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Depression has been widely accepted as a major psychiatric disease affecting nearly

350 million people worldwide. Research focus is now shifting from studying the

extrinsic and social factors of depression to the underlying molecular causes. Microglial

activity is shown to be associated with pathological conditions, such as psychological

stress, pathological aging, and chronic infections. These are primary immune effector

cells in the CNS and regulate the extensive dialogue between the nervous and the

immune systems in response to different immunological, physiological, and psychological

stressors. Studies have suggested that during stress and pathologies, microglia play

a significant role in the disruption of neuroplasticity and have detrimental effects on

neuroprotection causing neuroinflammation and exacerbation of depression. After a

systematic search of literature databases, relevant articles on the microglial regulation of

bidirectional neuroimmune pathways affecting neuroplasticity and leading to depression

were reviewed. Although, several hypotheses have been proposed for the microglial

role in the onset of depression, it is clear that all molecular pathways to depression are

linked through microglia-associated neuroinflammation and hippocampal degeneration.

Molecular factors such as an excess of glucocorticoids and changes in gene expression

of neurotrophic factors, as well as neuro active substances secreted by gut microbiota

have also been shown to affect microglial morphology and phenotype resulting in

depression. This review aims to critically analyze the various molecular pathways

associated with the microglial role in depression.

Keywords: glial cells, microglia, depression, cytokines, neuroprotection, neurodegeneration, immune

INTRODUCTION

Depression is a common psychiatric disease prevalent worldwide and is associated with decreased
life span and impaired quality of life (Bosnyák et al., 2015; Wachholz et al., 2016). One in every
six people in the US is diagnosed with some form of depression sometime in his life (LB, 2014).
A recent epidemiological study suggests that one is four women and one in six men suffer from
depression at some stage of their life and depression is more prevalent in young people than
elderly (Kessler et al., 2010). A door to door cross sectional study has confirmed that depression
in elderly people resulted in increased morbidity and mortality, more significantly in females than
males, in people who are single or divorced, lower in education, earning low income, unemployed,
lacking health insurance, and suffering from other comorbid illnesses such as chronic obstructive
pulmonary disease and cardiovascular diseases (Yaka et al., 2014).While depression is treatable, less
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that third of patients showed improvement in the immediate
18 months in secondary and tertiary care (Mulder et al., 2009).

The molecular mechanisms underlying the physiological
symptoms of the disease have not been completely deciphered
yet. Scientists around the globe have largely focused on
serotonergic dysfunctions and cortisol dysregulation (Maes et al.,
2009). However, due to the lack of sufficient evidence, the focus
is now shifting onto the role of glial cells in the pathophysiology
of depression. While neurobiological changes during depression,
such as loss of neuroplasticity and neuroprotection, are being
studied in detail (Fuchs et al., 2004; Pittenger and Duman,
2008; Player et al., 2013; Malykhin and Coupland, 2015), the
involvement of glial cells in triggering changes in the brain
remains to be fully understood.

Exploring the innate immune functions of glial cells is crucial
to understand the role of brain’s immune system to fight
against the inflammatory and degenerative disorders. It further
helps understand how does it protect the nerve cells, mediate
neurobiological homeostasis, and furthermaintain the behavioral
competency under normal conditions (Kreutzberg, 1995; do
Carmo Cunha et al., 2007). Studies have shown that these cells
are responsible for inflammatory and degenerative changes in
the brain during aging (Schipper, 1996; Conde and Streit, 2006),
psychological stress (Avitsur et al., 2005), ischemia (Nedergaard
and Dirnagl, 2005; Shichita et al., 2012), and in the presence
of harmful metabolites such as amyloid-β and tau peptides
(Nagele et al., 2004). These cells also play a significant role
in disruption of neuroplasticity and exacerbation of depression
during psychological stress (Kreisel et al., 2014b).

Among glial cells, microglia have been shown to prominently
express various cytokines which are essential for the maintenance
of neurobiological homeostasis (Rothwell et al., 1996; Hanisch,
2002). Microglia exerts various opposing biological effects in the
brain depending on their status and degree of activity in response
to stimulus (Schwartz et al., 2006). They regulate activation
and progression of various neuroimmune pathways that are
mediated by immune components, such as natural killer cells,
macrophages, T- and B-lymphocytes, cytokines, chemokines,
Toll-like receptors, and growth factors. Activated microglia also
initiate the formation of intracellular multiprotein complexes
called as inflammasomes which in turn cleave precursor forms of
IL-1β into its active form (Singhal et al., 2014). These immune
cells and proteins in their physiological state are essential for
the immune and tissue repair processes and the maintenance of
neural-immune homeostasis during infectious diseases, trauma,
ischemia, brain tumors, and autoimmune disorders. However,
when over-expressed, they can cause a significant increase in
the production and expression of proinflammatory cytokines
(e.g., TNF-α, IL-1β) and neurotoxic substances (e.g., reactive
oxygen species, nitric oxide), become increasingly dysfunctional
and lose neuroprotective properties. Together, these may
result in neuroinflammatory and neurodegenerative processes,
subsequently leading to cognitive dysfunction and psychiatric
illnesses, such as depression (Patel, 2013) and Alzheimer’s disease
(AD) (Mrak, 2012).

In addition to regulating immune functions, microglia have
been reported to regulate various neurobiological processes, for

example, formation of neural circuits (Wake et al., 2013) and
synapses (Kettenmann et al., 2013) during early postnatal life,
and phagocytose apoptotic cells in adult life (Sierra et al., 2010).
Furthermore, microglia have been shown to regulate the levels
of neurotrophic (Nakajima et al., 2007) and angiogenic factors
(Rymo et al., 2011), and amino acids metabolism (Gras et al.,
2012) in CNS. All these processes are vital for the sustenance
of neuroplasticity and therefore may get compromised when
microglia are reduced in number or become dysfunctional.

