INVESTIGATION
OF
TROPOSPHERIC TURBULENCE
USING THE
ADELAIDE VHF RADAR

K. L. Mu
B. Sc. (Hons.)

A Thesis
Submitted for the Degree of
MASTER OF SCIENCE
at
THE UNIVERSITY OF ADELAIDE
(Department of Physics & Mathematical Physics)

November 6, 1991
Abstract

Turbulence is an important aspect of the whole makeup of atmospheric motions. It is the product of other atmospheric events such as atmospheric gravity waves and wind shear induced Kelvin Helmholtz instability, etc. To understand the morphology of turbulence, it is necessary to calculate certain parameters associated with it, and this involves determining the refractive index structure constant C_n^2 and the average kinetic energy dissipation rate $\bar{\epsilon}$, which is a measure of the severity of turbulence.

Measurements of $\bar{\epsilon}$ can be made in several ways, and these are briefly described in the second chapter of this report. The method to be used for this experiment will be based on a statistical model proposed by VanZandt et al. (1978) and involves making measurements of the refractive index structure function $\bar{C_n^2}$ using radar observations during both clear as well as cloudy air conditions, from which the energy dissipation rate may be derived. This method is heavily dependent on the statistical analysis of wind shears, and the calculated values may be in error by as much as an order of magnitude. The studies include a careful analysis of biases and systematic errors which may be introduced by the radar measurements.
Preface

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of the author's knowledge and belief, it contains no material previously published or written by any other person, except when due reference is made in the text. I consent to this thesis being made available for photocopying and loan by the librarian of the University of Adelaide upon acceptance of the degree.

K. L. Mu
Acknowledgements

Firstly, as this work was made in conjunction with the Adelaide Meteorological Bureau, the author would like to thank all the staff at the 'airport' and 'Kent-Town' for their helpful assistance and friendliness shown to him during the time he was working there.

Secondly, I am very grateful for the assistance given to me by one of my supervisors, Dr. W. K. Hocking, who helped greatly with the final format and contents of the thesis. In addition, I would like to acknowledge the radio physics group for their help in the initial part of the project work and also to Trevor Harris for the use of his image.cont procedure.

Finally, I would like to thank all the members of the atmospheric physics and theoretical physics group, especially for the friendships made over the years.
Contents

1 Background .. 1
 1.1 Introduction .. 1
 1.2 Historical Review ... 1
 1.3 Vertical Structure of the Atmosphere 3
 1.4 Classifying Clear Air Turbulence 4
 1.4.1 Turbulent Scatter 9
 1.4.2 Partial Reflection 11
 1.4.3 Fresnel Scatter 13
 1.5 Sources of Atmospheric Turbulence 15
 1.6 A Review of C_n^2 Measurements 17
 1.7 Applications ... 19

2 Theory .. 21
 2.1 Introduction .. 21
 2.2 The Turbulence Spectrum 21
 2.3 Turbulence Parameters 24
 2.3.1 C_n^2 — The Refractive Index Structure Constant 24
 2.3.2 ϵ — The Energy Dissipation Rate 27
 2.4 The Gradient of the Radio Index of Refraction 30
 2.4.1 Polarisation and the Dielectric Constant 30
 2.4.2 The Radio Refractive Index of Air 32
 2.4.3 Gradient of the Radio Index of Refraction 34

3 Determining ϵ From Radar Measured C_n^2 37
Definitions and Terms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Dot Angel Echoes</td>
<td>102</td>
</tr>
<tr>
<td>A.2</td>
<td>Aspect Sensitivity</td>
<td>102</td>
</tr>
<tr>
<td>A.3</td>
<td>The Buoyancy length, L_B</td>
<td>103</td>
</tr>
</tbody>
</table>

Coherent Integration

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>The Radiosonde Equipment</td>
<td>106</td>
</tr>
<tr>
<td>C.1</td>
<td>The Airborne Radiosonde</td>
<td>106</td>
</tr>
<tr>
<td>C.2</td>
<td>The Receiver</td>
<td>106</td>
</tr>
</tbody>
</table>

The Adelaide VHF Radar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>The Adelaide VHF Radar</td>
<td>108</td>
</tr>
</tbody>
</table>

Determining the Transmitter Efficiency, ϵ

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Determining the Transmitter Efficiency, ϵ</td>
<td>111</td>
</tr>
</tbody>
</table>

Richardson’s Criterion for Stability

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Richardson’s Criterion for Stability</td>
<td>113</td>
</tr>
</tbody>
</table>

Pseudocode for NDW Filter

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Pseudocode for NDW Filter</td>
<td>115</td>
</tr>
</tbody>
</table>

Power Splitter Circuit

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Power Splitter Circuit</td>
<td>117</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The Earth’s atmosphere below 800 km altitude is shown here with the different layers (as determined by the temperature profile and composition of the atmosphere) and some additional information which may be of interest to readers. (After Eagleman, 1985.) ... 5

1.2 For the observed variations in the refractive index of air Δn with height, and depending on the structure of n within the range gate Δz, one would observe either of the three known processes indicated on the diagram. (After Röttger and Larsen, 1989.) ... 7

1.3 The production of billows, through the interaction of wind shear in an initially stably stratified atmosphere. .. 15

1.4 Sketch of a vertically propagating gravitational wave embedded within a strong shearing layer: (a) stable wave, (b) wave becoming unstable, and (c) wave breaking and forming vortices. ... 16

1.5 Profile of C_n^2 measured with the SOUSY radar at a zenith angle of 8°. The dashed line is the profile including humidity effects. (After Eaton et al., 1988.) ... 19

