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genotyped using a custom  AxiomTM Affymetrix SNP array. 
A high-quality consensus map was also constructed, allow-
ing the linkage disequilibrium present in the germplasm to 
be investigated. Using the complete SNP array, genomic 
prediction accuracies were found to be substantially higher 
than those previously observed in smaller populations and 
also more accurate compared to prediction approaches using 
a finite number of selected quantitative trait loci. Multi-trait 
genetic correlations were also assessed at an additive and 
residual genetic level, identifying a negative genetic corre-
lation between grain yield and protein as well as a positive 
genetic correlation between grain size and test weight.

Introduction

Plant breeding has been successful in producing significant 
yield gains in wheat since the beginning of the twentieth 
century (Wrigley and Rathjen 1981); this has largely been 
driven by the innovation and adoption of new breeding 
technologies. Such progress is underpinned by extensive 
research, first in developing the technology, and second 
on establishing its application. If new technologies are to 
continue enabling plant breeding to deliver genetic gain to 
growers, innovative research must be undertaken in datasets 
that are relevant to the setting in which they will be applied.

Molecular markers are one technology that represent an 
invaluable research tool for understanding the genetic con-
trol of various traits. They have frequently been utilised in 
quantitative trait loci (QTL) mapping studies, and applied 
in breeding programmes through marker-assisted selection 
(MAS) (Koebner and Summers 2003; Collard and Mackill 
2008). Early statistical modelling approaches to QTL map-
ping involved the analysis of individual markers through 
simple scanning procedures (Soller et al. 1976). In more 
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Key message Genomic prediction accuracy within a 
large panel was found to be substantially higher than 
that previously observed in smaller populations, and also 
higher than QTL‑based prediction.
Abstract In recent years, genomic selection for wheat 
breeding has been widely studied, but this has typically 
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ity and other physiological traits. To achieve this, the com-
plete panel was phenotyped in a dedicated field trial and 
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modern approaches, statistical methods have improved the 
efficiency and power of QTL detection through the simulta-
neous incorporation of markers from the whole genome in 
complex linear mixed models (Zhang et al. 2010; Verbyla 
et al. 2012). There has also been focus on whole genome 
QTL mapping in broader multiparent populations (Huang 
et al. 2012; Sannemann et al. 2015; Mackay et al. 2014), and 
diverse association panels (Neumann et al. 2011; Bentley 
et al. 2014; Zanke et al. 2014). The latter usually involves 
the use of genome-wide association studies (GWAS) and 
has become a valuable tool for broad validation of previ-
ously identified QTL as well as identification of QTL in 
the target breeding germplasm. For qualitative traits under 
simple genetic control, GWAS, and subsequent application 
of MAS has been shown to be an effective tool in breed-
ing programmes (Xu and Crouch 2008). However, for more 
complex polygenic quantitative traits such as grain yield, 
there have been few examples of genetic improvement using 
MAS (Dekkers et al. 2002). This deficiency can be overcome 
by implementing a genomic selection (GS) method that uses 
a complete set of molecular marker effects for predicting 
the performance of quantitative polygenic traits (Meuwissen 
et al. 2001). Current research in this area suggests with suf-
ficient prediction accuracy, GS can be successfully applied 
in a breeding programme to increase rates of genetic gain 
(Cooper et al. 2014; Schmidt et al. 2016). Recent studies 
investigating the accuracy of GS in wheat have used popula-
tion sizes ranging from several hundred to several thousand 
individuals, and achieved prediction accuracies mostly in the 
range of 0.50–0.60 as measured by Pearson correlation coef-
ficients (Heslot et al. 2012; Nakaya and Isobe 2012; Isidro 
et al. 2015; He et al. 2016).

In GWAS and QTL analysis, the use of physical and 
genetic maps has been widely adopted (Kang et al. 2010; 
Zhang et al. 2010). Recombination information from these 
maps could also be used in GS programmes to simulate 
the progeny of specific parents for the purpose of design-
ing crosses (Podlich and Cooper 1998). Physical maps are 
becoming available for wheat (Pozniak 2016), but can be of 
limited value if the individuals sequenced are not closely 
related to the target germplasm. Additionally, physical 
maps do not incorporate recombination information, which 
reduces their value when we are interested in simulating 
progeny based on recombination probabilities in the germ-
plasm of interest. Therefore, high-quality genetic maps 
built from relevant germplasm are a better resource for 
these applications. Examples of such maps in the literature 
include those produced using multi-parent advanced genera-
tion inter-cross (MAGIC) populations (Huang et al. 2012; 
Gardner et al. 2016), as well as consensus maps constructed 
from multiple bi-parental populations (Cavanagh et al. 2013; 
Wang et al. 2014). These maps can also be used to measure 
the extent of linkage disequilibrium (LD) between markers 

(Zhao et al. 2005; Chao et al. 2010). In the context of associ-
ation mapping and genomic prediction, LD becomes vitally 
important as it influences the achievable mapping resolution 
(Huang et al. 2012), power and accuracy of QTL detection 
(Somers et al. 2007), and the accuracy of genomic prediction 
in a breeding programme after multiple generations (Muir 
2007). The extent of LD is also known to vary significantly 
depending on the germplasm structure (Hao et al. 2011; 
Huang et al. 2012) and as a consequence, assessments of LD 
should be conducted on the genetic material being studied.

