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Abstract: Allergy is a chronic disease that can develop as early as infancy, suggesting that early life 16 

factors are important in its aetiology. Variable associations between size at birth, a crude marker of 17 

the fetal environment, and allergy have been reported in humans and require comprehensive 18 

review. Associations between birth weight and allergy are however confounded in humans, and we 19 

and others have therefore begun exploring the effects of early life events on allergy in experimental 20 

models. In particular, we are using ovine models to investigate whether and how a restricted 21 

environment before birth protects against allergy, whether methyl donor availability contributes to 22 

allergic protection in IUGR, and why maternal asthma during pregnancy is associated with increased 23 

risks of allergic disease in children. We found that experimental intrauterine growth restriction 24 

(IUGR) in sheep reduced cutaneous responses to antigens in progeny, despite normal or elevated IgE 25 

responses. Furthermore, maternal methyl donor supplementation in late pregnancy partially 26 

reversed effects of experimental IUGR, consistent with the proposal that epigenetic pathways 27 

underlie some but not all effects of IUGR on allergic susceptibility. Ovine experimental allergic 28 

asthma with exacerbations reduces relative fetal size in late gestation, with some changes in 29 

immune populations in fetal thymus suggestive of increased activation. Maternal allergic asthma in 30 

mice also predisposes progeny to allergy development. In conclusion, these findings in experimental 31 

models provide direct evidence that a perturbed environment before birth alters immune system 32 

development and postnatal function, and provide opportunities to investigate underlying 33 

mechanisms and develop and evaluate interventions. 34 
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 36 

  37 



1. Introduction 38 

Several of the authors within this special issue have discussed the evidence that inflammation during 39 

pregnancy induces pregnancy complications, and the underlying mechanisms act via activation of 40 

toll-like receptor pathways. For example, maternal inflammatory signals induced by infectious and 41 

non-infectious stimuli are critical for normal labour and delivery and are implicated as causes of 42 

preterm labour. Intriguingly, the converse is also true, that exposures during gestation can 43 

predispose the progeny to later development of the inflammatory state of allergy. Rates of allergy 44 

are increasing rapidly, particularly in young children; the rate of hospitalisations for food-related 45 

anaphylaxis increased more than 5-fold in the 10 years from 1994-5 to 2004-5 in Australian children 46 

up to 4 years of age (Poulos et al. 2007). Understanding the aetiology of allergy and identifying 47 

preventative strategies is therefore increasingly important. The objectives of this review are to 48 

discuss key evidence for pre-birth origins of allergy and asthma from human cohorts and 49 

experimental models, in particular focussing on programming of allergy by three gestational 50 

exposures; intra-uterine growth restriction (IUGR), in utero methyl donor supply, and maternal 51 

allergy and inflammation. We conclude with suggestions for future research directions. 52 

2. In utero exposures and later health 53 

Associations between exposure to an adverse environment during pregnancy and infancy and later 54 

poor health were initially described at the regional level in seminal studies led by David Barker. Their 55 

subsequent work first linked individual birth and death records, and then progressed to studies of 56 

cardiometabolic outcomes in adults, and consistently demonstrated that individuals with low birth 57 

weights were at greater risk of poor cardiometabolic outcomes, including ischaemic heart disease 58 

and impaired glucose control (reviewed by Barker 1998). Subsequent studies of populations exposed 59 

to defined periods of famine revealed critical developmental periods in utero when different systems 60 

and their associated risks of later diseases were most susceptible to effects of maternal nutrient 61 

restriction, and showed that in utero exposures could change postnatal outcomes even in the 62 

absence of reduced birth weight (Roseboom et al. 2001). Adding to this evidence from opportunistic 63 

cohorts, studies in the Pima Indian population who have extremely high rates of diabetes in 64 

adulthood also provides strong evidence that the associations between gestational exposures and 65 

progeny health outcomes are not explained by genetics alone. In this population, siblings of mothers 66 

with diabetes are at >3-fold higher risk of diabetes themselves compared to siblings born before 67 

their mother was diagnosed with diabetes (Dabalea et al. 2000). Thus, exposures during critical 68 

windows of development have a lasting impact and impact adult health, a concept now referred to 69 

