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a  b  s  t  r  a  c  t

Early  estimation  of  the  probable  impact  of  a pandemic  influenza  outbreak  can  assist  public  health  author-
ities  to ensure  that  response  measures  are  proportionate  to the  scale  of  the  threat.  Recently,  frameworks
based  on  transmissibility  and  severity  have been  proposed  for  initial  characterization  of  pandemic  impact.
Data requirements  to inform  this  assessment  may  be provided  by “First  Few  Hundred”  (FF100)  studies,
which  involve  surveillance—possibly  in  person,  or via  telephone—of  household  members  of confirmed
cases.  This  process  of  enhanced  case  finding  enables  detection  of  cases  across  the  full  spectrum  of clinical
severity,  including  the date  of  symptom  onset.  Such  surveillance  is  continued  until data  for  a  few  hundred
cases,  or  satisfactory  characterization  of the pandemic  strain,  has been  achieved.

We  present  a method  for analysing  these  data,  at the  household  level,  to provide  a posterior  distribution
for  the  parameters  of  a model  that  can  be interpreted  in  terms  of severity  and  transmissibility  of  a
pandemic  strain.  We  account  for imperfect  case  detection,  where  individuals  are  only  observed  with  some

probability  that  can increase  after  a first case  is  detected.  Furthermore,  we  test  this  methodology  using
simulated  data  generated  by  an  independent  model,  developed  for a  different  purpose  and  incorporating
more complex  disease  and  social dynamics.  Our  method  recovers  transmissibility  and  severity  parameters
to a high  degree  of  accuracy  and  provides  a  computationally  efficient  approach  to  estimating  the  impact
of  an  outbreak  in  its early  stages.

© 2017  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the CC
. Introduction

Influenza pandemics occur following the emergence of a new
train of the influenza virus; a strain that is sufficiently immuno-
ogically distinct to previous strains such that the majority of
he population has negligible levels of immunity against it. Past
nfluenza pandemics have given rise to dramatically different scales
f impact; the 1918 Spanish influenza pandemic has been esti-
ated to have caused approximately 40 million deaths worldwide,

hereas the 2009 Swine Flu pandemic has been estimated to
ave caused approximately 14,000 deaths worldwide. The ability
o assess the expected impact as early as possible following the

∗ Corresponding author.
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.0/).
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

emergence of a new strain is of obvious benefit to informing propor-
tionate public health response efforts (Van Kerkhove et al., 2010;
Van Kerkhove and Ferguson, 2012; McCaw et al., 2013).

The benefits of early assessment, and the dependency of
response plans and actions hinging on the characterisation of the
pandemic strain, has led to the development of response frame-
works based on the transmissibility and severity of a pandemic
(McCaw et al., 2013; Reed et al., 2013; Australian Department of
Health, 2014; Riley et al., 2015). The motivation is based upon these
two factors—severity and transmissibility—being strong deter-
minants of impact: severity moderates impact through illness,
demand on health services and potential deaths, and transmissi-

bility influences the speed of spread, timing of peak demand on
health services and the overall extent of the pandemic. Transmis-
sibility also determines the likely impact of interventions; often
it is possible to estimate the proportion of transmission that an
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ntervention might avert, hence allowing the estimation of the pos-
ibility of containment or of the reduction in attack rate. A number
f studies will be required in the initial stages of a pandemic to make

 rigorous characterisation of the emergent strain. Enhanced case
nding efforts directed at contacts of early identified cases, also
nown as “First Few Hundred” (FF100) studies, provide rich infor-
ation on disease characterisation and spread (Health Protection
gency England, 2009; Ghani et al., 2009; Cauchemez et al., 2009;
cLean et al., 2010; van Gageldonk-Lafeber et al., 2012; Australian
epartment of Health, 2014).

An FF100 study, as the name suggests, involves recording data
n the first few hundred cases, early in the pandemic. The most
ell known design is from the UK (Health Protection Agency

ngland, 2009): following the first confirmed case of the pandemic
train, that individual and all other members of their household are
urveilled—possibly in person, or via telephone—to identify day(s)
f symptom onset and disease characteristics in other household
embers. Supplementary information concerning the household,

uch as household size, and possibly age composition, are also
ecorded. Studies are continued until data for a few hundred cases,
nabling satisfactory characterisation of the pandemic strain, has
een collected. For this study we assume that household sizes and
ates of symptom onset of members of households, up to the first
ew hundred cases, are available. The base scenario we consider is
ne of partial detection, where each infectious individual is only
bserved with some probability.

In this paper we develop a novel methodology for analysing
nd performing inference on this partially observed, FF100 type,
ousehold level data. The assumed underlying model of trans-
ission dynamics is a Markovian households model where there

xists two-levels of mixing—within-households and between-
ouseholds (Ball et al., 1997; Black et al., 2013). When analysing
ata, we make the assumption that there is only a single intro-
uction of infection into a household. Essentially this means we
erform inference on a large number of small independent out-
reaks rather than a single larger outbreak (O’Dea et al., 2014).
ur detection model accounts for asymptomatic cases as well as

mperfect surveillance. Cases are initially detected with some prob-
bility that can then increase after the first detection. This increase
f the detection probability is due to the increased surveillance of a
ousehold after the first case detection as appropriate for an FF100
tudy. Previous studies have used household data for inference
Cauchemez et al., 2004, 2009; Ghani et al., 2009; Lau et al., 2015),
ut generally only for estimating secondary attack rates. To ana-

yse time series data and allow for estimates of transmission rates
equires a completely mechanistic model as we adopt herein. Addi-
ionally the two main determinants of impact in the early stages of

 pandemic, transmissibility and severity (McCaw et al., 2013; Reed
t al., 2013), are simply determined from our model.

For inference, we implement a Bayesian Markov chain Monte
arlo (MCMC) scheme with exact evaluation of the likelihood

or all the observed data. Exact likelihood evaluation is made
ossible through optimisation of code based upon probabilistic
rguments and a novel data structure for minimising the compu-
ations required. This approach provides a posterior distribution
ver the parameters of the model that can then be interpreted in
erms of the severity and transmissibility of a pandemic strain. The
nly other method for inference with such data is that of multi-
le imputation or data augmentation (Gibson and Renshaw, 1998;
’Neill and Roberts, 1999; Cauchemez et al., 2004; Lau et al., 2015).

n this approach, all unobserved events are treated as unknowns to
lso be inferred within the MCMC  routine, which allows a great deal

f flexibility in modelling. The trade off of such an approach is that
he MCMC  scheme needed to sample from the joint distribution of
arameters and unknown data is more complex and convergence
an be an issue when there is a large amount of missing data to be
s 19 (2017) 61–73

inferred (McKinley et al., 2014). Such an approach is quite differ-
ent to that adopted in this paper where we  essentially consider all
paths of the process at once for a given set of parameters, allowing
us to efficiently scale the algorithm.