For GS to be applied effectively, plant breeders must have 
a sound understanding of the relationship between traits of 
interest as it enables optimisation of selection strategies 
through correlated response to selection (Bernardo 2002). 
Trait correlations in bread wheat have long been reported at 
the phenotypic level (Bhatt and Derera 1975; Fischer and 
Wood 1979). Advances in statistical techniques have since 
made it possible to draw genetic correlations between traits 
by separating the genetic variance from the residual error 
(Gilmour et al. 1997), and these have been reported for 
various physiological traits in bread wheat (Rebetzke and 
Richards 1999; Sukumaran et al. 2015). These approaches, 
coupled with the use of pedigree or molecular marker infor-
mation, can also be used to separate the genetic variance into 
its additive and residual components, thus allowing genetic 
correlations to be drawn at the additive and residual genetic 
level (Rebetzke et al. 2013). These genetic correlations, par-
ticularly the additive, provide a more precise measure of trait 
relationships and facilitate better optimisation of selection 
strategies.

In the present study we use a panel of 10,375 lines from 
a commercial wheat breeding programme to: (1) assess the 
level of LD using a constructed high-quality genetic con-
sensus map; (2) investigate genetic correlations between 
traits at an additive and residual genetic level; (3) investigate 
the improvement in selection accuracy that is achieved by 
incorporating a genomic relationship matrix into the analysis 
model; (4) investigate the improvement in genomic predic-
tion accuracy that is achievable with a germplasm of this 
size and compare it to a simplified prediction approach based 
on selection of finite QTL.

Materials and methods

Plant material and phenotype data

A panel of diverse bread wheat lines was provided by 
Australian Grain Technologies Pty Ltd (AGT). The panel 
consists of lines from preliminary yield testing (PYT) and 
advanced yield testing (AYT) stages of the AGT breed-
ing programmes. Online Resource 1 summarises the panel 
and its subsets. The PYT-South and AYT-South sets are 
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comprised of lines bred for southern Australia, and the AYT-
Other set represents lines from the north eastern, eastern, 
and western growing regions. PYT material is a combination 
of F2 and F5 derived lines, whereas AYT lines are derived 
from the F5 generation or later. By including germplasm 
from both preliminary and advanced stages of the breeding 
programme, a set of unselected lines exist for each trait of 
interest. The panel was phenotyped in 2014 in a dedicated 
field trial at Roseworthy, South Australia (−34.52, 138.69), 
which was sown as a non-replicated randomised design with 
repeated grid checks (1 check per 11 plots). The trial was 
non-replicated as the large number of lines in the AWP made 
loading a replicated trial logistically infeasible. Dimensions 
of the trial were 476 rows by 24 ranges, and plot size was 
3m2. The trial was managed according to best local practice 
including fertiliser applications to maximise grain yield and 
grain quality, and fungicide applications to control disease. 
Table 1 details the phenotyping methods and summarises 
the data for each trait, while Online Resource 2 highlights 
the phenotypic differences between the germplasm sets. Raw 
phenotype data are provided in Online Resource 3.

Genotype data

Genotyping platform

Marker genotyping was performed using a custom  AxiomTM 
Affymetrix array containing 18,101 SNP markers. To build 
the customised array, SNPs were selected from previous 
variant identifications and SNP screenings in a range of 
genotyping platforms. The most prominent platform was a 

high-density  AxiomTM array developed in the collaborative 
French BreedWheat project (Etienne Paux, personal commu-
nication) consisting of 420,000 diverse SNPs. This was used 
to genotype a panel of approximately 200 wheat accessions 
from a range of geographic regions (western Europe, eastern 
Europe, North America, Australia, and exotic sources) for 
use in SNP selection. To achieve adequate and even cover-
age of the genome, SNPs were clustered into 20,000 groups 
based on a linkage disequilibrium threshold of r2 = 0.96. 
One SNP per group was then selected based on technical 
quality, information content, and to have a call rate greater 
than 70%. It was ensured that SNPs could be accurately read 
as co-dominant markers by confirming they generated clear 
allele clusters, and required fewer probes. A final selection 
was then carried out based on initial batches from the 20K 
array, and 18,101 of the most reliable and reproducible SNPs 
were selected. This final selection of SNPs was used to build 
the custom 18K  AxiomTM 384 layout array from Affymetrix. 
Arrays were read using the GeneTitan Multi-Channel Instru-
ment, and allele calls were made using  AxiomTM Analysis 
Suite software by Affymetrix.

Consensus map

To provide an accurate assessment of LD between SNP 
markers in the AWP a consensus map was constructed using 
nine doubled haploid (DH) populations (Online Resource 
1) genotyped on the custom  AxiomTM Affymetrix array. 
The DH populations represent key families of Australian 
wheat germplasm and were chosen to maximise polymor-
phic markers across the genome. The individual SNP DH 

Table 1  Summary of the 
phenotype data and the methods 
used for collection

Mean and standard deviation are calculated from the raw phenotype data
a Trimble (2016)
b Zadoks et al. (1974)
c Zeutec (2016)

