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Abstract. We study a new nonlinear excitation mechanism of kinetic Alfv´en waves (KAWs) and whistler waves (Ws) by elec-
tron beam-driven Langmuir waves (Ls). The generation conditions for the parametric decay instability L� W + KAW are
determined and the growth rate is calculated. We show that the resonant pairs of KAWs and whistler waves are nonlinearly
coupled to the pump Langmuir waves and their amplitudes undergo exponential growth from the thermal level. The perpen-
dicular dispersion of KAWs strongly increases the coupling due to the nonlinear current parallel to the ambient magnetic field.
Our study suggests that the nonlinear coupling of Langmuir wave energy into KAWs and whistlers can provide an efficient sink
for weakly dispersive Langmuir waves excited by fast electron beams in the solar corona when the electron plasma frequency
is lower than the electron gyrofrequency. This condition can be satisfied in the low-density magnetic filaments that are rooted
in the depleted patches at the coronal base and extend to the high corona. At the same time, the Langmuir-driven KAWs and
whistlers give rise to scattering and/or thin structures of radio emission penetrating through, or generated in these regions.
Since the decay into sunward propagating KAWs is strongest, the nonlinearly driven KAWs can be easily distinguished from
the waves generated at the coronal base and propagating away from the Sun. Our results may be used in the analysis of solar
radio data and for remote probing of the coronal plasma, magnetic fields, and waves.
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1. Introduction

Nonlinear wave-wave interactions significantly modify the transformation and transport of energy in space plasmas. A wave
mode that is excited in an unstable plasma region can be nonlinearly converted into wave modes which posses quite different
propagation and dissipation properties. These secondary modes are able to deliver energy and information over long distances
and deposit the energy in ways that may be totally different from what is expected for the original wave. Langmuir waves (Ls)
are an important example of this type of behavior. They are excited in the solar corona and solar wind by fast electron beams and,
in turn, nonlinearly excite radio waves that freely propagate through interplanetary space and are observed on the Earth. This
scenario has been first proposed by Ginzburg & Zhelezniakov (1958), and related processes have extensively studied since then
(Cairns & Robinson 1998, and references therein).

The nonlinear stabilization of the beam-driven Langmuir instability (Papadopoulos et al. 1974; Grognard 1982; Cairns &
Robinson 1998), and/or reabsorption of Langmuir waves by beam (Zaitsev et al. 1972; Mel’nik et al. 1999) can preserve the
beam propagation and the Langmuir turbulence can survive over long distances in the solar corona and solar wind. The time-of-
flight effects are also important and, together with beam/plasma nonuniformities, can produce stochastically an unstable electron
bump-on-tail at any distance from the Sun. On the base of this last consideration, Robinson (1992) introduced a stochastic growth
model for Langmuir waves.

The efficiency of these processes depends on the local plasma parameters, and the various possibilities have to be carefully
examined when the nonlinear dynamics of Langmuir waves can be determined by alternative processes. So, in their study of
the nonlinear dynamics of Langmuir waves, excited by electron beams in the solar corona and solar wind, Cairns & Robinson
(1998) argue in favor of the electrostatic decay L� S+ L′ (in its random phase version) rather than the modulational instability,
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which was first discussed in this context by Papadopoulos et al. (1974), and wave collapse. The nonlinear plasma emission
mechanisms involving ion-sound waves (S) are commonly accepted for explaining type III radio emission. The original beam-
driven Langmuir waves nonlinearly decay into secondary Langmuir waves plus ion-acoustic waves (L� L′ + S), and/or into
(fundamental harmonic) radio waves plus ion-acoustic waves (L� T1 + S), and/or or scatter off thermal ions. In turn, the
nonlinear coupling of two Langmuir waves produces the second harmonic radio emission (L+ L′ � T2). The coupling of ion-
acoustic waves with Langmuir waves (S+ L � T1) provides yet another channel for the fundamental radio emission, but the
former, L� T1 + S, seems to be more favorable (e.g., Thejappa & MacDowall 1998; B´arta & Karlický 2000).

Close temporal correlation between high-frequency Langmuir waves and low-frequency electromagnetic whistler waves has
been observed recently within magnetic holes of the solar wind. In order to account for these observations, a theory has been
formulated of the nonlinear coupling of Langmuir waves and whistler waves (Chian & Abalde 1999; Luo et al. 1999). It is
suggested that the nonlinear interaction of Langmuir waves with whistler waves may lead to the formation of modulated Langmuir
wave packets as well as the generation of circularly polarized radio waves at the plasma frequency in the solar wind.

On the other hand, two high-frequency waves with similar frequencies can nonlinearly couple via three-wave resonant inter-
action with a low-frequency electromagnetic wave. Several nonlinear mode-mode coupling processes, involving high-frequency
electrostatic waves and low-frequency Alfv´en waves, have been discussed in the past. The nonlinear generation of nonthermal
electromagnetic radiation near the electron plasma frequency by Langmuir waves in space and astrophysical plasmas has been
studied by Chian et al. (1994, 1997, 2000, 2002) and Lopes & Chian (1996). It was shown that large-amplitude Langmuir waves
may explain the excitation of whistler-mode emission in the Earth’s and Jupiter’s auroral acceleration regions where the electron
plasma frequency is smaller than the electron cyclotron frequency. The nonlinear coupling of Langmuir waves with Alfv´en waves
or whistlers can produce bursty radio emission from flares on the Sun and stars (Chian et al. 1997). All these papers restricted
their analysis to interacting waves that propagate along the magnetic field.

The Alfvén waves with high perpendicular wavenumbers are known as kinetic Alfv´en waves (KAWs). Linear and nonlinear
properties of KAW attract increasing interest because of the strong wave-wave and wave-particle interactions that they cause
(Voitenko 1998; Hollweg 1999). Nonlinear parametric processes involving oblique upper-hybrid and oblique (kinetic) Alfv´en
waves have been investigated by Yukhimuk et al. (1998, 1999). The nonlinear wave-wave couplings are shown to occur due
to the electrostatic properties of the oblique Alfv´en wave, which greatly increase the efficiency of the coupling processes. In
particular, it has been shown that an upper-hybrid wave can parametrically decay into an another upper-hybrid wave and a kinetic
Alfv én wave (Yukhimuk et al. 1998). Nonlinear excitation mechanism of high-frequencyx- ando-mode waves by upper hybrid
waves has been proposed by Yukhimuk et al. (1999). The parametric decay channels for an upper hybrid wave decaying into
high-frequencyx- ando-mode waves and a KAW taking part have been calculated with a special attention towards their possible
role in the generation of radio emission from space plasmas. The same oblique Alfv´en wave mode, KAW, can interact also
with other high-frequency waves, namely – whistlers. A three-wave decay process in which two whistlers and a KAW has been
considered by Chen (1977) and Taranenko & Chmyrev (1988). Here the parametric decay involves pump and daughter whistler
waves and a daughter KAW. Again, the nonlinear coupling here is possible due to kinetic effects in KAWs.

