Defining the role(s) of non-classical tumour suppressor Wwox in cellular function using Drosophila melanogaster genetic modelling

A thesis submitted for the degree of Doctor of Philosophy

December 2014

by

Amanda Choo Yen Ying, B.Sc. (Hons.)

Discipline of Genetics

School of Molecular and Biomedical Science

University of Adelaide
Table of Contents

Declaration..................................................................................................................VII
Acknowledgements......................................................................................................IX
Abbreviations.............................................................................................................XI
Drosophila nomenclature............................................................................................XIII
Abstract....................................................................................................................XV

Chapter 1 – Introduction.............................................................................................1
1.1 WW domain-containing oxidoreductase (WWOX)....................................................2
  1.1.1 The human WWOX gene.....................................................................................2
  1.1.2 WWOX protein structure...................................................................................4
  1.1.3 Expression and subcellular localisation of WWOX............................................7
1.2 Contribution of WWOX to cancer...........................................................................9
  1.2.1 WWOX expression in cancer cells....................................................................9
  1.2.2 WWOX as a non-classical tumour suppressor.................................................11
1.3 In vitro studies of WWOX function........................................................................13
  1.3.1 The role of WWOX in apoptosis......................................................................13
  1.3.2 Other reported WWOX binding partners........................................................15
1.4 Participation of WWOX in neuronal function......................................................17
1.5 WWOX and metabolism........................................................................................18
  1.5.1 Metabolic defects in murine Wwox mutant models...........................................18
  1.5.2 WWOX as a susceptibility gene for metabolic diseases.................................19
  1.5.3 WWOX and aerobic metabolism.....................................................................20
1.6 Using Drosophila as an in vivo model system to study Wwox...............................22
  1.6.1 Drosophila as a model system to study gene function......................................22
1.7 Drosophila orthologue of WWOX.........................................................................24
1.8 Drosophila model of WWOX.................................................................................25
  1.8.1 Alterations in metabolic enzyme levels in response to Wwox........................25
  1.8.2 Functional interactions between Wwox and metabolic enzymes...................29
1.9 Aims of this study..................................................................................................33

Chapter 2 – Establishment of Drosophila lines ectopically expressing mutations
  in the different functional elements of Wwox.........................................................35
2.1 Introduction............................................................................................................35
2.2 Material and Methods........................................................................................................39
2.3 Generation of *Drosophila* lines ectopically expressing mutations in the known functional domains of Wwox........................................................................................................46
  2.3.1 Mutations in the WW domains of Wwox....................................................................49
  2.3.2 Mutations in the SDR enzymatic region of Wwox....................................................51
2.4 Verification of *Drosophila* lines expressing mutations in the known functional domains of Wwox........................................................................................................53
2.5 Summary..........................................................................................................................57

Chapter 3 – Identification of novel metabolic processes in which Wwox has a significant contribution.................................................................59
3.1 Summary..........................................................................................................................57
3.2 Additional Material and Methods..................................................................................65
3.3 Manuscript: “The SDR enzymatic activity of tumour suppressor WWOX is required for its functional interaction with the mitochondrial respiratory complexes”........71

Chapter 4 – Identification of other genetic contributors to the mitochondrial-mediated cellular dysfunction.................................................................121
4.1 Introduction......................................................................................................................121
4.2 Material and Methods....................................................................................................124
4.3 Results.............................................................................................................................128
  4.3.1 Establishment of the *ey > ND42RNAi* recombinant screening line.........................128
  4.3.2 Reactive oxygen species are effectors of the cellular dysfunction caused by mitochondrial defects........................................................................................................133
  4.3.3 Involvement of Akt signalling in the mitochondrial defect-mediated cellular dysfunction..............................................................................................................140
  4.3.4 Decreased expression of *Drosophila HIF1-α* and autophagy gene Atg18 have parallel effects on mitochondrial-mediated cellular dysfunction.........................143
  4.3.5 Increased Forkhead box O (Foxo) expression suppresses the cellular dysfunction caused by mitochondrial defects.................................................................147
4.4 Summary of results and discussion....................................................................................149

Chapter 5 – Identification of a role for Wwox in a *Drosophila* model of intrinsic tumour suppression.................................................................153
5.1 Summary..........................................................................................................................153
IV
5.2 Manuscript: “The tumour suppressor Wwox modulates Caspase-3 activity in response to TNFα-mediated cell death in vivo” 160

