td>
<td>163</td>
</tr>
<tr>
<td>7.5.1</td>
<td>TLR4-dependent mechanisms for tight junction disruption</td>
<td>164</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Clinical implications of barrier dysfunction</td>
<td>165</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Contribution to diarrhoea</td>
<td>166</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusion</td>
<td>169</td>
</tr>
</tbody>
</table>
Chapter 8 A novel in vitro platform for the study of SN-38-induced mucosal damage and the development of TLR4-targeted therapeutic options.. 172

8.1 Abstract ... 172
8.2 Introduction ... 173
8.3 Materials and Methods ... 176
 8.3.1 Cell culture .. 176
 8.3.2 Transmission electron microscopy ... 179
 8.3.3 Immunofluorescence for tight junction proteins .. 179
 8.3.4 Liquid chromatography-mass spectrometry .. 180
 8.3.5 Reverse transcription-polymerase chain reaction (RT-PCR) analysis of TLR4 expression ... 182
 8.3.6 Statistical analysis .. 183
8.4 Results .. 184
 8.4.1 Polyester membrane inserts support a polarised T84 phenotype with functional tight junctions in vitro ... 184
 8.4.2 SN-38 stability in the transwell support system ... 188
 8.4.3 T84 cells express TLR4 .. 190
8.5 Discussion ... 192
8.6 Conclusions .. 195

Chapter 9 Addendum: Characterisation of SN-38 epithelial injury using novel in vitro model ... 196

9.1 Rationale ... 196
9.2 Materials and Methods ... 197
 9.2.1 Cell culture .. 197
 9.2.2 SN-38 dose finding study ... 197
 9.2.3 Characterisation of SN-38 induced barrier dysfunction ... 201
9.3 Results .. 202
 9.3.1 SN-38 causes dose- and time-dependent decreases in TEER 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2 SN-38 induces barrier dysfunction in T84 monolayers</td>
<td>207</td>
</tr>
<tr>
<td>9.3.3 SN-38 causes electrophysiological changes in T84 monolayers</td>
<td>211</td>
</tr>
<tr>
<td>9.4 Discussion and Conclusions</td>
<td>213</td>
</tr>
<tr>
<td>Chapter 10 General discussion</td>
<td>215</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>215</td>
</tr>
<tr>
<td>10.2 Tight junction disruption: a common trait of alimentary toxicity</td>
<td>216</td>
</tr>
<tr>
<td>10.3 TLR4-dependent mechanisms regulate irinotecan-induced barrier dysfunction and exacerbate clinical manifestations of gut toxicity</td>
<td>217</td>
</tr>
<tr>
<td>10.4 TLR4-dependent barrier dysfunction permits chloride-driven water fluxes, contributing to diarrhoea development</td>
<td>221</td>
</tr>
<tr>
<td>10.5 Translating in vivo mechanisms to novel in vitro model</td>
<td>222</td>
</tr>
<tr>
<td>10.6 Central barrier disruption permits TLR4-dependent pain pathways</td>
<td>222</td>
</tr>
<tr>
<td>10.7 Practical considerations for TLR4-targeted therapeutic approaches</td>
<td>225</td>
</tr>
<tr>
<td>10.8 Conclusions and future directions</td>
<td>226</td>
</tr>
<tr>
<td>Chapter 11 References</td>
<td>227</td>
</tr>
</tbody>
</table>
Acknowledgements

I extend my thanks and gratitude to my three supervisors, Professor Rachel Gibson, Dr Joanne Bowen and Professor Richard Logan for giving me the opportunity to undertake this PhD, reading many drafts and always providing encouragement while completing my studies. I would also like to thank Dr Janet Coller for her continued mentorship.

In addition, I would like to thank Ms Ysabella Van Sebille for her friendship and support throughout my candidature, Mr Kent Algate for his comedic relief and Dr Danijela Menicanin for her guidance and advice. You are my second family, and I would not have had as much fun as I did without you.

Thank you to members of the Cancer Treatment Toxicities Group for fostering such a positive research environment, it has been great to see the group grow during the past few years.