The efficiency of the method is important as it allows us to per-
form inference on many, and very large, data sets. This in turn
allows a proper quantification of the variability inherent to this
sort of study, to a degree not previously achieved. In any outbreak
there is a large amount of inherent randomness, but this is mag-
nified in FF100 studies due to the small size of typical households
and partial observation. We  demonstrate correct convergence of
the estimates as the amount of data is increased, but more impor-
tantly study what bias is introduced by smaller, realistic size, data.
Finally the efficiency of our method also ensures utility in real-time
during an enacted FF100 study, including timely advice as to when
enhanced surveillance (i.e., FF100 studies) can be stopped due to
sufficient acquisition of data. Furthermore, our methodology pro-
vides a way  forward to investigate variations on the FF100 study
design and their effectiveness for determining transmissibility and
severity for a range of potential pandemic scenarios.

A difficulty with methodology for pandemics, and in particular
FF100 studies, is a lack of datasets both due to infrequent pan-
demic occurrence and the relatively new consideration of FF100
studies. This makes validation of any proposed methodology diffi-
cult. Whilst one may, as we  undertake herein, test the methodology
on data simulated from the underlying model upon which the
methodology is developed, this does not typically provide adequate
assurance that the methodology will be sufficiently accurate in the
event of the next pandemic, where almost certainly the modelling
assumptions will be violated. Here we  make an attempt to provide
some assurance. This is achieved by testing our methodology using
data that is produced by an independent model, a model that has
been developed for a different purpose and that should more accu-
rately reflect true pandemic (and social) dynamics. The particular
model we  use herein is the microsimulation model of Geard et al.
(2013, 2015), calibrated for a pandemic influenza scenario.

2. Methods

We  first describe the stochastic households model that incor-
porates partial detection of cases that we use to perform inference.
Next we describe the form of the data we assume and how we
structure it before detailing how to calculate the likelihood for
observations from a single household. This allows us to develop the
theory without the complications of making it efficient for infer-
ence over multiple households; this is done in the next section.
We describe how the data from FF100 studies can be naturally
described using a tree structure and then we give an algorithm
to calculate the likelihood using this approach. Finally we  discuss
how data are generated for validation of the methodology. The first
validation is performed using data simulated from the same model
assumed for inference. The second validation is performed on data
generated by a different, more complex model. Brief details of this
are given, emphasising the differences between the two models.

2.1. Stochastic household model

The epidemic dynamics within a household are modelled with
a continuous-time Markov chain. To facilitate efficient inference,
we make the assumption that there is only one introduction into
any household that experiences infection. This is likely to be plau-

sible in the early stages of a pandemic. Note that this is not an
assumption in the micro-simulation model used to generate data
for validation of our methods. Thus we  can assess this assumption
and its implications for inference.
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Fig. 1. A typical household epidemic. Individuals (represented as circles) become
exposed (yellow) following infection transmission, become infectious (red) which
is  when they can also be detected, and finally recover (blue). Only the events sur-
rounded by the black boxes are observed, the rest are not observed. Thus in this
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xample, there is one infectious individual who is undetected on day 2, while the
emaining three are detected. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

The base model we use for inference is an SE2I2R model where
oth the latent and infectious periods are split into two stages, giv-

ng them an Erlang distribution with mean periods 1/�  and 1/�
espectively. The number of stages can be changed (Black and Ross,
013) but this model has been used for previous influenza stud-

es (Baguelin et al., 2010; House et al., 2011; Black et al., 2013)
nd represents a good trade-off between realism—influenza had

 high variance in the next generation distribution that is accu-
ately captured by Erlang distributions (Donnelly et al., 2010)—and
omputational efficiency.

The classes an individual can be in are: S, E1, E2, I1, I2 and R,
nd the size of the household, N, is fixed. Transmission within the
ousehold is assumed to be frequency dependent with rate ˇ, thus

 is independent of the size of the household and the overall rate
f infection is ˇS(I1 + I2)/(N − 1) (McCallum et al., 2001). As in the
icrosimulation described in Section 2.6, we assume that symp-

oms coincide with the onset of infectiousness and that there is a
er-case probability of detection of an infected individual. This is

ncorporated into the model by splitting the transition E2 → I1 into
wo parts: with probability � the event is detected and, with prob-
bility (1 − �) it goes undetected (a typical scenario is illustrated
n Fig. 1). We  assume that the probability of initial detection in
he household is � = p, and afterwards, once FF100 surveillance has
een enacted, � = q where q ≥ p.

The two main parameters we wish to estimate for a given out-
reak are the transmissibility and severity (McCaw et al., 2013;
eed et al., 2013; Riley et al., 2015). Transmissibility is quantified
y the expected household secondary attack rate (hSAR), which is
he proportion of individuals infected by an index case in a house-
old of a given size. In our model the hSAR can be calculated exactly

rom the within-household epidemic final size distribution, which
epends only on the ratio ˇ/� and the household size, N (Ball, 1986).
s it depends on N, when we summarise our results later we  plot
osteriors in terms of the expected hSAR for a household of size

 = 3, denoted hSAR3. Similar plots could be made for any house-
old size, but the posteriors scale in the same way  with increased
ata. We  quantify severity by the detection probability q, that is the
robability of a case detection with enhanced surveillance in place.
his reflects that more significant presentation of symptoms, or
ven hospitalisations, will result in a higher probability of detection
f cases.

Instead of keeping track of the population numbers within
he household—i.e., the numbers of S, E1 etc.—we instead spec-

fy the process in terms of the numbers of events of a given type
hat have occurred. This is known as the degree-of-advancement
DA) or reaction-count representation of the stochastic process
van Kampen, 1992; Sunkara, 2009; Jenkinson and Goutsias, 2012;
s 19 (2017) 61–73 63

Black and Ross, 2015). As the counts only ever increase, this rep-
resentation simplifies some aspects of calculating the likelihood.
Adopting this representation of the stochastic process along with
a lexicographical ordering of the state space also allows us to cal-
culate the probability mass function of the state of the chain using
computationally-efficient methods (Jenkinson and Goutsias, 2012;
Black and Ross, 2015).

We introduce the variables Zi(t), i = 1, . . .,  6, which count the
events of each type which have occurred prior to time t. These
events, their transitions and rates are summarised in Table 1. The
state of the system is Z(t) = (Z1(t), . . .,  Z6(t)). The relation between
Zi(t) and the population variables is (dropping the dependence on
t),

S = N − Z1,

E1 = Z1 − Z2,

E2 = Z2 − Z3 − Z4,

I1 = Z3 + Z4 − Z5,

I2 = Z5 − Z6,

R = Z6,

(1)

and the cumulative number of detected cases within the household
is counted by Z3. Note that the variable Z1 also counts the initial
infection into the household and hence sets the initial condition
for the system, i.e., Z(0) = (1, 0, 0, 0, 0, 0). The relations in (1) allow
us to write the rates of each transition in terms of Zi and are given
in Table 1.

The state space of the process is

S =
{

(Z1, . . .,  Z6) ∈ (Z+)6 : 0 ≤ Z6 ≤ Z5 ≤ Z3 + Z4 ≤ Z2 ≤ Z1 ≤ N
}
.