as ‘developmental programming’. Since events early in life generally have the greatest impact on 70 

developmental trajectories, interventions early in life also have the greatest potential to improve 71 

adult health (Hanson and Gluckman 2014). To date, developmental programming of allergy has been 72 

far less studied than that of outcomes such as metabolic diseases. 73 

We have recently reviewed evidence, largely in humans, for effects of perinatal exposures on the 74 

risks of allergy in progeny (Grieger et al. 2016). Parental and peri-conceptual factors such as low 75 

socio economic status, having a younger mother, and having older siblings, are each associated with 76 

reduced risk of developing allergy (Grieger et al. 2016). Having an older or obese mother, excessive 77 

maternal weight gain during pregnancy, being the first-born child and maternal smoking are 78 

associated with greater risk of developing allergy (Grieger et al. 2016). Restricted growth before 79 

birth appears to be protective against allergy, but is a risk factor for asthma. Most evidence suggests 80 

that maternal folic acid abundance in late pregnancy is positively associated with the risk of allergy 81 

in the offspring. Similarly, maternal inflammation due to allergy or asthma during pregnancy is a 82 
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susceptibility factor for later development of allergy in progeny. The evidence from epidemiological 83 

and experimental studies for programming of allergy by these three exposures is discussed below.  84 

3. Protective effects of IUGR against allergy but not asthma 85 

3.1 Evidence for IUGR as a protective factor from human cohorts 86 

Overall, the evidence from human studies suggests that restricted growth in utero reduces the risk of 87 

allergy in infancy, although findings are variable. Data on allergic outcomes at later ages is limited 88 

and even more variable than that available for infants. In the ISAAC Phase III study, the risks of 89 

having had eczema by 6-7 years old were decreased overall in children with birth weights of <2.5 kg 90 

(OR 0.88, 95% CI: 0.82-0.96) and 2.5 to <3.0 kg (OR 0.94, 95% CI: 0.90-0.99) compared to the 91 

reference category with birth weights of 3.0 to <4.0 kg (Mitchell et al. 2014). When stratified for 92 

country of origin, the protective effect of low birth weight (LBW) for eczema was only significant for 93 

children from affluent countries, and not in those from non-affluent countries, implying interactions 94 

between fetal growth and other environmental exposures, and risks of hay fever were not related to 95 

birthweight (Mitchell et al. 2014). Strengths of this study include the large numbers of subjects 96 

(>162,000 children) and inclusion of centres from both developed and developing countries, but this 97 

data may be limited by use of absolute birth weights (not adjusted for gestational age), and parent 98 

recall/non-clinical diagnosis of allergy. In the PARIS cohort of 1860 French infants at 18 months old, 99 

high relative birth weight (3rd or 4th quartile of population) was associated with increased risks of 100 

sensitisation to food allergens, most commonly cow’s milk and egg white, measured as elevated 101 

circulating allergen-specific IgE (Gabet et al. 2016). Risks of sensitisation to common aeroallergens 102 

were unaffected by birth weight in this cohort, however (Gabet et al. 2016).    103 

Twin cohort studies can reduce confounding and variation due to genetics and environmental 104 

factors, and also support a protective effect of LBW on later allergy. Within the Swedish Twin 105 

Registry (Lundholm et al. 2010), rates of eczema increased with birth weight (for 500g increase in 106 

birth weight, OR 1.62, 95% CI: 1.27-2.06) although hay fever was not associated with birth weight. 107 

This relationship was strengthened (for 500g increase in birth weight, OR 3.83, 95% CI: 1.55-9.98) in 108 

co-twin analyses of twin pairs discordant for eczema, an approach that controls for gestational age 109 

and shared genetic and environmental factors (Lundholm et al. 2010).  110 

Relationships between size at birth and asthma are generally in the opposite direction to those 111 

between size at birth and the allergic diseases discussed above. Using an absolute birth weight 112 

criterion of 2.5 kg to define LBW, the incidence of wheezing disorders (predominantly asthma), in 113 

childhood and adolescence was 60% higher in LBW than non-LBW in a recent meta-analysis of >1.7 114 

million participants in 37 studies (Mebrahtu et al. 2015). Consistent with this, a recent meta-analysis 115 

of data from nearly 25,000 individuals in 24 European birth cohorts identified a 32% greater risk of 116 

asthma in LBW (< 2.5 kg) individuals compared to all others (den Dekker et al. 2016). Another meta-117 

analysis, again of cohorts in developed countries, found similarly increased OR of asthma in children 118 

