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ERRATA OR OMISSIONS

the relatíon for Èhe zero Zy ln terma of other parameters
fs omitted. It is

zL- I * tan(q+9oo)(r2+n2-n¡
I-Èan(q+90 ) ( r-R)

p.3-8 :

p.3-10: Fourth line, (correction)
U - (C-A)(D+1)-Bc

p3-12: The term

c2 + (n-L)Z

pA-lO:

pA-15 to
pA-28

pA-16:

4D

under the square rooÈ sign in both expressions should be posftive,
not. negative.

Eqn D-l6.
The numerator Èerm should be A-8, not A*8.

The omfssion of values for the normalised parametere E./T (C/L
sEep t,ime-response) and ø"T (O/L frequency-response) render Èhe
sets of speciffcat,lons fn each of Èhese domaíns ÍncompleEe.

I recommend Èhat the tables for damping ratio €=0.7 be
recalculat,ed to lnclude these values, and the results be
fncluded with an errata sheet ín Èhe copfes of the thesis.

The varlablee E" and ø" should be deffned under Ehe appropriate
headfng.
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ABSTRACT

The frequency response matching technique for the synthesis of digital control

systems has been investigated. The basic philosophy of this technique is to design

a digital controller so that the frequency response of the designed closed-loop system

matches a specified frequency response model. The approaches described in the current

literature include Rattan's complex-curve fitting method and Shieh's dominant data

matching method.

Two new design methods are proposed in this thesis. The first one is the rúer-

atiae comples-curue fitting (ICCF) design method based on Rattan's algorithm. With

its iterative calculations, the new method improves the frequency matching accuracy

significantly by eliminating in Rattan's algorithm the frequency dependent weighting

factor which severely degrades the matching accuracy at high sampling frequencies.

The second one is the simplæ optimization-bøsed (SIM) design method. With the aid

of non-linear constraints on the controller parameters, this method provides a good

compromise between the desired system frequency response and the required controller

characteristics to avoid problems such as an excessively high controller gain or an oscil-

latory control signal.

The non-linearity of the Shieh's method in the case of the design of a controller

with an integrator is removed by choosing the appropriate controller form and dominant

frequency points. As a result, the relevant computational algorithm is considerably

simplified.

The determination of a frequency response model from design specifications given

in the time, frequency and a- domains is discussed. It is shown that the choice of the

model may be critical to the succcess of the frequency matching, in particular when

there is discrepancy between the primary frequency range of the system under design

and that of the model. To help select an appropriate z-transfer function as a model, an

vii



e¿rsy-to-use approach is developed which is based on a comprehensive investigation on

the dynamic performances of second-order discrete systems.

A number of design studies is conducted in order to assess the frequency matching

design methods. The frequency matching accuracies and time responses of the designed

systems form the basis for the comparative evaluation. The resuits show that ICCF and

SIM methods proposed in this thesis are superior to current methods. The effect of the

discrepancy between the primary frequency ranges on the matching accuracy and the

convergency of optimization algorithms are illustrated as well.

The hybrid frequency response is defined for the system containing both discrete-

and continuous- time components. Unlike the commonly-used discrete frequency re-

sponse, which is derived from the system z-transfer function and provides no informa-

tion about the time response between sampling instants, the hybrid frequency response

includes the characteristics of the inter-sampling time response.
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