Other molecular factors, such as excess of glucocorticoids
which have effects on microglial morphology and phenotype,
have also been shown to result in depression (Nair and Bonneau,
2006; Marques et al., 2009). It has been shown that the density
of neuroprotective microglia reduces in the dentate gyrus of the
hippocampus (Branchi et al., 2014), prefrontal cortex (Hinwood
et al., 2012), and amygdala (Hamidi et al., 2004) with chronic
stress. In addition, microglia become increasingly dysfunctional
and overexpress proinflammatory cytokines, class I and II major
histocompatibility complex (MHC) antigens and toxic molecules
(e.g., superoxide anions, nitric oxide) which lead to episodes of
depression. Stress has also been shown to affect the composition
of gut microbiota, which in turn could affect microglial activity
leading to depression (O’Mahony et al., 2009; Erny et al., 2015).

Microglia, as immune regulatory cells in the brain, have
received a great deal of attention in last two decades. However,
their role in depression is yet to be fully elucidated and
hence merits more research. This review, therefore, focuses on
microglia and associated cytokines in the brain, their complex
mechanisms of action, the intrinsic and extrinsic factors that
trigger their activation and the key inflammatory pathways
associated with microglia expression post-activation associated
with depression.

MATERIALS AND METHODS

PRISMA Criteria
Guidelines as prescribed by PRISMA (Preferred reporting items
for systematic reviews and meta-analyses) were followed while
constructing this review (Liberati et al., 2009; Moher et al., 2009).
The checklist items from PRISMA as relevant to this review, for
example those related to search and writing approaches, were
included and the items not relevant, for example those related
to meta-analyses, were excluded.

Search and Selection Process
Electronic database search of PubMed, ScienceDirect and
Google Scholar was systematically performed from January-
1988 to March-2017 using various combinations of the
following keywords: glial cells, microglia, depression, brain, CNS,
astrocytes, neurogenesis, neurodegeneration, neuroprotection,
neuroinflammation, neuroregeneration, cytokines, IL, TNF, TGF,
chemokines, CRP, cellular, humoral, immune, aging, Alzheimer’s
disease, cognition, behavior, metabolic disorders, diabetes,
obesity, cardiovascular disease, cancer, systemic, tryptophan,
inflammasomes, NLRP3, hippocampus, cerebral, frontal cortex,
pathogen-associated molecular patterns, and damage associated
molecular patterns. At each stage of the search, titles and
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FIGURE 1 | Study inclusion flowchart. The flowchart depicts the systematic

methodology for search and inclusion of relevant articles according to the

PRISMA guidelines (Liberati et al., 2009; Moher et al., 2009).

abstracts were scrutinized, and the most appropriate of them
were organized into separate folders using EndNote X6.0.1
software (Clarivate Analytics). Articles relevant to our discussion
were also retrieved from the reference list of other online articles
on each subtopic. All duplicate articles in EndNote were then
deleted. Articles without the full text available and with anecdotal
evidence were excluded from the review.

The process mentioned above of Article selection and deletion
yielded 1,784 articles in total. After placing all inclusion and
exclusion criteria into our search (as depicted in Figure 1), a total
of 412 full-text manuscripts were short-listed for further analysis.
Both human and rodent data were included. In the next stages,
206 studies were further excluded following exclusion criteria as
per Figure 1. In all, 206 articles closely related to the aims set
forth for this review were selected and hence utilized.

Inclusion and Exclusion Criteria
The various neuroimmune signaling pathways associated with
microglial and microglia-derived cytokines activity in the brain
and their association with depression have been critically
analyzed in the current review. Hence the articles investigating
immune functions of the microglia, their mechanism of actions
during bidirectional communication between the nervous and
immune systems and their association with depression were
selected for detailed analysis.

DEPRESSION AS A PSYCHIATRIC
SYNDROME

Depression is characterized by psychophysiological changes, such
as the state of low mood, losing the sense of self, sadness,
irritability, and loss of interest in all activities and events
(Belmaker and Agam, 2008). It is a major public health sector
liability with an estimated economic burden of more than 80
billion dollars as was reported in 2000 (Donohue and Pincus,
2007). However, depression can be treated by optimal treatment.

Clinical depression or major depressive disorder (MDD) is
the clinical manifestation of depressive state in humans and
can be defined as the psychiatric syndrome characterized by the
symptoms defined by the Diagnostic and Statistical Manual-5
(DSM-V) (see Appendix I; American Psychiatric Association,
2013). Most adults may have, at some point in their lives,
experienced mood disorder in excess to physiologic changes and
the majority of them may consult a primary care physician or a
mental health professional. Depression alone has been the cause
of wide scale mortality, in particular, due to suicides. According
to a survey in the United States, MDD has led to higher suicidal
rates in males than females (JL, 2015). Patients with MDD are
more prone to develop life-threatening metabolic disorders such
as type II diabetes and cardiovascular disease, further adding
to mortality rates (Knol et al., 2006; Glassman, 2008). Indeed,
unipolar depression is projected to be the second leading cause
of disability worldwide in next two decades (González et al.,
2010). However, it has been noted that 70–80% of individuals
with MDD, if treated appropriately, recover to an appreciable
extent (JL, 2015).

Pathophysiology of Depression
Clinical depression seems to occur more commonly in people
with certain risk factors (Kendler et al., 2006a). Besides external
and environmental factors like substance abuse, lack of peer
support, marital problems, low socioeconomic status, low
education, and stressful life events; many of the internalizing
factors play a major role as well. Significant among them are
genetic alterations and acquired anatomical defects. Certain
genetic subgroups are more vulnerable to developing depression,
and monozygotic twins show a concordance rate of almost 40%
for developing MDD (Sullivan et al., 2000; Kendler et al., 2006b).
In spite of observed anatomic and physiologic changes in brain,
no conclusive proof has been found linking any combination
of genetic and environmental factors (aan het Rot et al., 2009;
Risch et al., 2009). The altered levels in certain growth factors and
neurotransmitters such as serotonin, norepinephrine, dopamine,
GABA, brain-derived neurotrophic factor (BDNF), glutamate,
cannabinoid (CB1) receptors, acetylcholine, and substance P
have been proven time and again to cause depression and
the protocols for treating depression have been developed to
maintain those imbalances (Duman et al., 1997; Svenningsson
et al., 2006; Thase, 2007; Hill and Gorzalka, 2009). Also, factors
like over and under activity of hypothalamic-pituitary-adrenal
axis may also be responsible for MDD (Gillespie and Nemeroff,
2005; Vreeburg et al., 2009). However, researchers have found
that these functional causes go hand-in-hand with anatomic
alterations at the cellular level (Rajkowska and Miguel-Hidalgo,
2007).

