Improving the Nutritive Value of Low Quality Roughage for Ruminants

by Ensiling with Citrus Pulp and Poultry Litter

A thesis submitted to

The University of Adelaide

for the degree of

Master of Applied Science (Agriculture)

by

Migwi, Perminus K.

(B Sci. Agric., University of Nairobi, Kenya)

Department of Animal Science

UNIVERSITY OF ADELAIDE

AUSTRALIA

February 1997
# TABLE OF CONTENTS

Table of Contents..............................................................................i
Abbreviations...................................................................................vii
Summary...........................................................................................ix
List of Tables.....................................................................................xi
List of Figures...................................................................................xiii
Declaration.......................................................................................xiv
Acknowledgments............................................................................xv

Chapter 1. General Introduction..........................................................1

Chapter 2. Literature Review...............................................................5
  2.1. Nutritional value of wheat straw.............................................5
  2.2. Methods of improving digestibility of crop residues..............8
    2.2.1. Physical treatment.........................................................10
    2.2.2. Chemical treatment......................................................11
        2.2.2.1. Alkaline hydrogen peroxide.................................12
        2.2.2.2. Ammonia treatment.............................................13
    2.2.3. Limitations to the use of chemicals...............................14
    2.2.3. Biological treatment....................................................15
  2.3. Improving microbial fermentation through use of supplements.16
2.3.1. Use of energy supplements on low quality roughage...........................................16
2.3.2. Nitrogen and sulphur.......................................................................................19
2.4. Citrus by-products in low quality roughage.........................................................21
2.5. Supplementing low quality roughage with poultry waste...................................23
2.6. Ensiling of low quality roughage with poultry waste.........................................25
2.7. Limitations to the use of poultry waste...............................................................27
2.8. Opportunities for ensiling wheat straw with citrus pulp and poultry litter........28

Chapter 3. The effect of molasses additive on the fermentation of wheat straw
ensiled with citrus pulp and poultry litter including in vitro
digestibility studies.................................................................................................30
3.1. Introduction..........................................................................................................30
3.2. Materials and methods......................................................................................31
  3.2.1. Ingredients used in the silage........................................................................31
  3.2.2. Preparation of the pre-mix and the ensiling process....................................31
  3.2.3. Preparation of the silage extract..................................................................32
  3.2.4. Chemical analyses.......................................................................................33
    3.2.4.1. Determination of pH ...........................................................................33
    3.2.4.2. Titratable acidity content of the silage................................................33
    3.2.4.3. Proximate analysis of the ingredients, silage & silage extract..........33
    3.2.4.4. Determination of volatile fatty acids..................................................34
Chapter 4. Effects of citrus pulp on the fermentation characteristics of wheat straw and poultry litter including in sacco digestibility studies with sheep

4.1. Introduction

4.2. Materials and methods

4.2.1. Plant materials and ingredients used in making of the silage

4.2.2. Preparation of the pre-mix and the ensiling process

4.2.3. Animals and feeding management

4.2.4. Preparation of the silage and extracts for chemical analyses

4.2.5. Microbiological analysis

4.2.6. In sacco degradability studies on the silage

4.2.7. Statistical analysis

4.3. Results

4.3.1. Composition of the ingredients used in making the silage

4.3.2. Chemical composition and the biochemical characteristics of pre-mix and silage

4.3.3. Dry matter degradability of the silage

4.5. Discussion and conclusions
Chapter 5. The effects of citrus pulp ensiled with wheat straw and poultry litter on in vivo digestibility and nitrogen balance in sheep

5.1. Introduction.................................................................80
5.2. Materials and methods................................................81
  5.2.1. Animals and housing.............................................81
  5.2.2. Feeds and feeding management..................................82
  5.2.3. Feed composition..................................................83
  5.2.4. Sample collection..................................................84
  5.2.5. Chemical analyses.................................................86
  5.2.5.1. Proximate analysis of feed, faeces and refusals...........86
  5.2.5.2. Energy content..................................................86
  5.2.5.3. In vivo digestibility.............................................86
  5.2.5.4. Nitrogen balance...............................................87
  5.2.5.5. Statistical analysis............................................87
5.3. Results.................................................................87
  5.3.1. Feed intake and in vivo digestibility..........................87
  5.3.2. Nitrogen balance..................................................90
5.4. Discussion and conclusions..........................................91
  5.4.1. Dry matter and its effect on intake............................91
  5.4.2. Digestibility and intake of the diets..........................91
5.4.3. Fermentation quality and its effect on the intake of the silage based diet ................................................................. 92
5.4.4. Digestible energy intake........................................................................................................................................... 94
5.4.5. Nitrogen balance of the silage based diets .................................................................................................................. 95
5.4.6. Energy supplements.................................................................................................................................................. 97
5.4.7. Effect of poultry litter on the intake of the diet ........................................................................................................ 97
5.4.8. Conclusions.............................................................................................................................................................. 98