Obviously, Alfvén waves with short perpendicular wavelengths are important in space plasma, and the extension of the
nonlinear analysis of the wave processes including KAWs should reveal more about the fundamental physics involved (Hollweg
1999; Voitenko & Goossens 2000). In present paper we deal with a new nonlinear process in which kinetic Alfv´en waves
participate: the parametric excitation of KAWs and whistler waves by Langmuir waves. Besides theoretical interest, we study
this process in view of its potential importance for the interpretation of the radio observations of complex wave events in the
solar corona where Langmuir waves are supposed to be excited by electron beams.

The coherent wave description that we use here is directly applicable to the situation when narrow-band Lanmuir waves are
excited by an electron beam. Otherwise, when the bandwidth of Langmuir waves exceeds the calculated nonlinear growth rate, a
random-phase analysis should be applied (Cairns & Robinson 1998; Luo et al. 1999). The coupling coefficients that we calculated
from the dynamic equation still determine the efficiency of the random-phase decay, but with the growth rate reduced by the wave
dephasing. The extension of the coherent analysis of the present paper to the random-phase analysis is thus straightforward but
somehaw involved, and is postponed to a separate study. In the Discussion section we provide some numerical estimations of the
applicability of the parametric decay approach in corona.

The plasma emission theory based on the Langmuir wave instability has been mainly developed for plasmas with a relatively
high density and/or weak magnetic field where the local electron-cyclotron frequency is smaller than the local plasma frequency,
Ωe/ωpe < 1. This condition is satisfied in the solar wind, and is believed to be satisfied in the solar corona also. However,
low values of coronalβ (gas/magnetic pressure ratio) allow strong variations of plasma density across the background magnetic
field even if the magnetic field varies slowly. Therefore, the magnetic filaments (or threads, or flux tubes), which are rooted
in underdense (underheated) patches of the coronal base, should be underdense in the low-β coronal plasma as well, and the
conditionΩe/ωpe > 1 can be satisfied. The electron beam-driven Langmuir instability is still strong in this situation (e.g., Vlahos
& Rowland 1984), but the nonlinear processes involved can be quite different. In particular, our present study suggests that
the Alfvén-whistler turbulence may provide an efficient energy sink for Langmuir waves in a diluted solar plasma where the
electron-cyclotron frequency is larger than the plasma frequency,Ωe/ωpe >∼ 1.
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2. Basic equations and plasma model

We consider an oblique Langmuir wave with

EL = (ELxex + ELzez) exp
[−i (ωL t − kLxx− kLzz)

]
+ c.c;

kLz > 0,

propagating in an homogeneously magnetized plasma (B0 = B0ez). As the solar corona is nonuniform, the approximation of a
uniform plasma means here that the parallel and perpendicular length scales of the plasma inhomogeneities are much longer than
the respective wavelengths which appear in the problem:Lz� λz = 2π/kz; Lx � λx = 2π/kx.

An important parameter is the electron cyclotron/electron plasma frequency ratioΩe/ωpe. In the solar windΩe/ωpe� 1, as
is measured in situ by satellites, and it is widely believed that at leastΩe/ωpe < 1 in the coronal type III bursts. Here we note
that the coronal heating process is highly non-uniform, which causes large cross-field density variations of the plasma evaporated
from the chromosphere. As the strong magnetic field (MF) confines the plasma across MF lines in a low-β coronal plasma,
the hydrostatic equilibrium along MF lines gives rise to a very nonuniform plasma density across MF in the high corona also.
Namely, the particle density decreases faster with height where the temperature is lower, i.e., where the plasma is underheated.
In this situation, significant variations of the plasma density can appear across the MF (i.e., in the horizontal direction). The force
balance in that direction involves both the gas pressure and the magnetic pressure forces. Since the magnetic field lines are frozen
in the plasma, the perpendicular imbalance of gas pressure produces the (small in low-β plasma) variations of the magnetic
pressure that keep the total pressure constant in the horizontal direction. The cross-field non-uniformities are observed in the
form of filamentary ray-like structures, extending radially from the coronal base in the corona (Woo 1996). The perpendicular
length scales of density filaments are as small as 1 km at the coronal base, and about 10 km at 2–5 solar radii. Hence we adopt the
opposite inequality,Ωe/ωpe > 1, for low-density magnetic filaments magnetically connected with the cool patches at the coronal
base.

We are interested in the temporal evolution of a trial whistler wave with frequencyωW and wave vectorkW = {0; 0;kWz} and
a kinetic Alfvén wave (KAW) with frequencyωA and wave vectorkA = {kAx; 0;kAz} with kAx >> kAz. The whistler wave and the
kinetic Alfvén wave are coupled via a pump Langmuir wave with frequencyωL and wave vectorkL = {kLx; 0;kLz}. For a strong
three-wave coupling, the following resonant conditions should be satisfied:

ωL = ωW + ωA; (1)

kLx = kAx; kLz = kWz + kAz. (2)

We choosekLz > 0. ThenkAz can be>0 (for parallel-propagating KAW) or<0 (for antiparallel-propagating KAW), butkWz is
always>0 because|kAz| < kLz.

The KAWs are low-frequency waves,ωA < Ωp (Ωp is the proton cyclotron frequency), and the Langmuir waves are high-
frequency waves, with frequencies of the order of electron plasma frequency,ωL ≈ ωpe� Ωp. Hence, the resonant condition (1)
can be satisfied ifωW ≈ ωL. Having in mind that the whistler frequencyωW < Ωe, we see that the resonant condition can be
easily satisfied only whenωpe < Ωe, as we choose in our plasma model (see Sect. 4.1 for more quantitative discussion of resonant
conditions).

The wave electromagnetic fields obey Maxwell’s equations

∇ × B =
4π
c

j +
1
c
∂E
∂t
, (3)

∇ × E = −1
c
∂B
∂t
, (4)

∇ · E = 4πQ, (5)

where the current density,j =
∑

s qsnsus, and the charge density,Q =
∑

s qsns, have to be calculated using a suitable mathematical
model of the plasma. The most popular models are based on the ideal MHD equations, the two-fluid MHD equations, and the
kinetic Vlasov equations. We use the mathematical model of two-fluid MHD that permits us to take into account both the high-
frequency electronic waves (Langmuir and whistlers), and important linear and nonlinear effects that arise in short-scale (kinetic)
Alfv én waves. Therefore, all the interacting waves are described with the model equations of warm two-fluid MHD:

∂Vs

∂t
=

qs

ms

(
E +

1
c

Vs × B0

)
− Ts

nsms
∇ns +

1
ms

Fs, (6)

∂ns

∂t
= −∇(nsVs), (7)
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where

Fs =
es

c
(Vs × B) −ms(Vs · ∇)Vs.

