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Intervention to maximise the probability of epidemic
fade-out

P. G. Ballard1,∗, N. G. Bean1, J. V. Ross1

Abstract

The emergence of a new strain of a disease, or the introduction of an existing
strain to a naive population, can give rise to an epidemic. We consider how to
maximise the probability of epidemic fade-out – that is, disease elimination in
the trough between the first and second waves of infection – in the Markovian
SIR-with-demography epidemic model. We assume we have an intervention at
our disposal that results in a lowering of the transmission rate parameter, β,
and that an epidemic has commenced. We determine the optimal stage during
the epidemic in which to implement this intervention. This may be determined
using Markov decision theory, but this is not always practical, in particular if the
population size is large. Hence, we also derive a formula that gives an almost
optimal solution, based upon the approximate deterministic behaviour of the
model. This formula is explicit, simple, and, perhaps surprisingly, independent
of β and the effectiveness of the intervention. We demonstrate that this policy
can give a substantial increase in the probability of epidemic fade-out, and we
also show that it is relatively robust to a less than ideal implementation.

Keywords: SIR infection model, stochastic model, Markov decision theory,
epidemic control

1. Introduction

One of the key goals of epidemiology is to take action to minimise the impact
of epidemic outbreaks. With this in mind, many studies have investigated ways
to optimise the control of an outbreak. Good overviews can be found in Kar
and Batabyal [12] and Yaesoubi and Cohen [28].

Studies tend to take one of two approaches: investigating either the use of
vaccination [25] (reducing the susceptible population), or prophylactic measures
to reduce the spread of the infection [22]. Prophylactic measures include antivi-
rals [4, 9, 17, 18], or non-pharmaceutical interventions such as school closures
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[10] or the teaching of basic personal health habits [21]. Vaccination is usually
the ideal, but it is often not available in the early stages of a novel strain/disease.
Antivirals, or other measures to reduce the spread of an infection, are therefore
an important tool in attempting to control an outbreak.

Previous studies have concentrated on either the initial stages of an infec-
tion – and measures to prevent the infection becoming an outbreak – or an
established infection, endemic to a population. In this paper, we instead ex-
amine epidemic fade-out, which has been nominated as an area requiring more
research [5, 6], and has not previously been investigated in terms of control.

Epidemic fade-out refers to the case in which an infection has a large initial
outbreak, and it is eliminated from the population in the first trough after
that initial outbreak [19]. Therefore, techniques to maximise the probability of
epidemic fade-out offer the opportunity to prevent an infection from becoming
established - that is, endemic - in a population.

We use the Markovian SIR-with-demography infection model [20]. Impor-
tant previous work was by van Herwaarden [26] and Meerson and Sasorov [19],
who both provided methods for approximating the probability of epidemic fade-
out for this model. van Herwaarden used the Fokker-Plank approximation, while
Meerson and Sasorov used the WKB appoximation. Both of these papers gave
explicit formulae for the probability of epidemic fade-out, to a good degree of
accuracy. In a previous paper [3] we outlined a more accurate numerical ap-
proximation method, and also presented a range of results from our calculations.
These results showed that the probability of epidemic fade-out is non-monotonic
in the transmission rate parameter β. Typically, a lower value of β increases the
probability of epidemic fade-out, which is the intuitive result (less transmission
→ higher probability of fade-out). But in some situations, perhaps counter-
intuitively, a reduction in the value of β causes the probability of epidemic
fade-out to decrease.

Similar examples of non-monotonicity in epidemics – of a reduction in trans-
mission or an increase in treatment actually increasing the total epidemic size,
or making the epidemic more likely to persist – have been reported by others,
but in different contexts. Feng et al. [7], Rozhnova et al. [24], and Lee and
Chowell [15] all reported non-monotonicity in the context of seasonal forcing.
Xiao et al. [27] saw it in the case of multiple strains of an infection. Grigorieva
and Khailov [8] is perhaps the closest analogue to this paper. In a deterministic
SIR model, they showed that not reducing β early in the infection cycle can
minimise the total epidemic size.

For epidemic fade-out, the non-monotonicity in the transmission rate pa-
rameter β suggests that there are two or more competing effects, and that in
some states a higher β will maximise the probability of epidemic fade-out, and
in other states a lower β will maximise it. So it should be possible to find the
optimal policy for choosing higher or lower β. Finding this optimal policy is the
topic of this paper.

We will show that this optimal policy entails delaying the implementation of
measures to reduce β, resulting in more individuals being infected in the short
term. In lethal epidemics, even if the long term result is a more likely fade-out
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Figure 1: The SIR-with-demography epidemic model. S is the number of susceptibles and I
is the number of infectious individuals. N is a fixed parameter, but the population size is not
fixed. β is the transmission rate parameter, µ is the per-capita birth/death rate, and γ is the
recovery rate.

and hence the elimination of the disease from the population, this is likely to
be impossible to do ethically. Therefore the applicability of this method will
probably be limited to situations of non-lethal infections, or diseases among
animals.

