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Abstract—In this paper, we explore service recommendation
and selection in the reusable composition context. The goal
is to aid developers finding the most appropriate services in
their composition tasks. We specifically focus on mashups, a
domain that increasingly targets people without sophisticated
programming knowledge. We propose a probabilistic matrix
factorization approach with implicit correlation regularization
to solve this problem. In particular, we advocate that the co-
invocation of services in mashups is driven by both explicit textual
similarity and implicit correlation of services, and therefore
develop a latent variable model to uncover the latent connections
between services by analyzing their co-invocation patterns. We
crawled a real dataset from ProgrammableWeb, and extensively
evaluated the effectiveness of our proposed approach.

Keywords-Recommendation; matrix factorization; mashup; la-
tent variable model

I. INTRODUCTION

Service-oriented computing promises the exposure and con-

sumption of computing resources through the Internet in the

form of platform-independent Web services. This leads to a

large number of applications developed heavily based on Web

services [1][2]. Among all these applications, mashup services

are a type of lightweight Web applications that composes exist-

ing Web services to shorten development period and enhance

scalability [3]. Nowadays, mashup services have become a

popular form of applications and have gained support from

multiple platforms, such as Google Mashup Editor1, IBM

Mashup Center2, and Yahoo pipes3. Until Feb. 2015, there has

already been over 12,839 Web APIs and over 6,168 Mashups

on ProgrammableWeb4, and the number is still increasing.

As an example, Figure 1 shows the mashup scenario of

a mobile application, WunderWalk5, which enables users to

search for places of interest in urban settings. The application

combines the Google Maps API6 and the Foursquare API7.

In this application, the Google Maps API provides basic

functionalities regarding the mapping, such as searching and

marking a specific location, while the Foursquare API enables

the basic functionalities regarding social activities, such as

check-in services and sharing comments and pictures with

1https://developers.google.com/mashup-editor/
2http://www-10.lotus.com/ldd/mashupswiki.nsf
3https://pipes.yahoo.com/pipes/
4http://www.programmableweb.com/
5http://www.wunderwalk.com/
6https://maps.googleapis.com/maps/api/js
7https://api.foursquare.com/

Fig. 1. An example mashup: the WunderWalk application integrates the
Google Maps API and the Foursquare API to provide mobile social services

friends. By invoking the two types of APIs, WunderWalk is

able to provide new and powerful functionalities to users, such

as viewing and reviewing marked locations and friends’ check-

in records or sharing pictures associated with the locations.

Given the large number and diversity (e.g., QoS) of the

available services on the Web, it has become more difficult

than ever to develop a mashup service due to the unprece-

dentedly large scope of choices on selecting the services.

Thus, it becomes a significant challenge as how to effectively

recommend mashup developers with high-quality services in

order to accelerate the mashup development. A desirable

recommendation result should not only fit the users’ interest,

but also be closely relevant to the other services in the mashup

(some may have already been selected for the target mashup)

to represent a high quality recommendation.

As a dominant approach to implementing the collaborative

filtering methods, traditional matrix factorization based rec-

ommendation techniques use the historical interactions (e.g.,

API invocations in historical mashups) as input to make

recommendations [4][5][6][7]. Traditional matrix factorization

techniques focus on decomposing the interaction matrix (i.e.,

Mashup-API matrix in our paper) into two low rank matrix

approximations, and then using these factorized matrices for

recommendation. However, the matrix factorization based rec-

ommendation techniques rely on rich records of historical

interactions to make accurate recommendations. For those

newly released or rarely invoked APIs, the prediction accuracy

of these methods is often quite limited.

Some recent works have demonstrated the effectiveness

of integrating entity correlations into the matrix factoriza-
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tion process. By incorporating users’ social relations [8] or

location similarity dependency into service recommendation

[9] as regularization terms, the recommendation quality can

be greatly improved. The regularization terms introduced by

social relations or location similarity can ensure that the

distance of the latent feature vectors of two users or two

locations is closer if they share some underlying similarity.

