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ABSTRACT

The frequency response matching technique for the synthesis of digital control

systems has been investigated. The basic philosophy of this technique is to design

a digital controller so that the frequency response of the designed closed-loop system

matches a specified frequency response model. The approaches described in the current

literature include Rattan's complex-curve fitting method and Shieh's dominant data

matching method.

Two new design methods are proposed in this thesis. The first one is the rúer-

atiae comples-curue fitting (ICCF) design method based on Rattan's algorithm. With

its iterative calculations, the new method improves the frequency matching accuracy

significantly by eliminating in Rattan's algorithm the frequency dependent weighting

factor which severely degrades the matching accuracy at high sampling frequencies.

The second one is the simplæ optimization-bøsed (SIM) design method. With the aid

of non-linear constraints on the controller parameters, this method provides a good

compromise between the desired system frequency response and the required controller

characteristics to avoid problems such as an excessively high controller gain or an oscil-

latory control signal.

The non-linearity of the Shieh's method in the case of the design of a controller

with an integrator is removed by choosing the appropriate controller form and dominant

frequency points. As a result, the relevant computational algorithm is considerably

simplified.

The determination of a frequency response model from design specifications given

in the time, frequency and a- domains is discussed. It is shown that the choice of the

model may be critical to the succcess of the frequency matching, in particular when

there is discrepancy between the primary frequency range of the system under design

and that of the model. To help select an appropriate z-transfer function as a model, an

vii



e¿rsy-to-use approach is developed which is based on a comprehensive investigation on

the dynamic performances of second-order discrete systems.

A number of design studies is conducted in order to assess the frequency matching

design methods. The frequency matching accuracies and time responses of the designed

systems form the basis for the comparative evaluation. The resuits show that ICCF and

SIM methods proposed in this thesis are superior to current methods. The effect of the

discrepancy between the primary frequency ranges on the matching accuracy and the

convergency of optimization algorithms are illustrated as well.

The hybrid frequency response is defined for the system containing both discrete-

and continuous- time components. Unlike the commonly-used discrete frequency re-

sponse, which is derived from the system z-transfer function and provides no informa-

tion about the time response between sampling instants, the hybrid frequency response

includes the characteristics of the inter-sampling time response.

vul
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CHAPTER, I

INTRODUCTION

0f.1 Digital control systema

With the great advances in digital computers and microprocessors over the last

two decades, significant progress has been made in digital control systems. The applica-

tions of these systems have been found in almost all aspects of industry. Compared with

their conventional analogue counterparts, digital controllers are usually more reliable in

operation, more compact in size, lighter in weight and cheaper in cost. But the most

important advantage of digital controllers is their great flexibility in control functions.

This unique property enables a digital controller to perform different control functions,

in accordance with the latest design changes or adaptive control performances, without

modification of the controller hardware.

$f .2 Advantages of frequency response methods

For digital control system synthesis, there are many methods available, among

which the frequency response design methods have some distinct advantages in compar-

ison with those in the time and complex z- domains. For instance, the application of the

root locus method, a widely used complex z-domain design technique, is limited by the

1-1



requirement that the time response of a system under design can be approximated by a

pair of dominant poles in its transfer function. On the other hand, in frequency domain

analysis, effects of all poles and zeros are taken into account as each of them contributes

its share to form the overail system frequency response. The latter provides the facility

for handling high-order dynamic systems without having to make the approximation in-

herent in the former. Furthermore, designs based on time domain synthesis, such as the

deadbeat response control technique [t, ta] and the state matching methods 124,25,26],

are dependent on some specific types of input signals. Their responses to other types

of signals may be poor. In contrast with this shortcoming, frequency domain analysis

describes the linear system response to any periodic input signals. Moreover, some de-

sign methods in the frequency domain allow the designer to characterize the plant of

interest by using the results of frequency response nìeasurements directly, rather than

by forming a transfer function from these measurements. In practice, the derivation

of such a transfer function may be very cumbersome. Finally, it is noteworthy that

specifying control performance criteria in the frequency domain is in some cases more

reasonable and convenient than in the time or complex z- domains, especially in dealing

with high-frequency noises [20].

$f .3 Classiffcation of frequencJr response methods

Flequency response methods for the digital control system designs can be classi-

fied into two categories. The first category covers those graphical design methodologies

adopted directly from continuous system synthesis techniques. The best known are the

Nyquist plot, Bode plot and Nichols chart methods. In digital control system designs,

they are implemented in the W-plane using the bilinea¡ transformation [], 191:

2 z-l:-.T z*L'w

t-2

(1 - 1)



or
,,wTz:?ft,, (1 -2)

where I is a sampling period. In many cases, the graphic nature and n cut and try "

procedures make it difficult for these methods to be employed in the on-line synthesis of

digital controllers, where the simplicity and mathematical formulation of design results

are most degirable. The second category comprises the frequency response matching

methods which are associated with various complex-curve fitting techniques. An early

complex-curve frtting design method was due to Rattan [5], and was followed by the

dominant data matching method proposed by Shieh et aI l(l. In addition to common

advantages discussed in section 1.2, their results are formulated in mathematical form

and so are amenable to digitat computation. It is this feature which offers potential for

these methods in more sophisticated designs of digital control systems.

S1"4 hequency response matching methods

The aim of frequency response matching design methods can be stated as follows:

To d,esígn the discrete transfer tunction of a digital controller for

a giaen d.iscrete or continuous plønt so that the lrequency response of the

closed-loop system møtches the d,esired frequency rcsponse moilel øs closely

as possible.

To derive a transfer function from a specified complex-curve or a set of known

data is not a new idea. Some fundamental work was done in the late 1950's and eaÙ

1960's. For ìnstance, Levy [18] proposed the weighted-least-squares complex-curve fit-

ting method in 1959. However, it was not applied to digital control system synthesis

until 1975 when Rattan [5] developed a computer-aided design method. Using Levy's

complex-curve frtting technique, this method determines the coefrcients of the digital

1-3



controller by minimizing the weighted-mean-squared error between the frequency re-

sponse of the closed-loop system under design and that of a continuous model. The

oniy requisites are the z-transfer function of the piant and the transfer function of the

continuous model. One of the drawbacks in this method is that a frequency depen-

dent weighting factor is introduced in the error function in the proces¡¡ of liuearization.

When the sampling period I becomes small, this weighting factor may result in a large

deviation in frequency response matching.

A few years later, in 1981, Shieh et ø1. [Al proposed another simpie but practical

method, called the dominant data matchìng method" The desired frequency response

is specified at several key frequency points, e.g., the gain cross-over frequency, known

as the dominant data. The coefficients of the digital controller are then determined so

that the frequency response of the system under design will closely match the dominant

data. The method becomes complicated when applied to the design of a "type I n

systern, which has an integrator in its forward path, as shown in Shieh et ø1.'s example

[4]. They derived a set of linear and non-linear equations for matching this type of

system. However, the Newton-Raphson method used to solve the non-linear equations,

as pointed out by Shieh et al., has strict requirements on initial estimates"

$1.6 Summar¡r of the eurrent frequency matching design methods

The frequency response matching methods for the design of digital controllers

are recently introduced design approaches. They have been thus far scarcely discussed

in relevant textbooks or papers other than those written by the proposeñt themselves.

The advantages of these methods are significant; some examples are given below:

(1) These methods do not require an excessively high sampling frequency for the

digital controller.

(2) These methods can be applied to high-order systems without the assumption of
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the existence of a pair of dominant poles.

(A) The results of designs are independent of specific types of input signals and

therefore can be used for a variety of input signals.

(a) No high-order hold is required.

(S) The solution of these design methods is in mathematical formulation and is

amendable to digital computation.

On the other hand, there are also some drawbacks and open questions in the

frequency response matching design methods.

(f) There is no guarantee for the open-loop and closed-loop stability of the control

system under design.

(Z) In the matching process, a closed-loop system is only considered as a whole.

Though its realizability is ensured in the design algorithm, the resulting digital

controller may be not practical for reasons such as an highly oscillatory controller

output in an electromechanical system'

(B) In Rattan's complex-curve fitting method, the matching accuracy may be de-

graded by a frequency dependent weighting factor.

(a) In Shieh's dominant data matching method, the design of the "type I o system

results in a set of non-linear equations whose solution depends on initial values.

(5) The determination of the frequency response models has not been discussed in

the literature. In particular, the impact of sampling frequencies on the matching

accuracy is ignored.

(6) Designs are carried out via the z-transfer function. For continuous-time plants,

the resulting frequency response does not carry the information about the time

response between sampling instants.

(7) The relationships between the control specifications of discrete systems given in

the time, frequency and complex z-domains have not been well established. Such

relationships are essential for selecting discrete frequency response models that

satisfy assigned control specifications.
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¡1.6 Objectivesr approaches and achíevements

The objectives of this thesis are to evaluate current frequency response matching

design methods; to modify these methods to overcome the defrciencies summa¡ized

above; and to develop new design methods which improve frequency matching design

techniques.

A uumber of design studies is conducted for the purpose of assessing various

frequency matching design methods. The two third-order, continuous-time plants used

in the studies possess a sluggish time response and an oscillatory time response' respec-

tively. The plants are compensated according to the same control specifications for a

wide range of sampling frequencies. A comparison of the closed-loop designs is based on

their accuracy in matching the desired frequency response models and on their unit-step

time response performances.

To remove the non-linearity of coefrcient equations in Shieh's dominant data

matching method in the case of the "type I o system design, this author suggests us-

ing a one-order-higher digital controller and choosing appropriate dominant frequency

points. As a result, the computational algorithm is significantly simplified, compared

with the efforts required by the Newton-Raphson iterative method. More importantly,

the designer no longer needs to worry about the initial estimations and the convergeucy

of solutions.

In order to minimize the detrimental effect of the weighting factor in Rattan's

complex-curve fitting design method, the author proposes a new method, called the

iterøtiue complen-curae fitting design method, in which the weighting factor from the

current iteration is effectivety eliminated by the one from the previous iteration. In

comparison with the designs by Rattan's method, as shown in design examples, the

matching error can be reduced by the factor of two or three in only 2 - 3 iterations.

The corresponding time responses are also improved significantly.
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Another important contribution of this thesis is the development of the simpler

optimization-based frequency matching design method. In this method, the minimiza-

tion of the frequency matching error is formulated as a non-linear programming problem

with a set of non-linear constraints on controller parameters. The solution is then ob-

tained by means of some standard optimization technique such as the simplex method

of function minimization. The unique feature of this method is that the controller gain,

zeros and poles can be confined to some specified ranges of values. Thus if the plant is

opeu-loop stable and the Nyquist plot of the closed-loop system does not encircle the

point of (-1, j0) in fhe D(z)G¡G(z)-plane, the closed-loop stabitity can be guaranteed

by locating all controller poles on or inside the unit circle" The dynamic characteris-

tics of the controller also can be improved by confining controller poles and zeros into

appropriate regions in the z-plane to avoid, for instance, an oscillatory control signal-

The implementation of the upper limit for the controller gain is straightforward.

Ag a further contribution of this thesis, a systematic and user-oriented approach

is presented to determine a discrete frequency response model from control specifications

given in one or more of the time, frequency and complex z- domains. The approach

is based on an investigation of the dynamic characte¡istics of the second-order discrete

system having a pair of complex poles and a zero. In addition, the sufrcient and

necæsary conditions for an open-loop second-order discrete system to be closed-loop

absolutely stable are derived and proved.