I would like to thank members of the Stem Cell Research Group, at the South Australian Health and Medical Research Institute. In particular, thank you Professor Andrew Zannettino and Dr Jacqueline Noll for guiding me through the CRISPR/Cas9 technique. I would also like to thank the following people for their technical support:

- Dr Lachlan Jolly: Neurogenetics Research Group
- Professor Mark Hutchinson: Neuroimmunopharmacology Research Group
- Dr Lyndsey Collins-Praino: Neurological Research Group
- Mr Jim Manavis: Neurological Research Group

I would also like to the The Florey Medical Research Foundation Project Grant in Cancer Research and the The Doctor Chun Chung Wong and Madam So Lau Lam Memorial Postgraduate Scholarship for their support. Thank you also to the Ray and Shirl Norman Cancer Research Trust and Australian Dental Research Foundation for providing funds to carry out my research projects. In addition, I would like to thank the Channel 9 Young Achiever Award committee for their continued support, the Australian Society for Medical Research and the Multinational Association of Supportive Care in Cancer for recognising my research.
Finally, thank you also to my family and friends for the support, encouragement and belief in me over the years. I would like to particularly thank my supportive partner, Nick, for his patience and encouragement throughout my entire candidature, and my mum and dad for their unwavering support.
Publications arising from this thesis

* denotes invited review
Contributions made by co-authors

Professor Rachel J Gibson

Professor Rachel J Gibson was my co-principal supervisor (with Dr Joanne M Bowen) and has therefore been listed on all publications arising from this thesis. Rachel helped design and interpret results as well as being responsible for obtaining funding for this project. She was also involved in drafting all manuscripts in preparation for publication.
Dr Joanne M Bowen

Dr Joanne M Bowen was my co-principal supervisor (with Professor Rachel J Gibson) and has therefore been listed on all publications arising from this thesis. Joanne provided significant technical advice for much of the experimental work and also helped design and interpret results. She was also responsible for obtaining funding for this project and drafting all manuscripts in preparation for publication.
Contributions made by co-authors

Professor Richard M Logan

Professor Richard M Logan is my third supervisor. He has been listed as co-author on all publications from this thesis. Richard was involved in the original clinical study from which archival tissue samples were obtained and used for one of my studies (Chapter 3). He has also revised many drafts and provided assistance in gaining independent funding to support my research.
Contributions made by co-authors

Ms Ysabella ZA Van Sebille

Ms Ysabella ZA Van Sebille is a member of the Cancer Treatment Toxicities group. Ysabella contributed to several publications arising from this thesis by assisting with laboratory and animal work, as well as reading draft manuscripts.
Ms Kimberley A Mander

Ms Mander is part of the Adelaide Centre for Neuroscience Research. She has a keen interest in implications for blood brain barrier disruption in various disease states. Kim was involved in two reviews that were completed during my candidature, reading drafts and providing information about blood brain barrier regulation.
Ms Kate R Secombe

Ms Kate R Secombe was an honours student and research assistant in the Cancer Treatment Toxicities group during my candidature. During her honours degree, Kate helped with animal and laboratory work and has therefore been listed on the two publications arising from this study. During her time as a research assistant, she provided assistance in maintaining cell culture lines and stocks.
Dr Janet K Coller

Dr Janet K Coller was responsible for obtaining funding to conduct my animal project. She also contributed significant time in reading draft manuscripts in preparation for publication.
Ms Imogen E Ball (nee White)

Ms Imogen E Ball is a research assistant in the Cancer Treatment Toxicities Group. Imogen was listed as co-author on the two publications based on her contribution to the animal study.
Professor Mark R Hutchinson

Professor Mark R Hutchinson was listed as co-author on the first publication arising from my animal study as he sourced and provided the BALB/c-Tlr4^{±/±} billy mice. Mark is highly specialised in the area of neuroimmunology, and he therefore provided advice regarding my analysis of neuroinflammation. He was also involved in preparing this manuscript for publication, reading several drafts.
Ms Vicky Staikopoulos

Ms Vicky Staikopoulos was a research officer in the Neuroimmunopharmacology Laboratory during my candidature. She was involved in training me on many techniques required for my animal study. These techniques were not available within the Cancer Treatment Toxicities Group. Vicky also assisted in analysis of glial immunohistochemistry and read several draft manuscripts.
Mr Jim Manavis

Mr Jim Manavis is head of histology in the School of Medicine, University of Adelaide. He has experience in immunohistochemical analysis of immune cells within the central nervous system as well as detecting changes in the blood brain barrier. Jim provided substantial advice regarding my analysis of central nervous system pathologies, an area my laboratory has little experience with. He provided technical assistance and read drafts of the manuscript.
Contributions made by co-authors

Ms Romany Stansborough

Ms Romany Stansborough was an undergraduate during my candidature. Romany was involved in conducting parts of the laboratory work that contributed to the publication listed. She is now a member of the Cancer Treatment Toxicities Group.
Ms Joseph Shirren