Trait Assessment method Scale Mean SD

Growth habit Visual 1–9; 1 = erect 2.4 1.0
Leaf width Visual 1–9; 1 = narrow 4.8 1.4
Biomass Visual 1–9; 1 = low biomass 6.9 1.3
NDVI GreenSeekera NDVI 0.68 0.1
Physiological yellows Visual 1–9; 1 = low expression 1.7 0.9
Relative maturity Visual Zadoks scaleb 53 5.7
Greenness Visual 1–9; 1 = pale green 5.7 1.5
Glaucousness Visual 1–9; 1 = low expression 3.5 2.0
Leaf loss Visual 1–9; 1 = low loss 4.6 1.7
Plant height Visual 1–9; 1 = short 5.2 1.1
Grain yield Machine harvester kg/ha 5124 655
Test weight Chondrometer kg/hl 84.4 1.8
Thousand kernel weight Image analysis TKW 37.5 4.6
Grain protein NIRc Concentration (%) 11.1 0.9
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linkage maps were constructed using a synergistic com-
bination of the R/qtl (Broman and Sen 2009; Broman and 
Wu 2015) and R/ASMap (Taylor and Butler 2017) pack-
ages available in the R statistical computing environment (R 
Development Core Team 2015). Before construction, indi-
vidual marker sets were thoroughly diagnostically checked 
and problematic lines and markers containing excessive 
segregation distortion or missing values were removed. For 
each DH population, markers were clustered and optimally 
ordered using the MSTmap (Wu et al. 2008) functionality 
available in R/ASMap. The individual constructed linkage 
maps were scrutinized and lines with excessive recombina-
tion or markers exhibiting large numbers of double crosso-
vers removed. Chromosomal alignment of linkage maps 
occurred sequentially with initial alignment of the Kukri/
RAC875 SNP map performed using legacy markers from 
the pre-existing Kukri/RAC875 SSR/DArT map (Bennett 
et al. 2012; Edwards 2012). All other DH SNP linkage maps 
were then aligned to the Kukri/RAC875 SNP map through 
commonality of markers. A summary of the final individual 
DH linkage maps and their common markers is given in 
Online Resource 4.

The complete set of nine DH linkage maps (marker names 
and positions) were then used in MergeMap (Wu et al. 2011) 
to form a consensus map. To ensure the greatest marker 
position accuracy, the population size for each bi-parental 
linkage map was also passed to MergeMap as a set of pre-
defined weights. A total 13,747 markers were assigned to 
linkage groups and relative positions across the 21 chro-
mosomes of the wheat genome. The MergeMap algorithm 
is known to inflate consensus map linkage group distances 
(Close et al. 2009; Cavanagh et al. 2013; Wang et al. 2014). 
Scaling of the consensus map in this research used a mini-
mum mean square criterion. Let Mijk be the position of the 
kth marker in the jth linkage group of the ith bi-parental 
linkage map and Cjk be the position of the equivalent marker 
in the jth linkage group of the consensus map. The optimal 
scaling factor Rj applied to the jth consensus linkage group 
was then derived using

The function is easily minimised by considering Rj = D̄j∕D
c
j
 

where Dc
j
 is the length of the jth observed consensus linkage 

group and profiling D̄j over a conservative window in the 
vicinity of the average length of jth linkage groups from the 
bi-parental linkage maps. This procedure was repeated for 
all 21 chromosomes and the consensus map was scaled 
accordingly. Assessment of LD was then based on these 
scaled positions within each of the chromosomes. Table 2 
summarises the consensus map by detailing individual 

argminRj∈ℝ

9
∑

i=1

Nij

Ni
∑

k=1

(CjkRj −Mijk)
2

chromosomes, chromosome groups and genomes, while final 
scaled (as well as unscaled) consensus map positions for the 
13,747 markers are given in Online Resource 4.

Imputation

Before imputation, markers were omitted if they had a minor 
allele frequency less than 1%. The remaining markers in the 
SNP array had a low missing call rate of 1%. The substantial 
numerical dimensions of the complete SNP array made it 
computationally impractical to impute missing allele scores 
using algorithms based on unclustered and unsorted markers 
(Rutkoski et al. 2013). To reduce this computational burden, 
chromosomal identifications of the markers from the con-
sensus map were used to subset the SNP marker set. The 
remaining 4354 markers with no consensus map chromo-
somal assignment were then linked to these subsets using 
LD. For each chromosome subset, the K-nearest neighbour 
(KNN) method (Troyanskaya et al. 2001) implemented in 
the R package pedicure (Butler 2016) was used to impute 
missing allele calls from the weighted average of the data 
points at the nearest 10 markers. The complete marker 
matrix of 10,375 lines by 17,181 markers from herein was 
defined as �.

Statistical methods

Statistical modelling

An initial baseline linear mixed model was used to provide a 
preliminary assessment of the genetic variation of the traits 
collected from the Roseworthy trial. For a given vector of 
trait observations, � = (y1,… , yn), the linear mixed model 
had the form

Here, � is a vector of fixed effects, with associated design 
matrix �, and contained an intercept and potential coeffi-
cients for covariates in � explaining trends across the exper-
imental layout. Non-genetic variation associated with the 
design of the experiment, such as blocks in the experimental 
area, was accounted for through the random effects � with 
indicator design matrix � with � ∼ N(�, �2

u
�). Other remain-

ing sources of non-genetic environmental variation were 
modelled through the residual error � which was assumed 
to have the form � ∼ N(�, �2�) with � = �r(𝜌r)⊗ �c(𝜌c) 
defining a two-dimensional separable AR1 ⊗ AR1 cor-
relation structure in the rows and column direction of the 
experiment (Gilmour et al. 1997). In the baseline model the 
total genetic variation of the 10,375 AWP lines was captured 
using the random effects �t with indicator design matrix �g 
which maps AWP lines to the appropriate random effects 
in �t. These effects were assumed to have the distribution 