We examine two different control scenarios: an idealised scenario in Section
3 and a more realistic scenario in Section 4. Section 3.3 is the most significant
contribution of the paper, where we derive a simple control policy that is a close
approximation to the optimal control policy in the idealised scenario. Section
4.3 supplements Section 3.3, by showing that the same simple control policy is
also a close approximation to the optimal control policy in the realistic scenario.
Effectively, we provide an explicit, simple rule for when to implement an inter-
vention. Perhaps surprisingly, this rule is independent of the transmission rate
parameter β and the effectiveness of the intervention. The results, which show
a significant increase in the probability of epidemic fade-out when using any of
these methods, are presented in Section 5.

2. Model and definitions

2.1. The SIR-with-demography model

We use the Markovian SIR-with-demography model, as described in Fig. 1
and Table 1. S and I represent the number of “susceptible” and “infectious”
individuals respectively. The parameters β, γ and µ are all strictly positive.
The number of “recovered” individuals (R) is usually included in the model,
but is redundant and can be removed from the analysis by considering “death
of infectious” (at rate µI) and “recovery of infectious” (at rate γI) as equivalent
[11]. We use a common death rate µ, corresponding to a non-lethal infection, as
this is the original and most common model [1]. If a different death rate µI is
used for infectious individuals, then the analysis in the rest of this paper follows
similarly, if one replaces all references to (γ + µ) with (γ + µI).
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Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) βSI/N

Birth of susceptible (S, I)→ (S + 1, I) µN

Death of susceptible (S, I)→ (S − 1, I) µS

Removal of infectious (S, I)→ (S, I − 1) (γ + µ)I

Table 1: Transition rates for the Markovian SIR-with-demography epidemic model displayed
in Fig. 1.
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D

E Ie
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Figure 2: I versus S plot of the deterministic approximation of a typical SIR-with-demography
model. It starts at point A, rises to B, then falls through C to D before rising to E and
eventually converging on the endemic point (Se, Ie). An actual stochastic realisation may
fade out to I = 0 near point D, an effect known as epidemic fade-out. It follows from (7) that
points B and D are both at S = Se.

In the limit as N becomes large, a suitably scaled version of the stochastic
process converges (uniformly in probability over finite time intervals) to a deter-
ministic process [14]; this provides an approximation to the expected dynamics,
for finite N , governed by the differential equations:

dS

dt
= µ(N − S)− βSI/N,

dI

dt
= βSI/N − (γ + µ)I.

(1)
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We refer to this as the deterministic approximation.
In a naive population, S ≈ N . So R0, the basic reproduction number, is

given by:

R0 =
β

γ + µ
. (2)

We are only concerned with cases in which R0 > 1, when a major outbreak may
occur. In these cases, the endemic point is where both derivatives in (1) are
equal to zero, and is given by:

(Se, Ie) = N

(
γ + µ

β
,
µ(β − γ − µ)

β(γ + µ)

)
. (3)

The stability analysis of (1), linearised around the endemic point (Se, Ie), de-
termines that the eigenvalues λ obey,

λ2 +R0µλ+ µ(γ + µ)(R0 − 1) = 0. (4)

The trajectory of the deterministic approximation is oscillatory if and only if
these eigenvalues are complex [13], which in turn requires,

γ + µ

µ
>

R0
2

4(R0 − 1)
. (5)

In any realistic system, γ � µ and inequality (5) is comfortably met. In that
case, the trajectory of the deterministic approximation of a typical outbreak is
shown in Fig. 2. It starts at point A, rises to a peak (B), falls through C to a
first local minimum (D), and converges in a spiral towards the endemic point.

Since the stochastic model has discrete states, it is sometimes convenient to
round the endemic state values up to the next highest integer pair:

(Sd, Id) = (dSee, dIee). (6)

It can also be shown from (1) and (3) that dI/dt is positive for S > Se and
negative for S < Se, that is:

sgn

(
dI

dt

)
= sgn (S − Se) . (7)

As we mentioned above, the expected behaviour of the CTMC (continuous-
time Markov chain) tracks the deterministic approximation as N becomes large.
However, a stochastic realisation may fade out at the start (near point A), or in
the first trough after the initial outbreak (near point D). The latter situation,
known as epidemic fade-out, is the topic of this paper.

The initial state (point A) is (S0, I0). In all our calculations, I0 is small and
S0 = N−I0; this represents the beginning of an outbreak in a naive population.
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2.2. Different transmission rate parameters

During the initial outbreak, a higher value of β causes S to fall to a lower
value, which in turn can cause I to fall to a lower value during the first trough,
increasing the probability of epidemic fade-out. On the other hand, when the
first wave of infection subsides and the number of infectious individuals becomes
very low, a lower value of β causes an increase in the probability of epidemic
fade-out.

Therefore we conjecture that the optimal strategy is to allow a higher β
early in the outbreak, and to implement the lower β later in the outbreak, as
the CTMC approaches the first trough. (This is confirmed in the results in
Section 5.1).