Role of Cellular Alterations in
Pathogenesis of Depression
Several anatomical changes are related to depression as detected
in magnetic resonance studies of the brain (Koolschijn et al.,
2009). Some of the consistent findings are decreased lobar
volumes, especially frontal, temporal, and hippocampal volumes
and higher volumes of ventricles on overall brain volume (Lampe
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et al., 2003; Taylor et al., 2007). There is a significant loss of
GABAergic neurons in occipital, prefrontal and limbic regions
and size of neurons are decreased by one-fifth (Cotter et al., 2001,
2002; Rajkowska et al., 2007; MacIag et al., 2010). Significant
changes are noted in the number, density and size of glial cells
during MDD (Ye et al., 2011). These evidences suggest the role
of glial cells in mood disorders and the potential part played in
the pathogenesis of the latter. We, however, limit our discussion
to microglia among the glial cell population and their effects post
activation leading to depression in this review.

MICROGLIA: MULTITASKING CELLS OF
THE BRAIN

Microglia comprises of about 7–10% of all brain cells, and are
involved in maintaining the development and normal structural
and functional processes of neurons. They are non-excitable cells
of mesodermal origin, and together with other glial cells, such
as astrocytes and oligodendrocytes, they form the smaller but
numerous (in comparison to neurons) clusters of cells in the CNS
(Brown et al., 1997; Zhang, 2001). Microglia assist with neuronal
migration during brain development, repair damaged neurons,
fill voids left by degenerative neurons, recycle neurotransmitters
after neuronal excitation, regulate ionic balance, buffer pH,
phagocytize dead cells and pathogens, and express various
immune proteins and cell adhesion molecules required for
the initiation of the innate immune response in the presence
of pathogens and stress proteins (Bunge, 1994; Zhang, 2001;
Kitamura and Nomura, 2003).

MODULATION OF NEUROIMMUNE
RESPONSE BY MICROGLIA

Microglia are the principal immune effector of the brain
responsible for immunosurveillance and neuroprotection.
Microglia, in association with cytotoxic T cells, are important
for neurogenesis, adult brain plasticity and spatial memory
(Ziv et al., 2006). While sessile in the CNS, the quiescent forms
of microglia lack phenotypical markers required for antigen
presentation, suggesting that their activation is tightly regulated
to prevent any autoimmune reactions under normal conditions.
Once activated in the presence of pathogens associated molecular
patterns (PAMPs) and/or damage associated molecular patterns
(DAMPs), they rapidly proliferate and express MHC class I and
MHC class II proteins, receptors for various proinflammatory
cytokines, toll-like receptors, Nod-like receptors, and antigens
for T-cells subsets essential to mount innate immune response
(Dodel et al., 2004). The microglial activity is further triggered
by the infiltrating hematogenous macrophages which find a way
to the CNS when the endothelial cells lining of the blood brain
barrier is ruptured during brain injuries and pathologies (Dong
et al., 2002).

The overexpression of proinflammatory cytokines in the
brain and influx of immune phagocytic cells is essential to
control brain damage and promote faster healing, however it
has also been shown to contribute toward neurodegeneration

and hence playing an important role in the pathophysiology of
brain diseases such as depression, dementia and AD in clinical
trials (Cacquevel et al., 2004; McAfoose and Baune, 2009; You
et al., 2011). However, when the stimulus diminishes, microglia
produce, and express anti-inflammatory cytokines causing
microglial apoptosis and disintegration of proinflammatory
cytokines, thereby switching off the immune response to stimulus
(Garden and Möller, 2006).

Microglia numbers increase in the brain of aging rodents
and are, subsequently, found to be related to cognitive and
memory impairment (Sugaya et al., 1996; Rozovsky et al.,
1998), neuropsychiatric disorders such as depression (Norden
and Godbout, 2013) and neurodegenerative diseases such
as AD (Mrak and Griffin, 2005). They become increasingly
dysfunctional and loses their neuroprotective properties with age,
and release excessive quantities of proinflammatory cytokines
when stimulated by PAMPs and DAMPs. In association
with genetic factors and acquired environmental risks, this
predisposes the brain to the development of aging-associated
psychiatric disorders (Mrak and Griffin, 2005; Streit, 2005; Dilger
and Johnson, 2008; Norden and Godbout, 2013). Interestingly,
this phenomenon during aging has been observed to occur more
prominently in the hippocampus than in the cerebral cortex
affecting both cognition and memory (Xie et al., 2003).

ROLE OF MICROGLIA EXPRESSED
CYTOKINES IN THE CNS

Microglia, along with astrocytes, prominently express various
proinflammatory and anti-inflammatory cytokines in the brain
and hence any action of these cytokines can primarily be
associated with microglial activity in the CNS.

Proinflammatory cytokines, such as TNF-α and IL-1β
attract leucocytes and enhance their proliferation. They also
stimulate cytotoxicity, the release of proteolytic enzymes,
synthesis of prostaglandins and initiate synthesis and secretion
of secondary cytokines which in turn promote inflammation
and increases thermoregulatory set point (Cannon, 2000). Also,
certain chemokines (e.g., IL-8) facilitate passage of leucocytes
from circulation into the surrounding tissues and enhance
inflammation (Kushi et al., 2003). Similarly, the monocyte
chemotactic protein (MCP) family including CCL2, CCL7,
CCL8, CCL12, and CCL13 (designated MCP 1–5, respectively)
exert potent proinflammatory actions through chemotaxis
of monocyte-derived macrophages and other inflammatory
leukocytes to the inflamed or injured CNS (Yamagami et al.,
1999). Also, IL-1 and TNF-α secrete adhesion molecules that
attach to the endothelium of blood vessels in the brain and
facilitate migration of leucocytes from blood to the brain tissues
(Kim, 1996).

In contrast, research has shown that anti-inflammatory
cytokines modulate the expression of genes responsible for
proinflammatory cytokines production, in turn regulating
inflammatory response. For example, transgenic mice deficient
in or knocked out for genes transcribing anti-inflammatory
cytokines, such as IL-1ra, IL-10, and TGF-β1 showed enhanced
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inflammatory reactions (Dinarello, 2000). Interestingly, TGF-β
KO mice were found to be devoid of microglia suggesting
that TGF-β is important for the formation of microglia and
neuroimmune regulation during brain diseases (Butovsky et al.,
2014).

