

LEAF GAS EXCHANGE AS INFLUENCED BY ENVIRONMENTAL FACTORS IN MANGO CULTIVARS (*MANGIFERA INDICA L*), GROWN IN THE SEMI ARID TROPICS

BY

PETER ROBERT JOHNSON

ADELAIDE UNIVERSITY DEPARTMENT OF HORTICULTURE, VITICULTURE AND OENOLOGY

Masters of Agricultural Science Degree

Submitted For Examination

August 1998

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Peter R Johnson

(24/7/98)

Acknowledgments

I would like to acknowledge my supervisor and friend the late Dr Elias Chacko who provided the initial inspiration for the study as well as the follow up encouragement and support. Tragically Dr Chacko passed away before my thesis was completed, I wish to dedicate this thesis in memory of him.

I thank Dr Don Aspinall for being able to review my drafts and offer helpful suggestions.

I would also like to thank Dr Kesi Kesavan for providing local support and helpful discussions.

TABLE OF CONTENTS

	LIST	OF TABLES			Page 1
	LIST OF FIGURES				1
	ABBREVIATIONS				3
	ABS	FRACT			4
1.		ODUCTION			6
			ETHODS		17
2.	MAI	MATERIALS AND METHODS			
	2.1	Location			17
		2.1.1		Experimental site	17
		2.1.2		Climate	17
		2.1.3		Soils	18
		2.1.4		Experimental trees	18
	2.2	Methods			21
		2.2.1		Gas exchange measurements	21
		2.2.2		Monitoring soil moisture	21
	2.3	2.3 Experiments on factors		uencing leaf gas exchange and related	
		parameters.			24
		2.3.1 Exper	iment 1	Irradiance	24
		2.3.2 Exper	iment 2	Leaf age	24
		2.3.3 Exper	iment 3	Vapour pressure deficit	25
		2.3.4 Expe	iment 4	Fruiting	26
		2.3.5 Expe	riment 5	Soil moisture	26
3.	RES	ULTS			28
	3.1	Experiment 1	Effect of in	rradiance on gas exchange	28
	3.2	Experiment 2	Gas excha	Gas exchange as influenced by leaf emergence	
				and diurnal variations in leaf gas	
				change in three mango cultivars	36
	3.4	Experiment 4		ruiting on leaf gas exchange	47
	3.5	Experiment 5		oil moisture on leaf gas exchange	51

4. DISCUSSION

5. BIBLIOGRAPHY

69

58

List of tables

Table	Title	
Table 1	Average monthly temperatures, rainfall, relative humidity and evaporation	17
	at the Ord river irrigation area	
Table 2.1	Yield for cultivars Kensington, Irwin and Tommy Atkins the Ord river	19
	irrigation area	
Table 2.2	Date for full anthesis for cultivars Kensington, Irwin and Tommy Atkins.	19
Table 3.1	Light and leaf gas exchange parameters of cultivar Kensington	29
Table 3.2	Light and leaf gas exchange parameters of cultivar Irwin	29
Table 3.3	Light and leaf gas exchange parameters of cultivar Tommy Atkins	30
Table 4	Effect of drought on internal CO ₂ concentrations	56
Table 5	Effect of drought on fruit productivity and size	56

List of figures

Figure	Title	Page
Figure 1	Growth rate of cultivars Kensington, Irwin and Tommy Atkins.	20
Figure 2	Relationship between volumetric moisture content and neutron moisture	23
	probe readings.	
Figure 3	Net photosynthesis as a function of photosynthetic photon flux density.	31
Figure 4	Transpiration as a function of photosynthetic photon flux density.	31
Figure 5	Stomatal conductance as a function of photosynthetic photon flux density.	32
Figure 6	Internal CO ₂ concentration as a function of photosynthetic photon flux	32
	density.	
Figure 7	Development of leaf length.	34
Figure 8	Relationship between leaf age and net photosynthesis.	34
Figure 9	Relationship between leaf age and transpiration.	34
Figure 10	Relationship between leaf age and stomatal conductance.	35
Figure 11	Diurnal variations in net photosynthesis under conditions of high vapou	r 38
	pressure deficit.	
Figure 12	Diurnal variations in net photosynthesis under conditions of low vapou	r 38
	pressure deficit.	
Figure 13	Diurnal variations in stomatal conductance under conditions of high vapou	r 39
	pressure deficit.	