Inspired by above successful applications, we propose to

incorporate the API service correlations as an extra regulariza-

tion into the matrix factorization objective function. Instead of

directly utilizing the explicit correlations (e.g., content-based

similarity of API services), we design a latent variable model

to infer implicit API service correlations, which reflect the

latent similarities between APIs by studying API co-invocation

patterns in historical mashup records. The motivation here is

the generalized homphily in social science [10]: more similar

two entities are, more interactions they may have (e.g., co-

invoked by same mashups in this work). The co-invocations

provide, for any pair of APIs, the number of mashups that

comprise both APIs. The intuition behind this idea is that,

similar API services are more possibly related to similar API

services. To be more specific, API service i and j are more

similar compared with API service i and k if the former pair

are invoked by same mashups in a higher frequency than the

latter pair. Our contributions are summarized as follows:

• We investigate the Web-based services (API) recommen-

dation and selection in mashup under a regularized matrix

factorization framework, where the API-mashup matrix is

decomposed into two low-dimensional matrices, namely

the API latent subspace and the mashup latent subspace.

• We specially explore the co-invocation patterns between

APIs and propose a latent variable model to uncover

the implicit similarity by capturing the underlying causal

dependency of API invocation process. The experimental

results demonstrate that the implicit similarity can boost

recommendation performance.

• We crawl the Web to collect real mashup datasets and

conduct extensive experiments to validate the proposed

approach. The experimental results show the effectiveness

of our approach. We also publicly release our mashup

dataset for future study.

The rest of this paper is organized as follows. Section II

introduces our proposed approach. Section III describes the

derivation of implicit pairwise API correlations. Section IV

reports the experimental settings and empirical study on

proposed approach. Section V overviews related work and

Section VI concludes the paper.

II. METHOD OVERVIEW

In this section, we first analyze data characteristics of the

API invocation in mashup process. Then, we overview our

proposed method.

A. Preliminary

To evaluate our proposed approach, we crawled 11,101

public Web-based API services and 5,658 mashups from

ProgrammableWeb8 (on April 2, 2014). Table I shows some

statistics of the dataset.

TABLE I
STATISTICS OF PROGRAMMABLEWEB DATASET

Data Type Statistic
Number of API 11,101
Number of Mashup 5,658
Size of Service Corpus 25,256

Mashup-API (MA) Composition Matrix Density 1.8811× 10−4

API-API (AA) Mutual Matrix Density 1.6397× 10−4

The API invocations have the following characteristics:

• Sparsity. Although numerous services are available on

the Web, their occurrence in mashup applications is

sparsity. An observed entry in the API-Mashup matrix

(Figure 2 (a)) indicates the low average frequency of an

API to participate in a mashup. Most APIs are never

used or not even discovered yet, and the density of

API-Mashup matrix is only approximately 1.8 × 10−4.

Meanwhile, a mashup service usually includes a very

limited number of APIs (Figure 2 (b), 90% include less

than 5 APIs);

• Imbalance. Among the API services that are involved

in mashups, their usage frequency is imbalanced. A

small portion is used very frequently, while the others

are actually not used often. The API-Mashup Matrix

(API invocation frequency) dataset is also imbalanced

(Figure 2 (c)), with the “frequent” API used over 2,000

times and the “infrequent” APIs less than 10 times. The

top 200 most frequent API invocations cover 99% of all

API invocations by mashups (Figure 2 (d)).

In order to handle imbalance and sparsity, we propose a

matrix factorization based recommendation approach, which

have been proved successful [4][5][6] in addressing such two

major challenges that also characterize the aforementioned

API invocation in existing mashups.

B. The Proposed Method

We define the API recommendation problem as recommend-

ing a set of prospective APIs for a target mashup, given

the invocation records of n APIs in k mashups. We denote

invocation relation between APIs and mashups by a matrix

R ∈ R
n×k, where each element rij indicates whether or not

an API ai is invoked by a mashup mj (true if rij = 1).