The initial transmission rate parameter, corresponding to intervention mea-
sures not being in place, is denoted β(1), and the value whilst the intervention
is implemented is denoted β(2). We specify that β(1) > β(2).

We also use a superscript in parentheses to represent variables corresponding
to the use of β(1) or β(2); so for instance P (k) is the transition probability matrix
when using β = β(k), for k = 1, 2.

2.3. Definition of epidemic fade-out

Informally, epidemic fade-out refers to fade-out during the first trough after
the initial substantial wave of infection, roughly between points C and E in Fig.
2. But for calculations, it is important to have a precise definition. (In general
the exact definition is not overly critical, as long as it is used consistently).
To do so, we need to define the pre-condition (that a substantial outbreak has
commenced), and then need to define what constitutes fade-out in the first
trough (or conversely, what constitutes an escape from the first trough).

We define S to be the state space of all possible (S, I) values, and we define
T to be:

T = {(S, I) ∈ S|S = S
(1)
d − 1}. (8)

T is illustrated by the green dotted line in Fig. 3. We define that the
initial wave of infection has occurred if the CTMC reaches a state in T . We use
this definition because if the CTMC satisfies this condition, it can be called a
substantial outbreak, so a fade-out in the subsequent trough can reasonably be
called epidemic fade-out.

Given that the CTMC reaches T , it will almost surely eventually fall to a

state for which I < I
(1)
d . Therefore we define a two boundary hitting problem:

epidemic fade-out occurs if the CTMC reaches a lower absorbing boundary L,
before it reaches an artificial upper absorbing boundary U . The lower absorbing
boundary is

L = {(S, I) ∈ S|I = 0}.
In a CTMC in which β is constant, the deterministic approximation of the

CTMC converges to a point near (Sd, Id), as given by (6), taking an anticlock-
wise path in Fig. 2. So in that case, the line U = {(S, I) ∈ S|S ≥ Sd, I = Id}
would be a natural definition of the upper absorbing boundary [3, 26].
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Figure 3: The probability of epidemic fade-out is the probability of the CTMC being absorbed
at L (I = 0) before next reaching U (the black (dashed) line), given that it reaches T (the green
(dotted) line). The red (solid) line shows the behaviour of the deterministic approximation
to the CTMC, starting at point A; with the transmission rate parameter changing from β(1)

to β(2) at point C.
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However in a CTMC in which β can take two different values, there are two

possible solutions to (6), depending on the value of β:
(
S
(1)
d , I

(1)
d

)
(given by

setting β = β(1) in (3) ); and
(
S
(2)
d , I

(2)
d

)
(given by setting β = β(2) in (3) );

where S
(1)
d ≤ S(2)

d and I
(1)
d ≥ I(2)d .

To account for the possibility that β may be either β(1) or β(2), we end the

first trough at I = I
(1)
d for S

(1)
d ≤ S < S

(2)
d , and at I = I

(2)
d for S

(2)
d ≤ S. We

join the two boundaries with a vertical boundary at S = S
(2)
d for I

(2)
d ≤ I ≤ I(1)d ,

giving:

U = U1 ∪ U2 ∪ U3, where

U1 = {(S, I) ∈ S|I = I
(1)
d , S

(1)
d ≤ S ≤ S(2)

d },
U2 = {(S, I) ∈ S|S = S

(2)
d , I

(2)
d ≤ I ≤ I(1)d }, and

U3 = {(S, I) ∈ S|I = I
(2)
d , S

(2)
d ≤ S}.

This is illustrated in Fig. 3. We therefore define, p0, the probability of epidemic
fade-out, as the probability that the process is absorbed at L before reaching a
state in U , given that it reaches T .

3. Idealised scenario: activation and de-activation of β(2)

We first consider an idealised scenario, in which it is possible to switch
an unlimited number of times between using β(1) and β(2), corresponding to
activation and de-activation of the intervention measure, in a state dependent
manner.

3.1. Definition of the problem

To give a practical solution, we limit the state space to be finite. So for the
(infinite) state space S, we define S′ as the finite set of states,

S′ = {(S, I)|0 ≤ S ≤ (1.1)N, 0 ≤ I ≤ (1.1)N}. (9)

We enforce this by modifying the CTMC so that in Table 1, “Infection” events
may not occur if I ≥ (1.1)N and “Birth of susceptible” events may not occur if
S ≥ (1.1)N . In all but the smallest systems, reaching these states is extremely
improbable, so this modification has a negligible impact on the results.

We also define M as the set of transient states in S′, that is all states in
neither absorbing boundary:

M = S′ \ (U ∪ L). (10)

Then for some set V ⊆M , the policy is:

β =

{
β(2) if (S, I) ∈ V and the CTMC has previously reached T ;

β(1) otherwise.

Problem. Find the set V which maximises p0.
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3.2. Optimal solution

This idealised scenario can be regarded as a Markov decision process, with an
infinite horizon and no discounting, in which the “reward” is gained by reaching
absorption at L. It can be solved by using a policy iteration algorithm [23,
Section 7.2.5].