Figure	Title	Page	
Figure 14	Diurnal variations in stomatal conductance under conditions of low vapou pressure deficit.	r 39	
Figure 15	Diurnal variations in transpiration under conditions of high vapour pressure deficit.	e 40	
Figure 16	Diurnal variations in transpiration under conditions of low vapour pressure deficit.	e 40	
Figure 17	Diurnal variations in internal CO_2 concentration under conditions of high vapour pressure deficit.	n 41	
Figure 18	Diurnal variations in internal CO_2 concentration under conditions of low vapour pressure deficit.	v 41	
Figure 19	Diurnal variations in vapour pressure deficit.	42	
Figure 20	Relationship between conductance and net photosynthesis.	42	
Figure 21	Relationship between conductance and vapour pressure deficit.	42	
Figure 22	Relationship between conductance and leaf temperature.	43	
Figure 23	Relationship between net photosynthesis and leaf temperature.	43	
Figure 24	Relationship between cultivar conductance and seasonal changes in vapou pressure deficit.	r 43	
Figure 25	Seasonal variations in leaf gas exchange parameters.	45	
Figure 26	Seasonal changes in vapour pressure deficit.	46	
Figure 27	Effect of fruiting on net photosynthesis	48	
Figure 28	Effect of fruiting on net photosynthesis over a diurnal cycle.	48	
Figure 29	Effect of fruiting on stomatal conductance.	49	
Figure 30	Effect of fruiting on stomatal conductance over a diurnal cycle.	49	
Figure 31	Effect of fruiting on transpiration conductance.	50	
Figure 32	Effect of fruiting on transpiration conductance over a diurnal cycle.	50	
Figure 33	Effect of drought on net photosynthesis.	53	
Figure 34	Effect of drought on stomatal conductance.	54	
Figure 35	Effect of drought on transpiration conductance.	55	
Figure 36	Soil moisture content during drought period.	57	

ABBREVIATIONS

ABA	Abscisic Acid	
C _i	Internal carbon dioxide concentration	μL L ⁻¹
D/N	Day/Night	
E_1	Transpiration	mmol m ⁻² s ⁻¹
fd	Fruit development	
fl	Flowering	
gs	Stomatal Conductance	mmol m ⁻² s ⁻¹
ha	Harvest	
Irr	Irrigated	
IRGA	Infra Red Gas Analyser	
T_1	Leaf temperature	⁰ C
LGE	Leaf Gas Exchange	
MT	Metric Tonne	
Nir	No Irrigation	
NMP	Neutron Moisture Probe	
ORIA	Ord River Irrigation Area	
\mathbf{P}_{\max}	Maximum Net Photosynthesis	μ mol m ⁻² s ⁻¹
Pn	Net Photosynthesis	µmol m ⁻² s ⁻¹
PPF	Photosynthetic Photon Flux	µmol quanta m ⁻¹ s ⁻¹
PPFD	Photosynthetic Photon Flux Density	µmol m ⁻² s ⁻¹
RH	Relative Humidity	%
SE	Standard Error	
SMC	Soil Moisture Content	cm
VPD	Vapour Pressure Deficit	kPa
VMC	Volumetric Moisture Content	
ψ_1	Leaf Water Potential	MPa

ABSTRACT

Leaf gas exchange (LGE) of mango cultivars Kensington, Irwin and Tommy Atkins was investigated in a series of field experiments under varying environmental and physiological conditions. These experiments were conducted in the Ord River Irrigation Area Kununurra Western Australia

1. The effect of photosynthetic photon flux density (PPFD) at the leaf surface was studied. Light saturation of photosynthesis of mature leaves occurred between $1250 - 1500 \mu mol m^{-2} s^{-1}$ on Kensington, Tommy Atkins and Irwin between $1250-1750 \mu mol m^{-2} s^{-1}$. There was no significance (P ≤ 0.05) between cultivars.

2. Mango leaves reached their full size at four weeks after emergence. Maximum Pn, and gs was reached 5 weeks after leaf emergence. Cultivar had no influence on the results.

3. Pronounced diurnal variations in Pn, g_s , E_1 and C_i were observed as a result of fluctuating vapour pressure deficit. Pn, g_s , and E_1 were significantly lower in cultivar Kensington during periods of high VPD (Dry Season), However little cultivar difference occurred during periods of low VPD (Wet season). Since high VPDs are commonly experienced during the period of fruit development, carbon assimilation may become limited by stressful atmospheric conditions as the day proceeds. An inverse relationship existed between g_s and VPD in all cultivars. Seasonal Pn, g_s , and E_1 variations were more pronounced than the variations between cultivars.

4. A significant reduction in Pn was observed on leaves adjacent to developing fruit with both Kensington and Irwin cultivars. It is assumed that the fruit may primarily affect stomatal aperture with subsequent effects on Pn and E_1 of the leaves. Possible mechanisms leading to such effects are discussed.

5. Non irrigated trees had a significant reduction in g_s and later a reduction in Pn, when compared to irrigated trees although no significant differences in LGE were observed between cultivars. Kensington responded with a reduction in fruit size whereas Irwin was observed to have greater fruit drop and leaf abscission.