Deriving the frequency response of a digital control system from its z-transfer

function is the most popular technique. The resulting frequency response is sometimes

called lhe d,iscrete lrequency îesponse . The disadvantage lies in the fact that, when a

plant is a continuous-time system, information about the time response between sam-

pling instants is not provided by the z-transfer function nor by the discrete frequency

response. For the frequency response matching design methods, this shortcoming may

become severe if the discrete frequency response gives a poor approximation for an ac-

tual frequency response in a relevant frequency range when a sampling frequency is low
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relative to the closed-loop bandwidth. In this thesis, lhe hybrid frequency response is

derived which reveals the actual frequency response of a closed-loop system consisting

of both digital and analogue components. Accordingly, the continuous time response

of such a system can be accurately predicted from its hybrid frequency response. This

unique advantage suggests that the frequency response matching design methods be

improved by means of the hybrid frequency response analysis, although lack of time

prevented its implementations.

$f.7 The contente

In Chapter II , the problem of the design of a digital controller is defined and is

followed by descriptions of the various frequency response matching design methods. In

Chapter III the conversion of the control specifications between the time, frequency and

complex z- domains for discrete systems is discussed. Based on its results, the approach

used for the determination of a desired frequency response model is proposed. Studies

for the evaluation of the design methods are described in Chapter IV . After discussing

the bases for the design studies, three groups of design examples are presented, each

group considering a particular aspect of designs. The time and frequency responses as

well as the matching accuracy of the resulting closed-loop systems are shown, along

with the comparisons and discussions. Chapter V is devoted to the hybrid frequency

response analysis technique. Finally, Chapter VI summarizes the studies and gives

general conclusions and recommendations about the frequency matching design methods

for the design of digital controllers.
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CIIAPTER II

FREQUENCY RESPONSE MATCHING DESIGN MDTHODS

$2.1 Forurulation of the desiga problem

In this study, the control system under design is a linear, time-invariant, single-

input/single-output system. The general confrguration for the closed-loop system in-

corporating a digital controller is drawn in Fig. 2-1.

To simplify the synthesis without losing generality, .t'(t) is assigned to unity.

Moreover, the system in Fig. 2-l is hybrid in nature as it contains cornponents operating

with both discrete and continuous signals. The analysis of this system constitutes the

investigation in Chapter V and is of interest because its frequency response provides

the information about the time response between sampling instants" Chapters II -IV of

this thesis, however, will concentrate ou the design via the system z-transfer function;

a dummy sampler, drawn in dashed lines in Fig. 2-1, is therefore added at the output of

system to convert the hybrid systern into the discrete-time system as shown in Fig. 2-2.

Deflne the discrete transfer function for a nth-order digital controller as the ratio

of two polynomials:

D(z): Íozrn + tlz^-l + '. .+ Í¡n-tz * trn
t

where Vo : I and m S n to ensure the controller is realizable [14].
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- 'y. (s)

Y(')
D(') E'(t) u'(r) u(')

r(r) + T T

Notation:

G(t) - transfer function of a continuous-time plant

G¡(t)- transfer function of a zereorder-hold converting a series of pulses into a

continuous-time signal at the input of plant

D-(t)- transfer function of adigital controller, where the notation X'(") defines the Laplace

transform of r(fr?), the sampled form of continuous-time signd ø(t)

F(t) - transfer function of a control or measurement elenrent in the feedback loop

Æ(t) - transfer function of an input signal r(t)

y(t) - transfer function of the output signal y(ú) of the closed-loop system

Y"(t) - fransfer function of the sampled output signal y(,tT)

U'(t) - transfer function of the output signal U(kT) of a digital controller

E(t) - transfer function of an error signal e(t)

Et(t) - discrete transfer funct¡on of the sampled error signal e(,bT)

T - sampling period

Figure 2-1 Conßguration oÍ the closed-loop s;'stenl incorporating a digital controller

Digital
controllcr

D'(r)

Fcedbàct

ckmcnt
F(')

Continuous-
tine plant

c(r)

Zcreordcr
hold

G¡,(r)
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ZOH - zero-order bold

D¡dtàl
controllcr

D(")

Pl¡nt t ZoH

G¡G(z)
ß(z

eþ) U Y (r)

Figure 2-2 Discrete conttol system v'ith unity feedback

Similarly G¡G(z) is written in the same form

G¡G(z): agzq I ø129-L + + 1z*aq (2-2)
zP * btzP- +"'+bptz*bp

whereqspandbs:1.

For the digital control system defrned in Fig. 2-2, the open-loop discrete transfer

function is:

Qþ): D(")'G¡G(z), (2-3)

and the closed-loop discrete transfer function is:

(2-4)

In addition, Mq(jw) and M(ir) are used to denote open-loop and closed-loop

frequency response models, respectively. The formulation and determination of these

frequency response models will be discussed in detail in Chapter III

It is well known that the frequency response of a discrete system operating with

the sampling frequerlcy us :2rlT can be obtained by substituting "i'T lo, z in its

z-transfer function [11. Moreover, this frequency response repeats for every nu, 1u 1

(n+ 1)ør,r:0, I,2,... and the frequency response for (n+l)wr123u < (n* l)ø'
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is just the mirror image of that for no, ( ø ( (n + L)u12,ñ : 0, lr2,..., with respect

to the real axis in the complex plane. Hence it is sufficient to consider matching the

frequency response over only O 1 w 1 ,p, where øo is called the primary frequency

range and is defined ß up: w"12.

Based on the above definitions, the design objective can be explicitly stated as

determining the coefficients of the z-transfer function Dþ) for the digital controller (see

Eq.(2-1)), such that H(i") or Q(jø), the closed-loop or open-loop frequency response'

whichever is required, will match the specified frequency response model M(ir.,') or

Mq(i") as closely as possible.

52.2 Dominant Data Matching design method (DDM)

2.2.1 Destiption ol the d'esign method

The Dominant Data Matching method, abbreviated to "DDM' for convenience,

was proposed by Shieh et aI. in 1981 [4] for matching an open-loop frequency respotrse

QU") to a given set of dominant data. The method was extended before long to mul-

tir¡ariable sampled-data control systems for model simplification and digital controller

design by the same research group [3]. The dominant data is defrned as a set of fre-

quency response values for the open-loop model Mq(i"ù at some key frequency points

ui,i : !r2, " .. , K. Usually these points are chosen from the gain cross-over frequency,

the phase cross-over frequency and appropriate low frequency points.

The frequency response of the open-loop system can be derived from Eq. (Z-3)

QU "ù 
: D(z)G nG(z)1,- ¿",r

- D(ei";r)G¡G(ei''r),

2-4
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Let ß and .[ represent the real and imaginary part of complex numbers, respec-

tively, then:

QU";\: Rq(w¿\+ jlq(a¿); (2 -6)

D(i"ù: Ro(w;) + jlp(u;); (2-T)

G¡G(jw;) : Rc(w¿) + jls(w¡). (2 - 8)

For simplicity, rewrire Rq(w;) as Rq;, Iq(r;) as Iq;,..., etc.. Eqs. (2-6), (2-7) and (2-8)'

respectively, are then simplified to:

Q(i"ù : Re; + jlq;t (2 - e)

D(itù - RD¿ 1- i Io;; (2 - 10)

G¡,G(jw;) - Ra; * ile¿. (2 - 11)

Similarly, the open-loop response model is:

Mq(irù -- Rue; -r i Iuq;. (2 - tz)

The design specification now can be expressed as :

QU"ù : Mq(iw;)
(2 - 13)

: RMq;* jlue;, d:1,2r"'rK"

By rearranging Eq" (2-5) and substituting Eqs. (2-10), (2-11) and (2-12) in it, the

required controller response is found to be:

Rp¡*ilo¡:ry#, i:r,2,---,K- (2-14)

In Eq. (2-14), Rue; and .I¡ao; are specified, and Æc¿ and Iç; can be calculated from

Eq" (2-8) for the plant with a ZOH.

substitution of F,q.(2-10) and z : "i'T 
: cogrrrl * i sinø1 into Eq. (2-t) gives:

D(ei'ir'1 : Ði|oø¡ cos(m - w¿T+i ø¿ sin(m - l)w¿TtÍù

=0
y¡ cos(n - k)w;T + j -s y¡ sin(n - k)w;T

- RDi*jlp;, d: 1,2r...rK

2-5
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where yO : L; yk, k : LrLr...,n and Ít, I :0, 1,.. . rm aÍe the unknown coefficients to

be determined.

Now multiply both sides of Eq. (2-15) by the commoD denominator and separate

out their real and imaginary parts; then by equating the respective real and imaginary

parts in the resulting expression the following linear equation matrix can be obtained.

Its solution yields the required coefficients of the discrete transfer function for the digital

controller.

w' :t-L .v (2 - 16)

where,

W -- ( ro rL ... rm lt ... gn-t go)

and W ' is the transpose of W;

r?¡1 cos nwlT - Iptsin nt'r1T
.R¿¡r sin nurT * IntcosnulT

.R¿; cos nu;T - Io;sin nt.r;1

.R¿r; sin nw;T * Io;cosnu;T

Rp1¡ cosnuyT - Iorcsinnu6T
.R¿r6 sin nuyT * Inx cosnuyT

v

otl
ötr

aK2
bxz

an
bn

at2

brz

ot(n'+t)
br1-+r¡

a;þn+t)
ö;(-+r)

trx(rn+t)
ö¡r(-+ t)

cKt cK2

ilxt dxz

cll
dt

ft

n

ci
d,¿

ct2
dn

c'i2

d;z

cLn

drn

ú
ait
ó;r

aKt
örl

c;l
d;t

cKn
dxn

aii cos(m+ I -¡)"r1, I i : t,L,...,m*L
ö;i:sin(m+l-ilrri" ,)
c;j: -Rr¡;cos(n - i)r;T * Io; sin(n - j)';T,

d;j -Ro;sin(n - Ðr;T - IP; cos(n - i)';T'
2-6
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suppose the matrix c is an enlargement of U byT,i.e.,e : (Ú iV )" According

to the theory of linear algebra, Eq. (2-16) has a unique solution if and only if the number

of unknowns, determined by Eq. (2-1), equals the rank of matrix C, determined by

the selected key frequency points. Because in this method, a frequency response is

represented in terms of complex numbers, the real and imaginary parts of which are

regarded as the dominant data, the number of specified dominant data is always twice

the number of selected frequency points. The order of polynomials of D(r), therefore,

should be taken in such a way that the sum of (n+m+I) is equal to 2K.

In practice, however, this requirement may be eased. Assume that K selected

frequency points are located reasonably evenly over the frequency range concerned and

K is equal to or greater than 4. Then it is conjectured that, for a well-behaved fre-

quency response model, the equation associated with the frequency point which resides

between the other points may be discarded from the set of 2K linear equations in Eq. (2-

16) without significant detriment to the frequency response matching. Unfortunately,

this conjecture cau not be proved mathematically; but the results of design examples

examined in this thesis reveal that the conjecture is well satisfied.

The significance of such an approximation is to reduce the order of a digital

controller. The design for 2K equations requires a controller the order of which is

n) K,but the design for (2K-l) equations can be implemented by acontrollerwith

theordern>(K-l).

2.2.2 Deficiencies in and modifications to the DDM method

A problem arises when a "type I o system, which contains an integrator in its

forward path, is selected as the model of an open-loop system for a plant without integral

characteristics. To fit a utype I o system, Shieh et ø1. proposed to match the dominant

darz Mq(iar¡) at t,l : 0 [4]. However, the infinite value of. I¡¡o$w) at u : o makes the

calculatìon of F,q. (2-14) impossible. To solve this problem, Shieh et aL introduced the
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linear transformation zt : z - I into Eq. (2-3) so that the real part of an open-loop

frequency response ¿t u : O, R"lQþt)llr,=0, can be expressed in terms of coefficients of

the new digcrete transfer function Qþ'). Nevertheless, the resulting equation is non-

linear and has to be solved by a method such as Newton-Raphson. Two disadvantages

immediately become apparent. Firstty, the convergency of the Newton-Raphson method

is highly dependent on initial estimates [4]" Secondly, the estimation of better initial

values and the iterative calculations of the Newton-Raphson method increaee the overall

comput ational burden signifi cantly"

In this thesis, the author suggests using a higher order controller to overcome

these defrciencies in the utype I " system design. The use of a higher order controller

enables a designer to select a pair of points one decade apart in a low-frequency band

instead of a single point at, u) :0, as Shieh et o,I. proposed. The low-frequency band

is considered as ø ( 0.03ø6, where a.r6 is the desired closed-loop bandwidth (-3dä).