We define two transition probability matrices, P (1) and P (2) on M , cor-
responding to the jump chain of the CTMC [2]. The transition probabilities

are calculated from the rates specified in Table 1; where P
(k)
ij is the transition

probability from state i to state j when using β(k) as the transmission rate
parameter, for k = 1, 2. Transitions to absorbing states are not included, so
some rows will sum to less than 1. These matrices are sparse, with at most four
non-zero entries in each row.

Since we do not include the absorbing states in P (1) and P (2), the “reward”
is only earned from states adjacent to the I = 0 boundary. We set up the
respective reward vectors, R(1) and R(2), in which the reward is the probability
of being absorbed at I = 0 on the next step. (Hence values will be non-zero
only for states with I = 1.)

We create a decision vector D(n) for each policy iteration step n. It has one
entry per state in M , and every entry must be either 1 or 2. For each step n
we also create the matrix P (n) and the vector R(n) according to the rule,

Pij(n) = P
(Di(n))
ij ,

Ri(n) = R
(Di(n))
i ,

(11)

for all i, j ∈M .
The goal is to find the vector D(n) which maximises p0. Then V is the set

of states i ∈M for which Di(n) = 2.
The policy iteration algorithm solves this problem as follows:

1. Set n = 1 and initialise D(n) to any permissible vector.
2. Build P (n) and R(n), according to (11).
3. Determine the column vector v(n) by solving:

(I− P (n))v(n) = R(n), (12)

where I is the identity matrix. Then for each state i ∈M , let

v
(1)
i (n) = R

(1)
i +

∑

j∈M
P

(1)
ij vj(n), (13)

v
(2)
i (n) = R

(2)
i +

∑

j∈M
P

(2)
ij vj(n), (14)

zi(n) = sgn
(
v
(2)
i (n)− v(1)i (n)

)
. (15)

(We use v
(1)
i (n) and v

(2)
i (n) on the left hand side of (13) and (14) because

these equations are re-calculating vi(n) assumingDi(n) = 1 andDi(n) = 2
respectively, with the rest of the elements in D(n) unchanged).
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4. Update the policy: for each state i in D,

Di(n+ 1) =





1 if zi(n) = −1,

2 if zi(n) = 1,

Di(n) if zi(n) = 0.

(16)

5. If D(n + 1) = D(n), then the algorithm terminates, and V is the set of
states i for which Di(n) = 2. Otherwise, increment n and repeat from
Step 2.

Notice that vi(n) is the probability of hitting L before U (for transition
matrix P (n) and reward vector R(n)), given that the CTMC is in state i. The
policy iteration algorithm finds the P (n) and R(n) which give the maximum
vi(n) for all i ∈ M [23, Proposition 7.2.14], and hence finds the policy which
gives the maximum p0, regardless of the initial state (S0, I0).

3.3. Simplifying the policy iteration algorithm

The technique in Section 3.2 is useful for small populations, but becomes
impractical for even moderate population sizes. For instance, a population with
N = 1000 would have approximately 106 states in M . The corresponding two-
dimensional matrix (I−P (n)) in (12) is then approximately 106×106, and even
though it is sparse, solving (12) takes significant computing resources. Therefore
it would be beneficial to find a solution method which avoids the need to solve
(12).

Let qij be the transition rate between any two states i and j, i 6= j, if β(1)

is the transmission rate parameter (where i ∈ M and j ∈ S′). For notational
convenience we let qii = 0. Also let qi =

∑
j∈S′ qij be the sum of all transition

rates out of state i when β(1) is the transmission rate parameter. So P
(1)
ij =

qij
qi

and R
(1)
i =

∑
j∈L qij

qi
. In that case we may rewrite (13) as,

v
(1)
i (n) =

∑

j∈L

(
qij
qi

)
+
∑

j∈M

(
qij
qi

)
vj(n).

In order to unify these two sums, we also define vj(n) = 1 for j ∈ L, and
vj(n) = 0 for j ∈ U . Then,

v
(1)
i (n) =

∑
j∈S′ qijvj(n)

qi
. (17)

For every state i ∈M , except those for which Si = 0, let h be the state that
is reached from i by an infection event, and let δi = (β(1) − β(2))SiIi/N , where
Si and Ii are the S and I values corresponding to state i. That is, qih−δi is the
transition rate from state i to state h when using β(2) as the transmission rate
parameter. (The Si = 0 case is excluded because in that case no infection event
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is possible, so v
(1)
i (n) = v

(2)
i (n), so (15) always evaluates to zero and it never

matters whether or not i is in V .) Thus, Si > 0 ensures that δi > 0. Then (14)
becomes:

v
(2)
i (n) =

∑
{j∈S′,j 6=h} qijvj(n)

qi − δi
+

(qih − δi) vh(n)

qi − δi

⇒ v
(2)
i (n) =

∑
j∈S′ qijvj(n)

qi − δi
− δivh(n)

qi − δi
. (18)