(2)

This is partitioned into two  subsets, S = A ∪ C, where A are absorb-
ing states and C are transient states. Absorbing states are those
where the outbreak has ended, i.e., the number of infection events
equals the number of recovery events (Z1 = Z6). As we  do not con-
sider more than one introduction into a household, an epidemic
always leads to absorption of the Markov chain. The mapping
between states of the system and event counts is useful in spec-
ifying various subsets of S. We  do this with the matrix

Z = (zij) i ∈ S, j = 1, . . .,  6, (3)

where zij is the number of events of type j associated with state i.
The rows of Z,  which we define as zi = (zi1, . . .,  zi6), can then be used
to index states of the system. For example, the absorbing states, A,
can be specified as

A = {i ∈ S|zi1 = zi6}. (4)

We order the state space by detections (Z3) first so the gener-
ator (transition rate matrix) Q is partitioned into blocks indexed
by Z3. The state space is enumerated, and hence the elements of
the matrix Z (see (3)) are determined, by using a system of nested
loops which iterate over the variables Z1 to Z6. The ordering of S
means that the generator, Q, is triangular which is required for the
efficiency of the algorithms described later. The generator is sparse
and can be written as a sum of matrices multiplied by the various
parameters of the model,

Q = ˇQ1 + 2�Q2 + 2p�Q3 + 2(1 − p)�Q4 + 2q�Q5
+ 2(1 − q)�Q6 + 2�Q7 + 2�Q8. (5)

The matrices Qi, i = 1, . . .,  8 can be pre-calculated for a given house-
hold size, N, as their structure does not change. Thus forming the
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Table 1
Transitions, event counters and rates defining the SE2I2R partial detection model. Initially, � = p, then after the first infection � = q, where q ≥ p, representing an increased
chance of detection due to surveillance of the household.

Event Transition Counter (+1) Rate

Infection S → E1 Z1 ˇ(N − Z1)(Z3 + Z4 − Z6)/(N − 1)
Latent  progression E1 → E2 Z2 2�(Z1 − Z2)
Become infectious (detected) E2 → I1 Z3 2��(Z2 − Z3 − Z4)
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Become infectious (undetected) E2 → I1
Infectious progression I1 → I2
Recovery I2 → R 

atrix Q for any given set of parameters can be done efficiently. The
ynamics of the system are given by the forward (master) equation,

d�(t)
dt

= �(t)Q, (6)

here �i(t) = Pr(Z(t) = zi) is the probability that the system is in state
 at time t.

.2. Data

We  assume that the data available from an FF100 study is of
he form of time-series of detection counts stratified by house-
old and binned into days, where we define day t as the interval
t − 1, t] for t ≥ 1. Two realisations, generated by the microsimula-
ion described in Section 2.6, with (a) high severity (p = 0.5, q = 0.9)
nd (b) low severity (p = 0.1, q = 0.5) are shown in Fig. 2. These out-
uts show the times of new detections (red dots) and the times
f all other cases that have gone undetected (grey dots). The area
f the dots represents the number of new detected cases on a
iven day. As these are stochastic, and households are small, there
s a reasonable amount of variability present, particularly in the
arly stages of the outbreak (Black et al., 2014). We  can clearly
ee that in the low severity scenario, many of the early cases are
issed, so for a given number of households we have less data for

nference.
We can perform inference on these data in two  ways, either

ssuming we have observed completed outbreaks for a given num-
er of households (essentially assuming that all households have
een observed for a long enough period such that the outbreak is
ver), or that we have observed the beginning of an outbreak up to
ome time horizon. In the second scenario we will have a mixture of
ata, some from households where the outbreak is over and others
here it is potentially ongoing. At the end of each day a new poste-

ior can be calculated incorporating new data from that day. Note
hat when an outbreak is still ongoing, null days, where no further
ases are detected in a household, still contribute information. Note
hat it is also possible to analyse the complete case data (detected
lus undetected cases) using our model by setting p = q = 1. This
llows us to perform inference for the underlying epidemiological
arameters, independent of the observational process, which will
e useful when analysing data from the microsimulation model

ater.
As the outbreaks are assumed to be independent the time for

ach can be scaled to start at zero; thus, for a given household, the
rst detected case(s) always fall within day 1. The time series for the

’th household is then represented by a vector, d(j) = (di)(j), where
i is the cumulative number of detections, calculated at discrete
ime points ti = 1, . . .,  n, which correspond to the end of each day
fter the first detection is made. For example in Fig. 1, d = (1, 1, 2, 3)
epresents a single detection on day one, then further detections on

ays three and four. Surveillance of a household can be carried out

ndefinitely, giving a time series of any length, but in practice we  can
runcate d after a particular number of days where the state has not
hanged, either because there are no more infectious individuals or
Z4 2(1 − �)�(Z2 − Z3 − Z4)
Z5 2�(Z3 + Z4 − Z5)
Z6 2�(Z5 − Z6)

we have failed to detect later events. This truncation then allows
for more efficient inference. For example,

(1,  1, 2, 2, 2, 2, 2, 2, 2) → (1,  1, 2).

If a time series is truncated, then this must be recorded for the
purposes of calculating the likelihood. Thus we define the variable
bj for the j’th household such that

bj =
{

1 if d(j) is truncated

0 otherwise
. (7)

A non-truncated time series represents a potentially ongoing out-
break.

2.3. Likelihood for a single household

In this section we develop the theory needed to calculate the
likelihood of observing a given time series of detection events
within a single household, d (dropping the index j  for now). This
allows us to give a relatively simple exposition of the theory and
our methodology before we describe how this calculation can be
made more efficient when we  wish to perform inference on a large
number of time series simultaneously.

Let � = (ˇ, �, � , p, q) be the vector of parameters we wish to
estimate. The likelihood of observing d = (di)1:n in a household of
a given size is then

L(d; �) = P(Z3(t1) = d1)
n∏
i=2

P(Z3(ti) = di|Z3(ti−1) = di−1). (8)

The exact conditional probabilities in the likelihood can be evalu-
ated iteratively from the dynamics of the Markov chain, which are
given by Eq. (6). Let 1S′ : S → {0, 1} be an indicator vector of the
subset S′ of the state space S such that

1S′ (x) =
{

1 if x ∈ S′

0 if x /∈ S′ . (9)

The conditional probability terms in Eq. (8) can be written as,

P(Z3(ti) = di|Z3(ti−1) = di−1) = 1{i ∈ S|zi3=di} · �(ti|d1:i−1) (10)

which is a summation of the elements of �(ti|d1:i−1) where Z3 = di.
The distribution, conditioned on the observations up to and includ-
ing di will be

�(ti|d1:i) =
�(ti|d1:i−1) 	 1{i ∈ S|zi3=di}
�(ti|d1:i−1) · 1{i ∈ S|zi3=di}

, (11)

where 	 denotes an element-wise vector product. The operation of
Eq. (11) essentially sets the elements of �(ti|d1:i−1) corresponding
to states with Z3 /= di equal to zero, with the denominator renor-

malising that result so that the resulting distribution sums to 1.
Note that the procedure above is a modified version of the for-
ward filtering step of the forward-backward algorithm for hidden
Markov models (Sarkka, 2013).
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Fig. 2. Case times for the first 50 households. Data generated from the microsimulation model (described later) showing high severity (a) and low severity (b) outbreaks.
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The distribution �(ti|d1:i−1) is calculated from forward integra-
ion of the distribution at the end of the previous day, �(ti−1|d1:i−1),
sing Eq. (6). In this paper we evaluate (6) using an implicit Euler
ethod (Jenkinson and Goutsias, 2012). The probability mass func-

ion, �, then obeys systems of linear equations,

(s + �)(1 − �Q )  = �(s) (12)

here � is the time step. Due to the triangular structure of Q, Eq.
12) can be solved via forward substitution. The accuracy of the
olution depends only on the size of the time-step, � (Jenkinson
nd Goutsias, 2012), which is taken as 10−2 in this paper. Thus to
ntegrate the dynamics over an observational time step of one day,
q. (12) must be recursively solved 1/�  = 100 times.