(↑28%) and adults (↑25%) for LBW (<2.5 kg) compared to all others (Mu et al. 2014).  In the ISAAC 119 

Phase III study, asthma incidence was increased in children whose birth weights were <2.5 kg or 2.5 120 

to <3 kg compared to the reference category of 3.0 to <4.0 kg, with a trend to stronger effects of 121 

LBW in affluent countries (Mitchell et al. 2014). In twin studies and co-twin analyses, lower birth 122 

weight is also associated with increased asthma risk (Örtqvist et al. 2009).  The association between 123 

LBW and increased asthma risk probably reflect effects of a restricted in utero environment on lung 124 

development rather than allergy, since these studies do not differentiate allergic and non-allergic 125 

asthma, and the association with asthma is at least partly explained by poorer lung function (den 126 

Dekker et al. 2016). Although effects of LBW on asthma are likely confounded by gestational age, 127 



and preterm birth is also a risk factor for asthma, the increased risk of asthma is also apparent in 128 

children born small for gestational age (SGA, birth weight <10th percentile, OR 1.18) as well as LBW 129 

(den Dekker et al. 2016). Unlike allergies, these meta-analyses suggest that high birth weight does 130 

not affect risk of asthma (Mebrahtu et al. 2015).   131 

In addition to the lack of differentiation of allergic and non-allergic asthma, the mixed reports of 132 

associations between markers of growth in utero and later allergic outcomes in progeny probably 133 

also reflect the use of variable exposure markers; such as absolute birth weight, birth weight 134 

categories, LBW and SGA; and variability in the outcomes assessed and the age/s at which this has 135 

been done. Given this variation between studies and the lack of consensus in this area, we are 136 

conducting a systematic review of the evidence for relationships between birth weight or fetal 137 

growth rate and postnatal allergy (as per published protocol, Wooldridge et al. 2016). Although the 138 

available epidemiological data suggests that allergy is programmed by in utero exposures in humans, 139 

it does not enable clear separation of the effects of environmental factors and genetic susceptibility. 140 

The epidemiological evidence is also likely to be confounded by environmental factors such as 141 

nutrition that persist from prenatal to postnatal life, or by co-morbidities such as IUGR and preterm 142 

birth. Experimental models have therefore been used to directly test effects of induced IUGR on 143 

progeny allergy, and may in the future allow evaluation of intervention strategies to reduce allergy 144 

risk. 145 

3.2 Chronic experimental IUGR reduces allergic sensitisation 146 

Allergic sensitisation has been reported in only a few experimental models of IUGR to date, with 147 

variable effects possibly reflecting the cause of IUGR (and hence different fetal exposures) as well as 148 

different developmental timings of restriction. In Wistar rats, maternal nutrient restriction to 50% of 149 

ad libitum intake from mating until delivery induces a severe IUGR phenotype, reducing birth weight 150 

of pups by 32-34%. Allergic responses of young adult progeny to airway allergen challenge, including 151 

OVA-specific IgE production, inflammatory cell airway infiltration, mucus secretion and collagen 152 

deposition were attenuated in progeny of feed-restricted mothers compared to control progeny 153 

(Landgraf et al. 2008, Landgraf et al. 2012). Lung cytokine and transcription factor gene expression 154 

patterns in allergen-challenged progeny were also altered, suggesting a shift from Th1 to Th2 155 

immune responses following in utero exposure to maternal undernutrition (Landgraf et al. 2012). In 156 

contrast, allergic responses to OVA sensitisation and a 2-week OVA inhalation exposure were 157 

increased rather than decreased in IUGR rat progeny (birth weight <10th centile of control progeny) 158 

when induced by a similar maternal undernutrition protocol throughout pregnancy in Sprague-159 