Levels of both proinflammatory and anti-inflammatory
cytokines have been shown to elevate in depression, resulting
in cognitive and memory deficit (Kronfol and Remick, 2014).
However, cytokines alone may not be responsible for these
adverse changes, and a combination of various chemokines and
cytokines may be the cause (Baune et al., 2009).

ELEVATED PERIPHERAL
PROINFLAMMATORY CYTOKINES LEVEL
→ MOVEMENT TO BRAIN

Prospective and correlation studies have established an
association between the high incidences of chronic inflammatory
diseases such as cancer (Il’yasova et al., 2005), diabetes (De
Rekeneire et al., 2006), osteoarthritis (Stannus et al., 2013), and
cardiovascular disease (Volpato et al., 2001) in aged cohort with
increased levels of systemic proinflammatory cytokines such as
TNF-α, IL-1β, and IL-6 and acute phase proteins (e.g., C-reactive
protein; CRP). Also, there is a significant association between
age-related depression and the levels of proinflammatory
cytokines in the brain (Godbout et al., 2008). This suggests
that some pathways may be responsible for the movement
of proinflammatory cytokines from the systemic circulation
to brain parenchyma leading to depression during metabolic
chronic inflammatory disorders. Three such pathways viz.
humoral, neural, and cellular pathways have been proposed by
Capuron and Miller (2011). The specific role of these pathways
in the comorbidity of chronic inflammatory systemic diseases
with psychiatric disorders is not yet fully elucidated and hence
calls for more research.

ROLE OF BLOOD-BRAIN-BARRIER IN
CROSS IMMUNE-REGULATION AND
MICROGLIAL ACTIVATION

Studies on rodents show that activated T cells migrate
across the blood-brain-barrier (BBB) during neuroinflammation
and are present at all times in the brain along with
macrophages/monocytes for immune surveillance (Hickey et al.,
1991; Engelhardt, 2006). It is contrary to the long-standing
view that BBB provides an immune privileged status to the
brain. The CD4+ T helper (Th) 1 cells secrete proinflammatory
cytokines in the brain on stimulation with pathogens and
stress proteins which, in turn, activate macrophages and
microglia-driven cell-mediated immune response resulting in
inflammatory condition (Fiorentino et al., 1989; Dinarello,
2000). CD4+ Th2 cells thereafter produce anti-inflammatory
cytokines, which activate humoral immune system (activate B
lymphocytes) suppressing microglia and subsequent production
of proinflammatory cytokines IL-1β and TNF-α, and chemokines

such as IL-8 and vascular adhesion molecules, thereby reducing
neuroinflammation (Fiorentino et al., 1989; Dinarello, 2000).

CRITICAL ANALYSIS OF THE
HYPOTHESES ELUCIDATING ROLE OF
MICROGLIA IN DEPRESSION

Various molecular hypotheses elucidating the role of microglia
in depression are interconnected and essentially go through
neuroinflammation and hippocampal degeneration before they
lead to the development of depression (see Figure 2). These are
discussed and critically analyzed below.

The Neuroinflammatory Hypothesis
Microglia overexpress proinflammatory cytokines in the CNS
in response to adverse stimuli, such as psychological stress
(Avitsur et al., 2005; You et al., 2011), age (Kumagai et al.,
2007), metabolic disorders (Volpato et al., 2001; Il’yasova et al.,
2005; De Rekeneire et al., 2006; Stannus et al., 2013), traumatic
brain injuries (Fenn et al., 2014), or infections (Dunn, 2006).
This results in neuroinflammation, leading to an imbalance of
several brain functions, some of them being the characteristics
of MDD as per DSM-V, such as low mood, insomnia, fatigue
and change in appetite (Maes et al., 1997; Howren et al., 2009;
Dowlati et al., 2010; Hannestad et al., 2011). A recently conducted
study has shown that microglia get primed withMHC II complex
and overexpress proinflammatory cytokines even post 30 days
after traumatic brain injury in BALB/c mice. These changes in
microglial morphology has been found to be associated with
depressive-like behavior (Fenn et al., 2014). A meta-analysis
reported high concentrations of the proinflammatory cytokines
TNF-α and IL-1β and IL-6 in depressed subjects than controlled
subjects (Dowlati et al., 2010). These findings are consistent
with the previously published reviews and may be associated
with the hyperactivity of microglia in the brain (Hanisch, 2002;
Schroeter et al., 2008; Smith et al., 2012). TNF-α produced
in response to microglial hyperactivity causes hippocampal
degeneration and microglial apoptosis (Cacci et al., 2005), the
former being a characteristic finding in patients with unipolar
depression (Videbech and Ravnkilde, 2015). In addition, IFN-α
promotes expression of proinflammatory surface markers MHC
II, CD86, and CD54 indicating M1 polarization, thus leading to
neuroinflammation and depression (Wachholz et al., 2016). All
above pathways associate alterations in microglial morphology
and activity to neuroinflammationwhich subsequently lead to the
development of depression.

Contrary to above, when the inflammatory response is
blocked with external non-steroidal anti-inflammatory factors,
such as Indomethacin and Ibuprofen, and with fusion proteins
produced from recombinant DNA, such as Etanercept that
inhibits microglial TNF expression (lou Camara et al., 2015),
a considerable improvement in neurogenesis (Monje et al.,
2003) and a reduction in depressive-like behavior (Iyengar
et al., 2013) has been reported. Antidepressants such as
imipramine and minocycline reduce proinflammatory cytokines
levels by inhibiting microglial proliferation and activation,
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FIGURE 2 | Different hypotheses for depression converge together and are interconnected. As seen in the figure, microglia can cause depression through different

molecular pathways. These mechanistic pathways are sometimes interrelated making the whole mechanistic link between microglial action and depression complex.