Given an initial condition, the above procedure of integrating
orward and conditioning can be carried out iteratively. As we scale
he problem so that the first detection(s) occur in the first day, t = (0,
], the initial condition that we need is �(1|d1), the distribution
f the process at the end of the first day, conditioned on having
bserved d1 cases in that day. In calculating this we need to account
or the fact that the first detection may  not be the first actual case
nd that we do not know the exact time of the first case, only that it
appened at some time within the day. To calculate the distribution
t t = 1, we assume that there is a uniform probability of the initial
etection event occurring within the interval (0, 1] and thus the
tate of the system at the end of the day is given by the integral,

(1) =
∫ 1

0

�∗eQ (1−s)ds, (13)

here �* is the distribution of the process at the time of the first
etection. We  first discuss how we evaluate this integral and then
ow to calculate �*. Note that Eq. (13) is the solution of the differ-
ntial equations

d�(t)
dt

= �(t)Q + �∗ (14)

valuated at t = 1 with initial condition �(0) = 0. Integrating Eq. (14)
rom u to u + � yields,

(u + �) − �(u) =
∫ u+�

u

�(s)Q + �∗ds.
pproximating the integral using a rectangle method with height
uch that the top right corner matches the function, we obtain

(u + �) − �(u) = �Q�(u + �) + ��∗.
ch new cases are detected and grey dots mark times of undetected cases. The area
e are shown. (For interpretation of the references to color in this figure legend, the

Rearranging this we  have a system of linear equations that can be
solved by forward substitution,

(1 − �Q )�(u + �) = �(u) + ��∗. (15)

The distribution at the end of day one, �(1), is then calculated by
recursively solving (15) starting from u = 0 with �(0) = 0. Once �(1)
is calculated, the first term in the likelihood is calculated as,

P(Z3(t1) = d1) = 1{i ∈ S|zi3=d1} · �(1) (16)

and the vector is conditioned on the observation using Eq. (11)
to yield �(1|d1)—the initial condition for the iterative procedure
detailed above.

We  can calculate the distribution of the process at the time of
the first detection, �*, from the corresponding hitting probabilities,
i.e. the probability of hitting a state i, given that the system starts in
state j (Norris, 1997; Black and Ross, 2015). To do this we first calcu-
late the jump chain matrix, J, of the process from the corresponding
generator Q. We  then make the set of states corresponding to Z3 = 1
absorbing by setting the rows of J equal to 0 for that set of states,
thus there is no probability of leaving these states once entered.
Denoting this matrix J′, we  solve (Black and Ross, 2015),

(I − J′)x = 1{i ∈ S|zi=(1,0,0,0,0,0)}, (17)

for x, where the initial state corresponds to a single exposed indi-
vidual. Note that x is a vector of probabilities of visiting or ending
in each state, thus to get the hitting probability distribution,�∗, we
set the elements of x corresponding to Z3 /=  1 equal to zero,

�∗ = x 	 1{i ∈ S|zi3=1}. (18)

If a time series has been truncated (bj = 1) then this means that
there were no further cases detected after the last observation and
this needs to be taken into account in the likelihood calculation,
Eq. (8), by multiplying by the probability of observing no further
infections after the last detection,

L(d; �)=P(Z3(∞) = dn)P(Z3(t1)=d1)
n∏
i=2

P(Z3(ti) = di|Z3(ti−1) = di−1).

(19)

This probability is calculated by integrating forward the pmf of the
state until it has converged, denoted �∞. Similarly to above, this

can be computed by solving a system a linear equations (Black and
Ross, 2015),

(I − J)x = �(tn|d), (20)
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Fig. 3. Tree corresponding to the example data given in Eq. (21). The nodes of the tree are labelled by the integers k = 0, . . .,  8, with 0 denoting the root. The numbers in red are
the  values of the observed state of the system, ck , stored by each node, from which the time-series can be recreated. The variables fk and f̄k , record the number of truncated
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here the probability of no further detections is P(Z3(∞) = dn) =
 · 1{i ∈ A|zi3=dn}.

.4. Efficient data structure for calculation of the likelihood

When we wish to perform inference on case-detection time
eries from a number of households, the simplest way is to eval-
ate the product (or the sum when using log-likelihoods) of each

ndividual likelihood as the households are assumed independent.
hile straightforward, this introduces a large amount of redun-

ancy as the calculations described above must be carried out for
ach time series and hence computation time scales linearly with
he number of households included. As we perform inference in a
ayesian MCMC  framework, where the likelihood must be evalu-
ted repeatedly, this is undesirable. In this section we  develop a
ata structure for the efficient representation of this partial case
ata as well as an algorithm that uses this structure to calculate the

ikelihood using the minimum number of operations, eliminating
ll redundancy. In describing this we will assume the data comes
rom households all of the same size, N. Generalising to a set of
izes simply requires creating a different data structure for each
ousehold size in the set.

Consider a new outbreak in a population and assume that by
ime t there are m households with detected cases, so the data
ollected from these is a set D = {d(j)}j=1:m with the truncation sta-
us of each series recorded by the vector b. Thus the total data for
erforming inference is then defined as D  = {D, b}. For example,

 =
{

{(2, 2),  (1,  3),  (1,  1, 1),  (1,  2, 2),  (1,  3)}, (1,  0, 1, 1, 1)
}
,

(21)

here the outbreak in the second household is potentially ongoing
s b2 = 0. The key observation is that, for a given household size, D
an be represented as paths through a rooted tree with nodes carry-
ng the data on the cumulative number of detected cases at the end
f each day of observation. The minimal tree to represent a given
ata set is simple to construct and the structure also encodes the
inimum number of operations needed to calculate the likelihood

f D. For example, the set of data in Eq. (21) can be represented
ith the tree shown in Fig. 3.

The nodes of the tree are labelled with the non-negative
ntegers, k, and each node, apart from the root (0) carries three
ariables: ck, fk and f̄k. The observed state of the system at the

nd of a given day is recorded by ck. Thus by starting at the root
nd traversing downwards, each time series in the set D  can be
ecreated by accumulating in a list the values of cj from the visited
odes. The variables fk and f̄k count which of all the possible paths
g the path from node 0 to node k. For example, f̄2 = 1 indicates that there is 1 time
fter the 2nd day. (For interpretation of the references to color in this figure legend,

represent continuing and truncated time-series in D, respectively.
For example, the path via the nodes (0, 3, 5, 6) in Fig. 3 recreates
the series (c3, c5, c6) = (1, 1, 1) with f̄6 = 1 indicating that there is 1
of these in D  and that it is truncated.

The leaves of the tree always correspond to a time series
(fk, f̄k /= 0), but so too can other internal nodes. The day of the obser-
vation (rescaled within-household time) is given by the depth of a
node in the tree, thus nodes at the same level in the tree repre-
sent observations on the same day and the maximum depth will
correspond to the longest time-series. For this data structure to
be more efficient for calculating the likelihood, the populations
that are observed must be small but numerous, so there is a large
similarity between time series, as is the case here.