Because the frequency responses at these points are of finite values, Eq. (2-16) can be

formulated with no computational diffi,culty. In matching the "type I " model response'

featuring the the magnitude "roll-off" oÍ20 dbf decøde and phase lag of 90" in the low

frequency band, the algorithm automatically positions an open-loop pole at the point

of (1, j0) in the z-plane to form the desired ntype I' system. Unlike Shieh's method,

no non-linear equation is involved and no initial estimates are required. As a result, the

modification proposed by this author not only saves computational effort signifrcantly

but also avoids the convergency problem; the only cost is the increment in controller

order of one"

Note that in the design of utype I " system, a controller pole is defined at the

point of (1,i0) in the z-plane, so that the z-transfer function of a digital controller is

,l.rr-r Íoz^ + rlz^-l + "'+ rm-lz * rm)(z)- , (2-rT)

where m 4 n. Thus one can solve the other (m + n) unknown coefficients by means

of the DDM method. Atthough this approach may be more efficient and accurate, the
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resulting form of linear equations and the associated computer program can not be

applied to the design of a system with other type numbers. Hence the design based on

Eq. (2-17) is not presented in this study.

!2.S Comptex-Currre Fitting design method (CCf)

The complex-curve fitting technique of Levy [1S] has been employed in the syn-

thesis of the z-transfer function of a digital controller so that the frequency response

of the closed-loop system will match that of the assigned model" The matching is op-

timized in the senae of minimum weighted-mean-squared-error. Rattan first presented

this elegant method in his doctoral dieeertation in 1975 [5]. Since then, he has applied

this technique to various digital control system design problems such as discretization

of single- and multi-loop continuous-time control systems [6, 7, 3l and model simplifi-

cation of digital control systems [27]. The essentials of the complex-curve fitting design

method, abbreviated to "CCF' , are given in this section, and based on Rattan's method.

2.3.7 Rattan's design method

The closed-loop frequency response of the control system defined in Fig. 2-2 is

H(iù (2 - r8)

Represent G¡G(jw) in its real and imaginary parts as:

G¡G(iw): ßc(ø) + iIç(w). (2 - le)

Let iV and P be a numerator and denominator, respectively, and note that z : cosuT *

i sinø1. Thus H(ir) in Eq. (2-18) can be rewritten as:

H(i'):*4i'"¿: o+i@' 
Q-zo)- PaUw)- o+jr'
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where,

O : Ð n;lÐç(u)cos(rø?) + Iç(r,r) sin(rtuf)1,
m

¡'=0
m

r=0

e: D x¿l-Rç(w)sin(røf) + Iç(w)cos(rø1)1,

tt¿ n

'r'=1

o : t+ D n;lùç(w)cos(iø?) + Is(w)sin(rø1)l + ty¿ cos(iarf),
¡'=0

m tt

¿=0 ,i=l

Assume that a desired closed-loop frequency response is

7 : t n;l-R6(u) sin(iuf) + /ç(ø) cos(iøT)l - t y¿ sin(røT).

Then the squared-matching-error function to be minimized is defined a8:

,: 
IO

u"f 2

M(iù:ffi: Ru(w)+ilu@)-

lo"'''

lu(i") - H(jw)lzdw

l'"''-ffi1'o'

(2 - 2t)

(2 - 22)

To remove the non-linearity which results from differentiating .E with respect to

controller coefficients, Í;ri: 0, l, ... tfl and y;, i : 1,2r...,n, EQ. Q'22) is modified by

including lPs(iù|z in the integrand as a weighting factor. The new weighted-squared-

error function e is

lPn U ù12 lM (i w) - H (j w)12 dw

(2 - 23)

lPs (j u)M (i ù - N s (j w)12 du.

The weighting factor lPnjr)|z is nonzero for a stable system because for stability all

roots of the characteristic equation must lie inside the unit circle in the z-plane.

Substitution of Eqs. (2-20)and (2-21) into Eq. (2-23) gives

fue/2

": l,
: 

I,'",,

I, l(R¡a(w)o - I¡a@)t - O)'+ (r?¡,.(ø) r + I¡a@)o - Ø)2ldw. (2 - 24)
,"/2
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The minimum of e carr be found by differentiating it with respect to the unknown

controller coefficients r¿ and ft, and assigning the derirratives to zero, i.e.,

ðe---:0, i:lrLr.."rtu. (2-26)
ôy;

Hence from Eqs. (2-24\,(2-25) and (2-26\, (- + n + 1) equations can be obtained:

y^: 
Io'''' 

z(R¡a@)o - r¡a@)r- ox¿¡r( "\#- urùlr- filo"
* 

Io""'' 
z(R¡¡(w)r + I¡a@\o- oXev( "\#+ I¡¡(w)#- #r^

- 0, i : 0, 1,..", f,i 
(Z _ ZT)

ãe 0, i : 0, lr. .. rmiðr;

l: (øo ET T2 r¿ trn lt 9z 9¿

(2 - 26)

(2 - 28)
#: Io'"'o 

z(R¡¡(w)o - I¡¡(w)r- oXß,'( ù#- Int(r)ff1^"

* 
Io""'' 

z(R¡¡(w)r + I¡¿(w\o- oXßv( ,\#+ I¡¿(w)ffi1n"

:Q ¡:1r2r"..rft.

The solution of these equations for the unknowns z¿ and y; is shown in matrix

form as following:

_-tF:f-''T; (2-29)

where,

Yo). ;

. L^ h J2 J¿ J,)';
2- 11
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C;o

C^n
Bn
Bzo

B¿o

Bt

,4oo áor Aoz
Au ,{oo An
Aoz An ,4oo

Ao; lr,, 'i¡
A;* A;^ a;*
tor Cn Czt
Coz Cn Czz

ð0, ðr, ðr,

ion ir* ir,

Aç
Au
Az;

,{oo

A';*
C;t
C¿z

Crn

i,*

Coz
Cn
Czz

Cm2
Bn
Bn

Csi
Cç
Cz¡

ð,,

i*¿
Bç
Bz;

¡ìr

8,,

Con
Cn
Czn

h* Cot
Ar* Cn
Azrn Czt

A¿,n Ct C¿z

.À- ,{oo
C*t
C*z

C¡ot
Brr
Bn

C^i Bu Bz¿

Crno Bu Bzo

and

*i : !o'"lt l*'*(r) 
+ P*(r) - ln¡¡(w)+ rl(^Bþ(tr) + rþ1r¡¡ cos((i - i)wT)dw,

B;i : 
!o'"/' lr'*(r) 

+ t?*(r\lcos((r - i)wT)d'w,

¡øe 12

c,¡: 
Jo 

' 
l@zM@\ + PMþ) - ßir¿(r)) Re(r) - I¡¡(w)Is(ø)lcos((i - i)ur)dw

* 
lo"/'I{nt*@) 

+ PM@)- Æ¡¿(r)) Ia(ù + I¡¡(w)Rc(r)lsin((i - i)wT)dw,

L;: - lo""'' l{r'*(r) + t'*(r\ - R'(ù)ne@) - I¡a@)Iç(ø)lcos(rø \du'
¡w"12

- l, 
' 

l@'u@) + fMþ\ - Æ¡r(r))Ic(ø) + Iy(w)Rc(")l ain(iwr\dw,

f u8l2
l,: - lo tn?wfu) + I?ú(")lcos(it^rr)dø.

The choice of the digital controller order mainly rests on the matching accuracy

required and the computation time allowed. Data required for the design include m and

n, the orderg of the polynomials of a controller z-transfer function; M(ir), the desired

frequency response and G¡G(z), the z-transfer function of the plant with a zero-order

hold.

2.3.2 Numerical integration

The great number of integrations involved in solving Eq. (2-29) is one of the main
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disadvantages of this method. In this study, these integrations are carried out by means

of DCADRE, a numerical integration subroutine from the IMSL programme library [8].

Suppose F(ø) is the integral of. f þ\ over the interv'¿l [4, ó]. Then the DCADRE routine

computes tr'(ø) as the sum of estimates for .F (r) over suitably chosen subintervals of

[o, ö]. Starting with [a, ö] as the first such subinterval, the cautious Romberg extrap-

olation calculates an acceptable estimate on it. If the result is not satisfactory, the

subinterval ie divided into two parts of equal length, each of which is then considered

as a subinterval for a new estimate. This routine gives fairly accurate results but the

computational burden is heavy. For instance, depending much on the behavior of in-

tegrands, the calculation of the coefrcients for a 3rd-order controller transfer function

may require 15 - 75 seconds of CPU time on a VAX-11/780 digital computer.

2.8"3 Detrimental efrect ol the ueighting lactor

The effect of the weighting factor lPnU")Iz in Eq. (2-23) on the matching accu-

racy is ignored in Rattan's CCF method as he claimed [5] that the weighting factor was

approximately equal to a constant times the absolute value oI P¡¿(jw), the denomina-

tor terrn in Eq. (z-ZL)" Nevertheless, this assumption is not valid unless the sampling

frequency is low relative to the bandwidth of a closed-loop system" As ø" increases, the

value of weighting factor lPajù\z in the low-frequency band becomes so small that the

consequent deterioration of minimizatiou could bring about considerable deviation in

the frequency response matching. This is demonstrated by a numerical example taken

from this author's studies.

Assume th¿t the plant under design is

and the closed-loop frequency response model with Iro :0.5 s is

n( "r _ 100(s + 0.2)
- \"'' - (s + 2)(s + 0.5 + r6)(s + 0.5 - i6)'

(2 - 30)

2-L3

(2 - 31)



where f- denotes the sampling period of ¿ discrete transfer function used as a model.

A digital controller is then synthesized by the CCF method at three sampling periods

T:0.1,0.3,0.5 s, respectively. The vari¿tion of lPn(i")1z and the corresponding

closed-loop frequency response in each design are shown in Fig" 2-3, from which it is

clear that the weighting factor lPnUr\12 significantly affects the matching accuracy of

designs. In particular, at f : 0.1 s, the value oI lPs(iu)12 reduces to about -àOOdb

when ø < 0"5 rødf s, with the result that the cloeed-loop frequency reeponse does not

match the model at all.

In a later paper [6], Rattan commented further that the effect oIlPs(iw)12 could

be ea^sily eliminated, if desired, by dividing the integrand in Eq" (2-23) by lP¡¿(jw)1z

from Eq. (2-21\, i.e., by minimizing

lz 1e"1¡w)lzÊ-vit¿ 
- lPuU")12

lM(iQ - H(iw)l2dw. (2 - 32\

Intheaboveexample,however,itisobservedthattheratioffiatT:0.lsis

not a constant but varies from -160 to -100 dö. F\rrthermore, because the matching

is conducted in terms of the ,u11o 
il4U') 

rather than lYs(jr,r) and Ps(iw)separately,pnUw)

Pa(i"\ does not necessarily converge fo P¡¡(jw) while minimizing the error ltut(i"\ -
nU")1.

To overcome this deficiency in Rattan's CCF method, thie author has developed

successfully the iterative complex-cun'e fitting desigu method in an attempt to eliminate

the error-producing effect of the weighting factor lPzUù12. This is presented in the

next section.
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92.1 Iterative Complex-Cunre Fitting desiga method (ICCF)

2.1.1 Description of the ICCF method

On the basis of Rattan's complex-curue fitting design method, this author pro-

poses an iterative algorithm aimed at eliminating the effect of the weighting factor

lPnjù\z in the error function W" Q-23) in order to reduce the matching error. The

new method, called the Iterative Complex-Curve Fitting design method and abbrevi-

ated to ICCF, uses the transfer function synthesis technique of Sanathanan and Koerner

[13].