Substituting in (17) gives,

v
(2)
i (n) =

(
qi

qi − δi

)
v
(1)
i (n)− δivh(n)

qi − δi

⇒ v
(2)
i (n)− v(1)i (n) =

(
qi

qi − δi
− 1

)
v
(1)
i (n)− δivh(n)

qi − δi

⇒ v
(2)
i (n)− v(1)i (n) =

δi

(
v
(1)
i (n)− vh(n)

)

qi − δi
. (19)

Then noting that δi > 0 and qi − δi > 0,

sgn
(
v
(2)
i (n)− v(1)i (n)

)
= sgn

(
v
(1)
i (n)− vh(n)

)
. (20)

We can also substitute (17) and then (18) into the right hand side of (19),
to give:

v
(2)
i (n)− v(1)i (n) =

δi
qi − δi

(∑
j∈S′ qijvj(n)

qi
− vh(n)

)

=
δi

qi − δi

(∑
j∈S′ qijvj(n)

qi
− δivh(n)

qi
− (qi − δi)vh(n)

qi

)

=
δi

qi − δi

(
(q − δi)v(2)i (n)

qi
− (qi − δi)vh(n)

qi

)

⇒ v
(2)
i (n)− v(1)i (n) =

δi

(
v
(2)
i (n)− vh(n)

)

qi

⇒ sgn
(
v
(2)
i (n)− v(1)i (n)

)
= sgn

(
v
(2)
i (n)− vh(n)

)
. (21)

Comparing (12) to (13) and (14) tells us that vi(n) is equal to either v
(1)
i (n)

or v
(2)
i (n), so (20) and (21) combine to give,

sgn
(
v
(2)
i (n)− v(1)i (n)

)
= sgn (vi(n)− vh(n)) ,

which can then be substituted into (15). So (12), (13) and (14) can be removed
from Step 3 of the policy iteration algorithm, which simplifies to:

11



3. For each state i,
zi(n) = sgn (vi(n)− vh(n)) . (22)

The meaning of (22) and (16) is that we should reduce the transition rate
from i to h only if vi(n) > vh(n), which is a reasonably intuitive result.

An important feature of (22) is that it does not necessarily include a full
matrix calculation. This opens the possibility of simpler ways to calculate an
optimal, or close to optimal, policy. For instance, (22) could be evaluated for
a small number of states, using an approximate method as in [3] to calculate
vi(n) and vh(n).

3.3.1. A simplified policy based on the deterministic local minimum

A further advantage of (22) is that we do not need to calculate vi(n) and
vh(n) at all. We only need to calculate which is greater.

We can get a very quick approximation of sgn (vi(n)− vh(n)) in (22) by
taking advantage of a property which we reported previously [3]: for a state x
in the region where dI/dt of the deterministic approximation is negative or zero

(which means S ≤ S
(1)
e , by (7)), vx(n) is generally negatively correlated to the

minimum I value of the deterministic curve beginning at x.
That is, to a good approximation, the closer the curve of the deterministic

approximation comes to an absorbing boundary, the more likely the process is
to be absorbed at that boundary. A deterministic curve with a lower minimum
passes closer to the absorbing boundary, and is closer to that boundary for a
longer time; both of these effects contribute to making epidemic fade-out more
probable.

Furthermore, it is possible to reduce this comparison to a formula. It is
preferable to reduce β when vh < vi, which means (by our approximation) that
h must be on a “higher” deterministic curve than i. A line from i to h (that is,
from (S, I) to (S− 1, I+ 1)) has a slope of −1. Since dI/dt < 0 in this region, a
step of slope −1 goes to a “higher” deterministic curve when dS/dt > −dI/dt;
that is, if:

(γ + µ)I < µ(N − S). (23)

For states in the region where dI/dt of the deterministic approximation is

positive (which means at least for S > S
(2)
e ), we cannot use this approximation

because the deterministic minimum has already been passed. However h is
always on a higher (further from I = 0) curve than i, as well as having a higher
I value; so β = β(2) is always preferred.

In the region S
(1)
e < S ≤ S

(2)
e : if at any point we “try” β = β(1), this

means that Se = S
(1)
e , so S > Se. Then we find (by the analysis in the previous

paragraph) that β = β(2) is preferred. So this means that β = β(2) is preferred

for all S > S
(1)
e .

Putting this together gives the following set V , the set of states in which to
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use β(2):

V = V1 ∪ V2 ∪ V3, where

V1 = {(S, I) ∈ S|S ≤ S(1)
e , (γ + µ)I < µ(N − S)},

V2 = {(S, I) ∈ S|S(1)
e < S ≤ S(2)

e , I < I(1)e }, and

V3 = {(S, I) ∈ S|S(2)
e < S, I < I(2)e }.

(24)

This formula is explicit, and it is quick to calculate regardless of the popu-
lation size. It specifies V with a simple line, as illustrated by the green (top)
line in Fig. 4.