Chapter 6 – The effects of reducing Wwox levels in cells with chromosomal instability 195

6.1 Summary 195
6.2 Manuscript: “Chromosomal instability causes sensitivity to metabolic stress” 199

Chapter 7 – Discussion 227

7.1 Summary of results 227
7.2 Implications for WWOX-related research 229
7.3 Limitations of this study 231
7.4 Future directions 232
7.5 Concluding remarks 233

Appendices 235

Appendix A 235
Appendix B 236
Appendix C 247

References 256
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Amanda Choo Yen Ying

Date
Acknowledgements

I would like to thank my supervisor, Rob Richards, for giving me this opportunity to undertake this study as well as for all his advice, support and guidance throughout my years in the lab. I would also like to thank my co-supervisor, Louise O’Keefe for all her help and advice and for always encouraging me to stay positive and to keep on going. I am very grateful to all the members of the Richards lab, both past and present for their help and support – it has been a great environment to work in and a wonderful learning experience. In particular, I would like to thank Sonia Dayan for her encouragement and words of support, both in and outside of the lab; Clare van Eyk for always believing in me and for her support and advice throughout the years; Kynan Lawlor, Saumya Samaraweera and Dani Fornarino for all their assistance and support in the lab as well as my fellow PhD partner-in-crime, Lee Cheng Shouou for his help and for the many chats (and laughter) in the fly room about Wwox and life.

A special thank you to Stephen Gregory for all his advice and for always taking time to answer my numerous scientific questions and to members of his lab - Zeeshan Shaukat, Dawei Liu and Rashid Hussain who have helped me to troubleshoot many experiments and for making the fly room a vibrant place to work in. I would also like to acknowledge the Australian Postgraduate Award and the Norman and Patricia Polglase Supplementary Scholarship that I am very grateful for and which has allowed me to undertake my studies.

I am also extremely grateful to my family and friends for all their unconditional love and support. To the Lo family, thank you for taking me in when I first moved to Australia and to the Choo family, for always looking after me and ensuring that I am well. To my beautiful girls, Bridget Ngui, Kristen Ho, Alyssa Sim Shin Yee and Ho Yin Ying, who always believed in me – I could not have done this without your constant encouragement and support. To Emmanuel Chan, thank you for always looking out for me.

To Alan Rogers, thank you for all your support and words of wisdom throughout the years. A special thank you to Anthony Fedele, for being my rock and pillar of support, for ensuring that there is a good balance in everything I do in life and for always making me laugh. To my mother, Florence Chew Nyuk Lian, who has been my role model in life – I can’t thank you enough for showing me that nothing is impossible with hard work, determination and perseverance and for always inspiring me to do my very best with utmost integrity and whilst sticking to my principles. The person I am today and everything that I have achieved is all thanks to you. To my father, whose time on this earth was far too short but who is always remembered and much loved, - this is for you.
Abbreviations