We explore the implicit functional correlations between

services to make recommendations based on the matrix factor-

ization approach. The basic idea is to take into account both

API profiles and their co-invocation information in previous

mashups to make recommendations. The involvement of co-

invocation history can address the deficits of pure similar-

ity based recommendation approaches, that sometimes some

services simply supplement one another and would not be

very similar in their profiles. In particular, we compute the

explicit textural similarity of services to capture their domain

8http://www.programmableweb.com/
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Fig. 2. (a) API-Mashup Matrix is highly sparse; (b) 90% mashup integrate
less than 5 APIs; (c) The illustration of API invocation imbalance: infrequent
APIS are only used less than 10 times, while frequent API over 2000 times;
(d) The illustration of API invocation imbalance: top 200 most frequent APIs
almost occupy 99% of all invocations between API and mashups

and investigate the co-invocation patterns of services to infer

the implicit functional correlations between services. We then

incorporate this correlation into the matrix factorization model

as a regulation term to solve the recommendation problem.

The primary idea of matrix factorization is to map mashups

(resp., APIs) into a shared lower dimensional space (the

new dimensionality d � min{n, k}). Given the factorization

results of mashups ai ∈ R
d and of APIs mj ∈ R

d, the

probability that ai would be invoked by mj is estimated by:

r̂ij = aTi mj (1)

Thus, the latent factors of mashups and APIs can be denoted

as matrices A ∈ R
n×d and M ∈ R

k×d, which can be learned

by minimizing the �2 loss:

min
A,M

1

2

∑
i,j

Iij(rij − r̂ij)
2 +

λA

2
||A||2F +

λM

2
||M||2F (2)

where Iij equals 1 if API ai is invoked by mashup mj , and

0 otherwise. || · ||F is the Frobenius norm of matrix, λA and

λM are the regularization parameters. For the simplicity of

parameter tuning, we simply set λA = λM. To incorporate

the implicit functional correlations between APIs, we add a

regularization term to Eq.2:

L = min
A,M

1

2

n∑
i=1

k∑
j=1

Iij(rij − aTi mj)
2 +

λA

2
||A||2 + λM

2
||M||2

+

1︷ ︸︸ ︷
α

2

n∑
i=1

n∑
b=1

Zib||ai − ab||2

(3)

the last term (part 1) of Eq.3 integrates the link information

of APIs, where Z indicates the pairwise latent relations of

APIs (to be described in details in Section III). The intuition

of adding the regularization term is to make as close latent

representations as possible of the implicitly connected APIs.

It can be easily solved by coordinating optimzation methods

(i.e., alternately fixing one variable (A or M) and optimizing

the other by using gradient updating rules to progressively find

a local minimum). The updating rules for the two variables are

shown in Eq.4 and Eq.5, respectively.

ai ← ai + η1(δijmj − α
∑
b∈Ni

zib(ai − ab)) (4)

mj ←mj + η2(δijai − λ2mj) (5)

based on above definitions, we can quantify the possibility of

API being invoked by each targeting mashup by calculating

the predict score using Eq.1.

III. IMPLICIT CORRELATION Z DERIVATION

In this section, we first formulate our proposed latent

variable model for inferring the implicit correlations of API

services from API co-invocation interactions, along with API

service textual similarity. Then, we describe the model infer-

ence process.

A. Model Specification

We believe some implicit ingredients drive the co-use of

APIs in mashup services. This latent relationship cannot be

directly observed or obtained from API’s descriptive pro-

files (e.g., category information and API description etc).

We assume the latent correlation directly impacts the nature

and frequency of API co-invocations in a mashup process.

Intuitively, more co-invocations indicate stronger connections

among pairwise APIs which may share stronger underlying

similarities. In turn, the stronger the relationship, the higher

likelihood that co-invocations will take place between the

pair of APIs by the same mashup compositions. Thus, we

model this latent correlations as a hidden factor of descriptive

similarities indicated by API profiles.