Dawley rats (Xu et al. 2014). This accentuated allergic response after OVA challenge occurred in 160 

conjunction with increased lung endothelin-1 (ET-1) protein and gene expression, together with 161 

increased histone acetylation but unchanged methylation of the ET-1 promoter, in IUGR compared 162 

to control progeny (Xu et al. 2014). Causality of the epigenetic changes and increase ET-1 expression 163 

in enhanced allergic responses of these IUGR progeny has not yet been demonstrated. Why effects 164 

of maternal undernutrition on allergic susceptibility of progeny differ between these two sets of 165 

studies is not clear, but might relate to rat strain, progeny sex or differences in sensitisation dose or 166 

continuous vs intermittent OVA challenge protocols. A milder reduction of 17% in neonatal weight 167 

induced using a maternal pregnancy stress protocol in mice (24 h sound stress at d 12 and d 14 of 168 

pregnancy) was associated with increased allergic responses in adult progeny (Pincus-Knackstedt et 169 

al. 2006). Conversely, maternal noise-induced stress protocols (hourly exposure each day from d 15 170 

to 21 of pregnancy) that did not alter pup size at birth reduced delayed hypersensitivity reaction to 171 

bovine serum albumin in sensitised male and female progeny (Sobrian et al. 1997). Further studies 172 



appear needed to clarify the effects of IUGR on allergic susceptibility in rodents and to determine 173 

which aspects of the in utero environment alter immune development and predispose to allergy.  174 

In humans, IUGR is often associated with impaired placental function, and this can be mimicked 175 
experimentally by pre-mating removal of the majority of placental attachment sites before mating in 176 
sheep (placental restriction, PR), which reduces placental size and function (Alexander 1964, 177 
Robinson et al. 1979). We have applied established protocols for systematic sensitisation to 178 
allergens and cutaneous allergen challenges in this species to evaluate effects of PR on susceptibility 179 
to allergy (Bischof et al. 2008). In our recent studies, PR reduced birth weight by 20%, and decreased 180 
delayed cutaneous hypersensitivity reactions to OVA despite increased IgE responses to allergens 181 
after sensitisation to OVA and house dust mite (Wooldridge et al. 2014). Acute cutaneous 182 
inflammatory responses to histamine correlated positively with birth weight in singleton progeny of 183 
this cohort (Wooldridge et al. 2014). We have since found that mast cell density in skin is not 184 
reduced in the adult PR progeny (Wooldridge et al., unpublished). We therefore hypothesise that 185 
loss of mast cell function explains the suppressed cutaneous delayed hyper-sensitivity inflammatory 186 
responses in the presence of normal or exaggerated IgE responses to allergens in PR sheep, but this 187 
requires direct testing. Overall, the balance of evidence from experimental models suggests that 188 
chronic IUGR induced by reduced nutrient supply to the fetus is protective against allergy, consistent 189 
with the associations between low birth weight and reduced incidence of allergy reported in 190 
children. 191 

4. In utero methyl donor metabolism in developmental programming 192 

of allergy 193 

4.1 Evidence for methyl donor abundance as an asthma and allergy risk factor from 194 

human cohorts 195 

Adequate maternal folate (Vitamin B9) status before conception and in the first few weeks of 196 

pregnancy is critical for proper development of the embryonic neural tube. Periconceptional folic 197 

acid supplementation is an extremely effective preventative measure, reducing the risk of neural 198 

tube defects (NTDs) by at least 40% (Blom 2009), and health authorities in most countries and the 199 

World Health Organisation therefore recommend intakes of folic acid supplementation of 0.4-0.5 200 

mg/d from at least a month before conception and during the first trimester (Gomes et al. 2016). 201 

Many pregnancies are unplanned, however, and these women are unlikely to know they are 202 

pregnant until after development of the neural tube during the 3rd and 4th weeks after conception. 203 