(1)� = �� + �� + �g�t + �
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�t ∼ N(�, �2
t
�) and the set of effects (�, �t, �) were considered 

to be mutually independent.
For each of the traits, the baseline model (1) was then 

extended by partitioning the total genetic effects into addi-
tive marker and residual genetic effects to form the marker 
linear mixed model

where �m is a vector of marker effects and �p is a vector of 
residual genetic effects. The effects were assumed to be dis-
tributed �m ∼ N(�, �2

a
�) and �p ∼ N(�, �2

p
�) with (�, �m, �p, �) 

mutually independent. The large number of markers in �, 
coupled with the substantial number of lines in the popula-
tion made the fitting of (2) computationally prohibitive. For 
this reason an alternative formulation using the approach 

(2)� = �� + �� + �g(��m + �p) + �

of Strandén and Garrick (2009) was sought. Let �a define 
a set of additive genotype effects with �a = ��m then the 
genotype linear mixed model used was

where �a ∼ N(�, �2
a
�) and � = ��T is a 10, 375 × 10, 375 

additive relationship matrix. For the purpose of providing an 
appropriate scaling, � was replaced by �s = ��T

∕r with 
r = trace (�)∕10,375 (Forni et al. 2011). An eigen decom-
position of �s revealed only positive eigenvalues indicating 
�s was positive definite and could be safely inverted.

Estimation of the parameters for the linear mixed models 
(1) and (3) occurred iteratively. Fixed effect estimates and 
predictions of random effects were determined through direct 
solving of the mixed model equations (Henderson 1953). 

(3)� = �� + �� + �g(�a + �p) + �

Table 2  Summary of the 
consensus linkage map

a Mean interval (cM) between unique map positions

Total markers Map positions Markers per 
map position

Genetic length Mean  intervala

1A 838 308 2.7 129 0.42
1B 905 250 3.6 136 0.55
1D 222 112 2.0 137 1.22
2A 777 226 3.4 128 0.57
2B 1074 286 3.8 147 0.51
2D 204 109 1.9 159 1.46
3A 909 267 3.4 156 0.58
3B 1175 282 4.2 145 0.51
3D 246 120 2.1 152 1.27
4A 652 276 2.4 168 0.61
4B 490 184 2.7 113 0.61
4D 237 120 2.0 129 1.08
5A 922 350 2.6 190 0.54
5B 1057 340 3.1 172 0.51
5D 236 147 1.6 198 1.35
6A 590 208 2.8 127 0.61
6B 893 237 3.8 114 0.48
6D 209 101 2.1 142 1.40
7A 1068 319 3.3 164 0.51
7B 814 221 3.7 147 0.66
7D 229 140 1.6 171 1.22
Genome A 5756 1954 2.9 1062 0.54
Genome B 6408 1800 3.6 974 0.54
Genome D 1583 849 1.9 1088 1.28
Group 1 1965 670 2.9 403 0.60
Group 2 2055 621 3.3 434 0.70
Group 3 2330 669 3.5 453 0.68
Group 4 1379 580 2.4 410 0.71
Group 5 2215 837 2.6 560 0.67
Group 6 1692 546 3.1 383 0.70
Group 7 2111 680 3.1 482 0.71
Total 13,747 4603 3.0 3124 0.68
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Variance parameters were estimated using residual maximum 
likelihoood (REML) (Patterson and Thompson 1971). From 
the fitted baseline model (1) broad sense heritabilities were 
then calculated for each of the traits using REML estimates 
of the variance parameters, namely H2

= �2
t
∕(�2

t
+ �2

).  
For the fitted additive genotype model (3) the broad sense 
heritability was calculated by replacing the total genetic var-
iability in H2 by �2

t
= �2

a
+ �2

p
. Narrow sense heritabilities 

were also calculated using h2 = �2
a
∕(�2

t
+ �2

).

Genomic prediction

Using mixed model results, genomic best linear unbiased 
predictions of the additive genetic effects �a and predictions 
of the residual genetic effects �p in (3) were immediately 
determined for each trait using

w h e r e  � = �−1
−�−1�(�T�−1�)−1�)−1�T�−1 a n d 

� = �2� + �2
u
��T

+ �g(�
2
a
�s + �2

p
�)�T

g
.  The additive 

genetic effects, �̃a reflect the breeding value of lines esti-
mated from phenotpyic and genetic information. Both �̃a and 
�̃p were used to investigate the additive and residual genetic 
relationships between the analysed Roseworthy traits.

From the marker linear mixed model (2), predicted 
marker effects were immediately calculated using

This result ensured the marker effects were efficiently 
derived from the additive genetic values for the lines given 
by (4). Inversion of �s would usually be computationally 
expensive but was very efficient using the highly parallelised 
Basic Linear Algebra Subprograms available in the  IntelTM 
Math Kernel Libraries. Given a new set of lines with marker 
data �∗ genotyped across identical markers in �, genomic 
predictions for the new lines can then be determined using 
the simple equation �̃∗ = �∗�̃m, utilizing the complete set 
of predicted marker effects.