Chapter 6. General discussion, conclusions and future studies................................................................. 100
6.1. General discussion and conclusions .......................................................................................................................... 100
6.2. Future studies............................................................................................................................................................. 106

References........................................................................................................................................................................ 107
## Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
</tr>
<tr>
<td>ADL</td>
<td>Acid detergent lignin</td>
</tr>
<tr>
<td>AFRC</td>
<td>Agricultural and Food Research Council</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees centigrade</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CP</td>
<td>crude protein</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>DE</td>
<td>digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organisation of the United Nations</td>
</tr>
<tr>
<td>GE</td>
<td>gross energy</td>
</tr>
<tr>
<td>In sacco</td>
<td>in bag</td>
</tr>
<tr>
<td>In vitro</td>
<td>in glass</td>
</tr>
<tr>
<td>In vivo</td>
<td>in animal</td>
</tr>
<tr>
<td>IVOMD</td>
<td><em>in vitro</em> organic matter digestibility</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable energy</td>
</tr>
<tr>
<td>MJ</td>
<td>mega joule</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre (10^3 \text{ L})</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
</tbody>
</table>
mM  millimole (10^{-3} \text{ Mole})

N  nitrogen

NDF  Neutral detergent fibre

NE  net energy

NPN  Non-protein nitrogen

OM  organic matter

OMD  organic matter digestibility

Pre-mix  homogenous mixture of various ingredients

rpm  rotations per minute

sem  standard error of means

μl  microlitre (10^{-6} \text{ L})

VFA  volatile fatty acid
Summary

Investigations were completed on the effect of ensiling wheat straw with different proportions of citrus pulp, in the presence of poultry litter as a non-protein nitrogen source with or without molasses. The study evaluated quality of fermentation of the silage and also its nutritive value to ruminants on the basis of in vitro and in sacco digestibility. Animal response to the silage was also evaluated in an in vivo digestibility and nitrogen balance trial with Australian Merino sheep.

The four treatments containing wheat straw, poultry litter and citrus pulp respectively on a DM basis were T1 (75:25:0); T2 (60:25:15); T3 (45:25:30) and T4 (30:25:45). For each treatment between 5-10 kg of the thoroughly mixed material was ensiled for a period of 60 days, in 20 L hard plastic container laboratory silos. Inclusion of 5% molasses did not have any significant effect on pH, NDF, ADF, ADL or in vitro OMD. However, the presence of molasses resulted in a significant decrease in volatile fatty acids including N-butyric acid and a complete elimination of coliforms. Although, there was a significant difference in silage titratable acidity levels between silage with 0 and 5% molasses, the magnitude of the difference was small except in the silage with 30% citrus pulp. Increase in citrus pulp from 0 to 45% resulted in a very highly significant increase in silage acidity 2. There was no significant difference in pH between silage with 30 or 45% citrus pulp.
Wheat straw, poultry litter and citrus pulp silage were prepared in commercial quantities for both *in sacco* and *in vivo* studies and evaluation of any changes in fermentation quality. The results on composition and biochemical characteristics of the ensiled material before and after 60 days fermentation (time effect) showed a significant increase in titratable acidity, soluble nitrogen, ADF, ADL and ash content. However, there was a significant decrease in pH, DM and OM, in addition to a complete elimination of coliforms in the silage. The increase in the level of citrus pulp in the silage from 0 to 45% resulted in a highly significant increase in potential degradability of DM from 470 to 581.4 g/kg and the fractional rate of degradation from 0.027 to 0.062 per hour. In an *in vivo* experiment, the organic matter intake and digestibility increased (p<0.05) with the level of citrus pulp in the diet. Silage with 30% citrus pulp included in the diet at 55.5% on DM basis resulted in the best performance for intake, digestibility and nitrogen retention.