The index s= p, e corresponds to the protons and electrons respectively. The electron density and velocity, the electric and
magnetic fields are presented in the form:

ne = n0 + neL + neA; (8)

Ve = VeL + VeW+ VeA;

E = EL + EW + EA;

B = BA + BW.

B0 = ezB0.

Heren0 andB0 are the average values of the plasma number density and magnetic field. The subscripts L, W, and A in these
expressions correspond to the perturbations due to Langmuir, whistler and KAW respectively.

2.1. Nonlinear dispersion relation for KAWs

The plasma/magnetic pressure ratioβ plays an important role for KAWs. Indeed, the electron and/or proton temperature effects
prevail whenme/mp < β < 1, while the parallel electron inertia effects are more important forβ < me/mp. Although the condition
me/mp < β < 1 holds for most of the solar corona, there are regions of diluted cold plasma and/or strong magnetic field, e.g.,
above magnetic spots, whereβ < me/mp. Therefore, we take into account both the temperature effects, and the parallel electron
inertia effects for KAWs.

Since KAWs are low-frequency waves, the plasma approximation (quasi-neutrality condition) holds:

neA = npA. (9)

We calculate the expressions for the electron and proton number densities related to the KAW,neA andnpA, from the equations
of motion (6) and the continuity Eqs. (7). Thus we find

neA

n0
=

e
Te

1

1− V2
kA/V

2
Te

(ϕ − A) +
e
Te

1

1− V2
kA/V

2
Te

 Fez

iekAz
− Te

e

V2
kA

V2
Te

(
n
n0

)NL

e

− me

mp
µs

V2
kA

V2
Te

1
iekAx

(
Fex − iΩe

ωA
Fey

) ; (10)

npA

n0
= − e

Tp

µp

1+ µp

ϕ + 1
µp

V2
Tp

V2
kA

A

 , (11)

whereµp andµs are dispersion variablesµp = k2
Axρ

2
p, µs = µpTe/Tp, ρp is the proton gyroradiusρp = VTp/Ωp, VTp =

√
Tp/mp

is the proton thermal velocity,VkA = ωA/kAz is the wave phase speed,A = (ωA/kAzc) Az, ϕ andAz are the scalar and vector
electromagnetic potentials due to KAWs, and(

n
n0

)NL

e

=
kA

ωA

(
ne

n0
Ve

)
NL

.

This last nonlinearity originates from the divergence of the nonlinear particles fluxneVe in the electron continuity Eq. (7)
with s= e.

When we take into account that the electric current along the magnetic field for a plasma withβ � 1 is determined mostly
by electrons, we obtain from the parallel component of Ampere law (3) that

neA

n0
=

e
Te

[
ϕ −

(
1+ k2

Aδ
2
e

)
A+

Fez

iekAz
− me

e
ωA

kAz

nL
e

n0
VL

ez

]
, (12)

whereδe = c/ωpe is the electron inertial length.
The nonlinear second-order dispersion relation is found from Eqs. (9)–(12):

DA EAx = NA . (13)

DA denotes the linear dispersion and is given by

DA = ω
2
A − k2

AzV
2
AK2,
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where the dispersion function for the KAWK determines the wave phase velocity:

ωA

kAzVA
≡ K =

√
1+ µT

1+ χe
, (14)

and the dispersive variables for KAW areµT = µp + µs andχe = k2
Axδ

2
e.

The nonlinear partNA is given by

NA = k2
AzV

2
A

1+ µp

1+ χe

me

e
iωA

kAx

kAz

[(
nL

e

n0
VL

ez

)
+

1+ χe

χe

kAx

kAz

(
nL

e

n0
VL

ex

)]
+

me

mp

V2
kA

V2
A

(1+ χe)
1
e

(
Fex − i

Ωe

ωA
Fey

)
− 1

e
kAx

kAz
Fez

 . (15)

2.2. Nonlinear dispersion relation for the whistler

For high-frequency whistlers we can neglect the proton dynamics. With this assumption the Maxwell equations for parallel-
propagating whistler wave,kW = (0; 0;kW), give(
ω2 − c2k2

W

)
EWx = 4πiωenWVWx,(

ω2 − c2k2
W

)
EWy = 4πiωenWVWy, (16)

where we have dropped the subindex “e” that denotes the electron species.
From the equation of motion (6) we obtain the electron velocity components due to whistler:

VWx =
e

meωW

(
−iEWx − Ωe

ωW
EWy

) 1− Ω2
e

ω2
W

−1

+
1

meωW

(
iFWx +

Ωe

ωW
FWy

)
;

VWy =
e

meωW

(
−iEWy +

Ωe

ωW
EWx

) 1− Ω2
e

ω2
W

−1

+
1

meωW

(
iFWy − Ωe

ωW
FWx

)
.

Then using these electron velocities in the Maxwell Eqs. (16), we find the second-order dispersion relation for whistlers:

DWEWx = NW. (17)

Here the dispersive term is

DW = ω
2
W − c2k2

Wz− ω2
pe

ωW

(ωW −Ωe)
,

and the nonlinear term is

NW =
1
2e
ω2

pe

(
1+
Ωe

ωW

) (
iFWy − FWx

)
+ 2πeωWn(Vy + iVx). (18)

3. Plasma response

In order to calculate the nonlinear coupling coefficients we need explicit expressions for the linear responses due to all
wave modes, i.e. linear expressions for the electron velocity components, electron density perturbations and magnetic field
perturbations.

3.1. Linear response due to Langmuir wave

In the Langmuir wave,

neL

n0
= − e

me

k2
L

ω2
pe
ϕL; (19)

VLx = − e
me

kLx

ωL

1+ V2
Te

k2
L

ω2
pe


1− Ω2

e

ω2
L

−1

ϕL; (20)

VLy = i
e

me

kLx

ωL

Ωe

ωL

1+ V2
Te

k2
L

ω2
pe


1− Ω2

e

ω2
L

−1

ϕL; (21)
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VLz = − e
me

kLz

ωL

1+ V2
Te

k2
L

ω2
pe

 ϕL . (22)

The dispersion equation is found from Poisson’s law and the continuity equation:

ω2
L

ω2
pe

ω2
L

ω2
pe
−

1+ V2
Te

k2
L

ω2
pe
+
Ω2

e

ω2
pe

 ω2
L

ω2
pe
= −k2

Lz

k2
L

1+ V2
Te

k2
L

ω2
pe

 Ω2
e

ω2
pe
·

The solution for this equation is

ωL = ωpez, (23)

where

2z2 =

1+ V2
Te

k2
L

ω2
pe
+
Ω2

e

ω2
pe

 ±
√√1+ V2

Te

k2
L

ω2
pe
+
Ω2

e

ω2
pe

2

− 4
k2

Lz

k2
L

1+ V2
Te

k2
L

ω2
pe

 Ω2
e

ω2
pe
,

or, usingk2
Lz = k2

L − k2
Lx,

z2 =
1
2

(1+ Y2 + b2
)
±

√(
1+ Y2 − b2

)2
+ 4

X2

Y2

(
1+ Y2

)
b2

 , (24)

where the normalized wavenumbersZ = kLzλD, X = kLxλD, Y =
√

X2 + Z2 = kLλD, λD = VTe/ωpe is the electron Debye length.
The quantityb = Ωe/ωpe (electron cyclotron/electron plasma frequency ratio) will play an important role in what follows. For
Langmuir branch in the range 1+ Y2 − b2 < 0, we take “–” in (24).