Voluntary and mandatory food fortification has therefore been implemented in many countries over 204 

the past 15 years to increase folate status in all women of reproductive age, and has further reduced 205 

rates of NTDs (Bower et al. 2009). Women at high risk of delivering a baby with an NTD, including 206 

those whose previous children have had NTDs, are recommended to consume 10-fold higher doses 207 

of 4-5 mg/d folic acid periconceptionally (Gomes et al. 2016). Randomised clinical trials are also 208 

evaluating efficacy of high folic acid doses (comparing 0 and 4 mg/d from before pregnancy to 12 209 

weeks post-conception, followed by 0.2 or 0.8 mg/d for the remainder of pregnancy) in prevention 210 

of all congenital malformations, not just NTDs (Bortolus et al. 2014). 211 

The evidence collated in several recent systematic reviews is that maternal folic acid 212 

supplementation at the usual doses of 0.4-0.5 mg/d during the periconceptional period before 213 

conception and during the first trimester of pregnancy is not associated with increased rates of 214 

childhood asthma (Blatter et al. 2013, Crider et al. 2013, Brown et al. 2014). There is some evidence 215 

that higher doses of folic acid during pregnancy are associated with asthma, based on linkage of 216 

maternal and children pharmacy dispensing data for >39 000 pregnancies in the Netherlands 217 

(Zetstra-van der Woude et al. 2014). Similar associations are evident in those dispensed high-dose 218 



folic acid in either the first or third trimester alone (Zetstra-van der Woude et al. 2014). There is also 219 

some evidence to support the original suggestion from study of a prospective birth cohort, that 220 

maternal consumption of folic acid supplements specifically in late pregnancy may increase risks of 221 

childhood asthma (Whitrow et al. 2009). Maternal consumption of folic acid supplements in late 222 

gestation is associated with 6-26% greater risk of childhood asthma/wheeze in progeny (Brown et al. 223 

2014). Effects of folic acid supplementation on incidence of allergic sensitisation and eczema in 224 

childhood vary between studies, with some finding increased risk and others no effect (Brown et al. 225 

2014), and more data is needed to characterise effects of supplement at specific periods of 226 

pregnancy and at different doses. Tuokkola and colleagues recently reported that in a cohort of 2327 227 

children in the Finnish Type 1 Diabetes Prediction and Prevention study, maternal folic acid 228 

supplement use but not dietary folate intake in the 8th month of pregnancy was associated with 40% 229 

greater risk of cow’s milk allergy in 5 year-old children (Tuokkola et al. 2016). This suggests that 230 

maternal folic acid supplementation in late gestation is likely to predispose to progeny to later 231 

allergic disease in general, and not specifically asthma. Any changes to dietary recommendations 232 

about folic acid supplementation in pregnancy need to be made with care, in order not to confuse 233 

women about the benefits of peri-conceptional supplementation in reducing NTDs. Additional 234 

information is therefore required, including childhood allergic outcomes in trials of high-dose 235 

maternal folic acid, to clearly define the impact of high and late pregnancy consumption of folic acid 236 

on allergic outcomes, potentially providing the opportunity to intervene at a population level to 237 

decrease allergic disease incidence. 238 

4.2 Experimental manipulation of 1-carbon pathways and progeny allergy 239 

The strongest experimental evidence for a role of methyl donor exposure in utero in allergic 240 

susceptibility comes from a study where female mice were fed diets containing high (HMD) or low 241 

(LMD) levels of methyl donors and co-factors important in 1-carbon metabolism (folic acid, vitamin 242 

B12, choline, l-methionine, zinc, and betaine) from 2 weeks before mating until weaning of the 243 

progeny (Hollingsworth et al. 2008). Compared to the LMD group, feeding HMD throughout 244 

pregnancy increased the severity of allergic airway disease (Th2-type immune responses) not only in 245 

the progeny exposed to this diet in utero (F1 generation), but also in the F2 generation 246 

(Hollingsworth et al. 2008). DNA methylation at multiple gene loci differed between HMD and LMD 247 

progeny, including greater methylation of Runx3 with decreased Runx3 gene and protein expression 248 

in HMD progeny, potentially causal in greater allergic susceptibility since this gene negatively 249 

regulates allergic airway disease (Hollingsworth et al. 2008). A number of methylated genes are also 250 

important determinants of T cell lineage, providing another pathway for effects of methyl donor 251 

metabolism on immune phenotype. For example, demethylation of FoxP3 correlates with greater 252 

expression of FoxP3 in whole cord blood, as well as with circulating Treg cell numbers and suppressive 253 

activity of Tregs in culture of mononuclear cells isolated from cord blood and challenged with 254 

common allergens (Liu et al. 2010).    255 

Our findings that PR protects progeny against allergic sensitisation (Wooldridge et al. 2014), 256 

discussed above, are also consistent with the hypothesis that decreased methyl donor abundance in 257 

utero may alter methylation of key genes to initiate a trajectory of immune system development 258 

that is subsequently less susceptible to developing allergy. In rodent models of PR, fetal 1-carbon 259 

donor abundance is decreased, 1-carbon pathway enzyme expression is altered and this is 260 

associated with hypomethylation of DNA and increased histone acetylation in multiple tissues 261 

