SYNDECAN-1 EXPRESSION DURING POSTNATAL TOOTH AND ORAL MUCOSA DEVELOPMENT IN 2 DAY TO 6 WEEK OLD RATS

A RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF DENTAL SURGERY

DANIEL DE ANGELIS
B.D.S. B.Sc. (Adel.)

ORTHODONTIC UNIT
SCHOOL OF DENTISTRY
FACULTY OF HEALTH SCIENCES
THE UNIVERSITY OF ADELAIDE
SOUTH AUSTRALIA
2000
1 TABLE OF CONTENTS

1. Contents
 1.1 List of figures vii
 1.2 List of tables ix

2. Abstract x

3. Acknowledgements xi

4. Introduction & Aim 1
 4.1 Introduction 1
 4.2 Aim 2

5. Literature Review 3
 5.1 The basement membrane 3
 5.2 Structure and distribution of the syndecans 3
 5.3 Expression of the syndecans 5
 5.4 Regulation of the syndecans 6
 5.5 Functions of the syndecans 7
 5.6 Expression of the syndecans during tooth odontogenesis 8
 5.6.1 Tooth crown formation 9
 5.6.2 Tooth root formation 13
 5.6.3 Cementum and dentine: glycosaminoglycan composition and distribution in the tooth root 14
 5.6.4 Glycoconjugates: potential roles during root development 15
 5.6.5 Glycosaminoglycans: potential roles in the mineralization process 16
 5.6.6 Epithelial cell rests of Malassez: postulated functions 17
TABLE OF CONTENTS

5.7 Functions of the syndecans during orthodontic tooth movement 18
 5.7.1 The mechanism of bone resorption 18
5.8 Expression of the syndecans in malignant neoplasia 20

6. Materials and Methods 23
 6.1 Trial study 23
 6.1.1 Experimental animals and other material 23
 6.1.2 Tissue retrieval and fixation 23
 6.1.3 Decalcification, dehydration, embedding and sectioning 23
 6.1.4 Staining and labelling 24
 6.1.4.1 Routine haematoxylin and eosin 24
 6.1.4.2 Immunohistochemistry 24
 6.1.4.3 Histochemistry 25
 6.1.5 Controls 26
 6.2 Main study 26
 6.2.1 Aim 26
 6.2.2 Ethics approval 26
 6.2.3 Experimental animals and tissue retrieval 26
 6.2.4 Fixation and decalcification 26
 6.2.5 Dehydration and embedding 27
 6.2.6 Sectioning 27
 6.2.7 Staining and labelling 28
 6.2.7.1 Haematoxylin and eosin 28
 6.2.7.2 Histochemistry 28
 6.2.7.3 Immunohistochemistry 28
 6.2.8 Analysis 28
6.2.9 Zero points 30

7. Results 31

7.1 Trial study 31

7.1.1 Fixation 31

7.1.2 Labelling and staining 31

7.1.2.1 Immunohistochemistry 31

7.1.2.2 Histochemistry 32

7.2 Main study 38

7.2.1 Immunohistochemistry (Syndecan-1 N-18) 38

7.2.1.1 Oral epithelium-stratum corneum 38

7.2.1.2 Oral epithelium-stratum granulosum 38

7.2.1.3 Oral epithelium-stratum spinosum 38

7.2.1.4 Ameloblasts 39

7.2.1.5 Periodontium and epithelial cells 39

7.2.2 Histochemistry (Alcece Blue) 39

7.2.2.1 Oral epithelium-stratum corneum 39

7.2.2.2 Oral epithelium-stratum granulosum 39

7.2.2.3 Oral epithelium-stratum spinosum 39

7.2.2.4 Ameloblasts and enamel matrix 40

7.2.2.5 Pre-dentine and dentine 40

8. Discussion 49

8.1 Trial study 49

8.1.1 Immunohistochemistry 49

8.1.1.1 Alpha syndecan-1 49

8.1.1.2 Syndecan-1 B-B4 49

8.1.1.3 Syndecan-1 N-18 49

8.1.1.4 Alpha syndecan-1 B-B4 49
TABLE OF CONTENTS

8.1.2 Histochemistry
8.1.2.1 Alcecs Blue

8.2 Main study
8.2.1 Oral epithelium-stratum corneum
8.2.2 Oral epithelium-stratum granulosum and stratum spinosum
8.2.3 Oral epithelium-stratum basale and other developing tooth components
8.2.4 Ameloblasts
8.2.5 Epithelial cell rests of Malassez and the rat periodontium
8.2.6 Pre-dentine and dentine

8.3 Technical factors contributing to immunohistochemical and histochemical staining

8.4 Future research

9. Conclusions

10. Appendices
10.1 Mayer Lillie haematoxylin and eosin staining solution
10.2 Mayer Lillie haematoxylin counterstaining
10.3 Alcecs Blue staining solution
10.4 Neutral buffered formalin solution
10.5 Ethylenediaminetetra-acetic acid
10.6 Slide coating procedure
10.7 Immunohistochemical labelling protocol
10.8 Phosphate buffered saline
10.9 Methanol/hydrogen peroxide blocking solution
10.10 Primary antibodies 61
10.11 Secondary antibodies 63
10.12 Streptavidin horseradish peroxidase 63
10.13 Peroxidase substrate solution 64
10.14 Normal horse serum 64
10.15 Tissue processing 64
10.16 Data recording sheets for labelling (Syndecan-1 N-18) and Alcece Blue staining 65