Let ¿ and e' denote the squared-error and the weighted-squared-error of matching,

respectively:
6: lM(ju) - H(ir)l':l*r,,r-mf (2-33)

"' 
: lPa(iù|z ."

(2 - 34)
: lPx$w\M(iù - Nn(iù12.

Thus the error function E in Eq. (2-22) and the weighted-error function e in Eq. (2-23)

may be rewritten as:
/2

E l*t(iù - H(iw)l2dw

w"/2
(2 - 35)

e dwl:T,

lus/2

': lo lPa(iùM(i") - Nn(iw)l2d,w

forsl2
-- J, e' dw'

(2 - 36)

If Ps$w) is known, the weighted-error e' can be divided by lPr Ur)12 so that

e' becomes the true error e. But this is impossible because Pø(ir) is unknown until

the computation is completed. By an iterative process, however, the currently unknown

Pn(ir) can be approximated from the previous computation result and hence its effect
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can be eliminated. In this approach, a new squared-error e*(È) is defined as:

and the corresponding error function 6*(k) is

fws12
,*(k) _ | ,*(k)¿,

Jo
u"12 lpS)(¡r)1, l*t(iù - ¿(r) $Qlzdw;

et (2 - 37)

(2 - 38)

where the superscript fr is the number of the iteration.

Obviously e'(ß) approaches the true error function.E'when pPU") closes to

P#-t¡(ju), if Ps(i") converges. In other words, the minimum of the matchiug error

function .E is reached as the weighting facto. ¡f$)(¡ø)l' i. effectively cancelled by

¡r$-')1¡u¡¡2.

Based on the new error function 
"*(ß) 

e¡ Eq. (2-38), a set of linear equations

(Eq" (2-3g)) for the controller coefficients at the tcth-iteration, ,Ín),¿: 0, l, ..., m and

yj*),¿ :LrZr...ttu,can be derived by following asimilar analysis to that carried out in

equations (2-23) to (2-29) of the previous section.

(2 - 3e)

where,

T:(tr0 Lt Lz L¿ L* h Jz J¿ J")t;

:T, t)(ir)l'

Tr-F
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As;
At;
Az;

¿oo

A';^
C;t
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cü

i,,

¡{oo ,{or Aoz
.¿{or /oo An
Aoz An Aoo

h; ¡r, *,
A;^ a;* A;*
Cu Cn Czt
Coz Cn Czz

in ðr, ðr,

io^ ir^ iro

and

A;i
lo""''

I
@?u@) + PM@) - zB¡0.(ø) + l)

¡r$-')1¡ø¡¡z

@2c@) + PG@Dcos((r - i)wT)dw,

'"1' ,= =\. rnfufu) + fM@)lcos((r - j)wT)rlw,
lr$-1)1¡u¡¡zt

12 Ic;i = ß-1
U")12

l@'M@) + PMþ) - nu @D Ra(r) - I¡a (w) Iç(w)l

u'12 I
cos((i -ilwndr,)+ Io pf-t)6w¡12

[(æî¿ (r) + f2*(w) - Ru @D I a(r) + I ¡¡ (w) Rç(ar)] ein( (i - i)wT) dt't,

'"'' _-_l-lg¡fu(w) + p*(w)- B¡¿(r)) R,¡-) - r¡a@)rs(w)l
lPf-')Ur)lr'

cos(røÎ)d, - I, ¡rf;-')1¡u¡¡z

t(nfu(") + P*(w¡ - s¡¿(")) Ie@) + I¡¡(w)Rc(r)l ain(iwT)dw,

,r/2 I

¡u"/2t,: - Jo tn?*@) + PM@)lcæ(iwr)du;

the superscript lc for all A,B,C,L and J is left out for simplicity.
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Note that, except for the factor ¡P,ff-L)çu)|2 io the denominator of every in-

tegrand, F4. (2-39) is very similar to Eq. (2-29). Let JV6(1ø) be the numerator of

G¡G(jw) and Pç(jw) the denominator, i.e.,

G¡G(jw): (2 - 40)

Pf;-tl(iø) can be then expressed as:

e$-rl1¡w) :1c[r-t) z* + rf-tlr^-r +...

+(2"+Y\k-tl""-1 +"'*Y

where, "!r-t¡, r' : 0, 1,... , m and yj*-t), d : l, 2r... rn are the known controller coefr-

cients obtained from the (e - 1)th-iteration.

The initial estimate ot effl1¡w), namely p#)Ur), is assigned to unity. From

Eq. (2-38), the error function 6*(r') ¿tr ft - I is

s*(r) - Io'"'' lp}(¡ùlrlM(iù- s(rtgel2dw
(2 - 42)

- f""t' wf q¡w¡u(iù - rrfiiçr¡¡'an ,- Jo l'¡

which is the same as the weighted-squared-error function e in Eq. (2-23). Hence the

result of the first iteratiou is identical to that of Rattan's CCF method.

The number of iterations is determined by the desired matching accuracy and

the convergency of ef'(¡,w) to Pf;-t)(ir). In this study, WIAE, a weighted integral

absolute error criterion, defined in F,q. (a-5) of section 4.1, is uged to assess the matching

performance. At frth-iteration, WIAE(ß) is calculated and compared with a specified

value for the matching error criterion, say € : 0.01. If WIAE(ß' a €, the values of

,\h), ;: 0,1, ...rm and y{ß),d -- l,2r...rn are an ideal solution for the coefficients

of the controller transfer function; if \ryIAE(ß) t ., then compare WIAE(ß) with the

previous result 1ry¡¡B(l-t). tffhen the lcth-iteration makes some improvement, i.e.,

\ryIAE(ß) < 1ryIAE(ß-l), the values of 
"(ß) 

and y{ß) are used to evaluat" rf;)1¡"¡ tot
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the next iteration. Otherwise Ps(iw) fails to converge and the values of 
"{ß) 

uoa yjß)

should be taken as the most accurate resultg available. Note that in any ca.se the reault

of the ICCF method will not be less accurate than that of Rattan's CCF method.

2.1.2 Numerical ezamples

The iterative complex-curue fitting design method has been tested for a number

of design studies in Chapter fV and proved to be one of the most accurate methods. In

particular, the examples considered in section 2.3.3 are redesigned by this new method.

After just two iterations, the matching errors of the closed-loop systems desigled by

Rattan's CCF method at I : 0.1 and 0.3 s (see Fig. 2-3 ) are considerably reduced.

For I : 0.5 s, at which the matching error of CCF'g design is insignificant, the result of

the ICCF method is close to that of the CCF method. Figure 2-4 shows the frequency

responses of the closed-loop systems designed by the ICCF method, together with that

of the model M(i").
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$2.6 SIMpIex optimiration-based design method (SIM)

2.5.1 Control system design aiø non-Iinear programming

Non-linear prograurrning is an optimization technique" It has been applied exten-

sively to solve the problem of determining a set of parameters such that the objective

function is minimized or maximized, possibly subject to a set of constraints. This

objective function and the constraints may be non-linear with respect to the set of

parameters.

It is interesting to note that the crux of the frequency matching design methods,

such as CCF and ICCF, is the determination of a set of discrete transfer function coef-

ficients, which are optimal in the sense that the matching error function is minimized.

These coefrcients, namely r¿ and, y¿ in Eq. (2-1), may be subject to constraints that

ensure, e.9.,

a) the designed controller is open-loop stable;

b) there is an upper timit on the controller gain;

c) there is no severe oscillation in the controller output signal; etc.

Furthermore, both the error function and constraints are non-linear functions of the con-

troller coefficients. These considerations therefore suggest the possibility of formulating

the digital controller design problem as a non-linear programming with constraints.

This approach has been d.evetoped in this th.esis. The author formulated the

non-linear programming problem for the design of z-transfer function of a digital con-

troller, devised the solutions using two optimization algorithms, and assessed these new

design methods with the aid of a number of numerical examples. The optimization

algorithms used are the simplex method for function minimization and the random

searching optimìzation method.

The new optimization-based methods for the design of digital controllers have
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some unique advantages" The significant one compared with the previously discussed

methods is that the open-loop stability of a designed controller is guaranteed. More-

over, they offer the facility of including design specifications additional to the frequency

response model in the design. These features are implemented by incorporating the

appropriate non-linear constraints into the non-linear programming problem.

Of the two optimization algorithms, the simplex method has been proved exper-

imentally to be feasible for and capable of coping with some typical digital controller

design tasks (see Chapter IV ). It shows superiority over the other methods especially

when constraints on a controller output are required. The associated computation time

is longer than DDMts, comparable with CCF's and shorter than ICCF's. In contrast

with the simplex method, for the same design examples, the random searching optimiza-

tion method gives inferior accuracy, fails to converge to the minimum in most cases, and

imposes a very heavy computational load. Therefore, this method is not recommended

for design pu{poses. It is considered, however, in the next section for sake of complete-

ness because it has been discussed frequently in the literature over the last two years,

mainly in the application of time and frequency response matching technique to model

simplification problems.

In the remainder of this section, the non-linear programming for the design of

a digital controller is formulated first. Then a description of the simplex optimization

method will be given, followed by its application to the design of digital controllers.

2.5.2 Formulation ol the non-linea,r pnogrømming problem

Suppose that a frequency response Mq(j") is defined at a set of frequency points

ui, i : lr2r. ,. ,N, N a desired system open-loop frequency response. The frequency

response of an open-loop control system is

QU"): D(z)GnG(z)
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Instead of the polynomial form of Eq. (2-1), the controller transfer function D(z) is

expressed in terms of zeros and poles:

(2 - 44)

where, z¿, i: lr2r...rm ate zeros and p¿, i: 1,2r...rn ate poles.

Before the objective functiou is defined, an obstacle in scaling has to be removed

for the reas¡on that complex numbers are represented in terms of their magnitudes and

phase angles (in degrees). In general, for frequency response of control systems, the

range of the magnitude variation is much larger than that of the phase angle nariation.

Consequently the value of magnitude may be either too heavily weighted or insignificant

when included with the yalue of phase angle in the summation in the error function.

The decibel value of the magnitude of a complex number, therefore, is used to replace

its normal value. For Q(iu), the scaled magnitude is rlq(u), defined as:

tq(r): 2olosro laj")|. (2 - 45)

Similarly the scaled magnitude of. Mq(jw) is

,l¡r,to@) - 20log1¿ lMq(ir)|. (2 - 46)

Based on the above definitions, the error function, or the objective function, .8,

can be defined over all lV selected frequency points as:

nr-\ _ no(z - zù(z - zz). ..(z - z*)
"\ot - þ- pù(, - p2)"'(z - Pò'

JY

E:D lrú q(";) - û uq("ù]¡2 + lú q@;) - ú *oþù12, (2 - 47)

t=l

where, úq and tÞuo 
^r. 

the phase angle o1. QQw) añ Mq(ju.,) in degrees, respectively.

Next, consider appropriate constraints to ensure that the closed-loop system is

stable. In this analysis, it is assumed that the plant under design is open-loop stable

and the Nyquist plot does not encircle the (-1,i0) point in the D(z)G¡G(z)-plane.
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Thus, according to the Nyquist stability criterion for digital control systems [1], the

closed-loop system is stable if the poles of D(z) satisfy:

lp¿l <1, i:1,2,...,n (2 - 48)

In other words, none of pi, i : lr2r... , n is outside the unit circle in the z-plane.

The combination of equationg from (2-43) to (2-a8) formulates the desired non-

linear programming problem for the design of digital controllers as follows:

Minimize

E D [dq(rn) - ú¡¡,1o(r¿)]z +lúqþ;) - rltuo@;)|z
JV

i=L
(2 - 4s)

-- l@o; 2!t 22t - . - t zmi PttPzt. . . rPr)

subject to the non-linea¡ constraints

lp;l < t, d : l, 2,. ..,ft.