When the first term dominate under the square root in (24) (e.g., for quasi-parallel wavesk2
Lx � k2

L),

z2 =
1
2

(
1+ Y2 + b2

)
± 1

2

[∣∣∣1+ Y2 − b2
∣∣∣ + 2

X2

Y2

(
1+ Y2

)
b2

∣∣∣1+ Y2 − b2
∣∣∣−1

]
.

Taking+ (−) for 1+ Y2 − b2 > (<) 0, we get

z2 =
(
1+ Y2

) 1+ X2

Y2

b2
Te

1− b2
Te

 ,
where

b2
Te = b2

(
1+ Y2

)−1
.

For weak wave dispersion,Y2 = k2
Lλ

2
D � 1, we have

z=

√
1+ Y2 +

X2

Y2

b2

1+ Y2 − b2
·

3.2. Linear response due to whistler

In the whistler wave we haveneW = 0, and

BWx = −i
c
ωW

kWEWx; (25)

BWy =
c
ωW

kWEWx; (26)

VWx = −i
e

meωW

(
1− Ωe

ωW

)−1

EWx; (27)

VWy =
e

meωW

(
1− Ωe

ωW

)−1

EWx. (28)

The dispersion is

ω2
W

ω2
pe
= c2

k2
Wz

ω2
pe
+

ωW

(ωW − Ωe)
· (29)
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3.3. Linear response due to kinetic Alfvén wave

In the kinetic Alfvén wave

nAe

n0
= −i

e
me

1

V2
TekAx

µs

1+ µp
EAx; (30)

VAx = i
e

me

ωA

Ω2
e

EAx

[
1− mp

me
β

1
1+ µp

+
µs

1+ µp

]
; (31)

VAy = − e
me

1
Ωe

[
1+

µs

1+ µp

]
EAx; (32)

VAz = −i
e

me

kAx

kAz

ωA

Ω2
e

mp

me

1
1+ µp

EAx; (33)

BAy =
ckAz

ωA

1+ µs

1+ µp

1− V2
kA

V2
Te


 EAx; (34)

BAz = −i
ckAx

Ωi
β

1
1+ µp

EAx. (35)

3.4. Nonlinear response at whistler’s spatio-temporal scales

Having found the expressions for the linear plasma response we are now in a position to calculate the second-order nonlinear
source partNW = ϕLE∗AxN̄W in the equations for whistlers. The calculation is straightforward but somehow involved. Inserting
the linear expressions (19)–(22) for the pump Langmuir wave into (18), and (30)–(35) for the trial KAW, and keeping dominant
terms, we find the expression for̄NW:

N̄W = −1
2
ω2

pe
e

me

1

V2
Te

mp

me

1
b2

z
b− z

1+ Y2

1+ µp

(
X2 − sA

me

mi
b3 VTe

VA

b2 − z2

z3
KZ

)
. (36)

HeresA = kAz/ |kAz| accounts for the propagation direction of the KAW:sA = 1 for forward propagation (i.e., in the direction of
the ambient magnetic field),sA = −1 for backward (antiparallel) propagation.

3.5. Nonlinear response at KAW’s spatio-temporal scales

Similarly, we find the nonlinear source term for KAWsN∗A = ϕ
∗
LEWxN̄∗A, where

N̄∗A =
e

me
k2

AzV
2
A

1+ µp

1+ χe

kLz

ωL

kWz

ωW

1+ k2V2
Te

ω2
pe

 ωBe

ωBe− ωW

−me

mp
K2 (1+ χe)

1+ kLx

kWz

kLx

kLz

ωW

ωBe

ω2
L

ω2
Be− ω2

L

− ωBe

ωA

×
1− k2

L

kWzkLz

ωLωW

ω2
pe

1+ k2
LV2

Te

ω2
pe

−1

− kLx

kWz

kLx

kLz

ωLωW

ω2
Be − ω2

L


 + kAx

kAz

kLx

kLz

ωW

ωBe− ωL

(
ωA

ωW
+

kAz

kW

(
ωL

ωBe
− 1

)) . (37)

When we simplify this expression by use of the resonant conditions and the dispersion relations for the interacting waves, and
keeping dominant terms, we obtain

N∗A = −
e

me

k2
L

ω2
pe

b
(
1+ µp

)
b− z

ωAΩp

z2

X2

Y2

(
z

b (1+ µT)
ωA

Ωp
− Y2

)
. (38)

4. Parametric decay instability L � W + KAW

In this section we investigate the decay of an oblique Langmuir wave into pairs composed of resonant whistlers and KAWs. The
proximity of the whistler and Langmuir wave frequencies imposes additional restrictions on this process, therefore we start with
an analysis of the resonant conditions.
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4.1. Selectivity of the decay

The resonant conditions impose restrictions on the parameters of the interacting waves. We use the frequency matching condition,
ωW = ωL − ωA, and insert (23) into (29) to get the matching equation relating the parameters of the interacting waves:(z− νA)2 − 1− 1

α2
Te

(
Z − sA

VTe

VAK
νA

)2 (z− νA − b) − b = 0, (39)

wheresA = kAz/ |kAz| (sA = ±1), and

α2
Te =

V2
Te

c2
; νA =

ωA

ωpe
·

For any givenZ � 1, the compatibility of the dispersion relation (24) with the resonant condition (39) restricts the possible
perpendicular wavenumberX and Alfvén frequencyνA. We use the fact thatνA, α2

Te are small, and we assume thatµT is also
small. Then, in the case of weak Langmuir dispersion, from Eq. (39) we find an approximate expression for wavenumberX of an
unstable Langmuir wave as function ofZ andνA:

X = Z

√√√√√√1+ 2
b2 − 1

b

b− 1
b
− α2

Te(
Z − sA

VTe

VA K νA
)2



−1

− 1. (40)

This solution is a good approximation in the rangeZ = 0.01−0.1. This case is physically realizable with Langmuir waves of
weak dispersion as long as 1< b2 < 2. For a given values ofZ andX, the excited Alfvén waves have frequencies determined
by (39).

One should note that the variation of the KAW frequency in the range 0< ωA < Ωi at fixedb produces small deviations
of the resonant value ofX around the value determined mainly byZ and by plasma parameters,b andαTe. In other words, the
matching equation indicates that the decay is possible if the initial Langmuir waves adjust their perpendicular wavenumberX,
and/or parallel wavenumberZ, to the value(s) given by the solution of matching Eq. (39). However, the analytical solution (40)
is invalid in the rangeZ < 0.01. The resonant diagram, valid for allZ, is shown in Fig. 1.