To evaluate the power of the genomic prediction approach 
using the results derived from the full additive genotype lin-
ear mixed model (3), it was compared to a simplified predic-
tion approach based on finite selection of putative QTL. To 
provide a mechanism for selecting important markers linked 
to a QTL for each of the traits, the complete set of marker 
outlier statistics were calculated using the formula derived 
in Verbyla et al. (2007). For any given trait, the kth marker 
outlier statistic is

(4)
�̃a = 𝜎2

a
�s�

T
g
��

�̃p = 𝜎2
p
�T
g
��

(5)�̃m = 𝜎2
a
�T�T

g
�� = �T�−1

s
�̃a

tk =
g̃2
m;k

var (g̃m;k)

where g̃m;k is the kth marker effect obtained directly from (5) 
with its variance extracted from the diagonal components 
of the variance matrix var (�̃m) = �T�−1

s
var (�̃a)�

−1
s
�. In 

most modern linear mixed modelling software var (�̃a) is 
usually available from the fitted additive genotype model in 
(3), ensuring efficient computing of the variance of the pre-
dicted marker effects. For each of the traits, the largest one 
and five marker outlier statistics were identified iteratively 
using a consensus map exclusion window of 25cM either 
side of any selected marker. The selected markers were then 
extracted from �, denoted �1 and �5, respectively, placed 
in the baseline model (1) as an additive set of QTL fixed 
effects

where j = (1, 5) and �j are the QTL fixed effect parameters 
for the selected markers in �j. In this model, �t has been 
replaced with a residual genetic effect �p as the inclusion of 
markers strongly linked to QTL will absorb genetic varia-
tion. The genetic value of the lines were then calculated 
directly from the equation �̃a = �j�̂j, where �̂j are estimates 
of the QTL fixed effects extracted from the fitted model of 
(6). Similarly, given a new set of lines with marker data for 
the selected markers, �∗

j
, QTL-based predictions for the new 

lines can be calculated using �̃∗ = �∗

j
�̂j.

Prediction accuracy

To provide an informative comparison with genomic predic-
tion results discussed in the plant research literature, the 
predictive ability of the fitted additive genotype model (3), 
as well as of predictions obtained using selected QTL effects 
estimated from the fitted model of (6), was calculated for 
each of the traits using fivefold cross-validation. The cross-
validation method initially randomly partitioned the AWP 
lines into five equal subsets. Let (�(i)

a
, �(i)

p
) be the additive and 

residual genetic effects of the AWP lines in the ith subset 
(validation set) and (�(−i)

a
, �(−i)

p
) the additive and residual 

genetic effects of the AWP lines remaining in the other four 
(training set). The cross-validation for each prediction 
method was conducted sequentially for each of the folds 
i = 1,… , 5. For the genomic prediction approach incorporat-
ing the additive relationship matrix, (�(−i)

a
, �(−i)

p
) were fitted 

as additive and residual genetic effects in the additive geno-
type model, the additive genetic values for �̃(−i)

a
 were derived 

using (3) and marker effects, �̃(−i)
m

, were calculated using (5). 
The AWP lines in the ith validation set were then predicted 
using �̃(i)

a
= �

(i)

j
�̃(−i)
m

. For prediction methods using selected 

QTL, �(−i)
p

 was fitted in (6) and QTL effects �̂(−i)
j

 were 

extracted and used to calculate predictions for the validation 
set of AWP lines using �̃(i)

a
= �

(i)

j
�̂
(−i)

j
. Prediction accuracies 

(6)� = �g�j�j + �� + �� + �g�p + �
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were calculated by correlating the validation set predictions 
obtained from each cross-validation fold, {�̃(i)

a
;i = 1,… , 5}, 

to their full additive genetic values (�̃a) extracted from the 
additive genotype model containing the complete set of 
lines. To enable the comparison of these results to those of 
previous studies, validation set predictions were also cor-
related to their corresponding total genetic values obtained 
from the baseline model, and divided by the square root of 
the heritability of the baseline model (Heffner et al. 2011b; 
Estaghvirou et al. 2013; Battenfield et al. 2016). Comparing 
predictions to both total and additive genetic values enabled 
an assessment of prediction accuracy to be made for line 
selection and parental value, respectively.

Computations

All linear mixed modelling was conducted using the 
ASReml-R package (Butler et al. 2009) available in the R 

statistical computing environment (R Core Team 2017). 
Trait models containing the full additive relationship matrix 
took an average of 60 h computational time to converge 
on a Windows 10 box with a quad core  IntelTM i7-6700K 
(4.00Ghz) with 64Gb RAM.

Results

Linkage disequilibrium

Linkage disequilibrium was assessed by calculating r2 values 
between marker pairs within each consensus map chromo-
some (Fig. 1). In the full panel, the median r2 for marker 
pairs with proximity less than 2 cM is just 0.12, and this 
steadily decreases as the distance between a pair of markers 
increases. However, there is significant variation in the r2 
value between markers in very close proximity, with some 

Fig. 1  Boxplots comparing linkage disequilibrium (r2) of marker pairs with their proximity on the consensus map
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being in complete LD with each other. The boxplots clearly 
show that this variation decreases rapidly with increasing 
distance, and plateaus off after proximity exceeds 20 cM. 
The broad pattern of LD decay was very similar for each 
of the germplasm sets, but there were subtle differences 
for close marker pairs (<2 cM) with AYT-South showing 
slightly higher LD than PYT-South, which itself was higher 
than AYT-Other.