2.4.1. Construction of the tree
The construction of a tree representing D  is straightforward as

the structure of the tree also provides a way to efficiently search
through it. First a root node is created, and then the tree is grown
by adding each d(j) = (di)

(j) ∈ D  in turn. The procedure for this is as
follows. The algorithm starts at the root of the tree and queries if it
has a child node with ck = d1. If it does, then the algorithm moves
to the node. If not, a new child node is created with ck = d1 and
the algorithm then moves to that node. It then repeats this for the
remaining elements of d(j). Once the end of d(j) is reached, this is
recorded by incrementing the value of fk by 1 if the time-series is
continuing, or f̄k if it is truncated. After this the algorithm returns to
the root node and d(j+1) is added in the same way. The tree shown
in Fig. 3 was  created in this manner from the data in Eq. (21). This
procedure also ensures that the nodes are ordered such that the
parent of node k has a label less than k. The total number of nodes
is denoted T.

2.4.2. Algorithm for computing the likelihood
Here we detail how this data structure can be used to efficiently

calculate the log-likelihood of a given set of observations, D. The
tree is pre-computed before any inference and does not change. The
dominant cost in the computation of the likelihood, as detailed in
the previous section, is numerically integrating forward the dynam-
ics of the system over a given day. The tree structure encodes the
minimum number of these operations that have to be performed
to calculate the likelihood, which are only carried out if a node has
at least one child. The number of these steps will be the total num-
ber of nodes, T, minus the number of leaves in the tree. Hence the

computational cost of the likelihood no longer grows linearly with
m, the number of household time-series.

To calculate the log-likelihood, each node is associated with
a variable �(k), that will hold a state vector. We  also create two
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ectors,   and �, both of length T. These vectors are initialised to be
ll zeros and also indexed from zero to match the labelling of the
odes of the tree. For the initial step in the algorithm, we  calculate
(1) from Eq. (13) then set �(0) = �(1). The algorithm then iterates

hrough the remaining nodes of the tree in either a breadth-first
anner or by visiting nodes following the order of their labels

which is determined when the tree is first constructed). For the
’th node we do the following:

 Set l = parent(k).

 Calculate  k =  l + log
(
�

(l) · 1{i ∈ S|zi3=ck}
)

.

 If either the current node (k) has children or f̄k /= 0, then set

�
(k) =

�
(l) 	 1{i ∈ S|zi3=ck}

�
(l) · 1{i ∈ S|zi3=ck}

. (22)

 If f̄k /= 0, set �k =  k + log
(

x · 1{i ∈ A|zi3=ck}
)

, where x is the solution

of (I − J)x = �(k).
 If the node has children then integrate forward the state vec-
tor, �(k), by recursively solving the system of equations (12) and
storing the result in �(k) (overwriting the previous vector).

 Move to the next node.

Once the algorithm has iterated over all nodes the log-likelihood
s given by,

og(L(D; �)) = f ·   + f̄ · �. (23)

.5. Validating the inference methodology

We  validated the methodology using data generated from the
tochastic household model on which it is based. As well as vali-
ation, this allowed us to investigate how the posterior estimates
or the parameters improve as more household time-series are
dded to a given dataset, and to systematically quantify any biases
hat arise. The methodology was tested on four parameter sets that
iffer in severity and transmissibility that are chosen to be repre-
entative of plausible scenarios of interest to public health agencies
McCaw et al., 2013). The mean latent and infectious periods were
xed for all parameter sets at 2 days and 1.5 days respectively. For
everity, the base detection parameter was taken as p = 0.1 and 0.5,
or low and high cases respectively. The increased detection param-
ter was taken as q = p + 0.4 representing a constant increase from
dditional surveillance (McCaw et al., 2013). For transmissibility,
he ratio ˇ/� was taken as 1.2 and 1.4 for low and high scenarios
espectively, resulting in a hSAR3 of 0.49 and 0.54 respectively. The
arameters are summarised in Table 2.

An additional complication in generating this test data arises
ecause there is no notion of between household mixing in our
tochastic model as the dynamics within each household are

ssumed independent. The transmission process in the overall
opulation and the detection probabilities will dictate what dis-
ribution of household sizes are represented in a random sample
nd thus it is important to match these when validating the

able 2
arameters used to generate the validation data. The parameters  ̌ and p are given as
ow/high pair, the various combination of which generate the four different param-
ter sets.

Parameter Values

 ̌ 0.8, 0.933
1/�  2
1/�  1.5
p 0.1, 0.5
q p + 0.4
s 19 (2017) 61–73 67

inference methodology. These distributions were estimated using
the microsimulation model (see next section) and are shown in the
supplementary material. It was  found that the household size dis-
tributions only differed significantly between the different severity
scenarios and not with transmissibility. As expected, lower severity
tends to bias the distribution to larger household sizes because
there are more chances for initial detection in a larger household.

With these two  distributions as inputs, the test data is generated
by first drawing a random sample of 2000 household sizes from
the correct distribution and then simulating a within-household
epidemic for each, conditioning on at least one detection. This was
done using the standard stochastic simulation algorithm (Gillespie,
1976) and then the resulting time series were binned into days.
The set of 2000 within-household time series are kept ordered
such that first m households (m ∈ {50, 100, 200, 300, 2000}) can
be selected, which forms the dataset, D, for inference. The first four
of these numbers of households are within the range of data col-
lected in previous studies (House et al., 2012), while 2000, which
is an infeasible amount for an FF100 study to actually collect, is to
assess convergence with a large amount of data.

2.6. Micro-simulation model for additional validation data

In order to more robustly test our inference methodology, we
applied it to data generated by an independent microsimulation
model that simulates both disease transmission and surveillance in
a population with age and household structure (Geard et al., 2013,
2015). Using a more complex disease transmission model enables
us to generate test data that is subject to additional factors that
may  challenge our inference method. Within the microsimulation,
susceptibility to infection varies with age, as observed in recent
influenza outbreaks (Opatowski et al., 2011), and mixing between
households is parameterised using age-specific patterns of contact.
Therefore the subset of households that experience infection, and
the order in which they do so is influenced by the number and age of
their occupants. Furthermore, households can experience multiple
introductions, and the chance of this occurring will vary with both
household composition and the current prevalence of disease in
the population. Finally, the population is subject to ongoing impor-
tation from external sources, which introduces variability in the
timing and momentum of an outbreak during its early stages.

We now describe the different components of the model in turn.

2.6.1. Population
The population component of the microsimulation model

is calibrated against demographic data to capture age distri-
bution, household size distribution and household composition
corresponding to a contemporary Australian population (using
parameters and data sources as described in Geard et al., 2013).
We use a static population, as demographic changes associated
with birth, death, aging and associated changes to households are
unlikely to have a substantial impact over the duration of a first few
hundred study.

2.6.2. Disease
Disease dynamics were simulated using an SEIR model, with

the microsimulation model tracking the current disease state of
each member of the population. Durations for the exposed (E)
and infectious (I) states were sampled from a Gamma  distribution
with shape parameter k = 2 and means of 2 days and 1.5 days
respectively. The force of infection acting on each person is a
function of current disease prevalence in their household and the

broader community. Household structure and contact patterns
arise endogenously in the microsimulation model as a result of
population demographics. We  assume that mixing within the
household is frequency dependent and independent of age. Mixing
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etween households is also frequency dependent and is modelled
sing an age-specific matrix of contact rates derived from empir-

cal studies (Mossong et al., 2008). Details of the construction of
his contact matrix are provided in Geard et al. (2015).