11. References 68
1.1 List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Structure of the cell surface syndecan</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Functions of the cell surface syndecan</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Progressive stages of tooth organogenesis</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Tooth root and cementum formation</td>
<td>14</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Bone resorption and tooth movement incident to orthodontic force</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Tooth root illustrating the levels used in the analysis</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7</td>
<td>The octant system and the 8 registration regions used to record epithelial cell rest populations</td>
<td>30</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Rabbit anti-laminin labelling of 10% neutral buffered formalin fixed rat tissue</td>
<td>33</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Alpha syndecan-1 labelling and cytokeratin AE1-AE3 labelling of 10% neutral buffered formalin fixed rat tissue</td>
<td>34</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Syndecan-1 B-B4 labelling of 10% neutral buffered formalin fixed rat tissue</td>
<td>35</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Syndecan-1 N-18 labelling; cytokeratin AE1-AE3 labelling; and Alcenc Blue staining of 10% neutral buffered formalin fixed rat tissue</td>
<td>36</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Alcenc Blue staining of 10% neutral buffered formalin fixed rat tissue</td>
<td>37</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Syndecan-1 N-18 labelling and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 2 day old rat</td>
<td>43</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Syndecan-1 N-18 labelling and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 1 week old rat</td>
<td>44</td>
</tr>
</tbody>
</table>
Figure 15 Syndecan-1 N-18 labelling and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 2 week old rat 45

Figure 16 Syndecan-1 N-18 labelling; cytokeratin AE1-AE3 labelling; and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 3 week old rat 46

Figure 17 Syndecan-1 N-18 labelling; cytokeratin AE1-AE3 labelling; and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 4 week old rat 47

Figure 18 Syndecan-1 N-18 labelling; cytokeratin AE1-AE3 labelling; and Alcenc Blue staining of a 10% neutral buffered formalin fixed section from a 6 week old rat 48
1.2 List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Chronology of the development of the rat dentition</td>
<td>9</td>
</tr>
<tr>
<td>Table 2</td>
<td>Expression and distribution of syndecan and associated extracellular matrix components during tooth organogenesis</td>
<td>10</td>
</tr>
<tr>
<td>Table 3</td>
<td>Table showing results of semiquantitative analysis of immunohistochemical (Syndecan-1 N-18) and Alceo Blue stained sections of 2 day to 2 week old rat pup tissues</td>
<td>41</td>
</tr>
<tr>
<td>Table 4</td>
<td>Table showing results of semiquantitative analysis of immunohistochemical (Syndecan-1 N-18) and Alceo Blue stained sections of 3 week to 6 week old rat pup tissues</td>
<td>42</td>
</tr>
</tbody>
</table>
2 ABSTRACT

The syndecans are a family of heparan sulphate proteoglycans that regulate cell/matrix interactions which influence cell growth, proliferation and morphology. The expression of syndecan-1 during mouse molar crown development appears to be stage-regulated by epithelial-mesenchymal interactions. The presence of syndecan-1 in the epithelium of the rat oral mucosa, and in immature dental epithelium (Hertwig’s epithelial root sheath) during root development is a possibility. Further syndecan-1 expression might be detected in remnant embryonic dental epithelium (epithelial cell rests of Malassez). The aim of this study was to observe changes in the expression of syndecan-1 in both the developing epithelium of the rat oral mucosa, and in the epithelial cell rests of Malassez in the developing periodontium of normal rat molars, from late crown development through to early eruption. Immunohistochemistry (Syndecan-1 N-18) and histochemistry (Alceo Blue) was used to observe changes in the expression of syndecan-1 in 2 day to 6 week old rats. Results indicated that during normal tooth development in the rat, labelling or staining of variable intensity for syndecan-1 was demonstrated in the stratified oral epithelium above the stratum basale in rat tongue and palate, and in ameloblasts of the developing molar in 2 day and 2 week old rats. Histochemical staining of the pre-dentine and dentine layers was consistent in all specimens. Labelling or staining for syndecan-1 was negative in the rat periodontal ligament which might suggest that either syndecan-1 was not expressed during normal molar root development or that continued work is required for identification of a suitable label in rats.
3 ACKNOWLEDGEMENTS

I wish to extend my sincerest gratitude to the following people:

Professor Wayne Sampson, P.R. Begg Chair in Orthodontics, The University of Adelaide, Faculty of Health Sciences, for his invaluable guidance, incessant support and encouragement throughout the research project.

Professor David Wilson, Head of Oral Pathology, The University of Adelaide, Faculty of Health Sciences, for his expert direction, supervision and advice in compiling the research report.

Dr Ole Wiebkin, Senior Lecturer, The University of Adelaide, Department of Medicine, for his assistance with histochemical techniques, enthusiasm and generous donation of antibodies for immunolabelling procedures.

Mr Jim Manavis, Dr Robert Moore and the entire staff of the Immunochemistry Laboratory of the Institute of Medical and Veterinary Sciences, for their practical advice in immunohistochemical techniques and their generosity in the use of antibodies for labelling procedures.

Mrs Margaret Leppard and Ms Sandie Powell, Faculty of Health Sciences, The University of Adelaide, for their valuable advice and technical assistance.

My wife Penny, whose unremitting love, support and patience has made this dissertation possible.

My parents Basilio, Jacqueline, Harry and Despina, for their ongoing encouragement and belief in my abilities.

My fellow colleagues, Richard Salmon and Petrina Kat for their wonderful sense of humour and continuous support during the course of the study.

The Australian Society of Orthodontists Foundation for Research and Education, for their generous support in this research project.
This report contains no material which has been accepted for the award of any other degree or diploma in any other university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my research report, when deposited in the University Library, being available for loan and photocopying.

Daniel D. De Angelis

B.D.S. B.Sc. (Adel.)