It is was concluded from this study that ensiling wheat straw with about 25% poultry litter and 30 or 45% citrus pulp without molasses, could produce silage of relatively high fermentation quality and could provide ruminants with an inexpensive source of nutrients. However, the ration incorporating the silage needs to be well formulated and fortified with other non-ensiled ingredients, to correct any nutrient deficiencies in the diet and increase acceptability to the animals.
List of Tables

Table 1.1. Nutritive value indicators of wheat and rice straws........................................7

Table 3.1. The physical composition (%DM) of silage prepared with and:
without molasses........................................................................................................31

Table 3.2. Chemical composition (%DM) of the ingredients used in the silage............39

Table 3.3. The effect of ensiling wheat straw with citrus pulp and poultry litter:
on pH, titratable acidity and coliform levels............................................................40

Table 3.4. The effect of ensiling wheat straw with citrus pulp and poultry litter:
on the fibre content and in vitro organic matter digestibility...............................42

Table 3.5. The effect of ensiling wheat straw with citrus pulp and poultry litter:
on soluble nitrogen and volatile fatty acids content..............................................43

Table 4.1. Chemical composition (g/kg DM) and some biochemical characteristics of ingredients used in making silage...........................................59

Table 4.2. Chemical composition of pre-mix containing wheat straw, poultry litter and citrus pulp before ensiling (P) and after fermentation for 60 days (S).................................................................61

Table 4.3. Biochemical characteristics of pre-mix containing wheat straw, poultry litter and citrus pulp before ensiling (P) and after 60 days of fermentation (S).................................................................63
Table 4.4. Effect of various levels of citrus pulp on the DM degradability of wheat straw, poultry litter and citrus pulp silage diets fed to Australian Merino sheep.................................................................65

Table 5.1. Composition (%DM) of diets by individual ingredients...............................83

Table 5.2. Chemical composition (g/kg DM) of diets used in the in vivo digestibility study.................................................................85

Table 5.3. Chemical composition of lucerne and wheat bran used to balance citrus pulp silage based diets.....................................................85

Table 5.4. Mean intake and digestibility of nutrients in wheat straw, poultry litter and citrus pulp silage based diets........................................89

Table 5.5. Nitrogen balance studies in Australian Merino wethers fed basal diets containing wheat straw, poultry litter and citrus pulp silage..............90
List of Figures

Figure 4.1. Effect of various levels of citrus pulp on the dry matter (DM) degradability of wheat straw, poultry litter and citrus pulp silage in Australian Merino sheep.................................................................66
Declaration

I hereby declare that this thesis contains no material that has been accepted for the award of another degree or diploma in any University and to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference is made in the text.

I therefore, consent to this thesis being deposited in the University Library and be made available for photocopying and loan.

Migwi, Perminus K.

28th February 1997
Acknowledgments

I would like to extend my sincere gratitude to the following people for their valuable assistance and support during the course of the work that resulted in the production of this thesis:

- My supervisors Dr Jim Gallagher (Dept of Animal Science, University of Adelaide) and Dr R. J. van Barneveld (South Australia Research and Development Institute) who have guided and encouraged me during the supervision of this project and for their constructive criticism of this thesis. Dr van Barneveld also kindly completed the fistulation of the sheep for this project;

- Dr John Brooker, for the use of his laboratory in the initial part of this project and for his helpful comments of this thesis;

- Dr Brian Siebert, for his guidance and assistance during the analysis of the volatile fatty acids using gas liquid chromatography;

- Dr Helena Ward, for her guidance in the microbiological studies, particularly the coliforms;
All the staff of the SARDI (Pig and Poultry Production Institute - Nutrition laboratory), particularly Ms Jeanine Baker and Mr Steve Szarvas for their valuable assistance and support during the various laboratory analyses;

Ms Michelle Lorimer for her biometrical support in data analysis and all the staff in Undergraduate Training Unit (UTU) in Roseworthy Campus for their assistance and use of their laboratory facility for microbiological studies;

All other staff and students particularly of the Animal Science Department who may have assisted me in one way or an other during the course of my project.

I would also like to acknowledge, with thanks, the financial support I received from Australian Agency for International Development (AUSAID) through the Government of the Republic of Kenya, which enabled me to undertake and complete this study and my employer, Egerton University for granting me the study leave.

Finally, I wish to thank my wife, Gladys and our three children Beatrice, Robinson and Brian for their love, encouragement and patience during the period of my study.