Genetic trait correlations

From each of the traits, the additive genetic values and 
residual genetic values were extracted from their respec-
tive fitted additive genotype models and used to understand 
genetic relationships between the traits. Table 3 presents the 
pairwise additive and residual genetic correlations between 
traits analysed in the 2014 Roseworthy field trial. The two 
correlation measures largely agreed, with a correlation of 
0.79 across the 91 trait pairs. Of the 91 trait pairs, 74 had 
correlations in the same direction, and those that differed 
in direction were all near zero. Additive genetic correla-
tions were overall stronger than residual genetic with an 
absolute mean of 0.26 compared to 0.14. Notable correla-
tions include the well-known strong negative relationship 
between grain yield and grain protein, with an additive 
correlation of −0.55 and a residual genetic of −0.30. A 
negative relationship was also observed between grain pro-
tein and test weight (additive correlation −0.22, residual 
genetic −0.43). Strong positive relationships were observed 
between test weight and thousand kernel weight (TKW) 
(additive correlation: 0.37, residual genetic 0.52), and rela-
tive maturity score and biomass (additive correlation 0.76, 
residual genetic 0.42).

A comparison of additive and baseline models

All traits collected from the Roseworthy experiment were 
analysed and results from the fitted baseline models and 
additive genotype linear mixed models are compared in 
Table 4. Additive models had significantly higher log-like-
lihood (model fit) for all traits, with an average improvement 
of 44% over the equivalent baseline models. The additive 
model also improved broad sense heritability for all traits, 
with an average increase of 24%. Narrow sense heritabilities 
of the additive models were comparable with the broad sense 
heritability from the equivalent baseline models, being just 
0.5% lower on average. The proportion of the genetic vari-
ance that was additive averaged 81% across all traits, and 
ranged from 58% (NDVI) to 91% (grain size). There was 
a strong positive relationship between the improvement in 
model fit obtained with the additive model and narrow sense 
heritability (r = 0.86).

Prediction accuracy

Table 5 presents the fivefold cross-validation accuracies 
of the genomic predictions and QTL-based predictions for 
all 14 traits. Prediction accuracy was assessed by correlat-
ing genomic and QTL-based predictions to both the addi-
tive genetic values from the full additive genotype model 
(shown to be the model of best fit for every trait, Table 4), 
and the total genetic values from the baseline model. 
When comparing genomic predictions to total genetic 
values, prediction accuracies were varied with a range 
between 0.55 (yellows) and 0.85 (TKW). As expected, 
comparing these predictions to the additive genetic 
values produced higher and more consistent prediction 

Table 3  Pairwise genetic correlations between traits from the Roseworthy experiment

Additive genetic correlations are in the upper triangle and residual genetic are in the lower triangle

Bm. Gl. GP GY Gr. GH PH LL LW Mat. NDVI TW TKW Yl.

Biomass – −0.24 −0.39 0.49 −0.44 −0.45 0.10 0.69 0.49 0.76 0.51 0.15 0.19 −0.34

Glaucousness −0.18 – 0.41 −0.01 0.73 −0.23 −0.04 −0.41 0.24 −0.30 −0.28 −0.04 0.13 0.41
Grain protein −0.14 0.15 – −0.55 0.50 0.10 0.02 −0.40 −0.08 −0.39 −0.34 −0.22 −0.23 0.35
Grain yield 0.27 −0.03 −0.30 – 0.06 −0.06 0.11 0.01 0.10 0.19 0.16 0.28 0.23 −0.19

Greenness −0.14 0.23 0.22 −0.15 – −0.14 −0.05 −0.61 0.02 −0.43 −0.45 −0.02 −0.01 0.49
Growth habit −0.15 0.07 0.20 −0.30 0.11 – 0.15 −0.36 −0.59 −0.48 0.25 −0.10 −0.30 −0.25

Plant height 0.19 −0.14 −0.04 −0.27 −0.08 0.05 – −0.10 −0.01 −0.10 0.12 0.09 −0.04 −0.16

Leaf loss 0.32 −0.16 −0.22 0.28 −0.26 −0.23 −0.05 – 0.33 0.75 0.31 0.10 0.23 −0.18

Leaf width 0.22 −0.04 −0.05 0.30 −0.03 −0.11 0.06 0.13 – 0.43 0.04 0.05 0.37 0.09
Maturity 0.42 −0.19 −0.30 0.36 −0.19 −0.32 0.01 0.45 0.19 – 0.24 0.24 0.29 −0.20

NDVI 0.34 −0.13 −0.01 0.43 −0.10 0.12 0.20 0.14 0.05 0.08 – 0.04 0.06 −0.51

Test weight 0.12 −0.10 −0.43 0.29 −0.09 −0.17 0.01 0.02 0.02 0.21 0.12 – 0.37 0.00
TKW 0.14 −0.08 −0.33 0.39 −0.08 −0.20 0.06 0.12 0.15 0.35 −0.06 0.52 – 0.11
Yellows −0.11 0.04 0.00 −0.25 −0.04 −0.07 −0.15 0.06 −0.01 −0.06 −0.04 −0.01 −0.05 –
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accuracies with all traits falling between 0.96 and 0.98. 
Using one QTL to predict performance was much less 
accurate with traits ranging between 0.11 (test weight) 
and 0.45 (glaucousness) when comparing to total genetic 
values, and between 0.10 (test weight) and 0.54 (green-
ness) when comparing to additive genetic values. The five 
QTL model yielded prediction accuracies ranging from 
0.31 (NDVI) to 0.68 (glaucousness) when compared to 

total genetic values, and between 0.42 (NDVI) and 0.78 
(greenness) when compared to additive genetic val-
ues. There was a strong positive relationship (r = 0.84) 
between genomic prediction accuracy calculated using 
total genetic values and the proportion of genetic vari-
ance that was additive for the trait. This relationship was 
negligible for genomic prediction accuracies calculated 
using additive genetic values values (r = −0.13).