The resonant perpendicular wavenumberkres
Lx, given by (39), determines the resonant propagation angle for the Langmuir

decay,θres = arctankres
Lx/kLz. If the value ofb is sufficiently close to 1 (e.g.,b = 1.02), the Langmuir waves which develop

resonant values ofX can decay over a wide range ofZ. However, for larger values ofb, the allowed range ofZ, Z < Z1, shrinks
towards low Langmuir wavenumbers with an upper boundary

Z1 ≈ VTe

c

√
b

b− 1
· (41)

Fast electron beams can excite directly such Langmuir waves. For example,Z1 ≈ 0.047 forb = 1.1 andVTe/c = 1/70.
There is another, well separated range of larger resonantZ required for the decay,Z > Z2, with

Z2 ≈
√

b2 − 1. (42)

For example,Z2 ≈ 0.46� Z1 ≈ 0.047 forb = 1.1. The above approximate formulae forZ1 andZ2 follow from (39) with X = 0.
We do not show theZ > Z2 resonant region in Figs. 1 and 2 because the nonlinear growth rate is imaginary for allZ > Z1.

The parallel wavenumbers of the Langmuir waves that are directly excited by slow beams can be in the rangeZ > Z1 where
decay is impossible. In this case there is still a possibility that the waves propagating in the higher-density region will reduce
their wavenumbers toZ <∼ Z1, and eventually meet the resonant condition for decay into KAWs and whistlers. Or some other
nonlinear process(es) redistribute Langmuir spectrum towards smallerZ satisfyingZ <∼ Z1.

4.2. Nonlinear growth rate

From (13) and (17), we obtain the nonlinear dispersion relation for the parametric decay instability of Langmuir wave:

DWD∗A = N̄WN̄∗A |ϕL |2 . (43)

When we allow for a dissipative part in the wave frequencies,ωA,W = ωA,W + iγNL, in (43) we obtain the expression for the
nonlinear growth rateγ2

NL:

γ2
NL =

b (z− b)2 N̄WN̄∗A |ϕL |2
2ωAΩe

(
2z(z− b)2 + b

) · (44)
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Fig. 1. Resonance diagram of the decay instability: resonant perpendicular wavenumberX = kxλD vs. parallel wavenumbersZ = kzλD of
the resonant Langmuir waves. Parameterb = Ωe/ωpe = 1.04 (solid line); 1.1 (dash line), and 1.4 (dot line). The electron thermal velocity
VTe/c = 1/70.

Using here (36) for̄NW and (38) forN̄∗A, we get an explicit expression for the nonlinear growth rate:
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=
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We use here the pump wave energy normalized to the electron thermal energy:

WL =
k2

L |ϕL |2
4πn0Te

=
|EL |2

4πn0Te
·

From expression (45) we deduce that the instability of the pump Langmuir wave withZ = kLzλD < 0.02 critically depends on
the propagation direction of the daughter KAWs. For forward propagating KAW,sA = 1, thesA-dependent term in the second
line tends to cancel the instability, and only a weak instability is possible. Forµs ≈ 0, i.e., with classic Alfvén waves (Chian et al.
1994), an even weaker instability exists, which cannot be reproduced by (45) because we ignored corresponding small terms.

For both forward and backward propagating KAWs,sA = −1, the decay rate strongly depends on the perpendicular KAW
wavenumberX. It vanishes whenX tends to 0 but becomes large whenX is increased. A strong instability can develop for
sufficiently high values ofX.

The nonlinear growth rate may be written in non-dimensional form, useful for analysis:

γNL

Ωp
= G =

√
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4

M2 BC

b2
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2z(z− b)2 + b
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z
WL , (46)

where
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f − Y2

)
; C = X2 − sA
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M
VTe

VA

b2 − z2

z3
KZ.

Here f = ωA/Ωp, M = mp/me, and the sign ofkAz is given bysA = kAz/ |kAz|. For sA = ±1, the process becomes strong
with growing X. In spite of the relative simple form of the nonlinear growth rate (45)–(46), the situation is complicated by the
selectivity of the process:X has to satisfy the resonant relation (39). The dependence of the nonlinear growth rate (46) on the
wavenumbers of the Langmuir waves is found numerically for typical coronal parameters in the next section.
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Fig. 2. Nonlinear growth rate of the decay L� KAW + W for Langmuir waves excited in the solar corona by electron beams. For the beam-
driven Langmuir waves, the values of the dispersive variableZ = kLzλD = 0.01−0.04 are taken for the spectrum of waves excited by the electron
beams with respective velocitiesVb/c = 1/3–1/4. The normalized Langmuir wave energy isWL = 10−4. Parameterb = Ωe/ωpe = 1.04 (solid
line); 1.1 (dash line), and 1.4 (dot line). The electron thermal velocityVTe/c = 1/70.

5. Excitation of the LAW events by electron beams in the solar corona

Electron beams exist in many space and astrophysical plasmas and are identified by remote radio observations and in situ by
several satellites; A few examples are the beams related to solar bursts, Earth’s foreshocks and Earth’s magnetosphere. Langmuir
waves are commonly believed to be excited in the solar corona and solar wind by fast electron beams with a relative number
densitynb/n0 = 10−6−10−4, that are accelerated in coronal magnetic reconnection events to a velocityVb ∼ (0.1−0.5) c. In
turn, the beam-driven Langmuir waves produce type III solar radio bursts (Goldman 1983; Melrose 1984). The in-situ satellite
observations in the solar wind strongly support the picture that the Langmuir waves are indeed excited by electron beams and
eventually lead to solar type III bursts (Dulk et al. 1998; Ergun et al. 1998; Thejappa & MacDowall 1998, and references therein).
Other types of waves can be excited by two-dimensional (in velocity space) electron beams, like oblique whistlers, ion-cyclotron
and lower-hybrid waves (Zhang et al. 1993; Wong & Smith 1994; Ergun et al. 1998). In this context we note that the bump-on-tail
instabilities of the above mentioned modes are far weaker than the Langmuir instability for fast diluted electron beams under
coronal/solar wind conditions. As suggested theoretically and observationally, they can only play a complimentary role while
the Langmuir instability extracts the main part of the beam energy. Consequently, the observed Langmuir waves are much more
intense.

5.1. Parameters

In this paper we focus on the high coronal levels, where the plasma is diluted along the magnetic filaments connected to the cool
patches at the coronal base. For example, in the region where the magnetic fieldB0 = 3.5 G, number densityn0 = 106 cm−3,
and temperatureTp ≈ Te ≈ 106 K, we have the following values for the key parameters of the background plasma:Ωe =

6.2× 107 rad s−1, ωpe = 5.6× 107 rad s−1 (that isΩe/ωpe = 1.09),VA = 7.6× 108 cm/s,VTe = 3× 108 cm/s (that isVA/VTe ≈ 3,
VTe/c >∼ 10−2, ρp ≈ 200 cm).