It is rather difficult to solve this non-linear programming problem directly be-

cause of the constraints imposed. Fortunately, these constraints may be removed by

means of the following transformations in which À is an auxiliary optimization variable.

For poles:

pí,i+t: ptoe-l^;l . ,+ivone-l^t+rl , for a pair of complex conjugate poles;

pi - p?e-l¡¡l - vp for a real Pole-

Similarly, zeros are formed as follows:

(2 - 50)

(2 - 51)
z;,i+r: pre-l\¿l . 

"*iv*e-l^;+tl , for a pair of complex conjugate zeros;

z; - p,re-l¡;l - vzt for a real zero.

For a gain 16, which is always a positive real number,

ns : pte-l^ol.
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In the transformations (2-50), (2-51) and (2-52), the parameters Fp, F"t p,o and upt vz

are real numbers which enable a designer to impose the desired constraints on the gain,

poles and zeros of. D(z). The constraints in Eq. (2- O), for example, can be implemented

by setting Fp: vp: I for a pair of complex poles, or Fp:2, up: l for a pole on the

real axis. Thus when À assumes values from -oo to *oo, pi, i: Ir2r."",2, lie on or

within the unit circle in the z-plane.

For m ueros, n poles and a gain, there is a total of (m*n,tl) auxiliary variables

À¿, r : 0, 1,.. . rmln" Hence, with the aid of the above trausformations, the non-Iinear

programming problem with constraints defined in Eq. (2-49) can be transformed into

one free of constraints:

Minimize

JV

E:D L0 q(";) - t uo(r¡)12 + lrþ q(";) - rþ uq(r¿)12 (2 - 53)
,i=L

: .F(À0, Àt,..., Àn,+rr)r

where -oo S À; S *oo, , : 0,1,."., m*n.

The optimal values Ài, i : 0,1,. . .,m*n indirectly determine the required con-

troller coefrcients. The formulation of the objective function f(À0, Àt, ... , )-1rr) is

described in Appendix A.

2.5.3 Simplex method lor function rninimization

The simplex method, abbreviated to "SIM" for short, is a standard optimization

algorithm for solving a variety of non-linear programming problems. Nelder and Mead

first proposed this method in 1964 [12] based on the original idea of Spendley eú.al

[15]. Since then it has been widely used. Unlike the gradient optimization techniques,

which require the derivatives of an objective function, there is no need for any such

mathematical derivations in the SIM method. This is a significant advantage because

often the analytic derivative of an objective function is very tedious, if not unavailable.
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Since the simplex method has been explained in many standard textbooks on the subject

of optimization 128, 291, only a brief description of SIM is presented. For simplicity, a

two-dimensional (2-D) non-linear programming problem is used to illustrate the concept;

the extension to higher-dimensional problems is straightforward. A flow chart for the

simplex method for n-D problem is shown in Fig" 2-5.

In optimization techniques, the srmplez in n-D space is defrned as the figure

formed by z * I vertices; the vectors connecting each pair of the vertices are linearly

independent. In 2-D space, for instance, the simplex is a triangle.

The most important information for solving a minimization problem is the vari-

ation of objective function values in a space. If the directions of such variation can be

approximated from comparison of function values at different vertices of a simplex, then

the better solution may be obtained along the direction which leads to a reduction in

the value of the objective function. This is the essence of the simplex method.

Suppose that the objective functin E in 2-D space is to be minimized, i.e.,

Minimize
(2 - 54)

O: l(x), xe n2.

Tbke three vertices in R2, Vo,Vt,V2, to defrne the current simplex, which is a triangle

as described in Fig. 2-6. Calculate the values of. E at these points and compare the

results. Call the maximum value, aay 82, E^n, and the minimum value, say Es, E^in.

Denote the corresponding vertices as V^o, arld V*;n, respectively. tr\rthermore, V is

defined as the centroid of the vertices excluding V^o, andV;V¡ as the vector from V¿ to

V¡.

Three operations, reflection, erpansio¿ and contraction, are introduced to find a

new vertex to replace the uworstn vertex V^o". Usually, there is good reason to assume

that a ubettert point lies oppositeV*or. Such a point, denoted byVr, can be obtained

by the refl,ection defined as:

V,: (l + a)V - dV,no,,
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Figure 2-6 llusúration of the simplex nlet¡od in the 2-dimeüsionaJ case

where, o is the reflection coefficient, û ) 0.

Fig.2-6 shows % lying on the extension line of the vector V*o,V. The distance

of VV, is dependent on the value of a.

The function value zl V,, namely ^Ðr, will fall into three possible ranges:

(t) E^r^ S E, S E; for anY i + {
m7n
max

Replace V*orby % so that V^in, Vr and % will form a new simplex for subsequent

calculations.

(2) E, 1 E^;n.

Since V, gives the ubestn point, it may be beneficiat to search further in this

direction by uexpanding" V, lo V":

V":'tV, + (1 - 1)7, (2 - 56)

where, 'y is the etpansion coefficient, 1 ) l.
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% is on the extended line o!.VV as illustrated in Fig 2-6; 1is the ratio of lV"Vl

-to lv%l. calculate .8" and form a new simplex of v^'in, v¡ anð' v" iÎ E" is smaller than

.Ðr. Otherwise the expansion fails and Vroo, is replaced by % for the next iteration'

(3) E, > E¿ for all i t' rnan.

Assigu a new V^o, tobe either the original V*o, ot V", whichever has the smaller

value of. E" Then lhe contraction coefrcient p is used to find the new vertexV":

V.: BV^o" + (1 - p)V, (2 - 57)

with0<p<1"

It is apparent from Fig. 2-6 that % is on the straight line betwe en V*o, and 7"

If the contraction is successful, i.e., E" 1 ErnorrV*o, is replaced by V" in a new simplex'

On the other hand, if E" > E*o, the size of the searching region has to be reduced by

replacing all the vertices V;by (V;+V^;)lZ.The next iteration will start with this

new simplex.

The criterion to terrrinate the process can be one of the followings:

a) a limit on the number of iterations;

b) a limit on the comPutation time;

c) a desired minimum value,

n

D@,-E^;n)Z 4e,
i=0

where, e is some specified small number;

d) a lower limit on the size of searching region,

lV¿-V*¿ol ( S,o¿,,, for all d:0,1,...,2,

(2 - 58)

where ,S-;r, is a specified value
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There is no unique formula for the determination of values oL a, B and 'y. The

author suggests using c : I .0, þ : 1.2 and 'y : 0.8 at the beginning of the experiment .

These values may be adjusted later, depending on the optimization Process.

Note that at the beginning of optimization, only one vertex Vo in n-D space

needs to be specified by the user. To form a simplex, the other n vertices V1-Vo ate

determined from:
rii: roi, if. i * i;
r;¡ : rs¡ * L, if' i: ii
iri --1r2,...rn-lrnl

(2 - 60)

where, rii, i : LrLr...rn, are the dimensional values of the ith-vertex; A is a constant

which decides the initial size of simplex and has more significant effect on the conver-

gency and accuracy of optimization than c, B and 1 do. trÌom the author's experience,

the appropriate value of A may vary from 0.7 to 4.5.

Usually as optimization proceeds, the size of a simple>< reduces very quickly.

Consequently the simplex may become too small before the optimum is found. To

avoid this problem, the computer programme in this thesis is designed such that after

a number of iterations, say 300, the optimization process will automatically start all

over again, with a new simplex in which Vs is V*¿o in the last iteration and the other ¿

vertices determined by Eq.(2-60). By keeping the simplex under search to a reasonable

size, both the convergency and efficiency of the SIM method are remarkably improved.

2.5.4 Application to the d,esign ol d'igital controllers

The simplex method is an optimization algorithm suitable for minimizing a func-

tion of n variables without constraints. Note that objective function in Eq. (2-53) for-

mulated for the design of a digital controller is just this type of function. The simplex

method, therefore, is applied to solving Eq. (2-53) for the parameters of the digital

controller. Since the optimization process is accomptished by a digital computer, the
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task of a designer mainly rests on the initialization of design problems, which is to be

explained in this section.

Assume that a frequency response model Mc¿(i") and the open-loop frequency

response G¡G(jw) of a plant with a ZOH are given. The formulation of the objective

function E : F(^) in Eq. (2-53) is dependent on the pole-zero configuration of D(z),

the discrete transfer function of a digital controller. In Eq. (2-44), there is no constraint

imposed on the type of poles and zeros of D(z). For instance, for a 3rd-order controller,

D(z) may possess 3 real zeros, I real pole and a pair of complex conjugate poles; or I

real zero, a pair of complex zeros and 3 real poles; etc. In this thesis, the configuration

o'1. D(z) with 3 real poles and 3 real zeros is adopted for simplicity. Bear it in mind

that the poles and zeros oÍ D(z) are the open-loop poles and zeros of the system under

design. Thus, in terms of auxiliary variable \, D(z) may be written as:

nr-\ _ no(z - zù(z - zz)(z - zs)
u\'Pt - @ -pù(r-p2)(z -Ps)

(roe-lrol¡1 2 - (p,,e-l\,| - v"\llz - (tr""-lxrl - ")llz - (tr""-lxrl - r)l
l" - 0ro"-lr,l - ròll, - \ro"-lxul - v)llz - (ttrr-lxul - rùl

(2 - 6l)

To start the optimization process, one needs to provide 3 sets of initial values and

parameters. They are: (1) initial estimates for the gain, poles and zeros of. D(z); (2)

the constraints imposed on the gain and pole'zero locations; (3) the selected frequency

points u;, i : 1r2r..., N.

Choosing the initial gain, poles and zeros ot D(z) closer to the optimum is always

desirable, as they enable an objective function to converge to the minimum quickly and

accurately. The better estimates can be achieved based on the designer's experience and

knowledge of plant dynamics. Nevertheless, it is increasingly difficult when the order of

a system becomes high. Ilence the author suggests an alternative in which the designer

may use the DDM method to compensate the plant, and then supply the resulting gain,

poles and zeros oî. D(z) to the optimization process as initial estimates. Because the
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computational load of the DDM method is negligible relative to that of optimization-

based methods, this combination of the analytic and optimization methods is faster and

more accurate. If the DDM method results in some gain or poles or zeros outside the

constraints imposed, reassignment is needed to return those parameters to positions

within the required regions.

Furthermore, if the optimization algorithm has no strict requirements on initial

estimates, one may simply start the optimization process with some arbitrarily-assigned

initial estimates. In this thesis, for example, the SIM method is assessed in a number

of desigus (see sections 4.2 and 4.4) with arbitrarily-assigned 3 poles and 3 zeros' which

are all at the same point of (0.5,j0) in the z-plane. All the results of these designs are

satisfactory as far as the optimization process is concerned"

Finally it should be pointed out that the computer programme developed in this

thesis only requires the values of initiat gain, poles and zeros. These values are then

converted to the corresponding auxiliary variables À; in Ðq. (2-53) at the beginning of

opt imizing iterations.

The parameters for setting the constraints on the gain, poles and zeros oî. D(z)

are ps, Fp, pz and vp, v". ln addition to the system stability, which requires that the

poles oI D(z) locate within the unit circle, the system dynamic performance may be

improved also by further constraining the poles and zeros within some specified areas in

the a-plane. Moreover, the upper limit on a controller gain can be readily implemented

in a design by selecting an appropriate value ol pc. More details about the selection of

constraints are given in section 4.2.1 with the aid of a numerical example.

Let L¡ and Lo be the lower limit and upper limit of real poles and zeros, respec-

tively, the values of ¡r and v are then calculated from:

F: Lo_ LT

v: -Lt
(2 - 62)

The number of selected frequency points is related to the smoothness of a complex
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curve within the frequency range of interest" Experience has shown that 30 - 40 points

are necessary to ensure the accuracy of the frequency response matching. The frequency

points are not evenly distributed, rather, they are selected in the weighted manner in

which more points are chosen from the frequency range where the gradients change

rapidly.