Let ai ∈ Rm be the descriptive vectors of API service, yij
be the counts of API services i and j being invoked by the

same mashups, and zij be the pairwise implicit correlations

of API services i and j. Specifically, we predict the implicit

relations by adapting the statistical mixture model proposed

in [11], [12] (as shown in Figure 3):

Pr(zij , yij |ai,aj) = Pr(zij |ai, aj)︸ ︷︷ ︸
1©

Pr(yij |zij)︸ ︷︷ ︸
2©

= Pr(zij |sij)Pr(yij |zij)
(6)

where sij indicates the explicit similarity of API services i
and j calculated from their descriptive vectors. To obtain the

latent relation zij , we need to solve Eq. 6 by specifying two

types of dependencies: i) the dependency between the pairwise

explicit similarity of API services sij and latent relations,
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Fig. 3. The illustration of implicit correlation derivation model: sij denotes
the explicit similarity between API services i and j, zij denotes their implicit
relations between i and j, and the yij denotes the interaction between i and
j, e.g., the frequency of service i and j engage in a same Mashup service.

Pr(zij |sij), and ii) the dependency between the co-invocation

patterns of each pair of API services yij and latent relations,

Pr(yij |zij). We will describe the derivation process in details

in the following subsections.

1) Specifying Pr(zij |sij): To measure the dependency

between explicit similarity and implicit similarity between

pairwise API services, we first use cosine similarity to quantify

each pair of API services by evaluating their profile in the

text level. We denote each API service file ai ∈ R
m using

a TF/IDF weighting scheme. The process pipeline is briefly

described as follows:

• Keywords corpus construction. This step aims to build

a keyword repository of services, it is mainly divided

into two stages. We first segment the service descriptions

into terms and remove those terms with little meaning,

such as ‘a’, ‘the’, and ‘to’, then eliminate the differences

among the words with prefixes (e.g., -in, -un, -dis, -non, et

al) or suffixes (e.g., -s, -es, -ed, -er, or,-ing, -ion, et al).

As an example, the words “automate(s)”, “automatic”,

“automation” should all map to “automate”. In the end,

we have a service corpus containing generic descriptive

keywords with the size k ≈ 14, 000, denoted by ci ∈ C.

• Term frequency calculation. tf (term frequency) is the

count of a term’s occurrence in a given service description

to measure the importance of the term. This count is usu-

ally normalized to prevent bias towards longer documents

(which tends to have a higher term count regardless of

the actual importance of that term in the document). The

calculation is obtained by:

tf(cij) =
freq(cij , xi)

|xi| (7)

where tf(cij) means the frequency of the occurrence of

jth term cj in the description of API service xi ∈ X .

• Inverse document frequency calculation. idf (inverse doc-

ument frequency) is a measure of the general importance

of a term in a set of API service descriptions, which can
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Fig. 4. Illustrations of the co-invocation behaviors for API services

be calculated using:

idf(cij) =

⎧⎪⎪⎨
⎪⎪⎩
log

|n|∑
i I(cij ∈ xi)

if I(·) �= 0

log
|n|

1 +
∑

i I(cij ∈ xi)
if I(·) = 0

(8)

where |n| is the number of services, I(·) denotes the

number of service descriptions where term cj appears.

It should be noted that because most services have short

description [13], we assign a higher weight to the idf value

(i.e., aij = tf × idf2) to normalize the inherent bias of the tf
measure in short documents.