1.6 Radar (solid lines)/SCIDAR (dashed lines) measured Profiles of C_n^2: the dotted lines represent the optical C_n^2. The radar measurements were made at a zenith angle of 13°. (After Vernin et al., 1990.) ... 20

2.1 Schematic representation of the spectrum of turbulence. (After Hocking, 1985.) .. 23

3.1 A diagrammatical representation of a radar signal processing procedure. 38

3.2 A turbulence model plot of $F^{1/3} \tau_c^2$ with F and τ — see text. 44
4.1 Samples of gain/calibration curves for receiver channels 0 and 1. 50
4.2 Calculating the cable-lengths for a one-dimensional array of antennae for a given angle \(\theta \) and a separation distance from antenna to antenna of \(\lambda/2 \), where \(\lambda \) is the operating frequency of the radar. 52
4.3 The connections for the phasing cables as used by the Adelaide VHF radar. The calculated cablelengths for each connectors are shown in units of \(\lambda^{-1} \), where \(\lambda \) is the operating wavelength of the radar, and the beam pointing angle is 11° off vertical (westward). 53
4.4 A flow chart showing the flow of processes leading to a calculation of the turbulence parameters. 56
4.5 Noise profiles for heights 3–8 km. Taken at Buckland Park Research Station with a beam zenith angle of 11°. 58

5.1 Synoptic charts for the weather situation on May 3–6, 1991 are shown. This information was kindly supplied by the Bureau of Meteorology, Adelaide. 64
5.2 Balloon-borne radiosonde measured profiles of temperature and humidity, and the calculated potential temperature profiles are given. Each profile is right-shifted by the specified value, with a temporal displacement of 12 hours between each profile. 65
5.3 Balloon measurements of the horizontal wind speed and direction, and the calculated wind shear are shown. 66
5.4 Profiles of echo power and \(M^2 \) for May 03–06. 67
5.5 From left to right (and from top to bottom), respectively, are shown the scatter diagrams of echo power with \(M^2 \) for May 3 to May 6. 68
5.6 Height profiles of \(\omega_B^2, M^2, \) and the correction term, \(\chi \) for May 3, 0900 CST — see text for more details. 69
5.7 As for Figure 5.6, but for May 4, 0900 CST. 70
5.8 As for Figure 5.6, but for May 4, 2100 CST. 71
5.9 As for Figure 5.6, but for May 5, 0900 CST. 72
5.10 As for Figure 5.6, but for May 5, 2100 CST. 73
5.11 As for Figure 5.6, but for May 6, 0900 CST. ... 74
5.12 Time Profiles of radar C_n^2 ($m^{-2/3}$) with height for May 3, 0900 CST. The different linestyles represent increasing height in the following order: solid, dashed and dotted. .. 77
5.13 As for Figure 5.12, but for May 4, 0900 CST. ... 78
5.14 As for Figure 5.12, but for May 4, 2100 CST. ... 79
5.15 As for Figure 5.12, but for May 5, 0900 CST. ... 80
5.16 As for Figure 5.12, but for May 5, 2100 CST. ... 81
5.17 As for Figure 5.12, but for May 6, 0900 CST. ... 82
5.18 Profiles of humidity gradient in units of g/kg per kilometre for period May 3/4. The thicker line corresponds to a filtered profile with a vertical resolution of approximately 1 km. .. 83
5.19 Profiles of humidity gradient in units of g/kg per kilometre for period May 5/6. The thicker line corresponds to a filtered profile with a vertical resolution of approximately 1 km. .. 84
5.20 Histogram plots of L_0 ($L_B \approx L_0/3.5 \times 10^{-2}$) for the period May 03–06. The L_0 was determined directly from the radar measured C_n^2 values. .. 88
5.21 The mean of the turbulence outerscales is plotted with height, where the error bars represent the one standard deviation values. .. 89
5.22 Height, time–log–height and contour plots/profiles of energy dissipation rate per unit mass for the period May 3, 2100 CST. See text at beginning of this section for more details. .. 92
5.23 As for Figure 5.22, but for May 4, 0900 CST. ... 93
5.24 As for Figure 5.22, but for May 4, 2100 CST. ... 94
5.25 As for Figure 5.22, but for May 5, 0900 CST. ... 95
5.26 As for Figure 5.22, but for May 5, 2100 CST. ... 96
5.27 As for Figure 5.22, but for May 6, 0900 CST. ... 97
D.1 A diagram of the Adelaide VHF radar installation. ... 110
H.1 Circuit diagram for a power splitter. .. 117
List of Tables

2.1 Refractivities of water vapor at 20 °C, 10 mm Hg and dry gases at 0 °C, 760 mm Hg. ... 34

3.1 Parameters for the Adelaide VHF radar. Use $\theta_{1/2}$ when using the same antenna for both transmission and reception, otherwise use θ_{HPH} as the value for $\theta_{1/2}$. ... 41

4.1 Operating parameters for the VHF radar as used in 1991. 54

4.2 An example of the calibration results for the receiver pre-amplifier. 55

5.1 Calculated mean vertical wind shears \bar{s} (10^{-3} s$^{-1}$), the fraction of the radar volume which is turbulent F, model parameter $F^{1/3}r_c^2$ and the model constants C_1 and C_2 (in units of 10^{22}) are given for both the troposphere and stratosphere. ... 67

5.2 Approximate range of turbulence intensities as categorised by Vinnichenko and Dutton, 1969. .. 90

C.1 The sensor specifications as claimed by the manufacturer. 107

C.2 Information for the radiosonde receiver’s serial output. 107