Red boxes indicate “neuroinflammatory pathway,” gray boxes indicate “altered neurotrophin levels pathway,” and “impaired hippocampal neurogenesis pathway,” blue

boxes indicate “altered brain tryptophan metabolism pathway,” green boxes indicate “stimulation of peripheral immune system pathway,” brown boxes indicate

“psychological/chronic stress and reduced immunity pathway,” and purple boxes indicate “Inflammasome pathway.” Black boxes are part of more than one pathways.

IFN, interferon; TNF, tumor necrosis factor; IL, interleukin; P2X7, two-transmembrane ATP-gated ionotropic purinoreceptor; CVD, cardiovascular disease; LPS,

lipopolysaccharide; PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns; CNS, central nervous system; TBI, traumatic

brain injury; IDO, indoleamine 2, 3-dioxygenase enzyme; KP, kynurenine pathway.

and subsequently attenuate depressive-like symptoms (Tikka
et al., 2001; Fischer et al., 2015; Zheng et al., 2015).
Imipramine has been shown to reduce the number of chronic
stress induced- activated hippocampal microglia (Iwata et al.,
2016), perhaps by selectively inhibiting the M1 polarization
of microglia (Kobayashi et al., 2013). Similarly, another
antidepressant, pioglitazone acts by inhibiting the increased
numbers and microglial morphological alterations in the
hippocampus, reducing the overexpressing microglial M1
markers and increasing the under-expressed microglial M2
markers in C57BL/6 mice exposed to chronic mild stress
(Zhao et al., 2016). Another technique involves using transgenic
proinflammatory cytokines receptor antagonists, such as IL-
1 receptor antagonist that reduces microglial apoptosis and
subsequently neuroinflammation and depressive-like behavior in
rodents (Goshen et al., 2008; Koo and Duman, 2009; Kreisel
et al., 2014a). Neuroinflammation, therefore, is one of the main
etiological factor for depression and most currently available
treatments for depression alter the related pathways, in turn,
alleviating inflammation in brain.

Inflammasome Hypothesis
The inflammasomes hypotheses of depression and its
comorbidity with systemic illnesses have been reviewed
elsewhere (Iwata et al., 2013; Singhal et al., 2014). Inflammasomes
are cytosolic protein complexes which when assembled and
activated in the presence of PAMPs and DAMPs, further activate
proinflammatory caspases, in particular, caspase-1. Caspase 1
subsequently splits inactive forms of proinflammatory cytokines
IL-1β, IL-18, and IL-33 into their active forms (Arend et al.,
2008; Chakraborty et al., 2010) causing neuroinflammation
(Davis et al., 2011) which is the leading etiology of depression

as mentioned previously (Walker et al., 2014). The role of
microglia is important in the activation of inflammasomes
as they carry pattern recognition receptors (PRRs) that
function to recognize PAMPs and DAMPs. While PRRs can
be membrane bound (toll-like receptors) or localized within
the cytoplasm Nod-like receptors (NLRs), it is the NLRs
which when activated lead to the assembly and activation
of inflammasomes in the cytoplasm (Arend et al., 2008;
Chakraborty et al., 2010). Of all inflammasomes, NLRP (Nod-
like receptor family, containing pyrin domain) inflammasomes
have been primarily implicated in the etiology of depression
(Zhang Y. et al., 2014; Ghisleni, 2017; Kaufmann et al., 2017).
The microglial membrane is rich in purinergic receptor P2X7
which when activated with chronic stress subsequently activates
NLRP3 inflammasome in hippocampal microglia augmenting
proinflammatory environment in the CNS (Yue et al., 2017).
A study has confirmed the role of NLRP3 inflammasomes in
lipopolysaccharide (LPS)-induced depressive-like behavior in
mice (Zhang Y. et al., 2014). Similar findings were seen in
human participants when activated NLRP3 inflammasomes were
detected in blood mononuclear cells from depressive patients
(Alcocer-Gómez et al., 2013). Interestingly, TNF-α has also been
shown to trigger the activation of caspase 1 and in turn secretion
of IL-1β from microglia (Alvarez and Munoz-Fernandez, 2013),
further aggravating neuroinflammation. Interestingly, it has
been suggested that inflammasome-related inflammation is an
ongoing process in psychiatric patients during disease states
(Hohmann et al., 2014).

The finding that mice lacking caspase-1 are resistant to LPS-
induced depressive-like behavior further supports the above
inflammasome hypotheses for depression (Moon et al., 2009).
Based on this, targeted therapies such as antidepressants
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like fluoxetine which alleviate depression by inhibiting the
peripheral and central NLRP3 inflammasome activation have
been developed (Du et al., 2016). Chrysophanol also exerts
similar effects, however by inhibiting P2X7 pathway (Zhang et al.,
2016), and hence plausibly the subsequent activation of NLRP3
inflammasome as mentioned earlier.

Stimulation of Peripheral Immune System
Hypothesis
Increased levels of systemic proinflammatory cytokines and acute
phase proteins (e.g., C-reactive protein) have been reported
in chronic inflammatory diseases such as cancer (Il’yasova
et al., 2005), diabetes (De Rekeneire et al., 2006), osteoarthritis
(Stannus et al., 2013), and cardiovascular disease (Volpato
et al., 2001) in aged cohorts. An association between age-
related depression and level of proinflammatory cytokines in the
brain has also been established (Godbout et al., 2008). These
findings hint to a possible mechanism whereby proinflammatory
cytokines and acute phase proteins play a crucial role in the
comorbidity of systemic diseases with depression, especially
during old age. To support this hypothesis, a look back is
required into a previously published review describing various
pathways for the transport of proinflammatory cytokines to
brain from systemic circulation (Capuron and Miller, 2011).
In one of the pathways, cellular pathway, TNF-α secreted
from activated monocytes and macrophages migrates to brain
through BBB and stimulates microglia to produceMCP-1, in turn
recruiting monocytes into the brain. Also, increased production
and expression of IL-1β in the brain after LPS-induced systemic
inflammation (Cunningham et al., 2005) and changes in mood
and behavior similar to depression after systemic administration
of proinflammatory cytokines (Pollak and Yirmiya, 2002) has
been reported in rodents. Given that metabolic disorders can
predispose to the development of psychiatric disorders, it is
possible that inflammasome-driven inflammatory pathways in
the cytoplasm of microglia may be a potential mechanism driving
this co-morbidity as these pathways have been shown to be
associated with the development of Type II diabetes (Grant and
Dixit, 2013; Lee et al., 2013), obesity (Stienstra et al., 2011), and
cardiovascular diseases (Garg, 2011), as well as cancer (Zitvogel
et al., 2012). The activation of inflammasomes in microglia,
particularly NLRP3, therefore could be indirectly related to the
pathophysiology of depression and its comorbidity with other
systemic diseases through an inflammatory response in the brain.