Each API service can be represented as a descriptive vector

ai. Thus, we can compute the explicit similarity sij between

API services i and j using cosine similarity of their corre-

sponding descriptive vectors as follows:

sij =
ai · aj
||ai||||aj || (9)

up to this point, the first dependency in Eq. 6 can be specified:

Pr(zij |ai, aj) = Pr(zij |sij ,w)

= N (wijsij , σ
2)

=
1

σ
√
2π

e
−
(zij − wijsij)

2

2σ2

(10)

We assume the relationship between zij and sij follows

a zero-mean Gaussian distribution zij = wijsij + ε, ε ∼
N(0, σ2). wij ∈ w, which denotes a weight vector that is

to be estimated and associated with the similarity of each pair

of APIs. σ2 is the variance in Gaussian model.

2) Specify Pr(yij |zij): To infer the co-invocation of APIs,

we introduce an additional layer, the latent relations of APIs.

This is based on the insight that higher frequency of co-

invocation does not necessarily imply higher textual similarity

of APIs in an explicit way. For example, two functionally

complementary APIs may have low textual similarity but be

frequently used together in mashups. Clearly, such similarity

can not be captured well by the textual features.

In order to tackle this problem, we represent such un-
observable similarity as latent variables, and specify them

by studying the co-invocation behaviors of APIs in mashup

activities. Figure 4 shows the co-invocation behaviors for

pairwise API services. Figure 4 (a) shows the distribution

of co-invocation counts for all pairs of API services, and
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Figure 4 (b) shows the specific co-invocations of each pair of

API services in mashups. As the natural stochastic model for

the counting data is the Poisson distribution, we use Poisson
distribution with a small λ to model how many times of co-

invocations for each pair of API services given the influence

of their latent correlations zij .

Pr(yij |zij) = λyije−λ

yij !
=

(θzij)
yij · e−θzij

yij !
(11)

where λ = θizij , θi ∈ θ is the weight vector, and yij is the

count that ai and aj are engaged in same mashups.

B. Model Learning

Given three types of inputs, i.e., a training dataset D
(denoted by n API pairs), the explicit similarity of services

sij (Section III-A1), and the co-invocation of services yij
(Section III-A2), the likelihood function of this model can

be specified as below:

Pr(D|w, θ)Pr(w)Pr(θ)

=
∏

(i,j)∈D

(
Pr(zij , yij |sij ,w, θ)

)
Pr(w)Pr(θ)

=
∏

(i,j)∈D

(
Pr(zij |sij ,w)Pr(yij |zij , θ)

)
Pr(w)Pr(θ)

∝
∏

(i,j)∈D

( 1

σ
√
2π

e
−
(zij − wijsij)

2

2σ2 · (θzij)yij · e−θzij
)

· e−
λw

2
wTw · e−

λθ

2
θT θ

(12)

To avoid overfitting, we put �2 regularization on the parameters

w and θ as Pr(w) ∝ e
−
λw

2
wTw

and Pr(θ) ∝ e
−
λθ

2
θT θ

.

Then we take the logarithm of Equation 12 and adopt the

stochastic gradient-based method to maximize the logarithm

function by optimizing the model parameters w and θ and the

latent variables zij .

L(zij∈D,w, θ) =
∑

(i,j)∈D

(
− 1

2σ2
(zij − wijsij)

2

+ yij ln(θzij)− θzij

)
− λw

2
wTw − λθ

2
θT θ

(13)

The model parameters w, θ and zij can be learned by

following a generic coordinate ascent method, in which we

update one parameter while fixing the other two parameters.

The whole process runs iteratively until reaching a conver-

gence threshold.

∂L
∂zij

=
1

σ

∑
(ij)∈D

(
(wijsij − zij) +

yij
zij

)
∂L
∂wij

=
1

σ

∑
(i,j)∈D

(
(wijsij − zij)sij

)
− λwwij

∂L
∂θ

=
∑

(i,j)∈D

(1
θ
yij − zij

)
− λθθ

(14)

after obtaining the model parameters, for any given testing

sample of an API service i, we first calculate its descriptive

vector ai and its textual similarity sij with other training

APIs, then we can extract its co-invocation patterns with other

training APIs yij .

znewij = zoldij − ∂L
∂zij

/
∂2L

∂(zij)2
(15)

Up to this point, combined with learned model parameters,

we can estimate the latent correlations between the testing API

service i and the training API services zij using Eq. 15, where
∂2L

∂(zij)2
=

1

σ

∑
(i,j)∈D

(
1 +

yij
z2ij

)
.