Typical velocities of electron beams in the solar corona can be deduced from radio observations and from in-situ observations
in the solar wind. They lie in the rangeVb ∼ (0.1÷ 0.5) c. The initial parallel propagating Langmuir waves that are excited
by these beams have parallel wavenumberskLzλD = VTe/Vb = 0.01÷ 0.05 for the electron thermal velocity in coronaVTe =

3× 108 cm/s (Te <∼ 106 K). When interplanetary data are extrapolated into the corona (see Cairns & Robinson 1998) we infer the
Langmuir wave energyWL <∼ 10−4.
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For any givenVb, the beam-driven Langmuir waves can be in 3-wave resonance with whistlers and KAWs in the regions where
the perpendicular wavenumber attains values determined by the resonant condition (39). The initial beam-driven Langmuir waves
can excite resonant whistlers and KAWs in the coronal regions where the conditionb = Ωe/ωpe > 1 is fulfilled. The parameter
b can be close to 1,b >∼ 1, or b can deviate from 1 significantly. The conditionb > 1 may be satisfied in underdense magnetic
filaments at high coronal levels, or in strongly magnetized plasmas in the low corona, where the magnetic field is concentrated
in magnetic flux tubes.

5.2. Decay of Langmuir waves driven by fast electron beams

Let us consider the decay instability L� W + KAW of weakly dispersive Langmuir waves,Z < Z1, which are excited by fast
electron beams,Vb/c >∼ 0.3c. These waves undergo resonant decay in the regions whereX attains a value given by resonance
condition (40). As it follows from (45), the coupling of Langmuir wave energy into KAWs and parallel whistlers becomes strong
for large perpendicular Langmuir/KAW wavenumbers (kAx = kLx). The frequencies of the excited KAWs are determined by
the parallel wavenumberZ = kLzλD of the driving Langmuir wave and are given by the frequency matching conditions. Note,
however, that the dependence of the nonlinear increment on the KAW frequency is weak, so we setf = 0.5. The particular value
of the KAWs’ frequency is determined from the resonant condition (39) with givenZ andX.

The nonlinear growth rate for plasma and Langmuir wave parameters expected in the solar corona is shown in Fig. 2 for
antiparallel propagating KAWs (sA = −1). The decay into parallel-propagating KAWs is much weaker forkLzλD < 0.02, and it
is still weaker (but of the same order) forkLzλD ≥ 0.02.

For all values ofb = 1.04, 1.1 and 1.4, the decay becomes strong for the corresponding resonant perpendicular wavenumbers
Xres= 0.02−0.04 (i.e.,kAxρp ∼ 1). Therefore, the decay condition iskLxλD ≈ kres

LxλD ≡ Xres, and all Langmuir waves that develop
these resonant perpendicular wavenumbers, nonlinearly excite resonant whistlers and KAWs.

Langmuir waves can easily develop large perpendicular wavenumbers due to phase mixing in a plasma that is inhomogeneous
in the perpendicular (x) direction. When we takeLx = 106 m for the inhomogeneity length-scale (Woo 1996), and use the
evolutionary (Hamilton) equation forkLx in the form

kLxλD = λD

∣∣∣∣∣∣∂ωpe

∂x

∣∣∣∣∣∣ t ≈ λD

2Lx
ωpet =

VTe

2Lx
t,

we see that the resonant perpendicular wavenumbers,kLxλD ∼ 0.02, are already generated after a very short time of the or-
der 10−2 s. Therefore, even if the initial beam-driven Langmuir waves are parallel-propagating, and thus nonlinearly stable, they
quickly become oblique and nonlinearly unstable. As follows from (45), the coupling of Langmuir wave energy into KAWs and
parallel whistlers becomes strong for these values of perpendicular Langmuir/KAW wavenumbers. The process is thus turned on
when a fast electron beam with a given value of velocityVb/c >∼ 0.3 passes through the region with the values ofb = 1.04−1.4
and excited by beam Langmuir waves develop perpendicular wavenumberskLxλD ∼ 0.02. Moreover, Langmuir waves, excited
by electron beams in ab > 1 plasma, are already oblique (see Discussion), which facilitate the LAW decay instability.

The LAW decay is sensitive to the Langmuir parallel wavenumbers, and its growth rate attains a maximumγNL >∼
0.1Ωi

√
104WL at kLzλD ∼ 0.005. The wavenumbers of the Langmuir waves excited by fast electron beams are initially about

four times bigger,kLzλD ∼ 0.02. For these wavenumbers the growth rate isγNL ∼ 0.025Ωi

√
104WL if Ωe/ωpe is sufficiently close

to unity,Ωe/ωpe >∼ 1, and the growth rate is highly reduced for larger values ofΩe/ωpe (see Fig. 2). Thus, the Langmuir waves
directly driven by the beams decay strongest in the regions whereΩe/ωpe >∼ 1.

However, even in regions whereΩe/ωpe deviates significantly from 1, the Langmuir waves decay fast when they reduce
parallel wavenumbers tokLzλD ∼ 0.005. A most probable mechanism reducing parallel Langmuir wavenumber in the solar
corona is the density variation along magnetic field lines. So, a local density increase of only

δne
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)2 ∼ 4× 10−4

could reduce initialkin
LzλD = 0.02 tokLzλD = 0.005:
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kin
LzλD ∼ 0.005.

Although the density on average decreases with heliocentric distance, it can increase locally due to, e.g., presence of low-
frequency waves. For example, in the presence of phase-mixed Alfv´en waves with wavenumberskz � kLz, k⊥δp = 0.1, and
amplitudeδB/B0 = 0.01, launched from the coronal base, we expect number density perturbations∣∣∣∣∣δne

n0

∣∣∣∣∣ = k⊥δp
K
δB
B0
∼ 10−3,

which suffice for shifting the parallel Langmuir wavenumbers in the range of strong decay instability.
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Langmuir waves excited by slow beams have also to reduce theirkLz in order to attain the allowed range of parallel wavenum-
bers specified by (41), or even the range of strong decay instabilitykLzλD <∼ 0.01. Again, this may be done by parallel in-
homogeneity: Langmuir waves propagating alongB0 in the direction of increasing number density will decrease their parallel
wavenumber. There are also other nonlinear interactions, that tend to reduce the parallel wavenumber of Langmuir waves. In one
of these ways all the conditions for the instability can be satisfied even if the Langmuir waves are initially excited with relatively
highZ (i.e., by slow beams).

