ALTERNATIVE MODELS OF THE SOUND FIELD IN A REVERBERANT ROOM

by

Thomas J. Munro B.Sc.

A thesis presented to the Faculty
of Engineering of the University of Adelaide
for the Degree of Master of Engineering Science

Department of Mechanical Engineering
University of Adelaide

January 1982
TABLE OF CONTENTS

Summary vi
Statement of Originality vii
Acknowledgements vii

Chapter 1 ACOUSTIC MEASUREMENTS IN REVERBERATION ROOMS 1

1.1 Introduction 1

1.2 History of Reverberant Sound Measurements 3
 1.2.1 Early Work in Room Acoustics 4
 1.2.2 The Statistical Variation of Measured Quantities 9
 1.2.3 Determination of Sound Power Injection in Reverberant Fields 12
 1.2.4 Methods of Obtaining an Accurate Space Average of Measured Quantities 14
 1.2.5 Statistical Variation in Decaying Sound Fields 15
 1.2.6 Comparison of Statistical and Modal Models of Room Behaviour 17
 1.2.7 Prediction of Rate of Decay by Alternative Models 18

1.3 Standard Measurement Methods 20
 1.3.1 Sound Power Level 21
 1.3.2 Sound Absorption Coefficient 25
 1.3.3 Sound Transmission Loss 27

Chapter 2 ALTERNATIVE THEORETICAL DEVELOPMENTS 30

2.1 Introduction 30

2.2 The Wave Equation and Solutions 32

2.3 Steady State Behaviour of the Modal Sound Field 37
 2.3.1 Equal Energy Distribution 37
 2.3.2 Equal Power Flow 40

2.4 Modal Description of the Decaying Sound Field 41

2.5 Modal Damping by the Acoustic Ray Approximation 43
 2.5.1 Prediction of Modal Decay Rate 43
 2.5.2 Norris-Eyring Equation as a Special Case 48

2.6 Miscellaneous Formulas 49

Chapter 3 MATERIALS AND METHODS 51

3.1 Physical Facilities 51

3.2 Instrumentation, Signal Generation and Measurement 53
 3.2.1 Generation of Sound 54
 3.2.2 Measurement and Processing of Sound Pressure Levels 56

3.3 Experimental Methods 57
 3.3.1 Measurement of Modal Decay Rate 57
 3.3.2 Measurement of Steady State Modal Energy Level 60
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>RESULTS: MODAL BEHAVIOUR IN THE EMPTY ROOM</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>4.1 Verification of Modal Behaviour</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>4.1.1 Modal Behaviour in Steady State Conditions</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>4.1.2 Modal Behaviour in a Decaying Sound Field</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>4.2 The Nature of Modal Decay</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>4.3 Analysis of the Modal Rate of Decay</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>4.3.1 The Traditional Modal Approach</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Modal Damping by the Ray Tracing Approximation</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Probable Reasons for the Failure of the Models to Predict Actual Behaviour</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>4.4 Initial Energy Level of Room Modes</td>
<td>84</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>THE ROTATING DIFFUSER, ITS EFFECT ON MODAL STRUCTURE</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.1 Previous Work with Rotating Diffusers</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>5.2 Experimental Results</td>
<td>92</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>CONCLUSIONS</td>
<td>101</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>103</td>
</tr>
</tbody>
</table>
SUMMARY

Current standard test methods for acoustic measurements made in reverberant rooms have been found to yield inconsistent results at low frequencies. The theoretical basis of the standard test methods relies upon the assumption that the reverberant sound field can be modeled as completely diffuse at all frequencies. Thus, inconsistencies have been attributed to a lack of diffusivity at low frequencies. This thesis examines the appropriateness of the diffuse field assumption at low frequencies and shows that the strong modal characteristics of a low frequency reverberant sound field precludes the possibility of modeling such a field as diffuse.

A model of the reverberant sound field which includes the observed modal characteristics and is based upon well known solutions to the wave equation is presented. This model is dependent on the accurate prediction of the steady state amplitude and the decay rate of individual modes. In predicting the steady state amplitude of the modes contributing to a reverberant sound field, the assumption is usually made either implicitly or explicitly that there is equal energy distribution between modes. In this thesis, an alternative approach based on the assumption that there is equal power flow to all modes will also be considered. These assumptions are discussed and their influence on the relative difference in the steady state sound pressure level of any two modes is analytically investigated.

Two models for predicting the decay rate of individual modes are also examined. The first is based upon an approximate solution to the wave equation for a very lightly damped room. The second is based upon a combination of the modal approach and the ray tracing approach as applied to the rectangular room. Both models rely upon the assumption that the walls can be accurately modeled as locally reactive and that the wall
impedance can be modeled as constant over the wall surfaces and throughout the frequency range investigated.

Experimental results are presented for comparison of each model. Results indicate that the wall surfaces of the room cannot be modeled as being locally reactive as their response to excitation by the reverberant sound field in the frequency range investigated is characterized by modal vibration. In consequence it is shown that neither model accurately predicts the relative rates of decay of the measured modes. The relative amplitudes of individual modes are seen to be highly dependent on the effective coupling between each mode and the sound source. This is shown to be highly unpredictable for commonly used sound sources.

A widely recommended means of enhancing the diffusion in a reverberant room is the installation of a rotating diffuser. This thesis examines the effects of a rotating diffuser on the modal characteristics of a reverberant sound field and shows that it substantially disrupts the modal structure of the sound field.
To the best of the candidate's knowledge and belief, this thesis contains no material which has been accepted for the award of any degree or diploma in any University, and contains no material previously published or written by another person, except where due reference is made in the text.

Thomas J. Munro
ACKNOWLEDGEMENTS

The work described in this thesis was carried out in the Department of Mechanical Engineering of the University of Adelaide under the aegis of Professor R.E. Luxton. The author is indebted to Professor Luxton for the opportunity to carry out this research.

To Dr D.A. Bies, who supervised the work, the author is deeply indebted, both for his constant interest and encouragement throughout the course of the research and for his helpful suggestions during the preparation of this thesis.

To the University staff, thanks are due for their assistance in the preparation of the facilities in which the work was completed, and in particular to Mr H. Bode and Mr R. Curtin.

The author gratefully acknowledges the Australian American Educational Foundation who provided the financial support which made the completion of this work possible.