$2.6 Random searching optimization-based design method (Rso)

Suppose that, in n-D space, there is a point V^¿n al, which the objective function

-Ð has its minimum value Emin¡ or a value close to E*in. One can search a region

O e -8" assumably large enough to include V*;n bV randomly selecting points within

the region and evaluating their function values. The greater the number of random

points evaluated, the greater the likelyhood o'1. V^¿n being selected. As the number of

ev¿luations continues to grow, V*¿o wiII eventually be found. This is the philosophy of

the random searching optimizatiou method, abbreviated to URSO" for short"

In 1973, Luus and Jaakola [11] developed this simple optimization algorithm for

solving various non-linear programming problerns. In addition to the random searching,

they also proposed a systematic reduction of the size of searching region O so that the

process would proceed more efficiently"

Since 1982, a number of papers [10, 16, 17] has been published by Luus and his

colleagues reporting on the applications of this method to the model simplification of

discrete and continuous systems" The parameters of a lower-order model are determined

in such a way that its time or frequency response will match the corresponding part of

the original higher-order system as closely as possible. Successful numerical examples

presented !,n these papers are impressive.

Inspired by the above achievements, this author attempted to extend the RSO
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method to the design of digital controllers. In section 2.5.2, non-linear progr¿mming is

described as¡ a means of designing digital controllers based on the frequency response

matching technique, that is,

Minimize

lV

E--D [dq(";) - r9 ue@ùl' + Irþq(";) - rþ uq@ùl' (2 - í3)repeøted
d=l

: F(À0, Àr,..., À*+').

Note that À¡, i - 0,1,...rm]-nate not subject to any constraints. If the mini-

mum of the objective function E can be found by the random searching, the resulting

optimal variables Àrf will give the required gain, poles and zeros of a digital controller.

The formulation of non-Iinear programming and the initialization of a design

problem have been discussed in section 2.5. The essential computational steps of the

RSO method are given below and illustrated in the flow chart ol F.ig. 2-7.

(1) Initialize the iteration, the index i : O"

Firstly, set up the initial values ¡:(0) for variables À;, i :0, 1,. . . rn*n following

the same method described in section 2.5.4. Secondly, assign initial sizes to the searching

regions, tjo), fo, each variable )¿. The choice of r is much dependent on experience and

knowledge of a dynamic plant. If r is too small, the minimum point may be excluded

from the searching region; if too large, the computation time increases significantly. The

final action in step I is the calculatìon of the function value À*(0) from Eq. (2-53), i.e.,

.Ð*(o) - r(,1;(o),Ài(o),. .., rl,Í?,).

(2) Determine the values of I at the jth-iteration.

Increase the index j by one, i : i + |

Take K x (m* n+ 1) random numbers ¿'.(r) ¡¡¡1e¡mly distributed between -0.5

and +0.5. Put them into K r"t. o[', /c: 1,2r...,K, each set containingm*n* I
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STOP

i>i^

EÍ't = r(À['))
Bt(it - Itin(qf,Ì, E.(t-r))

ting the corresponding ì as l'U)
È = 1,2r...rK.

Reduciug the searching region

r\i, = l,r.u-r)
i=0, l,,..rftt*n.

r[1) = ¡](j-t¡ +ø[i)rfi-tl
i=0r1,,,.rm*n;
È = 1,2,...,K.

Taking K sets of random numbers

-0.5<"[fco's
i:0,1,.,.tm+n;
ß = 1,2,...rK.

j=j+t

Initializat.ion j=0
setting up ll(o); ,jo); ltn";

I).(o) = f(ri(o));
í=0,1,...,m+n.

Yes

Figure ?-T /rlow chart lo¡ the ¡aadom searcling optimization method
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numbers ofr),r:0,1, "..rm*¿" These random numbers are assigned to variables l;

as determined by

+ ofl) rU-t) ,

k:lr2r.".rK

lÍ,t) : ¡1U-t¡ (2 - 63)

d:0, 1,...,m*nt

In this thesis, random numbers are generated by the GGUBFS subroutine of the

IMSL programme library [O]. tne number of sets at each iteration, K, is taken as 100.

(3) Find the minimum function value E' at the 1th-iteration

Calculate function values ø[t) to*

E[) :r(À[?,)[?,...,1[fi*,¡), k:r,2,...,K. (z-G4)

Determine the minimum value over all sets including E*(i-t) and call it B.U\ " Also let

the corresponding variables À[d U" denoted by À-(l).

(4) Reduce the size of the searching regiou O.

The size of the searching region at (j + l)th-iteration is reduced by

,u+t) : ,tr[j) , i: o, l, ...,] * tu, (2 - 65)

where 4 is a coutraction factor and 0 < 7 < 1.

Usually 7 is chosen from 0.9 to 0.99. In this thesis, the author uses 4 : 0.95.

(5) Start a new iteration.

Go to step (2) and repeat the whole procedure. Continue until the iteration

number j exceeds the timit i^or. Then halt the process and substitute the optimized

variables \*(i^""1 into Eqs. (2-50), (2-51) and (2-52) to obtain the desired poles, zeros

and gain of the digital controller. The criterlot j^o, relates to the complexity of the

problem, in particular the number of variables. In this thesis, i*oris 150 for the problem
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in 7-D space. This implies that, over the entire process, 15,000 points are selected and

15,000 function values are calculated. If the number of selected frequency points JV in

Eq. (2-53) is large, say 30, the computational burden may become extremely heavy.

52.7 Sunmary

In this chapter, five methods for the design of digital controllers based on the

frequency response matching technique have been presented. Both the theoretical back-

ground and operational procedures were discussed. First the dominant data matching

method was reviewed as a simple and efficient method. Some modification was suggested

in the application of the DDM method to the design of the controller which possesses

a pole at the point of (1,j0) in the z-plane. The more elegant method, namely Rat-

tan's complex-curve fitting design method, was then presented. By minimizing the

weighted-squred-error function of the matching with the derivative techniques, the de-

sign of Rattan's CCF method may reach the optimum. However, it was demonstrated

that the detrimental effect of the weighting factor in the error function to be minimized

became unacceptable when the sampling frequeîcy ws was high relative to the closed-

loop bandwidth u;6. To overcome this deficiency, the iterative complex-curve ûtting de-

sign method was proposed. The new method eliminates effectively the error-producing

weighting factor from the error function by iterative computations. The author also

formulated the non-linear programming problem for the design of digital controllers,

and devised the solutions using the simplex and the random searching optimization aI-

gorithms. These optimization-based design methods feature the facility to incorporate

various non-linear constraints in the design in order to ensure the system stability and

to improve the system dynamic response. All of these methods will be demonstrated

and assessed in Chapter IV .
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CHAPTER III

DETERMINATION OF FRDQUENCY RESPONSE MODELS

One of fundamental considerations in frequency response matching design tech-

niques is the determination of a frequency response model M(ir) from the given per-

formance specifications for a closed-loop control system. This topic, neglected in the

previous papers, forms this independent chapter not only because it directly relates to

the dynamic performance of a system under design, but also because it has a strong

influence upon the effectiveness of the frequency response matching process itself.

In section 3.1, a general description of sources and applications of frequency

response models is given; followed by a¡ explanation of using the frequency domain

specifications. Section 3.2 deals with the problem of converting specifications between

different domains when design goals are assigned in the time or complex z-domain. In

order to provide a reliable and easy-to-use solution, a thorough investigation is con-

ducted on a typical second-order discrete system M(") with:

M(z): Az*B (3-1)
+Cz+D

As a result, systematic procedures to determine the parameters.,{, B, C and D are

developed so that the frequency response model M(i") : M(z)|"="i,r can be readily

derived for the design specifications given in the time or complex z- domains.

3-l



$3.f Frequency retponee modele

3.7.7 General description of defining ø frequency îesponse ¡nodel

Fig. 3-1 depicts the general relationships between design specifications in dif-

ferent domains, various types of frequency response models and several forms of data

presentation.

Though design specifications may be given in many different tetms, they are

generally classified in three domains: (l) time. domain specifications' e.g.' the maxi-

mum overshoot Mo, defined as the ratio, 
manimum peak aalue - steød'y state aølue

steady state ualue '

expressed in percent; and the time to the first peak, tp, at which the response of a system

to a step change reaches its first peak value; (2) complex z-plane variables, including

the system damping ratio {, the undamped natural frequency unt etc.; (3) frequency

domain specifications such as the phase margin PM and the gain margin GM obtained

from an open-loop response, or the resonant frequency ø, and the resonance peak value

M, obtained from a closed-loop response.

Obviously, for frequency domain synthesis, the specifications in the first two

domains have to be converüed into the equivalent frequency cpecifications. Such a

conversion will be considered in the next section.

In the third case, the frequency domain specifications may come from two sources"

One source is a set of dominant data such as the phase margin, gain margin and closed-

loop bandwidth, etc., whÍch define the desired frequency response ocplicitly at few key

frequency points. The second source uses the frequency response of a previously designed

system having a desired dynamic performance. This is colnmon in the problem of

discretizing an operating continuous-time control system, in which an equivalent digital

controller is required to replace an existing analogue controller. A previously designed

system, therefore, is often refered to as an existing system in the control literature,

though it may not exist physically.
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Choice of data presentation depends on the design method for which the model

is employed. For example, the dominant data matching method requires frequency

response data at only few (4 - 5) key points; while the optimization-based methods

(SIM or RSO) need data at a number (30 - 40) of selected points over an appropri-

ate frequency range to ensure matching accuracy. F\rrthermore, because of analytical

derirr¿tives required in the complo<-curve fitting methods for the calculation of the

matching error, the frequency response model has to be in transfer fuuction form.

From Fig" 3-1, it can be observed that the frequency responses in transfer function

form can be converted to any forms for data presentation. On the other hand, those

specified as dominant data type have to be synthesized into a transfer function form

before they can be presented in other data forms. This task can be fulfilled by the

method proposed in section 3.2.

Limitøtions on using the frequency response of øn existing system as o' model8.1.2

In the problem such as discretizing au existing continuous-time control system, or

redesigning an existing digital control system for a new sampling period, it is desirable

to retain the original closed-loop frequency response because of its satisfactory dynamic

performance. Consequently using this frequency response as the model is logical aud

convenient. However, some limitations ehould be borne in mind. The basic consideration

is that the effective frequency matching for a digital control system can be conducted

only over the primary frequency range arp¡ where up: wr/2 (see section 2.f ). Suppose

that the sampling period of a digital control system H{r) is adjusted from fi to 12 and

a new digital controller is required for a new system H2(z) with the similar frequency

ræponse to that of H{z). 11. H{z) with 1r is used as the frequency response model,

i.e., M(jw) : H{z)1,=",,r, it is impossible lor II2(iw) : Hz(z)1"-"i,rz to match

M(iù very closely because of the discrepancy in their primary frequency ranges. The

distortion in the high frequency band, especially when T¡ 1 T2, may severely degrade

the dynamic performance of Hz(z).In particular, a continuous system can be considered
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as a special case in which the sampling period tends to zero and the primary frequency

range becomes infinite. Such distortion-producing effects will be carefully examined in

the simulation studies of section 4.3.

$3.2 Second-order z-transfer function as a frequeney r.esponse model

3.2.1 Use of the d,isctute transfer lunction as the model

As pointed out by the preceding section, there are mainly two reasons for this

part of the discussion. Firstly, the design specifications for digital control systems

in the time and complex z-domain need to be converted into the frequency domain.

Secondly, in the frequency domain, the specifications assigned in dominant data form

have to be converted into a transfer function form, if required by design methods. Such

transfer function form is preferably the discrete transfer function to avoid the matching

distortion in the high-frequency band as described in section 3.1.2.