6. Discussion

In the solar wind values ofΩe/ωpe smaller than 1 are measured in situ, and it is generally accepted thatΩe/ωpe < 1 in the coronal
type III bursts. But the coronal heating process is highly non-uniform, which causes large cross-field density variations of the
plasma evaporated from chromosphere. As the strong magnetic field (MF) confines the plasma across MF lines, the hydrostatic
equilibrium tends to set in along MF lines, which gives rise to a nonuniform plasma density across MF in the high corona.
The resulting high plasma pressure variations across MF are easily balanced in a low-β coronal plasma by small variations of
the magnetic pressure. These nonuniformities are observed in the form of filamentary ray-like structures of about 1 km width,
extending radially from the coronal base in the corona (Woo 1996). The conditionΩe/ωpe > 1 can be satisfied along the low-
density magnetic filaments rooted in the underheated parts of the coronal base.

An alternative model to the conventional plasma-emission has been proposed recently by Wu et al. (2002) for coronal type III
radio bursts. They suggested thatx- ando-mode electromagnetic waves are directly excited near the electron cyclotron frequency
by the electron-cyclotron maser instability (this process is similar to the generation of AKR – auroral kilometric radiation in the
Earth’s magnetosphere). An essential ingredient of this model is the presence of underdense magnetic fibers withΩe/ωpe > 1,
attributed by Wu et al. to the strong magnetic fields/low-density plasma at the coronal base. Another critical assumption is
an intense pitch-angle scattering of beam electrons, possibly due to Alfv´en waves. The resulting electron beam distributions
can be unstable with respect to Cherenkov (bump-on-tail) and electron-cyclotron instabilities simultaneously. But the parallel
electrostatic (i.e., Langmuir-type) instability is still dominant in most cases, as long as the bump-on-tail is present (see, e.g.,
Zhang et al. 1993). Vlahos & Rowland (1984) studied electron beams under similar conditions and pointed out mechanisms that
suppress the pitch-angle scattering, in which case the bump-on-tail Langmuir wave instability is by far dominant.

The (random phase) “electrostatic” decay L� L′ + S into a secondary Langmuir wave and an ion-acoustic wave (or quasi-
mode atTe ∼ Tp) has been suggested as an efficient nonlinear process for beam-driven Langmuir waves (Cairns & Robinson
1998; Cairns 2000). However, the conclusion about the dominant role of the ion-acoustic mode is not final untill the role of other
wave modes is investigated sufficiently. In particular, the kinetic Alfv´en mode can participate in Langmuir decay, giving rise to a
low-frequency electromagnetic decay L� L′ + KAW and/or modulational instability (Voitenko et al., in preparation).

In the present paper we have dealt with another new nonlinear process in which kinetic Alfv´en waves participate: the paramet-
ric excitation of KAWs and whistler waves by Langmuir waves. The interest in this process is stimulated by the radio observations
of complex wave events in the solar corona where Langmuir waves are supposed to be excited by electron beams. Our study sug-
gests that the Alfv´en-whistler turbulence may provide an efficient energy sink for Langmuir waves in a diluted solar plasma
where the local electron-cyclotron frequency is higher than the local plasma frequency.

Let us compare the growth rates of the competing parametric decaysL � W + KAW and L � L′ + S, keeping in mind
that the conditionΩe/ωpe > 1 is required for the decay into whistlers. The process L� L′ + S is well studied forΩe/ωpe < 1,
typical in the solar wind (see, e.g., Cairns & Robinson 1998, and references therein). However, there are much fewer studies
of the electrostatic decay in a low-density/strong magnetic field regimeΩe/ωpe > 1, which is sometimes called supercritical
(Newman et al. 1994a). In comparison to the subcritical (Ωe/ωpe < 1) regime, there are two modifications: the perpendicular
dispersion of Langmuir waves can change its sign (see Eq. (23)), and the electrostatic decay is primarily into oblique Langmuir
and ion-acoustic waves (Newman et al. 1994a,b; Akimoto 1995).

As a strong temperature anisotropyTe/Tp = 4−5 has been assumed in these studies, direct comparison of our LAW growth
rate with the growth rate of the oblique electrostatic decay (L-oL) calculated by Newman et al. and by Akimoto is impossible. If
we formally compare the LAW growth rateγNL (LAW) ∼ 0.1Ωp

√
104WL (valid for Z ∼ 0.01,Te/Tp ∼ 1) with the L-oL growth

rate given by Akimoto (1995)γNL (LoL) ∼ 0.1ωpp
√

10WL (valid for Te/Tp ∼ 5, where the ion sound dampingγs/ωs � 1),
we obtainγNL (LAW) /γNL (LoL) ∼ Ωe/ωpe, i.e.,γNL (LAW) andγNL (LoL) are of the same order forΩe/ωpe ∼ 1. For higher
Langmuir wavenumbers,Z >∼ 0.02, γNL (LoL) > γNL (LAW). However, the ion-acoustic wave is heavily damped for coronal
temperatures whereTe/Tp ∼ 1, and the growth rate of the electrostatic decay can fall belowγNL (LAW). In our opinion, the
process L� W + KAW competes with the electrostatic decay in isothermal plasmas,Te ∼ Tp, where the efficiency of the
electrostatic decay is reduced by the strong damping of ion-acoustic mode. These estimations indicate that an additional study is
required to determine what process is stronger for particular values ofTe/Tp andZ.

The monochromatic parametric description that we used is justified when the nonlinear growth rate exceeds the bandwidth of
the decaying waves. This approach has been extensively used for the narrow-band Langmuir waves (see B´arta & Karlický 2000,
and references therein). The bandwidth of the Langmuir waves excited by electron beam is proportional to the beam velocity
spread. Let us consider a simple case when the Langmuir bandwidth is determined by the parallel wave dispersion (23) with
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(X = 0). The energy of excited Langmuir waves is concentrated slightly above the wavenumber determined from the resonant
condition,

Zmin =
VTe

Vb
·

The upper boundary of the spectrumZmax may be estimated from the velocity spread of beam∆Vb:

Zmax =
VTe

Vb − ∆Vb
,

and, for∆Vb/Vb� 1, the bandwidth is

ωL (Zmax) − ωL (Zmin) ≈ ωpeZ
2
min
∆Vb

Vb
·

The parametric approach that we use is justified if

γNL

Ωp
>
ωL (Zmax) − ωL (Zmin)

Ωp
≈ mi

me
Z2

min
∆Vb

Vb
·

This condition can be satisfied for high-energy narrow beams in the cool filaments in the solar corona (Zmin ∼ 0.01,
∆Vb/Vb < 0.3).

Otherwise, when the nonlinear growth rate is less than the bandwidth of the decaying waves, the random phase version of
decay should be considered (Cairns & Robinson 1998). We plan to do this in our future studies. Obviously, the decay growth rate
in this case is reduced by the decoherence of waves.

The bandwidth of secondary waves depends on how broad maximum has the growth rate as a function of wavenumbers of
these secondary waves. Even in the case of monochromatic pump, a broadband spectrum of secondary waves can be excited if
the growth rate is relatively flat. Of course, this spectrum still consists of wave pairs, each being in the three-wave parametric
resonance with the pump wave.