IV. EXPERIMENTS

In this section, we first introduce the experimental settings

and then present the analysis of the experimental results. The

experiments focus on the following aspects: i) comparing the

performance of our proposed method and the representative

baseline methods, ii) studying the impact of proposed implicit

correlations, and iii) evaluating the impact of different param-

eter settings in terms of dimensionality and regularization.

A. Experimental Settings

1) Validation: The training set and the testing set are

constructed as follows: firstly, we randomly select 20% API-

Mashup pairs as the testing set; then we randomly split the

rest data into 8 parts, each containing 10% API-Mashup pairs.

These parts are added incrementally to the training set to

represent different sparsity levels (as shown in Figure 5).

Table II shows statistics of the testing set and the training sets

with different sparsity levels, where 10% means the training set

contains 10% API-mashup pairs, and 20% means it contains

20% API-mashup pairs, and so on.

TABLE II
TRAINING DATA WITH DIFFERENT SPARSITY LEVELS

Data Density
10% 1.8604× 10−4

20% 1.8671× 10−4

30% 1.8712× 10−4

40% 1.8751× 10−4

50% 1.8774× 10−4

TestingData 1.8774× 10−4
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Fig. 5. The illustration of the experimental setting

2) Metrics: We adopt two commonly used metrics in

collaborative filtering, Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE), to measure the recommendation

performance. For the both metrics, smaller values indicate

better performance.

MAE =
1

N

∑
ij

|rij − r̂ij | (16)

RMSE =

√
1

N

∑
ij

(rij − r̂ij)2 (17)

B. Comparison with Other Approaches

In this section, we investigate and compare our proposed

approach with the following approaches over different sparsity

levels (shown in Table II). The baseline methods are briefly

depicted as follows:

• API-based Neighborhood (AN). This method uses Pear-

son Correlation to calculate similarities between APIs,

and makes recommendation based on similar APIs [14].

• Mashup-based Neighborhood (MN). This method uses

Pearson Correlation to compute the similarities be-

tween mashups and predicts invocations based on similar

mashups.

• Non-negative Matrix Factorization (NMF). It applies

non-negative matrix factorization on API-Mashup matrix

for predicting the missing invocations. The invocation

matrix between API and mashup R can be decomposed

into two lower dimension matrices

Rij = AikMkj (18)

The model can be solved by the following optimization

process

min
A,M

1

2

n∑
i=1

k∑
j=1

(rij − aTi mj)
2 (19)

• Regularized NMF (RNMF). It imposes two regulariza-

tions of a and m to avoid overfitting, and is formulated

as:

min
A,M

1

2

n∑
i=1

k∑
j=1

(rij − aTi mj)
2 +

λA

2
||a||2F +

λM

2
||m||2F

(20)

TABLE III
MAE AND RMSE PERFORMANCE COMPARISON

10% 20% 30% 40% 50%

AN MAE 0.2259 0.2135 0.2005 0.2002 0.1994
RMSE 0.3646 0.3572 0.3469 0.3325 0.3253

MN MAE 0.2284 0.2140 0.2067 0.2021 0.2003
RMSE 0.3705 0.3525 0.3510 0.3497 0.3438

NMF MAE 0.2413 0.2377 0.2215 0.2142 0.2123
RMSE 0.3892 0.3811 0.3672 0.3511 0.3487

RNMF MAE 0.1524 0.1447 0.1414 0.1392 0.1277
RMSE 0.3002 0.2784 0.2646 0.2546 0.2452

PMF MAE 0.1189 0.1142 0.1138 0.1119 0.1085
RMSE 0.2867 0.2634 0.2554 0.2433 0.2325

Ours MAE 0.1164 0.1101 0.1062 0.1033 0.1014
RMSE 0.2714 0.2552 0.2389 0.2205 0.2014