Psychological Stress and Reduced
Immunity Hypothesis
Recent studies have established a causal relationship between
the stress-related life events/chronic stress and depressive-like
behavior in mice (Goshen et al., 2008; Berry et al., 2012).
Indeed, chronic unpredictable mild stress (CUMS) has been
shown to cause neuroinflammation and subsequently depression
in several studies (Farooq et al., 2012; Ramirez et al., 2016;
Tong et al., 2017). Microglial dysfunction has been implicated
in chronic unpredictable stress-induced neuroinflammation and
depression-like condition in rodents (Kreisel et al., 2014a).

In a study, the initial phase of stress stimulation induced
microglial proliferation and activation while prolonged stress
resulted in microglial apoptosis leading to a reduction in
their numbers, reduced expression of activation markers and
dystrophic morphology in the hippocampus (Kreisel et al.,
2014a). Microglia have been shown to get hyper-ramified during
chronic stress leading to depression (Hellwig et al., 2016). It
is interesting to note that microglial increase in numbers and
transition from a ramified-resting state to a non-resting hyper-
ramified state is more in certain stress-sensitive brain regions
in response to the chronic stress (Tynan et al., 2010). Indeed,
repeated chronic stress increased numbers of hyper-ramified
microglia in the hippocampus, prefrontal cortex, amygdala,
and nucleus accumbens (Bian et al., 2012; Farooq et al., 2012;
Wohleb et al., 2012; Kopp et al., 2013). Hyperactivated microglia
produce excessive proinflammatory cytokines, show enhanced
antigen presentation and become increasingly phagocytic (De
Pablos et al., 2006; Bradesi et al., 2009; Giovanoli et al., 2013;
Lehmann et al., 2016). In addition, microglial response to stress
proteins is guided by their glucocorticoids receptors (Frank
et al., 2012) and nor-adrenaline activated alpha/beta-adrenergic
receptor signaling pathways (Blandino et al., 2006). For example,
stress hormones down-regulate glucocorticoids receptors which
further declines microglial response to the stress proteins
(Reichardt et al., 2001; Cohen et al., 2012). Similarly, a decline in
the secretions of proinflammatory cytokines from microglia has
been reported in response to nor adrenaline-activated alpha/beta-
adrenergic receptor signaling pathways (Mori et al., 2002; Russo
et al., 2004; Färber et al., 2005; O’Sullivan et al., 2009).

Evidently, few antidepressants have been shown to exert
anti-depressive effects by restoring microglial morphology to
the resting stage. For example, chronic treatment with the
antidepressant venlafaxine restored microglia morphology and
reduced depression-like behavior (Hellwig et al., 2016). Likewise,
blocking of initial proliferation and activation of microglia
in response to CUMS using antidepressants minocycline and
imipramine prevented subsequent apoptosis and morphological
distortions of microglia and hence depressive behavior (Kreisel
et al., 2014a).

Alteration in Brain Tryptophan Metabolism
Hypothesis
Many recent studies have found a link between MDD and
activation of the enzymes indoleamine 2, 3-dioxygenase (IDO),
and signaling via the kynurenine pathway (KP) (Dantzer,
2016; Parrott et al., 2016; Liu et al., 2017). Microglial IDO is
activated by inflammatory cytokines like IL-6, TNFα, IFN-γ,
and their inducers like LPS and HIV Tat protein (Dantzer
et al., 2011; Walker et al., 2013). The involvement of the
microglial KP in mediating inflammation and stress-induced
depression is supported by clinical studies demonstrating
that IFN-α immunotherapy increases tryptophan metabolism
through the KP pathway, both in periphery and CSF, and
this increase is significantly correlated with the development
and severity of IFN-α-induced depression (Capuron et al.,
2003). A recent clinical trial investigated cerebral tryptophan
metabolism in brain-tumor associated depression and established

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 September 2017 | Volume 11 | Article 270

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Singhal and Baune Microglia in Depression

that abnormalities in tryptophan transport and metabolism in
the thalamus, striatum, and frontal cortex are associated with
depression in patients which may, in turn, indicate an imbalance
between the serotonin and kynurenine pathways (Bosnyák et al.,
2015). Although, research in this direction is still in infancy
stage, altering tryptophan metabolism pathways has shown good
potential in treating depression in recent times (Abildgaard et al.,
2017; Eskelund et al., 2017).

Altered Neurotrophins (BDNF and GDNF)
Levels Hypothesis
Microglia are known to modulate the production of
neurotrophins, mainly BDNF (Ferrini and De Koninck,
2013), a protein known for regulating neurogenesis in the
dentate gyrus of the hippocampus (Rossi et al., 2006; Fan et al.,
2007) and enhancing dendritic branching (McAllister et al.,
1995; Horch and Katz, 2002; Horch, 2004). It is widely known
to be associated with hippocampal plasticity (Ye et al., 2011).
Neurotrophin deficiency in the presence of dystrophic microglia
may therefore hinder hippocampal neurogenesis and further
precipitate depressive-like symptoms.

BDNF infusion is seen to partially reverse the effect of the
chronic stress-induced depressive behavior in a rat model (Ye
et al., 2011). The use of Gastrodin and total glycosides of peony
(TGP), both of which are Chinese herbs used to treat depression,
as well as the antidepressants like imipramine and fluoxetine are
seen to up-regulate the hippocampal BDNF mRNA expression
(Mao et al., 2010; Takano et al., 2012; Quesseveur et al., 2013;
Zhang R. et al., 2014). On the other hand, an overexpression
of BDNF also has an anxiolytic effect and promotes local
neurogenesis (Quesseveur et al., 2013). Similar effects of these
drugs are seen on the up-regulation of Glial Cell Line-derived
Neurotrophic Factor (GDNF) (Hisaoka-Nakashima et al., 2015).
The role of GDNF in depression was further supported by lower
serum GDNF concentrations in MDD patients as compared to
controls (Zhang et al., 2008).