The probability of a susceptible person, s becoming infected in
 given time period is given by 1 − e−�s	t, where

s =  

⎛
⎝∑
k ∈ H



�hIk(t)

(NH(t) − 1)
+

∑
j

�ij
�cIj(t)
Nj(t)

⎞
⎠ , (24)

here   is the relative susceptibility of adults compared to chil-
ren, H is s’s household, NH is the number of people in H, k is a
ousemate of s, 
 is the number of contacts per day between s and

 (here, we assume 
 = 1; i.e., a susceptible person encounters each
f their household members), Ik = 1 if k is infectious and 0 otherwise,
h is the per contact household transmission coefficient, i is the age
f s, �ij is the mean number of contacts in the community per day
etween people of age i and people of age j, �c is the per contact
ommunity transmission coefficient, Ij is the number of infectious
eople of age j and Nj is the total number of people of age j.

The disease state of each individual is updated at discrete inter-
als of 	t  = 3 h (i.e., 8 time steps per day). We  assume that the entire
opulation is susceptible at t = 0, with each member having a small
robability of being infected from an external source at each time
tep. We  assume that adults (age ≥18) have reduced susceptibility
ompared to children (  = 0.7) but contribute equally to the force
f infection.

.6.3. Surveillance
Each infected person has a probability p of being detected at

he point at which they become infectious (and symptomatic)
r otherwise remains undetected. Following the first case detec-
ion, enhanced surveillance commences and household members
f detected cases are monitored until seven days have passed with-
ut any new cases being detected in that household. While under
urveillance, people who become infectious have an increased
robability q (≥p) of being detected.

.6.4. Scenarios
We  consider scenarios similar to those for the earlier validation

ata: low/high severity, and low/high transmissibility. For the high
nd low transmissibility scenarios, �h and �c were calibrated such
hat final attack proportion and secondary household attack pro-
ortion were approximately 0.43 and 0.48 respectively. For the high

nd low severity scenarios, detection probabilities for unmonitored
ases were 0.1 and 0.5, increasing to 0.5 and 0.9 respectively for
ases occurring among monitored individuals. The microsimula-
ion parameters are summarised in Table 3.

able 3
arameters used for the microsimulations.

Parameter Value

Population
Population size 100,000

Disease
Household transmission coefficient (�h) 0.97, 1.13
Community transmission coefficient (�c) 0.045, 0.055
Mean time in E 2 days
Mean time in I 1.5 days
Updates per day 8
Importation rate 3 cases per week
Adult susceptibility factor ( ) 0.7

Surveillance
Case detection probability (p) 0.1, 0.5
Watchlist detection probability (q) 0.5, 0.9
outbreak is removed. Note that we do not remove secondary infections into the
household if they occur during the period of time the first outbreak is defined, here
8  days.

2.6.5. Data
The microsimulation outputs the times at which individual

cases are detected as well as the times of all other undetected
cases so that the entire course of an epidemic can be recon-
structed. To make this data suitable for inference using the simpler
stochastic model, the raw output from the microsimulation is
parsed into detection counts stratified by household and binned
into days. In some cases the within-household time series must
be truncated as secondary introductions are possible, typically
much later in the epidemic, giving rise to further outbreaks. These
are removed so that we only consider the first outbreak within
a household (although within that first outbreak there may still
be multiple introductions). Fig. 4 shows an example of this; note
that in this example if the secondary infection occurred within
8 days of the primary infection then the data would have been
included as a single outbreak. Finally households of size N = 1 or
N > 8 are removed; single person households contribute no infor-
mation for inference of within-household parameters and larger
households are probably atypical and transmission unlikely to be
simply frequency-dependent. They are also, at least in developed
countries, rare so are removed for computational efficiency.

3. Results

3.1. Validating the inference methodology

We  first validate the methodology using data generated from
the same stochastic household model as used for the inference.
For each set of data and number of households inference was per-
formed using using a Bayesian MCMC  algorithm (Gilks et al., 1995)
to generate samples from the posterior. Priors were chosen to be
uniform for ˇ/� , 1/� and 1/� , with ranges as detailed in the sup-
plementary material. The prior for p and q was taken to be uniform
over the upper triangle defined by 0 > p ≥ q ≥ 1. All proposals were
independent Gaussian with variances described in the supplemen-
tary material. Burn in was  5 × 103 samples and then 5 × 105 samples
were taken from the posterior. No thinning was performed on these
samples. For each set of posterior samples we used a batch means
method to calculate the effective sample size (ESS) for each parame-
ter (Robert and Casella, 1999). Figures summarising these statistics
are given in the supplementary material, but all ESS are above 550
and the majority were above 2000.

First we discuss the convergence of these results as data are
increased, which is similar across parameter scenarios, then dis-
cuss the main differences between the parameter scenarios. Fig. 5
shows how the marginal posteriors for all parameters, from 8 ran-
dom high transmissibility, high severity data sets, evolve as more
households are included in the sample. The true value of the param-
eters is shown by the black solid line. The 8 posteriors are shown
to illustrate the differences, which can be substantial, within and
between datasets; only by inspecting the posteriors can we under-

stand how both the mean and variance of the distributions change
together. The boxplots at the bottom of each panel in Fig. 5 are cal-
culated from the means of the marginal posteriors. For m = 50, . . .,
300 households, the means from 128 posteriors (from independent
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Fig. 5. Marginal posteriors for all parameters from 8 randomly generated, high transmissibility, high severity, data sets using data from the first 50, 100, 200, 300 and 2000
households. The mean of each distribution is shown by the black circle and the true value of the parameter is indicated by the solid line. Note that the scale between each
panel  is different to aid legibility of the figure. The box plot at the bottom of each panel is derived from the means of 128 (for m = 50, . . .,  300) and 32 (m = 2000) marginal
posteriors.
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ata sets) are used to construct the box plots, whilst for m = 2000
ouseholds, the mean from 32 posteriors are used. Similar plots for
he other scenarios are presented in the supplementary material.

In all of these plots we see that as the amount of data is
ncreased the posteriors converge to the true values of the parame-
ers, although the rate of convergence and bias is different between
arameters. In general we see that the hSAR and severity, q, con-
erge quickly, and hence are estimated well by 200 households,
ut the other three parameters have much higher variances. It is
lso clear from the boxplots of the means of the posteriors, that
or smaller amounts of data there tend to be systematic biases
n our estimates. The hSAR and mean infectious period are over-
stimated and the other parameters are slightly underestimated.
ote that this is not due to an approximation or assumption in

he inference methodology, but highlights the bias and uncertainty
o be expected in first few hundred studies due to the small data
Gellman et al., 2013). The priors also have an effect on this, as for
mall amounts of data the posterior will reflect the prior more than
he data. Considering 2000 households in a single sample is proba-
ly an unrealistically large amount of data for a real FF100 study to
ollect, but we have included this to validate the methodology and
how that the posteriors are converging correctly as the amount of
ata increases.