° C – degrees Celsius
% – percentage
µg – micrograms
µL – microlitre
A – adenosine (in context of DNA)
A – alanine (in context of amino acid)
Akt – v-akt murine thymoma viral oncogene homolog/protein kinase B
ATP – adenosine triphosphate
bp – base pairs
C – cytosine
CFS – common fragile site
CDD – conserved domain database
cDNA – complementary DNA
CIN – chromosomal instability
CoVa – cytochrome c oxidase subunit Va
CoVb – cytochrome c oxidase subunit Vb
da – daughterless
DEPC – diethyl pyrocarbonate
DNA – deoxyribonucleic acid
dNTP – deoxyribonucleoside triphosphate
DMSO – dimethyl sulfoxide
EDTA – ethylene diamine tetra-acetic acid
en - engrailed
ETC – electron transport chain
EV – empty vector
ey – eyeless
F – phenylalanine
FLP – flippase
Foxo – forkhead box, sub-group O
FRT – flippase recognition target
G – guanosine
GFP – green fluorescent protein
GSH – glutathione
GWAS – genome wide association studies
HDL-C – high density lipoprotein-cholesterol
hh – hedgehog
HIF1α - hypoxia inducible factor 1α
IDH – isocitrate dehydrogenase
IMS – intermembrane space
kb – kilobase
kDa – kilodalton
L – lysine
LB – Luria Broth
LiCl – lithium chloride
LOH – loss of heterozygosity
M – Molar
MARCM – mosaic analysis with a repressible cell marker
mg – milligram
ml – millilitre
mM – millimolar
mRNA – messenger RNA
N – asparagine
NAD+ – nicotinamide adenine dinucleotide (oxidised)
NADH – nicotinamide adenine dinucleotide (reduced)
NAD(P)+ - nicotinamide adenine dinucleotide phosphate (oxidised)
NAD(P)H - nicotinamide adenine dinucleotide phosphate (reduced)
ND23 – NADH:ubiquinone reductase 23kD subunit precursor
ND42 – NADH:ubiquinone reductase 42kD subunit precursor
ND75 – NADH:ubiquinone reductase 75kD subunit precursor
NLS – nuclear localisation sequence
ng – nanograms
ORF – open reading frame
P – proline
PBS – phosphate buffered saline
PBST – PBS + Tween
PCR – polymerase chain reaction
pmol – picomole
QTL – quantitative trait loci
R – arginine
XII
RNA – ribonucleic acid
RNAi – RNA interference
ROS – reactive oxygen species
Rp49 – Ribosomal protein 49
rcf – relative centrifugal force
Scrib – scribbled planar cell polarity protein
SDR – short-chain dehydrogenase reductase
SDS – sodium dodecyl sulfate
Sima - similar
SOC – super-optimal broth with catabolite repression
SOD – superoxide dismutase
T – thymine (in context of DNA)
T – threonine (in context of amino acid)
Tgo - tango
TCA – tricarboxylic acid
TMRE – tetramethylrhodamine, ethyl ester
TNFα - tumor necrosis factor α
Tub – tubulin
U – uracil
UAS – upstream activator sequence
UTR – untranslated region
V – volts
VDRC - Vienna Drosophila Resource Centre
W – tryptophan
WW1 – 1st WW domain of WWOX
WW2 – 2nd WW domain of WWOX
WNP – WWOX mutant line carrying a triple mutation in the tryptophan 58 (W58F), asparagine 81 (N81A) and proline 84 (P84A) residues
WWOX – WW domain-containing oxidoreductase
Y – tyrosine

Drosophila nomenclature

The Drosophila nomenclature used is according to conventional notation as stated on the Drosophila database, Flybase (www.flybase.org). Genes are represented by italicised text (e.g. Wwox) and proteins are represented by non-italicised text (e.g. Wwox).
Abstract

The WWOX gene has been identified as the gene that spans the FRA16D common chromosomal fragile site (CFS), which is a frequent site of DNA instability in cancer. Perturbation of the WWOX gene has been reported in various cancers, with low WWOX levels correlating with poorer prognosis. Individuals who inherit a non-functional copy of WWOX have also been found to be at greater risk of developing cancer. WWOX has been implicated in various cellular pathways, however the role of WWOX in tumourigenesis is not yet fully defined. There is therefore a need to determine the normal function(s) of WWOX and how perturbation of these roles is likely to contribute to cancer. A model was previously established to examine the cellular function of the Drosophila orthologue, Wwox and to identify novel functional interactors. Loss of Wwox in Drosophila was not found to result in any obvious cellular dysfunction that manifested as a phenotype. The aim of this study was to identify the types of cellular dysfunction brought about by other genes that could be modulated by Wwox. As Wwox has previously been implicated in metabolic processes, particularly aerobic metabolism and redox homeostasis, an RNA interference (RNAi) screen was performed to identify the types of metabolic stress that can be modulated by altered Wwox levels. Wwox was found to regulate cellular homeostasis in cells with mitochondrial dysfunction, with a requirement for the active site of its short-chain dehydrogenase/reductase (SDR) enzyme. Other genetic effectors of the mitochondrial dysfunction were also identified as candidates for further investigation into the pathway(s) in which Wwox participates. The contributions of Wwox to two other models of cellular dysfunction were also examined. Wwox was found to have a role in a Drosophila model of intrinsic tumour suppression. In addition, Wwox was also shown to affect cells with chromosomal instability (CIN), with loss of Wwox resulting in oxidative stress, DNA damage and subsequently apoptosis of CIN cells. This study has identified roles for Wwox in three different novel models of cellular dysfunction. These findings provide further insight into the tumourigenic potential of WWOX and could contribute to the ultimate aim of designing therapeutics for treatment of cancers with low WWOX levels.