As for the question how to distinguish between the modes of interest (i.e., KAWs and whistlers) excited by Langmuir waves,
and the modes driven directly by beams. It is important for the identification of dominant processes and remote diagnostics. To
this end we note that the fast 0.3c electron beam cannot generate KAWs directly via bump-on-tail instability. Indeed, the KAW
dispersion (14) restricts the wave phase velocity to the range min{VA; (1+ Ti/Te) VTe} < ωA/kAz < max{VA; (1+ Ti/Te) VTe},
and since bothVA and(1+ Ti/Te) VTe are much smaller than the beam velocity (Vb ∼ 0.3c), the KAWs are off-resonant with
the beam, and, consequently, cannot extract energy from it. Even if the Alfv´en waves driven by an alternative source are present
(see, e.g., Verheest 1990), we believe that the formulae we provide here are sufficient to distinguish the Langmuir-driven KAWs.
In particular, cross-field KAW wavelengths, determined from the resonant conditions, in turn determine the scales and velocities
of the electron density perturbations (30) associated with KAWs. In terms of KAW magnetic field perturbationsδBA/B0, the
relative density perturbations are∣∣∣∣∣δne

n0

∣∣∣∣∣ = kA⊥δp
K
δBA

B0
·

Since the decay involving sunward propagating KAWs (sA = −1) is stronger, the corresponding sunward moving density per-
turbation could be well distinguished from the perturbation produced by waves propagating from the Sun. As far as whistlers
is concerned, we point out a striking difference: the Langmuir-driven whistlers are strongly correlated with Langmuir waves,
whereas the beam-driven whistlers and Langmuir waves tend to be anti-correlated (e.g., Ergun et al. 1998). The observations
support a hypothesis that the whistlers in solar wind are excited mainly by beams, so that the process L� KAW +W is not
occurring. It is not surprising, becauseΩe/ωpe < 1 in the solar wind beyond 0.3 AU, where three-wave resonance is impossible.
However, these observations do not exclude that process in the solar corona where the conditionΩe/ωpe > 1 can be satisfied.

As the LAW decay exhibits a strong dependence on the pump Langmuir wavenumbers, and the electrostatic decay is relatively
insensitive, the interplay between these two nonlinear processes can be complicated. For example, the beam-driven parallel
Langmuir waves could first undergo electrostatic decay processes redistributing their energy towards resonance perpendicular
wavenumbers, and then LAW decays come into play and eventually supplies a sink for Langmuir turbulence.

The nonlinear process that we have discussed here may play a role also in the auroral zone of the Earth’s magnetosphere,
where LAW events are registered in-situ by satellites. Spacecrafts frequently measure intense bursts of LAW events in conjunction
with field-aligned electrons in the auroral zones (Chian et al. 1994). It is interesting to note that despite of significant perpendicular
inhomogeneities, the observed Langmuir waves’ propagation is confined to within 10◦ of the geomagnetic field in the auroral
zone (Newman et al. 1994a,b). This means that oblique wave propagation is suppressed, which can be accounted for by the
dispersion and damping of oblique Langmuir waves (Newman 1994a). At the same time, this effect may be due to the process
that we study here: a strong decay of Langmuir waves into whistlers and KAWs when the Langmuir waves develop resonant
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perpendicular wavenumbers. For example, forΩe/ωpe = 1.1 andkLzλDe = 0.025, the nonlinear Langmuir decay into KAWs and
whistlers occurs at the propagation angleθres (tanθres= kres/kLz) about 11◦.

As far as the dynamics of electron beams is concerned, the situation in auroral zones is complicated by the high beam density
nb/n0 >∼ 10−2. This introduces dispersive effects, and strong pitch-angle scattering of downward electrons accelerated by electric
field. The resulting electron beam distributions become unstable with respect to electron-cyclotron instability and generate AKR
emission, but the Cherenkov (bump-on-tail) Langmuir instability is dominant in most cases when the bump-on-tail is present
(Zhang et al. 1993).

7. Conclusions

We have investigated a new nonlinear process that is caused by kinetic properties of oblique (kinetic) Alfv´en waves: parametric
decay L� W + KAW. This is plausible for the backward propagating KAWs. The nonlinear growth rate strongly increases with
growing perpendicular wavenumber, orµs – dispersion variable of the KAW. Weakly dispersive Langmuir waves, excited by fast
electron beams withVb >∼ 0.3c, decay fastest.

We have applied our results to the beam-driven Langmuir waves in the solar corona and found a very short characteristic time
scale for the instability to develop,τ ∼ γ−1

NL ∼ 10−4 s for the parameters of coronal Langmuir waves deduced from observations.
As the nonlinear coupling of Langmuir energy into whistlers and KAWs is possible ifΩe/ωpe > 1, the formation of the LAW
turbulence is expected in the regions of solar corona where the magnetic field is strong and/or the plasma is dilute. The condition
Ωe/ωpe > 1 can be satisfied in the thin (∼10 km) underdense filaments guided by the magnetic field lines which are connected to
the low-temperature patches at the coronal base.

The growth rate of LAW decay critically depends on the parameterΩe/ωpe in the rangekLzλD >∼ 0.01: it is large for
Ωe/ωpe >∼ 1, but quickly decreases with increasingΩe/ωpe. So, the general tendency is that the faster electron beams in
Ωe/ωpe >∼ 1 regions are most efficient for producing of LAW events. The decay instability can develop ifkLx >∼ kres, wherekres

is the resonant perpendicular wavenumber that depends on the particular parallel wavenumber of the Langmuir wave (Eq. (40)).
Since for typical coronal parameters the resonant perpendicular wavenumber is less than the parallel wavenumber,kres< kLz, the
propagation of the non-decaying Langmuir waves is restricted to the cone tanθ = kLx/kLz < kres/kLz < 1, i.e., to the quasi-parallel
propagation.

The situation can be different when local density variations along magnetic field lines are present. These may be produced
by, e.g., phase-mixed Alfv´en waves, launched from the coronal base. In this case the Langmuir waves, propagating against the
density gradient, can reduce their parallel wavenumbers to the rangekLzλD <∼ 0.01, where the decay instability is very strong and
less sensitive toΩe/ωpe.

The presence of KAWs in the underdense filaments results in fluctuations of the plasma density and velocity at length-scales
10−100 m across the magnetic field and 1−10 km along the magnetic field. As the instability is much stronger for antiparallel (i.e.,
sunward) propagating KAWs (sA = −1), the density perturbations produced by Langmuir-driven KAWs should move sunward.
Such fluctuations, moving with the Alfv´en velocity along the filaments towards the Sun, should give rise to the scattering and/or
thin structures of the coronal radio emission. In addition, the traces of these scattering filaments from the distant corona down to
the active regions have to pinpoint the places where the plasma is dilute and the electron beams are accelerated.

All these features can be used for diagnostic purposes, and analysis of radio data can provide observational pros and cons of
the actual importance of LAW events excited by electron beams in the solar corona.
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