If the CTMC roughly follows the deterministic approximation (Figs. 2 and

3) then V is first entered when S < S
(1)
e . So the most important component of

(24) is V1, as specified in (23). Note, importantly and possibly surprisingly, that
(23) is independent of the values of β(1) and β(2). So the condition for initially
using β(2) does not depend on the values of β(1) and β(2).

The formula also tells us, at least assuming the approximation used here,
that the optimal policy cannot be improved by allowing three or more values
of β. The optimum is always to use the highest available β for states not in V
(corresponding to no intervention), and the lowest available β (corresponding
to the most effective set of interventions) for states in V .

4. Realistic scenario: activation only of β(2)

4.1. Definition of the problem

The idealised scenario in Section 3 corresponds to the most effective inter-
vention possible, but it is not realistic. It allows the CTMC to repeatedly switch
between using β(1) and β(2) as the state changes. In most real-world situations
it would not be practical to start and stop infection-reducing measures as the
process changes state near the boundary of V .

A more realistic situation, which we refer to as the realistic scenario, allows
activation of β(2) only once. In this scenario, once β = β(2) is used, β = β(2)

is always used (until the boundary L or U is reached), even if the CTMC
subsequently leaves the region V . This is more practical because, in a typical
application, measures to reduce the infection rate would be kept in place for a
reasonable length of time once they are implemented.

As in Section 3.2, T is defined in (8), and M is defined in (10). Then for
some set V ⊆M , the policy is:

Initially, β = β(1). When the CTMC reaches a state in V , having previously
been in a state in T , it permanently uses β = β(2).

Problem. Find the set V which maximises p0.

13



4.2. Optimal solution

Since it is a relatively simple task to calculate the absorption probability
once we are permanently using β = β(2), the realistic scenario can be regarded
as an “optimal stopping” problem. The optimal stopping algorithm is as follows
[23, Section 7.2.8]:

1. Build P (1), R(1), P (2) and R(2) as in Section 3.2.

2. Find v(2), the solution to

(
I− P (2)

)
v(2) = R(2). (25)

Now, v(2) is the vector of absorption probabilities assuming the transmis-
sion rate parameter is fixed at β(2), which form the “stopping rewards”.
So in state i, the CTMC can “stop” (switch to β = β(2)) and take the

“stopping reward” v
(2)
i .

3. Find, by linear programming, the vector v with the minimum
∑

i vi, sub-
ject to the constraints:

vi ≥
∑

j∈M
P

(1)
ij vj +R

(1)
i and vi ≥ v(2)i , ∀i ∈M. (26)

4. Create V to represent the optimal policy. For each state i, if vi = v
(2)
i ,

then the optimal policy in state i is to switch to using β(2), so i is added

to V . If vi > v
(2)
i , then the optimal policy in state i is to continue using

β(1), so i is not added to V .

As in Section 3.2, vi is the probability of hitting L before U , given that the
CTMC is in state i. The vector v = (vi, i ∈M), can also be calculated from
a given V without running the algorithm: row i of P is zero if i ∈ V , and is

otherwise equal to row i of P (1); element i of R is equal to v
(2)
i if i ∈ V , and is

otherwise equal to R
(1)
i ; and v is the solution to,

(I− P ) v = R. (27)

4.3. Simplifying the optimal stopping algorithm

If we use the same definitions for qij , qi, δi and h as in Section 3.3, then the
solution to (25) and (26) satisfies:

v
(1)
i =

∑
j∈S′ qijvj

qi
, (28)

v
(2)
i =

∑
j∈S′ qijv

(2)
j

qi − δi
− δiv

(2)
h

qi − δi
, and (29)

vi = max
(
v
(1)
i , v

(2)
i

)
, (30)
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for all i ∈M .
Another way of expressing (30) is to say,

zi = sgn
(
v
(2)
i − v

(1)
i

)
; (31)

where vi = v
(2)
i if zi = 1, vi = v

(1)
i if zi = −1, and vi may be either if zi = 0.

In that case, we see that the (28), (29) and (31) are identical to (17), (18) and
(15) respectively with the “(n)” postscripts removed, with the exception of the

use of v
(2)
i instead of vi on the right hand side of (29). Then,

v
(2)
i − v

(1)
i =

∑
j∈S′ qijv

(2)
j

qi − δi
− δiv

(2)
h

qi − δi
− v(1)i

=

∑
j∈S′ qij

(
v
(2)
j − vj

)

qi − δi
+

∑
j∈S′ qijvj

qi − δi
− δiv

(2)
h

qi − δi
− v(1)i

=

∑
j∈S′ qij

(
v
(2)
j − vj

)

qi − δi
+

qiv
(1)
i

qi − δi
− δiv

(2)
h

qi − δi
− v(1)i

=

∑
j∈S′ qij

(
v
(2)
j − vj

)

qi − δi
+
δi

(
v
(1)
i − v

(2)
h

)

qi − δi

=
δi

(
v
(1)
i − vh

)

qi − δi
+

(∑
j∈S′ qij

(
v
(2)
j − vj

))
− δi

(
v
(2)
h − vh

)

qi − δi

⇒ zi = sgn


δi

(
v
(1)
i − vh

)
+




∑

j∈S′
qij

(
v
(2)
j − vj

)

− δi

(
v
(2)
h − vh

)



 .