Table 4  Comparison of the 
baseline and genomic mixed 
linear models

Broad sense heritabilities are presented for each model, and narrow sense for the genomic model as there is 
no term in the base model to capture the additive genetic variance. Model fit is compared through the log-
likelihood measure
a  Proportion of the variance accounted for by the model that is additive

Baseline model Genomic model

H2 Log l H2 h2 Log l Add. var. (%)a

Biomass 0.56 −4113 0.75 0.56 −2401 75
Glaucousness 0.81 −12,424 0.89 0.76 −8370 86
Grain protein 0.57 −1119 0.75 0.62 1517 82
Grain yield 0.44 −76,861 0.63 0.45 −75,322 72
Greenness 0.64 −9271 0.75 0.58 −6479 77
Growth habit 0.71 −4148 0.89 0.78 −1781 88
Plant height 0.74 −5212 0.91 0.81 −2655 89
Leaf loss 0.67 −10,067 0.83 0.69 −7648 82
Leaf width 0.71 −7888 0.86 0.75 −4674 87
Maturity 0.92 −24,045 0.98 0.91 −20,562 93
NDVI 0.45 25, 269 0.62 0.36 26, 160 58
Test weight 0.75 −10,566 0.91 0.82 −7546 90
TKW 0.79 −21,047 0.93 0.85 −17076 91
Yellows 0.73 −3662 0.82 0.53 −2418 65

Table 5  Fivefold cross-
validation accuracy of genomic 
and QTL prediction models 
(one and five QTL)

a  Correlation between the predicted values and the additive genetic values from the full genomic model
b  Correlation between the predicted values and the total genetic values from the baseline model, divided by 
the square root of the broad sense heritability

Genomic One QTL Five QTL

Additive a Total b Additive Total Additive Total

Biomass 0.97 0.72 0.26 0.20 0.46 0.48
Glaucousness 0.98 0.82 0.49 0.45 0.76 0.68
Grain protein 0.97 0.84 0.16 0.16 0.59 0.54
Grain yield 0.97 0.71 0.19 0.16 0.64 0.51
Greenness 0.98 0.80 0.54 0.44 0.78 0.65
Growth habit 0.96 0.75 0.36 0.30 0.59 0.50
Plant height 0.96 0.76 0.28 0.24 0.48 0.43
Leaf loss 0.97 0.77 0.41 0.37 0.55 0.54
Leaf width 0.98 0.81 0.26 0.24 0.54 0.46
Maturity 0.96 0.77 0.26 0.25 0.59 0.55
NDVI 0.96 0.56 0.20 0.15 0.42 0.31
Test weight 0.96 0.80 0.10 0.11 0.43 0.39
TKW 0.97 0.85 0.38 0.33 0.52 0.49
Yellows 0.97 0.55 0.17 0.15 0.63 0.41
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Discussion

Previous applications of GS have predominantly used wheat 
germplasm collections of approximately 500 individuals 
(Crossa et al. 2010; Heslot et al. 2012, 2013; Dawson et al. 
2013; Lado et al. 2013), while two recent studies used panels 
containing over 3000 individuals (He et al. 2016, 2017). This 
research has been invaluable in promoting the concept of GS 
in wheat, and providing a framework for future research. 
The natural progression is to work with larger datasets that 
provide more direct relevance to large-scale breeding pro-
grammes. In this study we used a panel of 10,375 wheat 
breeding lines to investigate the genomic prediction accu-
racy achievable in germplasm of this size and nature. We 
also compare these prediction accuracies to those achieved 
with models using a finite number of QTL, which are reflec-
tive of the style of marker-assisted selection already being 
used within wheat breeding programmes. We also assessed 
the extent of LD present in the germplasm and investigated 
genetic correlations between traits.

Significant LD within a training set leads to low genetic 
resolution and results in prediction calibrations which break 
down quickly in a breeding programme (Hickey et al. 2014). 
The panel presented here contains very low levels of LD 
compared to multi-parent advanced inter-cross (MAGIC) 
populations (Huang et al. 2012), and is more comparable to 
diverse germplasm collections (Chao et al. 2010; Sukumaran 
et al. 2015). This information, along with the high prediction 
accuracies we observed, highlights that our calibration suc-
cessfully exploited short haplotype effects rather than long. 
Hickey et al. (2014) suggested that this type of calibration 
would retain prediction accuracy over multiple generations 
of inter-crossing, which future work will investigate.

The additive and residual genetic correlations between 91 
trait combinations show that while the two measures com-
monly mirror each other, they do at times differ (glaucous-
ness–greenness, leaf loss–maturity). A negative relationship 
between grain protein and grain yield has frequently been 
identified at a phenotypic level (Brooks et al. 1982; Jenner 
et al. 1991; Simmonds 1995; Oury and Godin 2007), and 
here we extend this understanding by showing the relation-
ship exists at both an additive and residual genetic level. The 
same applies for the strong positive relationship between 
test weight and TKW, where phenotypic correlations were 
previously demonstrated by (Sharma and Anderson 2004; 
Rharrabti et al. 2003). Negative correlations between grain 
protein and test weight, as observed here, are common when 
plants are stressed during grain fill (Sadras et al. 2002) as 
the Roseworthy experiment was. The positive additive and 
residual genetic correlations between grain yield and relative 
maturity score were caused by the dry finish to the season, 
which favoured early maturing lines.

