REGIONAL BIODIVERSITY MANAGEMENT STRATEGY:
CASE STUDY ON THE FLINDERS RANGES

By

Batbold Dorjgurhem Otgoid
B.Sc.Agric. (Odessa, Ukraine)

This thesis is submitted in fulfilment of the
requirements for the
Degree of Master of Applied Sciences

In

The University of Adelaide
Faculty of Agricultural and Natural Resource Sciences
Department of Applied and Molecular Ecology
Australia

July 1999
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv
PREFACE .. v
ABSTRACT .. vi

CHAPTER 1
GENERAL INTRODUCTION .. 1

CHAPTER 2
SAMPLING THE BIODIVERSITY ... 6

2.1. INTRODUCTION .. 6

2.2. BIODIVERSITY - A BACKGROUND ... 6

2.2.1. Genetic diversity ... 7
2.2.2. Species diversity ... 8
2.2.3. Ecosystem diversity ... 8

2.3. WHY MANAGE FOR THE CONSERVATION OF BIODIVERSITY? 9

2.4. SPECIES - A TARGET FOR BIODIVERSITY MANAGEMENT 11

2.4.1 Indicator species ... 12
2.4.2 Umbrella species ... 12
2.4.3 Flagship species .. 13
2.4.4 Keystone species .. 13

2.5. CONCLUSION ... 14

CHAPTER 3
THEORETICAL NOTIONS OF BIODIVERSITY MANAGEMENT
ON A REGIONAL BASIS .. 15

3.1. INTRODUCTION .. 15
3.2. THE IMPORTANCE OF MANAGING BIODIVERSITY ON A
REGIONAL BASIS .. 15
3.2.1 Protected areas in practice .. 16
3.2.2 Off-reserve conservation .. 18
3.2.3 Conclusion .. 22

3.3. REGIONAL BIODIVERSITY MANAGEMENT PRACTICES 23
3.3.1 Biosphere reserve ... 24
3.3.2 Bioregionalism ... 25

3.4. THE FLINDERS RANGES AS A CASE STUDY 28

CHAPTER 4
BIOCLIMATIC ANALYSIS OF SOUTH AUSTRALIAN DISTRIBUTION
OF THE YELLOW-FOOTED ROCK WALLABY PETROGALE
XANTHOPUS

4.1. INTRODUCTION .. 31
4.2. P. XANTHOPUS DISTRIBUTION IN SOUTH AUSTRALIA 32
 4.2.1. Past distribution .. 33
 4.2.2. Present distribution .. 34

4.3. CLIMATIC CONDITIONS OVER THE KNOWN DISTRIBUTION OF
P. XANTHOPUS ... 39

4.4. BIOCLIMATIC PREDICTION SYSTEM: A TOOL FOR RAPID
ASSESSMENT OF THE SPECIES DISTRIBUTION 40
 4.4.1. Bioclimatic prediction system within ANUCLIM package 40
 4.4.2. Climate surfaces ... 42
 4.4.3. Bioclimatic parameters and climatic profile 43
 4.4.4. Prediction of species distribution 46

4.5. STATISTICAL MODELLING ... 50
 4.5.1. Logistic regression .. 51
 4.5.2. Multivariate analysis ... 54

4.6. RESULTS ... 55
 4.6.1. Bioclimatic range of P. xanthopus distribution 55
 4.6.2. Other statistical approaches for the assessment of climatic factors .. 65
 4.6.3. Summary of results .. 69

4.7. DISCUSSION AND CONCLUSION .. 70
CHAPTER 5
POPULATION VIABILITY ANALYSIS OF THE YELLOW-FOOTED ROCK WALLABY P. XANTHOPUS IN SOUTH AUSTRALIA: MANAGEMENT OPTIONS FOR SPECIES PERSISTENCE

5.1. INTRODUCTION ... 73

5.2. POPULATION VIABILITY ANALYSIS: A TOOL FOR ASSESSING POPULATIONS EXTINCTION AND MANAGEMENT ... 76

5.2.1 ALEX: a model for population viability analysis ... 78

5.3. BACKGROUND INFORMATION ON THE YELLOW-FOOTED ROCK WALLABY P. XANTHOPUS ... 84

5.3.1. Life-history ... 84
5.3.2. Threats to YRW persistence ... 86

5.4. METHODS USED FOR MODELLING THE METAPOPULATION VIABILITY OF P. XANTHOPUS ... 86

5.4.1. Study area ... 86
5.4.2. Initial population size .. 89
5.4.3. Movement between habitat patches .. 90
5.4.4. Other parameters input to ALEX ... 90
5.4.5. Catastrophe and environmental variable ... 92

5.5. SCENARIOS AND RESULTS .. 93

5.6. DISCUSSION .. 99

CHAPTER 6
GENERAL DISCUSSION .. 104

REFERENCES ... 107

APPENDICES ... 118
ACKNOWLEDGMENTS

I sincerely thank my principal supervisor Prof. Hugh Possingham, for his guidance, interest, invaluable discussions, and encouragement and for his valuable advice and support during the supervision of this project.