(MacLennan et al. 2004, Ke et al. 2006, Park et al. 2008). Consistent with the hypothesis that 262 

reduced placental methyl donor transport to the fetus protects against allergy in the PR sheep, when 263 

we supplemented PR ewes with methyl donors and cofactors in the last month of their five month 264 



gestation, the protective effects of PR against cutaneous delayed-type hypersensitivity after allergen 265 

sensitisation were partially lost (Wooldridge et al., unpublished). Effects of PR on antibody responses 266 

to allergen sensitisation were not altered by maternal methyl donor supplementation, however 267 

(Wooldridge et al., unpublished). We are currently investigating effects of our PR and maternal 268 

methyl donor supplementation on 1-carbon metabolism in our ovine models to further evaluate the 269 

potential role of methyl donors in programming of allergy.   270 

5. Maternal asthma and allergy during pregnancy increase allergic 271 

susceptibility in progeny 272 

5.1 Evidence for maternal asthma and allergy during pregnancy as allergy risk factors 273 

from human cohorts 274 

Maternal asthma is a common gestational exposure, affecting ~12% of singleton pregnancies in an 275 

Australian cohort (Clifton et al. 2009). Maternal asthma worsens during pregnancy in ~50% of 276 

women, and 20% of asthmatic women undergo exacerbations requiring medical intervention 277 

(Murphy et al. 2005, Murphy et al. 2006). Asthma during pregnancy substantially increases risks of 278 

adverse pregnancy outcomes, including preeclampsia (↑54%), preterm birth (↑41%), SGA (↑22%), 279 

and LBW (↑46%) (Murphy et al. 2011). Risks of adverse neonatal outcomes including admission to 280 

neonatal intensive care (↑12%), respiratory distress syndrome (↑9%) and transient tachypnoea of 281 

the newborn (↑10%) are also increased when the mother has asthma, even after correction for 282 

prematurity as a comorbidity (Mendola et al. 2014).  283 

In addition to these short-term adverse outcomes, there is good epidemiological evidence 284 

suggesting that exposure to maternal asthma or allergy before birth increase risks of the same 285 

conditions in children. Maternal asthma is consistently a stronger risk factor for childhood asthma 286 

than paternal asthma, implying that the maternal contribution is not only genetic, but that the in 287 

utero and possibly lactational environment also contribute to risk (Lim et al. 2010). Exposure to 288 

active maternal allergy is associated with increased risks of multiple childhood allergies, although 289 

interestingly, not with childhood asthma. In the PAULA study cohort of 526 children born in greater 290 

Munich in Germany, atopic symptoms in the mother during pregnancy were associated with >175% 291 

greater odds of food sensitisation in children within the first year of life, 60% greater odds of eczema 292 

(atopic dermatitis) in the first two years of life, and ~100% greater odds of hay fever (allergic rhinitis) 293 

at 4-5 years of age (Illi et al. 2014). Increased odds ratios for eczema in the first two years of life and 294 

of hay fever at 4-5 years of age were also observed in a sub-analysis of children from atopic mothers, 295 

also supporting the hypothesis that these relationships reflect programming by environmental 296 

factors in addition to genetic susceptibility (Illi et al. 2014). Although maternal atopic symptoms 297 

during pregnancy were not associated with altered odds of asthma before 4-5 years of age, nor with 298 

current wheeze at 4-5 years of age in the children, increased frequency of maternal infection with 299 

common colds during pregnancy was associated with more than double the odds for childhood 300 

asthma (Illi et al. 2014). Together, this evidence implicates in utero exposure to maternal 301 

inflammation - induced by maternal allergy, asthma or infection - as a factor that increases 302 

susceptibility of progeny to allergic disease postnatally. Altered T cell development is implicated in 303 

programming of allergic susceptibility by exposure to maternal allergy in utero. Compared to 304 

neonates born from non-allergic women, neonates from allergic women have a higher proportion of 305 