Incorporating the genomic relationship matrix into the 
linear mixed models vastly improved the model fit for all 
traits. This translates to more genetic variation of the trait 
being captured by the model, and also more accurate par-
titioning of variance into genetic (subsequently partitioned 
into additive and residual genetic) and residual error sources. 
The strong positive correlation between improvement in 
model fit and narrow sense heritability demonstrates that 
the additive relationship matrix improves the model by more 
accurately capturing additive genetic variance. Traits with a 
high proportion of additive genetic variance will, therefore, 
benefit most from the inclusion of the marker relationship 
matrix in the model.

The efficacy of genomic prediction is typically assessed 
by means of cross-validation, where predictions of the vali-
dation set are correlated to the corresponding phenotypic 
estimated breeding values (Crossa et al. 2010; Lado et al. 
2013). These phenotypic values (in this case a best linear 
unbiased prediction) represent both additive and residual 
genetic variance, whereas the genomic prediction represents 
only additive genetic variance. This discrepancy between the 
two values results in lower perceived prediction accuracies 
that are skewed according to the proportion of trait variance 
that is additive. The results presented in Table 5 demonstrate 
this as the genomic prediction accuracies produced by cor-
relating predictions to total genetic values and dividing by 
the square root of heritability were significantly lower than 
those produced by correlating to additive genetic values, and 
were also strongly related to the proportion of genetic vari-
ance that is additive. Correlating cross-validation predictions 
directly to the additive genetic values, therefore, provides a 
purer measure of prediction accuracy as both values contain 
only additive genetic variance, which prevents the propor-
tion of additive variance from confounding the measure. 
Breeders can then use the prediction accuracy of a given 
trait (as measured by correlating to additive genetic values) 
to judge how effective GS will be for selecting lines with 
high breeding value (parents), and use both the prediction 
accuracy and the proportion of additive variance to judge 
how effective GS will be for selecting lines with high phe-
notypic performance (varieties). The concept of separating 
these two breeding objectives was investigated by Gaynor 
et al. (2017) and was found to significantly increase the rate 
of genetic gain.

Genomic prediction accuracy was very high for all traits 
when comparing to additive genetic values. This suggests 
that genomic selection is promising for all traits when the 
breeder is interested in additive genetic variance, i.e. when 
selecting parents. When assessed against total genetic val-
ues, cross-validation accuracies for grain yield, maturity, 
TKW, plant height and grain protein were all higher than 
those reported in previous studies (Crossa et al. 2010; Hef-
fner et al. 2011b; Heslot et al. 2012, 2013; Poland et al. 
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2012; Dawson et al. 2013; Lado et al. 2013; He et al. 2016). 
The prediction accuracy improvement is likely due to larger 
population size of this study compared to those previous 
(between 254 and 2325). In addition, previous studies some-
times sourced phenotype data from multiple environments 
which introduce genotype by environment (GxE) variation 
and decrease prediction accuracy. In this study we used just 
one environment to remove the confounding effect of GxE 
and gain a more direct assessment of genomic prediction 
accuracy in the most optimal scenario. However, the predic-
tion accuracies observed here were still higher than previous 
cross-validation accuracies produced within one environ-
ment, showing that larger population size is important in 
achieving high prediction accuracy.

QTL-based predictions calculated from five selected QTL 
were more accurate for all traits than those utilizing one 
QTL, while the use of genomic prediction was significantly 
more accurate than both. This result is in line with previous 
comparisons between QTL-based prediction and genomic 
prediction in different traits. Rutkoski et al. (2012) found 
that genome-wide prediction models outperformed targeted 
marker models for most traits related to Fusarium head 
blight, while Heffner et al. (2011a) showed that genomic pre-
dictions were significantly more accurate than QTL-based 
predictions for grain quality traits. The research presented 
here demonstrates that this trend holds true for grain yield, 
physical grain quality, and physiological traits. The traits 
that were most accurately predicted by QTL were green-
ness and glaucousness. These two traits expressed several 
large effect QTL (Online Resource 5) which explain their 
high prediction accuracy (Desta and Ortiz 2014). NDVI 
showed low QTL-based prediction accuracy as there were 
no moderate or large effect QTL influencing the trait (Online 
Resource 5).

The dataset used in this study represents an unprece-
dented resource for studying the efficacy and application of 
genomic selection in bread wheat. We showed that incorpo-
rating a genomic additive relationship matrix into the lin-
ear mixed model significantly improved the model fit and 
increased trait heritability. The fivefold cross-validation pro-
duced higher genomic prediction accuracies than those from 
previous studies which used smaller populations. We also 
showed that for all traits assessed in this research, genomic 
prediction was significantly more accurate than QTL-based 
prediction, but as expected the improvement was smaller for 
qualitative traits. This panel will be used in future work to 
investigate the effects of population size, population struc-
ture, and GxE interaction on genomic prediction accuracy.

Addendum Marker data will be available for downloading 
as supplementary material 12 months after publication, or in 
advance from the authors subject to the terms of a material 
transfer agreement.
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