Impaired Hippocampal Neurogenesis
Hypothesis
The role of microglia in hippocampal neurogenesis has been
discussed many times in the past, and hence we have
limited our discussion to few important points on this
topic for the purpose of this review. Impaired hippocampal
neurogenesis has been shown to be an important underlying
cause of depression (Jacobs et al., 2000). Numerous studies
have reported that microglia activation plays a key role in
suppression of hippocampal neurogenesis under conditions
of stress and inflammation (Kempermann and Neumann,
2003; Sierra et al., 2014). Studies on mice have shown that
irradiation or treatment with lipopolysaccharide causes marked
suppression of hippocampal neurogenesis, while treatment with
minocycline negated this effect (Ekdahl et al., 2003; Monje
et al., 2003). Interestingly, neurogenesis suppression in response
to microglial activation was primarily due to the detrimental
effect on maintenance of newborn neurons rather than on
their proliferation (Ekdahl et al., 2003; Monje et al., 2003).

Further, in-vitro experiments have shown that the conditioned
media from LPS-challenged microglia induced IL-6 or TNFα-
mediated apoptosis in hippocampal neuroblasts (Monje et al.,
2003; Cacci et al., 2005). These findings therefore suggest that
hippocampal neurogenesis is affected by the microglial activation
status. Although, hippocampal degeneration has been shown
to result primarily in response to chronic neuroinflammation
during aging, the exact mechanism for the same is still not
elucidated.

Recent Evidence to Support the Role of
Microglia in Depression
Recent evidence has confirmed that both over expressed
and under expressed microglia can cause depression. While
over expressed microglia trigger the onset of depression
through the neuroinflammatory pathway as mentioned before,
under expressed microglia could result in depression through
hippocampal degeneration pathway. Chronic form of stressors,
for example chronic unpredictable stress, chronic restraint stress,
and chronic social defeat stress have all lead to depression
through reduction in the number of hippocampal microglia
(Tong et al., 2017). On the other hand, rats exposed to
learned helplessness showed increase in the number of activated
microglia in the granule cell layer, hilus, CA1, and CA3
regions of the hippocampus (Iwata et al., 2016). Overall, this
suggests that both the under expression and over expression of
microglia in brain lead to depression albeit through different
molecular pathways. As such, altering these molecular pathways
associated with microglial activity through pharmacological and
non-pharmacological means could provide a novel therapeutic
intervention for depression.

Indeed, some recent studies have shown that treatment with
antidepressants Imipramine or Minocycline decreases IFN-γ
levels by inhibiting microglial activation and subsequently
reduces the depressive symptoms in animal models of depression
(Fischer et al., 2015; Zheng et al., 2015). Studies involving
a transgenic IL-1 receptor antagonist have shown to reduce
microglial apoptosis and subsequently neuroinflammation and
depressive-like behavior in rodents (Goshen et al., 2008; Koo
and Duman, 2009; Kreisel et al., 2014a). Similarly, Etanercept,
known to reduce depression associated with rheumatoid arthritis
and psoriasis (Tyring et al., 2006; Kekow et al., 2009), has been
shown to inhibit microglial TNF expression and reduce brain
inflammation in C57BL/6 mice (lou Camara et al., 2015). These
results clearly demonstrate the recent developments in microglia
targeted therapies for depression.

More recently, the role of gut microbiota on the brain
development, immunomodulation and change in behavior
has attracted attention of researchers. While gut lining is
impermeable to toxic substances, any microdamage to it could
increase the permeability and movement of micro molecules
both ways (Turner, 2009). Microorganisms, such as firmicutes,
bacteroidetes, actinobacteria, and proteobacteria, that live in the
intestine (Ley et al., 2006) interact with immune cells through the
permeable mucosal lining forming bidirectional communication
between the brain and the gut (Mayer, 2011). TLRs on the gut
lining play a vital role in the initiation of this communication and
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passing the immune message to the brain (Zeuthen et al., 2008).
Recent evidence has established the role of gut microbiota in
the development of depression, perhaps through the production
of neuroactive substances such as serotonin, nor-epinephrine,
dopamine, and gamma-aminobutyric acid, which act on the
gut-brain axis (Dinan and Cryan, 2013). Interestingly, current
antibiotics treatment for infections, as well as vaccinations have
been shown to affect the integrity of gut microbiome (Evrensel
and Ceylan, 2015). If this has any effect on the development of
depression is however still not established. In addition, stress
can also influence the diversity of gut microbiota, for example
decrease in the levels of fecal Lactobacillus was observed in rats
separated from their mother (O’Mahony et al., 2009).

As we discussed above, change in microglial morphology and
activity is hugely responsible for the onset of depression. Until
recently, it was however not known if gut microbiota has any
effect on microglia and associated development of depression.
However, a research from Erny et al. has provided evidence for
the role of gut microbiota in depression through modulation
of microglial associated immune network. Researchers observed
that germ free mice showed defects in microglial functions as
well as reduction in their numbers, leading to impaired immune
response affecting neural circuitry, a potential factor for the onset
of depression (Erny et al., 2015). This overall suggest that gut
microbiota has a role in the onset of depression, especially during
early age, through the alteration of microglial activity in brain.
However, further research is required to establish this hypothesis.

DISCUSSION

While psychiatry deals with patterns in behavior and cognition,
neuroimmunology aims to understand the complex molecular
biology of the brain behind those patterns. Much research has

been conducted to uncover the physiological mechanisms behind
depression using both animal and human models. However,
due to the complex pathological and physiological nature of
molecular events occurring during depression, difficulties arise
when it comes to treatment and management strategies (see
Figure 3). The role of microglia has been studied extensively over
last decade, which has given the opportunity to our scientific
community to devise ways of modulating their functions,
preventing the development of depression and hence keeping the
brain healthy. However, various functions of microglia have no
precise boundaries and pose a multitude of questions till date.