Th2 cells and lower ratio of Treg to Th2 cells in cord blood (Fu et al. 2013). In the same study, low 306 

Th1:Th2 and Treg:Th2 cell ratios in cord blood predicted increased risk of eczema development in the 307 

infants by two years of age (Fu et al. 2013). DNA in peripheral blood is also differentially methylated 308 

in peripheral blood of 1 year-old infants born to mothers with asthma, compared to infants of non-309 



asthmatic mothers, and some of the changes in DNA methylation correlate with characteristics of 310 

asthma and allergy severity in the mother or with infant circulating immune cell abundance 311 

(Gunawardhana et al. 2014). Whether these methylation changes at birth predict subsequent 312 

allergic outcomes in children is yet to be determined. The effects of maternal asthma and 313 

exacerbations in pregnancy on pregnancy outcomes and fetal and placental responses differ 314 

depending on whether the fetus is male or female (Clifton et al. 2009). Intriguingly, within the Isle of 315 

Wight Birth cohort, associations between allergy in parents and children were parent-of-origin 316 

specific and differed according to the sex of the child, such that maternal allergy was associated with 317 

increased risk in girls, and paternal allergy was associated with increased risk in boys (Arshad et al. 318 

2012). Whether effects of maternal asthma and allergy are sex-specific requires confirmation in 319 

other cohorts, and if confirmed, further study to determine the extent to which this reflects effects 320 

of imprinted genes or sex-specific effects of the in utero environment on fetal immune development 321 

and allergic susceptibility.  322 

5.2 Experimental allergy and asthma in the mother pre-dispose progeny to allergy 323 

To date, the hypothesis that susceptibly to allergic disease is programmed by in utero exposure to 324 

maternal atopic states has only been adequately tested in mice. We have recently developed an 325 

ovine model of maternal allergic asthma which will enable this question to be evaluated in a large 326 

animal model and allow direct studies of fetal responses and longitudinal studies of individual 327 

progeny. This model will also be described below. 328 

In the mouse, maternal allergic asthma before and during pregnancy increases susceptibility of pups 329 

to allergy, predisposing them to allergic responses to sensitisation (Hamada et al. 2003). This is a 330 

systemic response, since pups are more likely to develop allergic responses to novel antigens as well 331 

as after sensitisation with ovalbumin, the allergen used to induce maternal allergy (Hamada et al. 332 

2003). At least in this mouse model, exposure during gestation or lactation was sufficient to induce 333 

allergic susceptibility in progeny, suggesting circulating inflammatory cells or signals in the mother 334 

can be transmitted to progeny across the placenta or in breastmilk (Leme et al. 2006). Transfer of 335 

allergen-specific T-cells from donor mice to non-sensitised dams followed by airway allergen 336 

exposure during pregnancy also increased risk of allergic asthma in mouse progeny without causing 337 

overt maternal asthma, showing that the presence and stimulation of allergen-specific T cells during 338 

pregnancy are sufficient to program allergic susceptibility in progeny (Hubeau et al. 2006). Only 339 

induction of an allergic (Th2-biased) immune response to OVA increases progeny susceptibility to 340 

allergic sensitisation. If dams are sensitised to OVA using a protocol that induces a Th1-biased 341 

immune response, then pups are actually protected against allergic sensitisation to OVA, although 342 

protection by the maternal Th1 response is allergen-specific, in contrast to induction of susceptibility 343 

(Matson et al. 2007). Consistent with this protective effect of non-allergic maternal allergen 344 

exposures, maternal airway OVA exposure from early pregnancy until delivery, which did not induce 345 

maternal allergy, induced IL-10 and Treg-mediated immune tolerance to OVA in progeny that 346 

inhibited their allergic responses to OVA-sensitisation into adulthood (Gerhold et al. 2012). In a 347 

single study in dogs, maternal and paternal sensitisation to ragweed before mating was associated 348 

with increased circulating antibody responses and asthmatic-type lung responses to inhaled ragweed 349 

in progeny. This study is limited, however, by use of pups from only two litters in each group and 350 

potential effects of maternal ragweed exposure during lactation (Barrett et al. 2003). Together with 351 

the human data, these results in experimental models are consistent with the hypothesis that 352 

exposure to maternal allergy in utero, but not allergen exposure in the absence of allergy, increases 353 

the allergic susceptibility of progeny, and that this is not specific to the in utero-exposed allergen/s. 354 