Ms Joseph Shirren was an undergraduate during my candidature. Joseph was involved in conducting parts of the laboratory work that contributed to the publication listed. He is now a member of the Cancer Treatment Toxicities Group.
Dr Emma Bateman

Dr Emma Bateman is the laboratory manager of the Mucositis Research Group. Emma was involved in conducting the original animal study from which archival tissue samples were sought for the study listed. She also read several drafts of the manuscript and has therefore been listed as a co-author.
Ms Masooma Sultani

Ms Masooma Sultani was a member of the Mucositis and Gut Microbiome Research Groups during my candidature. She was involved in conducting the original animal study from which archival tissue samples were sought for the study listed.
Additional studies and publications

During my honours degree and PhD candidature, I published several first author reviews/primary research papers that are not presented in my thesis. These publications are listed below:

Wardill HR, Logan RM, Bowen JM, and Gibson RJ (2015) Chemotherapy causes tight junction defects in the oral cavity of patients, which coincide with elevated proinflammatory cytokines and MMPs. *Australian Dental Journal*. 60(4): S20.

* denotes invited review
Co-authored publications

During my candidature, I was also involved in several other studies investigating intestinal toxicity. This involvement resulted in co-authorship of several manuscripts. These publications are not presented in my thesis, and are listed below:

Van Sebille YZA, Gibson RJ, **Wardill HR** and Bowen JM, ErbB small molecule tyrosine kinase inhibitor (TKI) induced diarrhoea: chloride secretion as a mechanistic hypothesis. *Cancer Treatment Reviews*. 41(7): 646-52.

* denotes invited review
The format of my thesis is as follows: a general introduction, a literature review, two research chapters, a second literature review, three research chapters, a general discussion and references. During my candidature, I made significant effort to publish my research findings. Each research chapter is presented in its original publication format. This may result in slight repetition between chapters arising from the same study.

My thesis has three distinct themes relating to the pathobiology of chemotherapy-induced gut toxicity. The first aims to characterise the extent of tight junction disruption in the alimentary tract following chemotherapy treatment (clinically and preclinically), giving rise to the first two research chapters (Chapter 2 and 3). The first publication (Chapter 2) was completed early in my candidature (2013). The second publication (Chapter 3) arose from independent research funding I obtained from the Australian Dental Research Foundation. Together, these chapters formed the scope and theme for my PhD, and are therefore followed by two literature reviews and the remaining four research chapters. The second theme relates to involvement of innate immune regulation in the development of chemotherapy-induced gut toxicity and barrier dysfunction, giving rise to an additional two primary research chapters (Chapter 6 and 7). The third aim of this thesis was to develop a high throughput in vitro model for the study of chemotherapy-induced mucosal injury and targeted therapeutic approaches. This is summarised in Chapters 8 and 9.

During my candidature, I had the opportunity to work with Professor Stephen Sonis from Dana-Farber Harvard Cancer Centre, Harvard University, Boston. After presenting my work at the Multinational Association for Supportive Care in Cancer in 2014 (Miami, USA), Professor Sonis and I developed the hypothesis that gut-derived inflammation affects central neurological functions. This formed the basis for my secondary literature review (Chapter 5) as well as an additional literature review on cytokine-mediated blood brain barrier permeability and its involvement in chemotherapy-induced cognitive decline. The latter literature review is not included as a chapter in this thesis, but as an appendix in its original publication format (PDF).
Nomenclature

This thesis contains variations in terminology relating to chemotherapy-induced gastrointestinal toxicity. This reflects failure in the field to accurately define this pathology. Inconsistencies within this thesis are due to requests made by reviewers during peer-review of each publication. I did not change the terminology from what was used in the original publications to avoid altering their content.

Please review the following nomenclature.

Alimentary tract: any region from mouth to anus

Alimentary toxicity/mucositis: ulceration/inflammation of the mouth or gastrointestinal tract

Oral toxicity/mucositis: ulceration and inflammation of the mouth

Gastrointestinal/gut toxicity/mucositis: ulceration/inflammation of the small or large intestine, rectum and anus

In addition, publications from within this thesis conform to standard nomenclature for naming genetically modified mice as per the guidelines outlined in International Committee on Standardised Genetic Nomenclature for Mice. Wild-type mice on a BALB/c background will be referred to as wild-type (WT). Toll-like receptor 4 knockout mice on a BALB/c background will be referred to as BALB/c-\(Tlr4^{-/-}\). Reference to the process of deleting a gene will be preferred to as knockout or \(-/-\), e.g. \(Tlr4^{-/-}\).