Thus we can see that by m = 2000 households, individual poste-
iors can be biased, but the mean bias is almost completely gone for
ll but the duration parameters (1/� and 1/�). These two periods are
he hardest to infer accurately from this type of data with posteri-
rs retaining high variance and small amounts of bias even at 2000
ouseholds. Inspection of the posteriors for individual datasets
uggests that these two parameters are highly correlated. A con-
istent pattern repeated for all scenarios is that 1/�  tends to be
verestimated and 1/� underestimated for finite amounts of data.
he differences in posteriors between datasets can also be quite
ronounced, especially for smaller numbers of households. This

s again simply down to the random nature of each outbreak. If
ore infections or detections than average happen early on then

he posteriors will be biased upwards and vice versa.
Now concentrating on the differences between parameter sets,

e observe that the largest difference in the inferred posteriors is
etween the severity scenarios. In the low severity cases there is

ess data for a given number of households and so inference is less
recise (see figures in the supplementary material); both biases and
ariances are typically larger. Apart from this, the same patterns as
oted above also hold for the other scenarios.

.2. Inference on microsimulation data

In the previous results section we demonstrated that our
ethodology is able to recover the main parameters of interest

rom data generated by the same stochastic household model as
sed for the inference. Real data are unlikely to conform fully to
ur assumptions and so we now go further and test our inference
ethodology on data that is generated by the microsimulation
odel that more accurately reflects true pandemic and social

ynamics.
For most of the parameters we wish to estimate from the

icrosimulation data we know their true values (see Table 3), but
ue to the age dependent susceptibility, calculating analytically
n expected value of the hSAR is not possible. We  need to esti-
ate this independently of the partial detection process so that we

an quantify any biases that result from the partial detection. We

an do this by performing inference on the complete household
ata (detected plus undetected cases) that is available from the
icrosimulation. Once we  have this estimate we perform inference

n only the detected data, which is the realistic scenario.
s 19 (2017) 61–73

3.2.1. Complete data inference
We perform inference for the underlying epidemiological

parameters (ˇ, �, �) by using complete case data (using both
detected and undetected cases) and assuming p = q = 1 in our infer-
ence model. As in the validation, we generate 128 datasets for
both high and low transmission scenarios and select the first 300
households from each for this inference (this number is somewhat
arbitrary, the larger the number the less variance in the estimate).
The mean values for the hSAR3 across the datasets are 0.56 and
0.5, for high and low transmission scenarios respectively. Note that
in the microsimulations there is the possibility of external infec-
tions after the first case, which violates one of our assumptions in
the inference model. This will give rise to slightly more cases so is
likely to bias the secondary attack rates higher than if there were
no external infections.

3.2.2. Partial detection inference
With the ‘true’ values of the transmissibility estimated, we

now perform essentially the same investigation, as done for the
validation data, using the microsimulation data. The same MCMC
routine and parameters were used as described in Section 3.1 and
ESS statistics for the resulting posterior samples are summarised in
the supplementary material.

Fig. 6 shows box plots derived from mean estimates of marginal
posteriors for an increasing number of household time series for (a)
high transmissibility, high severity and (b) high transmissibility,
low severity scenarios. As in the validation, each boxplot is con-
structed from the means of 128 independently generated data sets.
Plots similar to Fig. 5, showing marginal posteriors from the first 8
datasets, are shown in the supplementary material.

Both severity scenarios show similar behaviour as seen in the
validation results, with convergence of the mean estimates as the
number of households time series used is increased. There is once
again a similar pattern with respect to transmissibility and the
mean latent and infectious periods. A clear difference between
the inference on the validation data and the microsimulation data
is that both detection probabilities are biased upwards in the
microsimulation inference compared with the validation inference.
This appears to be true for both severity scenarios.

3.3. Inference on daily incoming data

Another use of our methodology is to look at the behaviour
of the posteriors and in particular the transmissibility and sever-
ities/detection probabilities p and q, as we increase the data
collected during the early stages of an outbreak. When perform-
ing inference in this way, in contrast to the previous section, we
will have data from potentially ongoing household outbreaks. For
these results we  set the truncation length as TD = 8 days, that is,
a time series is truncated after the number of detected cases has
not changed for 8 consecutive days. We also reduce the priors to
more closely match an outbreak of influenza. In particular, we  set
the prior on the hSAR to be approximately uniform over [0.1, 0.85],
by choosing and exponential prior on ˇ/� . The priors on the other
parameters are as used for the validation inference and given in the
supplementary material.

Instead of creating a contour plot of our inferred marginal poste-
riors, we split the hSAR3/q plane, quantifying transmissibility and
severity respectively, into nine regions and shade each region in
proportion to the marginal posterior that lies within a given region.
This is to reflect a stratification that would be used to inform a
pandemic response (Australian Department of Health, 2014). We

selected the first 300 households from a microsimulation outbreak
with high transmissibility and high severity and the days were cal-
culated when the cumulative number of case detections is first
greater than 50, 100, 200, . . .,  600 and performed inference on
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Fig. 6. Convergence of mean estimates from inference on microsimulation data. Each box plot is calculated from marginal mean estimates of posteriors inferred from 128
microsimulations using (a) high transmission/high severity and (b) high transmission/low severity parameters. The ‘true’ values of the parameters as estimated above are
shown  by dashed lines.

Fig. 7. Assessment of transmissibility and severity of an ongoing epidemic. The hSAR/q  plane is split into 9 regions and shaded according to the proportion of the posterior
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amples that fall into a given region. Severity is found quickly, but transmissibility rem
or  this outbreak are hSAR3 = 0.57 and q = 0.9, corresponding to a high transmissibili
escribed in Section 3.2.1.

he data available up to those days. Fig. 7 shows the evolution of
ur knowledge over this time frame, as well as the prior. The true
alues of the parameters are q = 0.9 and hSAR3 = 0.577 ± 0.02. The
SAR3 and error bounds was determined, as in the previous section,

rom inference on complete data (detected plus undetected cases)
rom 300 households. Very quickly we are able to characterise the
everity of the disease, but the natural variability in the epidemic
eans it takes considerably longer to characterise the transmissi-

ility. Note that by around day 49 almost all of the 300 households
re infected and no further households are added to the data set
ubsequently. There is still some change in the posterior after day
9, as more data is collected from the households with ongoing

nfections.

. Discussion
Early assessment of the likely impact of an emerging influenza
andemic is essential to inform decisions about the appropriate
cale of response (Van Kerkhove et al., 2010; Van Kerkhove and
erguson, 2012; McCaw et al., 2013). FF100 studies are an efficient
 variable until much later, being mostly overestimated early on. The true parameters
h severity scenario, as determined from inference on full data from the outbreak as

and effective means of obtaining data on the time course of infec-
tion within individual households. We  have developed a method
that provides accurate estimates of transmissibility and severity
from FF100 data, which have been identified as strong determi-
nants of impact. There are two main novelties to our work. The
first is modelling the surveillance process. This allows us to accu-
rately infer detection probabilities and to account for potentially
increased surveillance of infected households. It is important to
stress that the model we  fit is completely mechanistic. The param-
eter estimates produced may  be used subsequently to explore
disease dynamics and to evaluate the impact of control strategies.
The second novelty of our method is its computational efficiency,
which was a goal from the outset of this research. This efficiency
not only allows us to perform Bayesian inference, sampling from
the full posterior distribution for all parameters, but to repeat this
process multiple times over many different realisations. In particu-

lar, the inference on 2000 household time series to fully validate the
methodology would not be feasible without the tree data structure
formulated in Section 2.4. This has allowed us to perform a thor-
ough quantification of the variability and biases inherent to this
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ethod and to test it using an independent model. Such validation
s rare in the current literature.

