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independent association studies of different ethnicities,
platforms or even species, while avoiding the technical
difficulties when performing meta-analysis directly on the
marker-level association data [11]. To run meta-MSEA,
users simply need to navigate to the Meta-MSEA tab, and
upload multiple datasets following the same workflow as
previously described for MSEA to generate results for
individual datasets as well as the pathway/network-level
meta-analysis results. The result files produced by Meta-
MSEA follow the same layout as MSEA.

Weighted key driver analysis (wKDA)
wKDA aims to pinpoint key regulator genes or key
drivers (KDs) of the disease related gene sets from
MSEA or meta-MSEA using gene network topology and
edge weight information. Specifically, wKDA first
screens the network for candidate hub genes. Then the
disease gene sets are overlaid onto the subnetworks of
the candidate hubs to identify KDs whose neighbors are
enriched with disease genes.

Data preparation
Two types of files are required for wKDA: 1) disease-
associated gene sets (Fig. 4a) and 2) molecular networks
(Fig. 4c). wKDA can be run as either the continuing step
of MSEA or meta-MSEA or as an independent step
(Fig. 2). If the user elects to continue wKDA from MSEA
or meta-MSEA, then the enriched gene sets from these
analyses will be used as the disease-associated gene sets.
If the user elects to run wKDA as a separate module,
they must upload their own gene sets to the web server
or they can use the pre-loaded sample gene set for test-
ing. With regards to molecular networks, wKDA sup-
ports a wide range of directed and undirected regulatory

networks. wKDA is designed to utilize edge weight infor-
mation in gene networks, which could be connection
strength or reliability measures. If no edge weight infor-
mation is available, wKDA can also operate by consider-
ing equal weights to all edges. The web server provides a
collection of tissue-specific Bayesian networks previously
constructed in human and mouse studies (Additional file
1: Table S1). There are also a large number of publicly
available network resources, such as protein-protein
interactions (PPI) [12], BioGRID [13], GeneMANIA [14]
and GIANT [15], which could be used in wKDA.

Parameter setting
Core wKDA parameters include 1) search depth, which
specifies the number of layers to expand in the network
when determining the neighboring genes of candidate
KDs for enrichment assessment, and 2) edge directional-
ity, which specifies whether to neglect edge directionality
(incoming and outgoing) or require the candidate hubs
to be upstream of neighbor genes (only outgoing) for
networks that carry directionality information (Fig. 4b).
Additional parameters are described in detail in the on-
line tutorial.

Result interpretation
Summary results of wKDA will be displayed on the web-
page (Fig. 4d), which reports top 5 KDs for each disease
gene set along with the statistics. Users could also down-
load four detailed results files: 1) “wKDA_kd_pvalues.txt”,
a summary table of all KDs ranked by p -values and FDR;
2) “wKDA_kd_full_results.txt”, providing detailed statistics
on all KDs identified; 3) “wKDA_kd_tophits.txt”, p-value
summary table for only the top KDs for each disease gene
set. 4) “wKDA_hub_structure.txt”, specifying hub-cohub
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Fig. 4 Screenshots showing a step-by-step overview of the wKDA module using sample data on the web server. a Gene set format. b Parameters.
c Network format. d Example result summary table containing the IDs of the disease associated gene sets, their KDs, p - values and FDRs of the
KDs, gene counts of KD subnetworks, and fold enrichment of the KD subnetworks for disease genes
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relationship. The co-hub structure is useful to group KDs
with highly overlapping network topology, and to retrieve
list of independent KDs for more efficient prioritization.
Additionally, wKDA provides Cytoscape-ready files that
can be used in Cytoscape [16] for a more customized
visualization than the included web-based network
visualization module.

Network visualization
Our web server provides a convenient module to allow
users visualize top KDs and subnetworks using Cytoscape
Web v0.8 [17]. The top 5 KDs for each disease gene set
from wKDA will be automatically visualized, as exemplified

in Fig. 5a. The visualization is interactive so that users can
make real-time changes such as zooming in on a node of
interest by only considering that particular subnetwork
(Fig. 5b) or by filtering a subnetwork based on the edge
weight information (Fig. 5c), as detailed in the tutorial page.