In order to directly evaluate the acute fetal and long-term progeny effects of maternal allergic 355 

asthma, and to enable evaluation of the effects of clinical and experimental interventions on these, 356 

we have recently developed an ovine model of maternal allergic asthma in pregnancy (Clifton et al. 357 

2015). Sheep are sensitised systematically by repeated immunisation with allergen, followed by 358 

repeated airway challenges with aerosolised allergen, utilising a protocol that induces an allergic 359 

asthmatic phenotype in non-pregnant sheep (Bischof et al. 2003, Bischof et al. 2008). We mated 360 

ewes that had been sensitised and commenced airway challenges to house dust mite prior to 361 

pregnancy, and continued airway challenges with house dust mite throughout pregnancy (Clifton et 362 

al. 2015). These pregnant ewes developed characteristics of allergic asthma including increased lung 363 

resistance, progressive increases in the eosinophil influx induced by airway allergen challenges, and 364 

increased deposition of smooth muscle around lung airways (Clifton et al. 2015). The 12% reduction 365 

in relative fetal weight in late pregnancy in this model is consistent with effects of maternal asthma 366 

in human pregnancy, although additional studies are needed to determine whether fetal responses 367 

to maternal allergic asthma in sheep are sex-dependent as occurs in humans (Clifton et al. 2009, 368 

Clifton et al. 2015). We have begun to study the effects of maternal allergic asthma on fetal immune 369 

phenotype in this model. To date, the main effect we have observed is that fetuses from allergic 370 

ewes had a greater proportion of CD44-positive lymphocytes in thymus than control fetuses, with a 371 

similar trend in the lymphocyte population isolated from spleen (Wooldridge et al., unpublished 372 

data). This cell adhesion molecule marker is involved in lymphocyte adhesion to endothelial cells via 373 

hyaluronic acid and this interaction is essential for migration of activated T cells into sites of 374 

inflammation (DeGrendele et al. 1996, DeGrendele et al. 1997). Blocking CD44 action in a mouse 375 

model of airway allergic inflammation prevented or attenuated many of the inflammatory responses 376 

to airway allergen challenge including eosinophil and lymphocyte accumulation in lung, antigen-377 

induced increases in Th2 cytokines and chemokines in lung liquid and antigen-induced airway hyper-378 

responsiveness (Katoh et al. 2003). Anti-CD44 antibody treatment also inhibits the cutaneous 379 

delayed-type hypersensitivity in a murine model of contact allergy (Camp et al. 1993), consistent 380 

with the importance of CD44 in allergic inflammation.  If the elevated CD44 expression in 381 

lymphocytes we see in late gestation fetuses in our ovine model of maternal allergic asthma persists, 382 

it may therefore predispose the progeny to allergic inflammation postnatally. The availability of this 383 

large animal model of maternal allergic asthma, where allergic sensitisation and tissue and 384 

molecular responses can be investigated in the same animals over time, will allow us to investigate 385 

these potential mechanisms for developmental programming of allergy.  386 

6. Conclusions 387 

On balance, the available epidemiological and experimental evidence suggests that prenatal chronic 388 

restriction of fetal growth reduces later risks of allergy, while elevated methyl donor availability in 389 

late pregnancy or active maternal asthma and allergy during pregnancy increase allergy susceptibility 390 

of progeny. Approaches such as discontinuing maternal folic acid supplementation during late 391 

pregnancy and tight control of maternal asthma and allergy in pregnancy should be evaluated as 392 

potential approaches to reduce the incidence of allergic diseases in children. Additional 393 

experimental studies are needed to identify underlying mechanisms for programming of allergic 394 

susceptibility by these and other exposures before birth, particularly for conditions such as IUGR 395 

which have other adverse effects. 396 
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