There are a small number of previous studies that are similar
o ours (House et al., 2012; Riley et al., 2013, 2015), in working
ithin a transmissibility/severity framework. The most relevant of

hese is Riley et al. (2015) with the difference being the type of data
nalysed and the model considered. Riley et al. use data collected
rom much larger populations (military bases) and fit a determi-
istic model to each outbreak, deriving a transmissibility/severity
stimate for each population. In contrast, we work with data from
any households and fit a stochastic model, which is required
hen dealing with small populations. We  also produce a single
osterior from data across all households. Our previous work has
ttempted similar goals, but using only serial interval data instead
f full time series and assuming complete detection of cases (Black
t al., 2013; Black and Ross, 2013). This paper builds substantially
n earlier efforts by conducting inference on full time series with
ealistic partial detection of cases.

Our analysis has shown that it is possible to estimate both trans-
issibility and severity accurately from household stratified data.

omewhat surprisingly, it is also possible to estimate the initial
everity/detection probability, p, relatively accurately, even for the
ifficult case when it is very small. The transmissibility within a
ousehold is also consistently estimated well. However, the hSAR
epends on the product of  ̌ and 1/� , the transmission rate and
ean infectious period respectively; individually,  ̌ and 1/�  can

e somewhat biased and this trend persists even when full case
ata are available. With case data available only, the infection pro-
ess (as illustrated in Fig. 1) does not provide much information on
he mean infectious period, 1/� . This was also found in previous
tudies using more limited data (Black and Ross, 2013). The mean
atent period, 1/�, also showed some bias, in the direction oppo-
ite to that for 1/� , even with data from 2000 households. The only
ay to reduce these biases further is to include even more data.

t is likely that only some combination of the latent and infectious
eriod parameters can be inferred accurately for smaller data and
his is currently being investigated. It is also well known that only
he ratio ˇ/� can be estimated from final size data, but not  ̌ and

 individually, or � at all (Ball et al., 1997; Black and Ross, 2015).
tronger priors would be helpful on the mean infectious and latent
eriods, making inference on the transmissibility and severity more
ccurate. It is likely that these will be available early on from other
tudies where longer chains of infection exist, such as in schools
nd workplaces (Riley et al., 2013, 2015; Australian Department of
ealth, 2014).

The inference performs well on both the validation and the
icrosimulation data, showing the same trends, although the

iases are unsurprisingly larger when using the latter. The largest
ifference uncovered is that inference on microsimulation data

eads to the detection probabilities being biased to larger values.
rom a practical perspective this error is still quite small. For exam-
le, a detection probability of 0.93 versus 0.9 would lead us to infer
hat for 100 observed cases there are approximately 8 unobserved
ases when in fact there are 11. From a decision making perspec-
ive we only need to bound our estimates to a certain region of
ransmissibility/severity-space, as we have done when considering
he daily updated case data (see Fig. 7).

Both the stochastic household model we use for inference and
he microsimulation model make the same strong assumptions
bout the distribution of the latent and infectious periods as well
s the form of transmission (frequency dependent). These assump-
ions can be relaxed and we might instead wish to estimate these

s well by extending the stochastic model, which is straight-
orward. Often transmission is modelled by a term of the form
/(N − 1)˛, where −1 ≤  ̨ ≤ 1. Other studies have attempted to esti-
ate  ̨ (Cauchemez et al., 2004; Kinyanjui et al., 2016) (with some
s 19 (2017) 61–73

evidence of  ̨ < 1), and the same could be done in our model. We
have chosen not to do this in this study as our primary goal is to
investigate the inherent variability and any biases in the method-
ology. Doing this requires performing inference on many data sets
and hence requires a large amount of computing power. In an actual
pandemic situation, with only a single data set, the same amount
of computing power could be used to test many different models.

With few exceptions (Cauchemez et al., 2004; O’Dea et al., 2014;
Lau et al., 2015), previous work has looked at estimating parame-
ters from single outbreaks (Bettencourt and Ribeiro, 2008; Birrell
et al., 2011). For future work it would be interesting to explore the
trade-off in parameter estimate accuracy from inference on data
collected from an outbreak in a single large population (schools
or workplaces) versus outbreaks from a number of smaller ones
(households). In smaller populations stochasticity is stronger, but
this is potentially offset by independent observations of the same
process that are obviously not available with only a single outbreak.
Furthermore, the linking of the characterisation of transmissibility
and severity to pandemic response strategies, will be an interest-
ing avenue for further research. The only other study similar to ours
estimated transmissibility and severity individually for a number
of larger populations (Riley et al., 2015). Our method is unsuit-
able for such large populations and would probably require using
approximate methods such as approximate Bayesian computation
(ABC) (Toni et al., 2009) or particle MCMC  (Andrieu et al., 2010;
Golightly and Wilkinson, 2011) to sample from the posterior. We
have shown that we can perform inference on a single ongoing out-
break at a daily resolution, but this is relatively costly as it requires
running the inference from the beginning of the outbreak for each
new day. A true on-line method would be more efficient, but no
exact implementations currently exist (Kantas et al., 2015).

There are a number of improvements that can be made to both
our model and the inference methodology. We  have assumed in
our surveillance model that no information can be obtained for any
cases before the first detection. This is somewhat pessimistic and
the inference could be extended to include these data if they were
available, even if only a bound on previous cases could be estimated.
The addition of some form of serology could also improve esti-
mates by placing bounds on the numbers of unobserved cases that
have occurred in a household. This extra information could then
be incorporated into the likelihood with little extra computational
cost. Currently we estimate transmissibility only within the house-
hold. With estimates of the between-household rate of infection,
population level transmissibility can also be estimated (Walker
et al., 2016). The microsimulation model that we  used to test our
inference methodology captures heterogeneities in the population
structure (households) and immune status (age-dependent sus-
ceptibility). We  have however assumed that both transmissibility
and severity are uniform across the population. Future work could
involve relaxing this assumption to explore scenarios in which
transmissibility and severity vary with age.

To our knowledge, this is the first such study to undertake a
rigorous analysis of FF100 data and to start to quantify what infor-
mation is obtainable from it as well as any inherent variability and
biases. A key next step will be to look at how much data is needed,
and how long it would take to collect, to accurately inform pol-
icy. Our analysis of daily incoming data indicates how this could
proceed. Surveillance of known contacts beyond members of the
immediate household is also a possibility in FF100 studies, but
would be substantially more demanding in terms of utilisation
of public health capacity. However, this effort may be rewarded
by earlier identification of cases, enabling more rapid determina-

tion of key epidemic parameters to redirect efforts towards a more
targeted response. The trade off between the cost of additional
monitoring versus better parameter estimates can be investi-
gated using a combination of microsimulations and our inference
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ethodology. This combination will allow us to explore many vari-
tions on the FF100 study design and therefore to accurately inform
he design of real world studies.
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