For a discrete system having a order higher than two, relations between the

specifications in the time, frequency and complex z- domains can be very complicated.

In general, however, the dynamic characteristics of most high-order control systems can

be well approximated by that of appropriate second-order systems the analysis of which

is much simpler than that of the former. Therefore, the second-order discrete transfer

function is considered as the most appropriate vehicle to carry the desired performance

specifications as a frequency response model.

It is well known that, for continuous second-order systems, the relationships be-

tween specifrcations in the tirne, frequency and complex s- domains have been expressed

accurately in mathematical formulae Ï2O,211. In a similar manner, some selected second-

order discrete systems in transfer function form are investigated by a number of authors
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as well. Jury l22l in his pioneering book showed the relationships between a system fre-

quency response and its unit-step time response. But the second-order discrete system

that he used. was derived from a continuous counterpart so that its zero was closely

bounded to the locations of poles. In another elegant representation introduced by Kuo

[l], the zero is arbitrarily assigned along the real axis by varying the parameter a as

defined graphically in Fig. 3-2, where a is positive |f. Z¡ ) z* or negative otherwise.

Using this model, Kuo derived the unit-step time response in terms of complex z-plane

variables. Unfortunately he did not use this model consistently in his later frequency

domain analysis, and hence did not fiIl the gap between the specifications in the time

domain and those in the frequency domain. For the purpose of seeking a frequency

response model, there is also lack of tools to determine the parameters of a discrete

transfer function from required design specifications.

These deficiencies are overcome by a thorough investigation carried out on a

second-order discrete system having a pair of complex conjugate poles and one zero

that can be arbitrarily assigned from -oo to l. Specifications and variables frotn all
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three domains are closely linked together" The results of analysis, including coefficients

of transfer function, are arranged in mathematical, graphical and tabular forms, which

grant a designer the flexibility to choose the better frequency resPonse model in each

specific case.

3.2.2 Second-order z'transfer function mod,el

The second-order discrete system with unity feedback, introduced by Kuo [1]' is

adopted in this analysis. Its open-loop transfer function is g(z) and closed-loop transfer

function is h(z),

h(z): s(z)
| + s(z)

A(z - 21)

P)
(3-1)

,-Zr)
lz-e *Jwo lz-e T_ltt o

(P)z( t

T )

where, Als aclosed-loop gain; Zl is areal zero; P and P are a pair of complex conjugate

poles; ( is the system damping ratio; r^r,, is the undamped natural frequency and r,;o is

the system oscillatory frequency (see Fig. 3-2).

Note that uo is related to u,, bY

Uo: Un r-{ç2. (3-2)

Denote the real and imaginary part of P as .B and .I, respectivel¡ so the poles may be

expressed as:

P--R+iI, and F:R-iI'

Forshort, rewrite (-Azù aa B, (-2coswoT¿-Êwor) as c, and (e-2Êø"") as D. Thus

Eq. (3-1) becomes:

h(z): ,-Zr)
z +iu.r)(z _ wnT- j,'t6

Az - AZt
(

z2 _ Z coswoTe-llnT 2 | e-
Az* B: 

z2+Cz*D'
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As mentioned before, the zero Zt is determined by the parameter a. When o

varies from oi.,. to 90", h will be set within the range (-*, l], where a¡.¡. is the lower

Iimit of v¿riation and is derived by this author as:

--t Idr.r.:ts-^=*-90 (3-4)

The derivation of Eq. (3-a) is in Appendix B.

As far as a closed-loop system with certain poles and zeros is concerned, the

variation of gain Á in Eq. (&3) does not affect the system transient characteristics

but its steady-state response, ê.g., the steady-state error e* which is defined as the

difference between the system steady-state output signal and the steady-state input

signal. Because er" is required normally to be as small as possible, the gain of lu(a) to a

constant signal is assigned to unity. Thus from Eq. (3-1), the system open-loop transfer

function is

s(z):
Az*B (3-5)

:- z2+(C-A)z+(D-B)'
with .¿{ is determined by:

8.2.5 Conaersion ol specifications between the time ønd complec z- d'omøins

The investigation embarks with the study of the system time response y(t) to a

unit-step input signal. This is based on Kuo's result [1] and the detailed derivations

are included in Appendix C. Assume that the manimum value of y(ú) occurs at its frrst

response peak. The peak time to and the maximum overshoot M, are expressed in

terms of a (in rød here), ( and ürz' respectively, as follows:

h : --=;[, *-' --rr-- a + r] ;
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Mp: y(ú)l¿=ro - 1

l- e2 lsecal efttr*-'ffi-'*"|
(3-7)

Apparently from Eq. (3-7), the overshoot Mo is only dependent upon a and

€. Eq. (3-6) shows that úo is inversely proportional to the system undamped natural

frequency ør,, and that the value of to decreases if the zero Zr shifts towards the point

of (1, j0) in the z-plane and increases otherwise.

5.2.1 Frequency response ol the open'loop system

The analysis in the frequency domain is covered in this and the next sections.

Again, all tedious derivations are left in Appendix D and only the important results are

presented here.

Flom F,q. (3-5), the open-loop frequency response g(iø) can be obtained as:

gîw):s(z)1,="i"L*n

z2+(C-A)z+(D-B) z=eiuT (3-8)
Aei'T + B

There are two commonly used specifications calculated from open-loop frequency

responses, i.e., the phase margin PM and the gain margin GM. In this thesis, the

definition of PM is

PM : rþo(u\1,=," - (-180), (3 - 9)

where, úo@) is the phase angle oî. g(jw) and ø" is the gain cross-over frequency at which

the magnitude of g(ir) equals unity, or 0 db.

In terms of coefficients á, B, C and D, PM and ø" can be calculated respectively

from:

sinø"?(ÁD - BC - A - 2B cosu"T)

2B cos2 w"T * (AD - 2AB + BC + A

3-9

PM :180 + tg-t 
I )cosu"T + u

(3 - 10)



b2 - o,d )i (3 - 11)

where,
ø:4(D - B),

b: (c - a)(D + l) + c,

d : L + c2 + D2 - zAC - zDB - 2(D - B),

u:BD+AC-A2-82-8"

It is reasonable to assume that the magnitude oI g(jw\ crosaes the level of 0 dö

only once as û/ varies from zero to wrlL. This implies that Eq. (3-11) has one and only

one solution. Therefore, the sign of the second term inside the parentheses of Eq. (3-11)

,": |cos-r( -:-:

är
should be chosen in such a way that -l 3 - o* ã

b2 -ad < I.

The gain margin GM is usually defined in decibels as

G M : -20 lo916 
[ 
ro(w)1,=,01, (3 - 12)

where, ,c(w) is the magnitude of g(jw) and øo is the frequency at which Ús is -180".

In case of an open-loop stable system, The greater the GM is, the larger is the

stability margin of the closed-loop system. If the value of GM is negative, the closed-loop

system is unstable.

It should be emphasized that, unlike its continuous counterpart, the secoud-

order discrete system is not instability-free even when it is open-loop stable. In fact,

the closed-loop stability of a second-order discrete system, as proved by the author in

Appendix E, is affected by the open-loop gain; unless the open-loop a-transfer function

satisfies all the following conditions:

(1) there are two zeros, and

(2) none of zeros and poles is outside the unit circle in the z-plane, and

(3) there is at least one zero or pole inside the unit circle in the z-plane.
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Only in the latter case, the system closed-loop stability is independent of the open-loop

gain and is guaranteed.

For the purpose of this thesis, the open-loop systems of interest are confrned to

those having one zero lying in the range (--, 1 ], one pole inside the unit circle and

the other inside or on the unit circle. Thus from the proof in Appendix E and the

derivation in Appendix D, the following conclusions can be drawn:

(l) When the open-loop zero and poles are located as specified above, there

exists a threshhold for the open-loop gain at and over which the closed-loop system is

unstable.

(2) Consequently, for any such system, the gain margin GM has a ûnite valuet

which can be determined by (S) or ( ) below.

GM : -20 logl6 rc(r)1,=,0

(3) If l-D-Z$l < zlZtl, the p angle ,þoþ) of sjw) crosses

-180" at the frequency ws, O 1wo l wrf

I - , (B-lg)us: ¡cos ,

- -201og16
A2 + B2 +2ABcosuoT

acos2 woT * 2(C - A)(D - B + 1)cos uoT * d + A2+82
(3 - 14)

where, ø and d are defined in Eq. (3-ll);

(4) If lL-D-ZPl2zlztl, rþo@) will not equal -180" until ø reaches w,12,

ug
If

T

GM : -20log1e h(w)1,=,0=ç

: _20loglo A_ B
4 -B)- C-A D-B+T +(c-A + D-B_I

(3 - 15)

t tt is well known that the g.ain margin for an open-loop stable continuous 2nd-order system is

infinite.
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3.2.5 hequency response of the closed-loop system

Stitl another way of evaluating a system frequency characteristics is via its closed-

loop response ä(jø). Specifications, which have been widely used in practice, are the

resonance peak value M, expressed in decibels, the resonant frequencY u, at which M'

occurs, and the closed-loop bandwidth ø6 at which the magnitude of h(i") equals 0.707,

or -3 dä.

Refering to Appendix D, these quantities are related to system coefrcients A, B,

C, D and Z¡ as shown in the following equations:

M,: A2 + B2 + 2AB coswrT
(3 - 16)

4D cosz w,T + zO(l + D) cos w,T * (D - l)2+c2'

Iwr: ¡cos l-#+'IGN(AB).
,Az + 82,2 c(l + D)(Az + B2\ c2 + (D - t)2 I\ zAB '  ABD 4D J

:f'o'-'li'#- sIGN(^ù'

-1

(3 - 17)

2
) +

c(l + D)(t + ) c2+(D-L\2
hD D

1-'ub: 
T 

cos '

+ (C + C D - zln¡z - 4D(L + C2 + D2 - 2A2 - 282 - 2D)
(3 - l8)

If the magnitude of. h(jw) does not fall to or below the level of -3 db,F,q. (3-18)

has no solution. If it crosses the -3 dö line once, the sign in front of the squared-root in

Eq. (3-18) should be taken such that the absolute value of expression in squa^re braces

is(1.
3-12
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Eq. (3-17) reveals clearly that t.r,. is only the function of the zero and pole positions

and is independent of the system gain. M, and cu, are important specifications as they

directly reflect the system transient time response such as Mo and tp, respectively.

9.2.6 Numerical studies on relationships of aarious specifications for discrete systems

Equations from (3-6) to (3-18) give for discrete systems a set of mathematical

relations between the complex z-domain parameters f, øo and a, the time response

specifications Mn and úp, and frequency response specifications PM, ø", GM, øs, urt tùb

and Mr. They are rather complicated even in such a simple second-order case. Instead

of using a cumbersome analytical approach, a set of numerical studies for analysis has

been carried out; their results are summarized in this section and in Appendix F.

Table A-1 in Appendix F listg a basic set of numerical data which form the

relationships between Mp, to, wbt t )r, Mr, PM, GM as function of {, woT and a.

To cover typical design specifications for electromechanical control systems, the

closed-loop damping ratio f is chosen to lie in the range 0.4 to 0.9, c from -80" to

80" and woT from 0.1 to 1.3. In consequence, the closed-loop poles are confined to

the shaded area shown in Fig. 3-3. Also given in the table are the parameters of the

corresponding discrete systems, including the positions of closed-loop poles and zeros

as well as polynomial coefficients .á, B, C and D defined in Eq. (3-3). These provide

for the designer a z-transf.er function for frequency response model after selecting the

system performance specifi cations.

As matter of convenience, normalized variables are used in the table. For ex-

ample, the peak time to is expressed in terms of. fif T, which approximates the number

of samples needed for the system output to reach its first peak value. Moreover, aII

frequency variables are presented in wT so that the primary frequency range O - wr12

wiII be normalized to 0 - r.