I would also like to thank my co-supervisor Dr. Desmond Coleman for his support, and encouragement during my candidature.

Support and assistance from people in the Department of Applied and Molecular Ecology were offered without hesitation. I would especially like to thank Greg van Gaans for his assistance in complex mapping procedure. I am also indebted to Dr. Drew Tyre for his willingness to answer my questions and careful editing of drafts.

The statistical analysis would not have been possible without the help of Michelle Lorimer. Her assistance and enthusiasm was greatly appreciated.

I would also like to acknowledge, with thanks, the financial support I received from AusAID through the Government of Mongolia, which enabled me to undertake and complete this study and my employer, the Ministry for Nature and the Environment of Mongolia for granting me the study leave.

Finally, and most important, I express my deepest gratitude to my wife Oyunbileg for her help, patience and moral support throughout my study and also to my boys Chintogtoh (7 yrs old) and Togtohtur (4 yrs old) for their understanding and joy they brought to me during these years.
PREFACE

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, provided that acknowledgment is made of any reference to work therein.

Signed

Date 24 March 2000
ABSTRACT

This thesis examines the rationale for managing biological diversity on a regional basis and develops recommendations for the use of two computational methods in regional biodiversity management planning by conducting a case study in the Flinders Ranges, centred on the Yellow-footed Rock Wallaby Petrogale xanthopus.

The research was conducted by a combination of literature review on the importance and practices of managing biodiversity on a regional basis, bioclimatic analysis on the distribution of P. xanthopus in South Australia, using bioclimatic prediction system (BIOCLIM), and an application of Population Viability Analysis (PVA) for the long-term management strategy of P. xanthopus, using computer simulation package ALEX.

BIOCLIM

The primary objective of this analysis was to identify priority area in the bioregion by predicting the distribution of P. xanthopus. Three types of distribution (extant, extinct and all-time) were predicted using BIOCLIM. These analyses suggest that climate determines the general distributional pattern of P. xanthopus in South Australia.

As a controversy, the actual distributional pattern will not always coincide with the predicted ones. This situation is probably caused by the factors other than climatic variables. The other factors may include such hypotheses as predation by exotic carnivores and Wedge-tailed Eagle and competition with again exotic species as goat. This hypothesis is supported by the prediction of possible extinct distribution. The bioclimatic signatures of the predicted and actual regions were identical. If the climate was a factor that forces the species extinction we must have a completely different result. However, our result suggests that the climatic variables are not the
major determinant of the Yellow-footed Rock Wallaby extinction in South Australia.

BIOCLIM does not predict the distribution of the species, rather it predicts the area climatically suitable for a particular species distribution. If, the climatically suitable area supports preferred habitats of *P. xanthopus* with shelter sites, then it could be considered as an area to have a high probability of finding additional populations of the species or more realistically specimens.

PVA:
The main objective of this analysis was to minimise the chance of extinction of *P. xanthopus*.

In this part of the thesis, the hypothesis that arised by BIOCLIM analysis is tested. The predation by exotic carnivores and competition with introduced herbivores are considered to be the major threats to *P. xanthopus* decline in South Australia.

The result of the analysis demonstrated that there is a high probability of extinction amongst populations of *P. xanthopus* in a set of small patches of <60 ha. Similarly, single patch of <360 ha does not have significant effect on the species persistence.

Set of 5 or more patches, each of >100 ha in size, located within 10-15 km from each other was that most likely to support *P. xanthopus* populations and these areas make the greatest contribution to the persistence of the species in the Flinders Ranges.

Increase of mortality rates of all ages reduced the median time to extinction drastically. The highest probability of extinction occurs with an increase in the mortality rate of adult wallaby. The results of the analyses suggest that reducing the mortality rate of adult female wallabies would be a highly successful option for the conservation of *P. xanthopus* colonies.
Conclusion
Cooperative efforts of identifying priority areas for the biodiversity management and setting priorities for the actions in the area are the crucial responses for the development of biodiversity management strategy in a particular area. For this task BIOCLIM and PVA appeared to be powerful tools if the target species has been chosen correctly. However, the selection of 'right' species is a very demanding task. Therefore, for the development of such strategy, it might be wise to select several species with different backgrounds of life-history and distributions.