• Probabilistic Matrix Factorization (PMF). It is one of the

most famous MF models in collaborative filtering [6]. It

assumes Gaussian distribution on the residual noise of

observed data and places Gaussian priors on the latent

matrices U and V. The objective function of PMF for the

frequency data is defined as follows:

min
A,M

1

2

n∑
i=1

k∑
j=1

(g(rij)−g(aTi mj)
2)+

λA

2
||a||2F+

λM

2
||m||2F

(21)

where g(·) = 1/(1 + exp(−x)) is the logistic function.

For our approach, we set the dimensionality d = 15. For

simplicity, we set the same value for the two regularization

parameters λA = λM = 0.01 in the experiments. It should

be noted that the impact of different parameter settings are

studied in details in the rest of the section.

Table III shows that matrix factorization based methods

generally achieve better performance than both AN and MN.

Specially, our proposed method obtains better accuracy than

other matrix factorization methods consistently. The reason

lies in that our method integrates the inherent relations among

APIs with the historical relations between APIs and mashups.

The performance of our approach verifies the effectiveness

of bringing the implicit relation information in the highly

sparse API-Mashup matrix for improving the recommendation

accuracy.

C. Impact of Implicit Correlations

To evaluate the impact of implicit relations of APIs, we

compare them with two explicit similarity measures:

• Cosine similarity. We use cosine similarity to compute

the relations between APIs ai and aj , both denoted as

TF/IDF vectors:

sim(ai, aj) =
< ai, aj >

||ai||||aj || (22)

• Jaccard similarity. The Jaccard similarity of each pair of

APIs engaged in the mashup activities are calculated as:

sim(ai, aj) =
|Bi ∩Bj |
|Bi ∪Bj | (23)

where both Bi and Bj are binary vectors denoting the

mashup sets that ai and aj participate in, respectively.
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Fig. 6. Experimental results: (a) Impact of implicit correlations; (b) Impact of dimensionality; (c) Impact of regularizer

Figure 6 (a) shows that matrix factorization with implicit

API correlations outperforms the other two similarity based

methods. The reason lies in that implicit relations are derived

from both the profiles and co-invocation records of APIs,

which cannot be easily identified solely from content-based

correlations. Jaccard similarity-based factorization achieves

better performance than the pure content-based method, as it

partially captures the intersections of different APIs in mashup

activities.

D. Impact of Dimensionality

The parameter dimensionality determines the number of

latent features used to characterize APIs and mashups. In this

section, we study the impact of parameter dimensionality by

varying the dimensionality value from 5 to 50 with a step

value of 5. Figure 6 (b) shows that our approach achieves

the best performance when the dimensionality value is 15,

which may indicate the most appropriate latent factors for

the API-Mashup histories. From the results, we can observe

with the increase of latent factor number from 5 to 35, the

MAE and RMSE keep decreasing. This observations are con-

sistent with the intuitions that bigger number of latent factors

can extract more informative structures. However, when the

dimensionality exceeds 35, the performance begins to drop.

The reason is that a larger dimensionality causes the over-

fitting problem. As a result, either too small (e.g., 5) or too

large a dimensionality (e.g., 40, 50 etc) would degrade the

recommendation performance.

E. Impact of Regularization

To decide the most appropriate regularization level, we

study the sensitivity of regularization λ by tuning this param-

eter within the range of {10−4, 10−3, ..., 1} with the step of

10−1. Figure 6 (c) shows that both MAE and RMSE keep

dropping as λ increases until λ = 0.01, and then begin

to increase. That means the performance of our proposed

approach achieves the best at λ = 0.01, which is also the

reason that we take the value as the default setting in our

comparative experiments.