Application example
As an illustration of our web server’s workflow and
analysis results, we applied the Mergeomics web server
to a publically available low-density lipoprotein (LDL)
GWAS dataset from the GLGC consortium [18]. All files
mentioned within this section are provided as example
files on the web server. To correct for LD between

Fig. 5 Screenshots of the network visualization module output generated by the default sample files in the wKDA module. a Overview of a
network comprised of top KDs for LDL-associated gene sets, with 5 KDs for each gene set displayed. KDs are depicted as diamond nodes and
node colors indicating gene set membership. b Focused subnetwork view of key driver of interest Fasn when filtering the network in (a) by
submitting a “Fasn” query or right clicking the node. c The network can be filtered to display only nodes with edge weights higher than a certain
threshold: 4.0 in this case
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SNPs, we used the MDF analysis module and the follow-
ing input files: the GLGC LDL GWAS summary statistics
(SNPs, −log10 p - values), SNP-gene mapping based on
50 kb chromosomal distance, and the Hapmap CEU LD
file containing SNPs with r2 > 0.7 as the Marker Depend-
ency file. We also filtered the GWAS loci by only consider
the top 50 % SNPs ranked by p - values to reduce random
noise from the weaker association spectrum.
After correction for marker-dependency using MDF, the

resulting association and mapping files were used directly as
input for MSEA (Fig. 3a-b) using gene permutation and de-
fault setting for the other parameters (Fig. 3c), to test for en-
richment for canonical pathways collected from KEGG,
Biocarta and Reactome databases (Fig. 3d-e). Upon comple-
tion of MSEA, a summary table was produced which details
the top pathways ranked by FDR along with descriptions of
the pathways and top associated genes and SNPs in each
pathway. As exemplified in Fig. 3f, “Metabolism of lipids
and lipoproteins”, “biosynthesis of unsaturated fatty acids”,
and “terepenoid backbone biosynthesis” were three of the
top pathways identified among others. APOC2, APOE, and
LDLR were listed as the top associated genes in the “metab-
olism of lipids and lipoproteins” pathway, and their corre-
sponding SNPs were also provided in the summary table.
Links to detailed result tables were also displayed for file
download. Furthermore, these top pathways were checked
for overlaps and merged if significant overlaps in gene mem-
bership between pathways were identified. A summary table
of the merged pathways was also displayed (not shown).
To identify potential KDs and subnetworks for the LDL-

associated pathways, the merged pathways were used dir-
ectly as input for wKDA (Fig. 4a). wKDA was run using
default parameters (Fig. 4b) and a liver Bayesian network
(Fig. 4c). Upon completion, a summary table is produced
(Fig. 4d) which lists the top 5 KDs for each merged
module and information about their local subnetwork
structure. For example, Fasn was a KD for the Metabolism
of Lipids and Lipoproteins pathway. Links to detailed
result tables were also displayed for file download.
The wKDA results can be viewed directly using the

interactive visualization feature, which by default illus-
trates the top 5 KDs for each gene set and their local
subnetworks with disease genes highlighted (Fig. 5a).
The networks can be filtered by selecting a particular
KD of interest to focus on (Fig. 5b) or by removing
edges below an edge weight cutoff to focus on high
confidence network connections (Fig. 5c). To facilitate
further customization of network views, Cytoscape-
ready files can be downloaded for external visualization.

Conclusions
We have implemented the Mergeomics pipeline as a user-
friendly, publicly available web server that can facilitate
multidimensional omics data integration to expedite novel

discoveries. The web server also pre-populates a wide
range of publically available data sources. Users can apply
the pipeline to their own data in conjunction with any
preloaded data to identify disease-associated pathways,
gene networks, and key regulators. The web server in-
cludes step-by-step tutorials, examples and visualization
tools in a web-based platform. The flexibility of the web
server to accommodate various omics data types and to
conduct pathway and network-level meta-analysis of
multiple studies of different design will boost our ability
to integrate big data.

Additional file

Additional file 1: Table S1. List of public datasets available for access
in the Mergeomics web server. (DOCX 128 kb)
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