Microglia act as resident macrophages in the CNS and remain
quiescent for most time that is required to save them from
apoptosis and regular replacement (Gehrmann, 1996). However,
their activation in the presence of infectious foreign matter,
such as bacteria and viruses or metabolic by-products, such
as Aβ, rapidly mount the necessary immune reaction (Nagele
et al., 2004; Conde and Streit, 2006). Indeed, the biomarker to
detect microglial functions, IBA-1 is the most reliable source
to diagnose neurodegenerative conditions (Ahmed et al., 2007).
Analysis of IBA1 marker when associated with a specific set of
inter-correlating symptoms, distinguishable from other symptom
groupings in other psychiatric disorders and sufficiently stable to
allow predictions, can help to predict the course and treatment
outcome for depression.

Overexpression of proinflammatory cytokines in microglia
is one of the primary factors responsible for the development
of depression in diverse situations (Volpato et al., 2001;
Avitsur et al., 2005; Il’yasova et al., 2005; De Rekeneire et al.,
2006; Dunn, 2006; Kumagai et al., 2007; You et al., 2011;
Stannus et al., 2013; Fenn et al., 2014). The related underlying
factors include inflammation of neurons (Kumagai et al.,
2007), neurodegeneration and apoptosis (Cacci et al., 2005;

FIGURE 3 | Mechanistic pathways of some of the pharmacological interventions available currently to treat depression. The figure depicts mechanistic pathways of

some of the pharmacological drugs that are shown to reduce the depressive-like behavior. IFN, interferon; P2X7, two-transmembrane ATP-gated ionotropic

purinoreceptor. Different colors depict different mechanistic pathways of the drugs in reducing the depressive-like behavior. For example, red boxes indicate reduced

M1 microglial polarization, microglial apoptosis, and morphological changes, brown boxes indicate enhanced hippocampal neurogenesis, gray boxes indicate

restoration of microglial morphology to resting state, blue boxes indicate reduced neuroinflammation and neurodegeneration and green boxes indicate reduced

inflammasome activation.
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Kumagai et al., 2007), impaired neurogenesis (Kempermann and
Neumann, 2003; Sierra et al., 2014), production of stress proteins
(Goshen et al., 2008; Berry et al., 2012; Ramirez et al., 2016;
Tong et al., 2017), alteration in brain tryptophan (Bosnyák et al.,
2015; Dantzer, 2016; Parrott et al., 2016; Liu et al., 2017), and
neurotrophins metabolisms (Zhang et al., 2008; Ye et al., 2011;
Ferrini and De Koninck, 2013), as well as morphological and
functional changes in microglia itself (Fenn et al., 2014), all
leading to depression. Also, instead of acting directly, microglia
may first activate the inflammasomes in more glial cells, in turn
releasing an IL-1 family of cytokines, causing neuroinflammation
and depression (Arend et al., 2008; Chakraborty et al., 2010;
Alcocer-Gómez et al., 2013; Zhang Y. et al., 2014), and this could
be an ongoing process in psychiatric patients (Hohmann et al.,
2014).

More significantly, microglia overexpressing
proinflammatory cytokines could be responsible for the
comorbidity of systemic metabolic diseases with depression
(Volpato et al., 2001; Il’yasova et al., 2005; De Rekeneire et al.,
2006; Godbout et al., 2008; Stannus et al., 2013). Moreover, it
is now confirmed that T cells and proinflammatory cytokines
can cross BBB (Hickey et al., 1991; Engelhardt, 2006) and
microglia are associated with one of the pathways responsible
for this transfer of proinflammatory cytokines from the systemic
circulation to the CNS through BBB (Capuron and Miller,
2011). NLRP3 inflammasomes could play a major role in
the comorbidity of depression with other systemic diseases,
indirectly through an inflammatory response in the brain (Pollak
and Yirmiya, 2002; Garg, 2011; Stienstra et al., 2011; Zitvogel
et al., 2012; Grant and Dixit, 2013; Lee et al., 2013; Ghisleni,
2017; Kaufmann et al., 2017; Yue et al., 2017).

Our discussion above as well as some other reviews (Liu and
Hong, 2003; Glezer et al., 2007; Ekdahl et al., 2009) suggest
that microglia can display both neuroprotective and neurotoxic
effects depending on the extent of their cytokines expression.
However, this is also dependent on factors like aging, the presence

of pathogens and stress proteins, and external environmental
conditions. Different pharmacological interventions currently
available for depression although block specific mechanistic
pathways (see Figure 3), microglia can still be a potential target
for further extensive research to develop a treatment providing
fast and complete cure from depressive-like behavior with no or
little side effects.

CONCLUDING REMARKS

The above discussion suggests that both immune and non-
immune aspects of microglia impact on neurogenesis and
neuroplasticity with either neuroprotective or detrimental effects
depending on the condition. When detrimental, development of
depressive-like behavior is a common phenomenon. Microglia,
therefore, could be a potential target for the treatment
of depression. Microglia-targeted therapeutic intervention in
depression requires a complete understanding of molecular
pathways leading to the activation and suppression of these glial
cells and subsequent effects on neuroplasticity. Indeed, molecular

pathways leading to the activation and suppression of microglia,
and associated effects on immune cells and proteins, neuronal
signaling, neural activation, neuronal plasticity, and behavioral
endpoints have largely been unexplored yet and therefore calls
for further extensive research.
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APPENDIX I

Diagnostic criteria for MDD as per DSM-V (American
Psychiatric Association, 2013).

Factor Criteria Time frame (if applicable)

Mood Loss of interest or pleasure in day to day activities >2 weeks
Impaired function Social, occupational, educational –
AT LEAST 5 OF THE FOLLOWINGNINEMUST BE POSITIVE FORMDD:

Depressed mood/irritable Feeling sad/empty/tearful Most of the day, nearly every day
Decreased interest/pleasure Loss of interest in most daily activities Most of each day
Significant weight change/Change in appetite 5% loss of weight –
Change in sleep pattern Insomnia/hypersomnia –
Change in activity Psychomotor agitation/retardation –
Fatigue/Loss of energy Feeling tired Most of the time
Guilt/Worthlessness Feeling of inappropriate guilt/worthlessness –
Concentration Unable to concentrate/indecisiveness –
Suicidality Thoughts/Plan of committing suicide –
OTHER SYMPTOMS OF DEPRESSION

Not able to relax, feeling tense all the time, unpleasant thoughts, fear of something awful that might happen.
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