(32)
Although it may not be immediately obvious, (32) is quite similar to (22).

The only differences are: the expression in square brackets; the presence of v
(1)
i

instead of vi; and the inclusion of δi. Note that since vi ≥ v(1)i and vi ≥ v(2)i for
all i, the right hand side of (32) cannot be greater than the right hand side of
(22), so the criterion for including a state i in V is always more stringent in the
realistic scenario than in the idealised scenario.

The presence of v
(1)
i is due to the fact that the change is one-way, so for

the initial application of the policy (that is, for the first iterative change from

vi = v
(1)
i to vi = v

(2)
i in Section 3.2) the two equations are identical if the

expression in square brackets is zero. The expression in square brackets accounts
for whether the states surrounding state i are in V , and the qij and δi terms
act as weighting factors.

However, when we look at the actual optimal policies generated by (22) (
Fig. (4)), we see that most states in V are surrounded by other states in V ,
making the expression in square brackets equal to zero. So that suggests that
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(32) will produce a V very similar to the V corresponding to the optimal policy
for the realistic scenario – that is, that the optimal policies for the two scenarios
will have very similar sets V .

This in turn suggests that using the set V defined in (24) will also be a good
approximation of the optimal policy for the realistic scenario, as we see in the
following section.

5. Results

We refer to the policy calculated in Section 3.2 as the idealised scenario
– optimal policy, the policy calculated in Section 4.2 as the realistic scenario
– optimal policy, and the policy calculated using (24) in Section 3.3.1 as the
simplified policy.

5.1. Comparison of optimal policies to the simplified policy

Due to the computational requirements mentioned in Section 3.3, it is only
feasible to calculate the optimal policies for small N . Policies were calculated
using the methods in Sections 3.2, 4.2 and 3.3.1 for a range of parameters for
N ≤ 300. The corresponding sets V were calculated, and a typical result is
shown in Fig. 4. The use of a small N necessitates choosing an unrealistically
small value of γ/µ to illustrate the policies. However, the pre-condition (5) is
still met.

We see that the idealised and realistic scenarios give very similar policies,
and that the simplified policy is a close approximation of both. A similar result
was seen with other sets of parameters. These results confirmed the prediction of
Section 4.3, that the simplified policy in Section 3.3.1, is a good approximation
for either the idealised scenario or the realistic scenario.

The result for the idealised scenario also confirmed the conjecture made in
Section 2.2: that the higher β is preferable early in the outbreak, and the lower
β is preferable as I falls to a low value. This confirms that in the realistic
scenario we should switch from β(1) to β(2), not the other way around.

For small N it is also possible to calculate p0 exactly: for the idealised
scenario, (12) is solved and then p0 = v0(n); for the realistic scenario, (27) is
solved and then p0 = v0. Some typical results are shown in Fig. 5. It compares
the optimal policies for the two different scenarios, as well as the simplified policy
under the realistic scenario. Also shown are the outcomes with no change to β.

We see that the results from the three optimisation scenarios are extremely
similar. This was a result we observed consistently over a wide range of param-
eters. This confirms another result of Sections 3.3 and 4.3: that the simplified
policy is very nearly as good as the optimal policy, in either scenario.

Therefore we conclude that the simplified policy is a good practical choice,
because it is easy to calculate, and so we use it in the further tests in the
following sections.
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Figure 4: Comparison of the policies for exact methods of Sections 3.2 and 4.2, and the
simplified method of Section 3.3.1. The parameters are N = 300, β(1) = 3, β(2) = 2.4, γ = 1
and µ = 0.2. In each scenario, the policy (V ) is the set of states below the respective line.
Lines are in the same vertical order as the legend box. All lines are coincident along U . The
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Figure 5: Comparison of p0 versus β(1) for the three different policies, as well as for no change
in β. The parameters are N = 300, β(2) = (0.8)β(1), γ = 1, µ = 0.2 and (S0, I0) = (N − 1, 1).
β(1) = 3 corresponds to the policies in Fig. 4. (Lines are in the same vertical order as the
legend box.)
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5.2. Effectiveness of the simplified policy

We examine the effectiveness of the simplified policy in the realistic scenario.
Note that for large N , exact calculation of p0 is impractical, so we calculate p0
using the approximate solution method we previously reported, which has an
average error of less than 1% [3].

Fig. 6 shows a typical result, varying β(1) and β(2)/β(1) for a given N , γ and
µ. (Although we only show the realistic scenario, the results for the idealised
scenario are extremely close, to the point that the plots look identical.) We
see that dramatic improvements in p0 can be achieved with a relatively small
reduction in β. Again, we tested a wide range of parameters, and the simplified
policy consistently gave significant improvement.

In passing, note that the “β(2)/β(1) = 1.0” curve in Fig. 6 shows non-
monotonicity in β, with a local maximum near β/(γ + µ) = 2, as previously
reported [3].