V. RELATED WORK

Service recommendation have been an active area of re-

search for years. Traditional service recommendation ap-

proaches locate quality of mashup service to realize high-

quality service recommendation [3][15]. Such methods require

explicit specification of users’ requirements to recommend

the appropriate services. On the other hand, collaborative

filtering (CF) models [16][17] can reflect to some extent users’

implicit requirements. Thus, most recent service recommen-

dation approaches are based on CF models. CF is a popular

recommendation algorithm, which makes automatic prediction

(filter) about the interests of a user by collecting preferences

or taste information from many users (collaborating). These

approaches compute similarity of users or services, predict

missing QoS values based on the QoS records of similar users

or services, and recommend the best services to users.

Among different CF methods, matrix factorization tech-

niques [5][6] have gained popularity as a dominant class of

methodology within collaborative filtering recommenders [4],

due to the high accuracy and scalability. These methods focus

on fitting the user-item rating matrix using low-rank approxi-

mations, and use it to make further predictions. Specially, Yu et

al. [18] develop a trace norm regularized matrix factorization

algorithm for recommending services with the best QoS to

users. This work incorporates the low-rank structure and the

clustered representation of real-world QoS data into a single

unified objective function to estimate users’ QoS experience.

In pursuit of higher accuracy, recent research commonly

combines additional information into Matrix Factorization.

Zheng et al. [7] propose a neighborhood-integrated Matrix

Factorization approach for collaborative and personalized web

service QoS value prediction. Chen et al. [19] take location

in term of IP addresses of services into account to make

more accurate recommendation. The approach combines user
interest value based on the content similarity between user

history records and Mashup services and QoS predictive value
of Mashup services by collaborative filtering. Ma et al. [8] fuse

MF with geographical and social influence for personalized

point of interest (POI) recommendation in location-based

social networks. Jamali et al. [20] incorporate trust propagation
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into the matrix factorization model for recommendation in

social networks. More recently, Cao et al. [21] and Yao

et al. [13] respectively propose a service recommendation

approach based on both content similarity and collaborative

filtering. Liu et al. [22] develop two extensions of the matrix

factorization models, data weighting approach and time-aware

modeling approach, for incorporating the social network struc-

ture in context aware recommendation. Xu et al. [23] propose a

coupled matrix model to describe the multi-dimensional social

relationships among users, mashups, and services, and design

a factorization algorithm to predict unobserved relationships in

the model to support more accurate service recommendations.

Though tremendous efforts on modifying the Matrix Factor-

ization model, few of them consider the impact of service

invocation history to the probability of future invocations.
Inspired by above approaches and in sight of their short-

comings, we propose to extend a recommendation approach

by integrating the API correlations regularization to the matrix

factorization objective function. Lo et al. [24] also combine

service similarity and Matrix Factorization in their missing

value prediction. Besides serving different purposes, we infer

implicit correlations among APIs rather than directly using

the explicit API similarity for making recommendations. The

implicit relations are more informative than simple explicit re-

lations by taking the influence of historical invocation relations

between mashups and APIs into account.

VI. CONCLUSION

This paper presents a Mashup service recommendation

approach by integrating the implicit API correlations regular-

ization into the matrix factorization model. The intuition is that

both the content features of APIs and the historical invocation

relations between APIs and mashups are essential in determin-

ing the future invocation of APIs in a target mashup. We define

the model components and propose corresponding methods

for inferring the model. The experimental results over a large

real-world service dataset show that our approach outperforms

the state-of-the-art collaborative filtering algorithms in term

of accuracy. This work can be considered our preliminarily

step of systematically exploring automatic service selection

and recommendation in mashup composition by reusing online

Web-based services.
As part of our future work, we will continue investigating

more promising features of mashup applications to further

improve the current approach. We will particularly focus on

exploring structural information between service providers and

service users by analyzing their following relations, e.g., some

APIs have users as their followers. We will also perform ver-

ifications of the proposed methods in more practical mashup

applications.
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