1.0 1.5 2.0 2.5 3.0 3.5 4.0

β(1)

0.0

0.2

0.4

0.6

0.8

1.0

p0

Switch to β(2) at (γ + µ)I < µ(N − S)

β(2)/β(1) = 1.0

β(2)/β(1) = 0.95

β(2)/β(1) = 0.9

β(2)/β(1) = 0.8

β(2)/β(1) = 0.7

β(2)/β(1) = 0.6

Figure 6: Plot of p0 versus β(1), for different values of β(2)/β(1) (realistic scenario, simplified
policy). The parameters are N = 30000, γ = 1, µ = 0.025 and (S0, I0) = (N − 1, 1).

5.3. Comparison of the simplified policy to other simple policies

The simplified policy of (24) is easy to calculate, but a practical problem
is that in an outbreak scenario where we might wish to implement our policy,
the precise values of the epidemiological parameters are only estimates, and the
precise epidemiological status of the population (in terms of the numbers of
susceptible and infectious individuals) can once again only be estimated.
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Therefore we investigated the robustness of the policy to implementing the
intervention at other stages of the epidemic. These results are shown in Fig. 7.
We considered the β(1) = 3 case of Fig. 6, keeping the same colour and marker
scheme, but switched from β = β(1) to β = β(2) at other points in the cycle:
points A through to E in Fig. 2. A refers to the case of using β(2) exclusively;

B is the deterministic maximum I point (S = S
(1)
d while I > I

(1)
d ); C is when I

falls to Ie; D is when I reaches its deterministic local minimum (S = S
(1)
d after

point C) and E refers to the case where β is always β(1). The simplified policy,
denoted by ∗, is between points B and C.

A B * C D E
0.0

0.2

0.4

0.6

0.8

1.0

p0

β(2)/β(1) = 1

β(2)/β(1) = 0.95

β(2)/β(1) = 0.9

β(2)/β(1) = 0.8

β(2)/β(1) = 0.7

β(2)/β(1) = 0.6

Figure 7: Comparison of p0 for different switch points. ∗ is the simplified policy of (24).
Points A to E are shown in Fig. 2. The ∗ results correspond to the β(1) = 3 results in Fig.
6. The parameters are N = 30000, β(1) = 3, γ = 1, µ = 0.025 and (S0, I0) = (N − 1, 1).

As predicted, the simplified policy always gives some improvement over using
either β(1) or β(2) exclusively. However we found that although the simplified
policy gave the best results, points B and C also gave significant improvement.
On the other hand, intervening to reduce the transmission rate parameter, β,
too late (point D) may or may not be preferable to using β = β(2) always
(point A). (In the example in Fig. 7, it is always preferable, but tests with
other parameter values have indicated that this is not always the case).

So this shows that there is a wide range of switch points which give some
improvement over using either β = β(1) or β = β(2) exclusively. So long as
a switch point is chosen after the peak I (point B) and some time before the
deterministic local minimum of I (point D), a significant increase in p0 will be
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achievable.

6. Conclusion

In the SIR-with-demography model, reducing the transmission rate param-
eter from β(1) to β(2) at an appropriate point can give a substantial increase
in the probability of epidemic fade-out, over that when using β(1) or β(2) ex-
clusively. We believe that this has applications for timing the implementation
of epidemic control measures, making it more likely for an epidemic to fade
out before it becomes endemic. For instance, if there is a large outbreak, con-
trol measures (such as the allocation of antivirals) might be delayed until the
epidemic is waning, approximately meeting the condition given by (23).

This method is effective because it allows the epidemic to progress longer
without intervention and infect more individuals in the initial outbreak, but
this is balanced against the long term gain of epidemic fade-out. As we pre-
viously noted, this is not likely to be ethically possible in lethal epidemics.
However it could have applications in situations of non-lethal infections, or dis-
eases among animals, where losses can be economically measured [16]. Possible
future research is to investigate the tradeoffs between such policies in terms of
total infections. The result of Grigorieva and Khailov with a deterministic SIR
model [8], that not reducing β early in the infection cycle can minimise the
total infection size, suggests that there might be a similar result when using a
stochastic model.

Optimal policies may be calculated using Markov decision process theory,
but these are impractical for all but the smallest systems. We have presented
a simplified policy (24) which gives a very close to optimal solution. The key
factor in determining this policy, the inequality (γ+µ)I < µ(N −S), is easy to
test and is independent of the transmission rate parameter, or the effectiveness
of the control measures.

We also observed that even a sub-optimal switch point can give a substan-
tial increase in the probability of epidemic fade-out. This should be useful for
practical applications where the exact state of the system is not easily observed.

The method of calculating the simplified policy is based on using the deter-
ministic local minimum to estimate the relative probability of epidemic fade-out.
This technique should be amenable to many Markov process problems which
concern optimising the probability of hitting one boundary before another. A
possibility for future work is to apply this technique to related problems, such
as more complicated models, or to the evaluation of the probability of fade-out
at other points in the epidemic cycle.
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