To help understand the relationships discussed so far, five diagrams are drawn
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Im
t.0 z-plane

T =1.3 f=0.4

€-0.e 1= 0.1

0.0 Re
- 1.0 0.0 1.0

-l

Figure T3 Location oI the closed-loop poles lo¡ the nume¡ical súudies. The shaÀed area is

determined by patameter ranges -80" < o ( 80o, 0'4 S € < 0.9, 0.1 ( uol ( 1.3.

which are based on the data in Table A-1. The first three are devoted to denonstrate

the relationships between the specifications in the tinre and frequency domains. Fig. 3-4

shows the maximum overshoot Mp vs the phase margin PM. Mp agaiust the resonance

peak value M, is plotted in Fig. &5 (The curve represents the average value. The

deviation is relatively large when M,<O.6db). The peak time as a ratio to/Î vs the

normalized closed-loop bandwidth w6T is illustrated in Fig. 3-6. A few obsen"¿tions can

be drawn from these graphs. Firstly, to design a system at uoT:0.7 with Mp < 3Ùyo,

the phase margin must be greater than 40" and the resonance peak value M, less than

3 dä. Secondly, the hyperbolic relations between w6T and tolT ditrer slightly from the

average curve tou6x4.8 when a and € *rury over a wide range. The curves in Fig. 3-

6 help the designer reach a compromise between speed of response and the required

bandwidth r,.16.

Two further diagrams illustrate the time domain specifications as function of the

complex z-domain variables (, a and wo. The relationships shown are the peak time

ú, vs {, a and uo in Fig. 3-7, and the maxiurum overshoot M, vs a and ( in Fig- 3-8.
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It is interesting to note that for any fixed value of f, the normalized variable uoto is a

linear function of the parameter a. F\rthermore, the effect of the zero Z¡ on the system

transient response can be clearly observed by the fact that úo is reduced at the expense

of increasing Mp as a tends to 90", i.e., the Z¡ shifts closer to the point of (1, j0) iu

the z-plane.

f:0.4

f:0.5

€:0.6

f=0.9

PM (desree)

20 30. 40. 50. 60.

Figure 11 Relationsåip between the maximum overshoot lulo and the phase margin Plt[ at woT =0.7

Mo(%)
50.

20.

10.

5.0

2.O

1.0
70.
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læ.

50.

30.

Mn(%)

0.0

10.

1.0 14, (db)
0.0 9.0 t2.

Figrrrre g5 Relationship between the mzximum overshooS It, and the rcsonance petk wlue M,

5.0

3.0

3.0 6.0

tr
T

i

16.

L2.

4.O

0.0

8.0

0.4 0.8 t.2

a: -40"
c: 60o

x f :o'l

^ Ê: o'7

" f :o'9

+-

1.6 2.O
woT

Fig:ure &6 Relatioasùip beúween läe pealr time ratio 't *¿ lhe normalized closed'loop bandwìitth

u6T ds a ñunctiot oI a aail (
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g.2.7 Proced,ures to d,efine ø z-transfer lunction as ø frequency response model

So far the dynamic characteristics of second-order discrete systerns have been

extensively studied. The results of this investigation are used to establish a frequency

response model M(iù from specified control criteria. The form of M(ir) based on a

discrete second-order transfer function M(z) is

M (i ") 
: tt'I (z)l 

"-- "i,rAz* B (3 - le)
:

z2 +Cz+ D z=eiuT

Hence the specific task is to determine the coefficients A, B, O and D in accordance

with desired control specifications. Two cases considered here are:

case I - control criteria mainly specified in the complex z-plane;

case 2 - control criteria mainly specified in the time domain.

The recommended procedures are explained with aid of two numerical examples in the

remainder of this section.

Case I

Assume that the desired specifications are: brn:o'84 rødf s, €: o'7rT:0'5 s

and to al 5.0 s.

First consider only the specification given in the z-plane. Flom known ø,, and

{, the oscillatory frequency uo calr. be calculated by Eq. (3-2):

Uo: an L-€2:0'6'

Then

woT : O.3.

Once ryoT and { are known, the explicit positions of the closed-loop poles can be readily

found from Table A-1, i.e., P, P : O.712 I iO.22. However, they do not characterize

the system performance completely as the zero has a strong influence on the system
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transient response. Table A-l shows, for instance, that as a varies from -40" to +80o,

the ratio tof T d.ecreas¡es from 10"2 to 3.2 and Mo increases from 4.6Y0 up to 159%.

Therefore, an additional specification is needed to deterrnine the location of zero. In

this example, such a requirement is futfilled by setting úo s 5.0 s. Notice that øoto

equals 3.0, then a is found to be -40" from Fig. 3-7 (Fig. 3-8 will be useful if the

additional specification is the maximum overshoot Mo). Now look up Table A-1 again,

the required M(z) with { - O.7, tiloT :0.3 and o : -40" is

M("J:ml
and M(jw) is

M(i") - M(z)1"="io.s'

o.loaeio'5' + 0.028
- ei, _ l.A¡Aeio.sø a 0.555

Case 2

Assume that the desired specificatiotrs are: to æ 6 si Mp p 5%; f : 1.0 s and

ø¿ nl 0.9 rødf s.

Firstly, under the condition Mn æ îYo, a number of feasible solutions regarding

parameters a and { mry be derived from Fig. 3-8. For further considerations, four sets

of a and ( are taken as listed below:

set I : €:0.7, a:-60u;

set II : €:0.7, a:-30";
setIII; €:0.8, o:19";

setIV: {:0.9, c:45o.

Secondly, check up these parameters with the required u.¡a by means of Fig. 3-6.

It is found that only when f is 0.7 and a around -4O", ø¿ is about 0.9. Hence the

parameters set III a¡d IV can be discarded.

Next the values of. wot, corresponding to parameters of set I and set II are

determined from Fig. 3-7 and converted to uoT as values of úo and T are given. This
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leads to two discrete transfer function Mr(") an'd M2(z). Mr(z) is defined by € : 0.7,

c : -60" and, uoT N 0.7, and M2(z) by C - O.7, u: -30" and woT n¡ 0.6. Becartse both

of them satisfy all specified criteria, the final decision lies on some minor considerations.

Look up Table A-1 to compare the dynamic characteristics and pole-zero locations of

Mt(") and M2(z). It can be observed that the zero o1. M¡(z) at (-8.1, j0) is too far

away from the poinü of (1, f0). On the other hand, the zero o1 M2(z) resides near the

origin. The direct impact of such a difference is the slower transient step response of

M{r) comparing with that of M2(z), as demonstrated in Fig. 3-9. Therefore, finally

Mz(r) is chosen as the desired z-transfer function for the frequency response model

M(ju) :

Mz(")- -o'3612*o'031
z2 -o.gl7z*0.308'

M(i"): Mz(z)|,="i,

o.361ej' + 0.031

ei2, -O.gl7eta +0.308'

L.25 y(Irr)

1.0

0.75

0.50

0.25

0.0

Mzþ)

M{")
sampling i¡rstanús

t(')
3.0 6.0 .0I t2.

Figure T9 ÍJnit-step respon'ses of h[1(z) and lt{2(z)

0.0
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CIIAPTDR IV

DESIGN OF DIGITAL CONTROLLERS BY MEANS OF THE

FREQUDNCY RESPONSE MATCHTNG METHODS

$4.1 Introduction

In Chapter II , five frequency response matching design methods have been dis-

cussed. They are the dominant data matching method (DDM), the complex-curve

fitting method (CCF), the iterative complex-curve fitting method (ICCF), the simplex

optimization-based design method (SIM) and the random searching optimization-based

design method (RSO). In order to evaluate their effectiveness and practical efficacy,

these methods are applied to compensations of various dynamic plants under different

conditions. The digitat control systems thus designed are then assessed in terms of their

performances both in the frequency domain and in the time domain.

In Fig. 4-1 is the block diagram of a closed-loop digital control system to be syn-

thesized in this chapter. It consists of a continuous plant G(t), a zero-order hold Gn(t)

and a digital controller with transfer function D*(s), or z-transfer function D(z), where

the notation X*(s) defines the Laplace transform oÍ x(kT), the sampled or impulse-

modulated continuous signal ø(ú). The system has unity feedback and operates at

sampling period 1. The problem is to design a controller transfer function D(a) in such

a way that the frequency and time responses of the closed-loop system will match those

of the desired model as closely as possible.
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E'(¡ u'(r) u(¡)
4-'"'(')

Y(¡)fi(') + T

l<-- D(4 G¡G(z)

Figure 1-l Closed-loop itigital control systenr with unity Íeedback

In addition to the various design studies and discussions in the following sections,

some basic information is presented in this section to define the design problem, e.g., the

dynamics of the pìants, the design specifications, the desired frequency response models,

etc.. In particular, section 4.1.1 discusses certain assumptions and the conditions under

which the design studies are carried out.

Being sophisticated computer-aided design tools, all frequency response matching

design methods have been programmed and run on a VAX-lll780 digital computer.

The associated analytical and simulation studies are conducted with the aid of the

same computer.

1.1.1 Objectiues ol the design studies

After having reviewed a number of frequency response matching design methods,

an assessment is required to establish the merits and deficiencies of each. In particular,

the following set of points may be of interest to a designer:

. To what type of plants can the methods be applied?

o How does the choice of sampling frequency affect the matching accuracy?

o What happens if the control system under design and the model have different

primary frequency ranges due to the different sampling frequencies?

. Are there strict requirements on the initial estimates for the optimization-based

T

Digitrl
controlhl

D'(t)

Continuous.
limc plant

c(')

Zereordcr
hold

G¡(r)
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design methods?

In order to evaluate the design methods, a comprehensive investigation has been

carried out based on over thirty designs. These illustrative designs are organized into

three groups as shown in Table 4-1. Each group covers one particular aspect. The

purpose of the design studies of Group I is to assess the suitability of the design methods

for two different types of dynamic plants at va¡ious sampling frequencies ranging from

Z to 27 times the desired closed-loop bandwidth ar¿. Note that in this group, specific

frequency response models are chosen for each sampling frequency so that the control

system being designed always has the same primary frequency range as that of the

corresponding model.

In Group l, aII design techniques discussed in Chapter II are evaluated ex-

cept for the random searching optimization-based design method. Because of its poor

convergency properties, the latter is included in a separate set of studies in Group 3.

The design studies of Group 2 consider in Section 4.3 how frequency matching

is affected if a control system under design is sampled at period T and the frequency

response model of the system is sampled al, T* with I * T*, where 1* denotes the

sampling period for the model used through out this chapter. A discrete model with

a fixed sampling period T^:0.5 s is employed in five design studies in which sampling

periods vary from 0.1 to 2.0 seconds, i.e., some of the periods are shorter than T^ and

some longer. In addition, a continuous transfer function is used as a frequency response

model for discrete controller designs at sampling frequencies of 4 and 16 times ø¿. This

is a common problem which is experienced when an equivalent digital controller is

required to replace a continuous unit.

The design method used in the studies of Group 2 is the ICCF method because

it is shown in Group I to yield results with higher matching accuracy in terms of

the matching performance inde>r WIÀE, which is the Weighted Integral Absolute-Error

criterion defined later in section 4.L.7.
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Table 4-l Objectivee of The Design Studies

t Î-Sampling period of the closed-loop system under design.

î--Sampling period of the model to be matched.

I A continuous transfer function is used as a model in tbis subgroup wbere î, is assumed zeroin the

sense that its "sampling frequency" is infinitely fast.

SIM

R.SO

0.50.5I

To er¡¿ìuate the optimization-based

design methods with respect to their

convergency, speed of convergency and

dependence on initial estimates.

3

ICCF

0r
0.5

2.0
I

To assess the eflect of the discrepancy

between I and T^ on the frequency res-

ponse matching and the dynamic charact-

eristic of closed-loop systems

2

0.5

0.1

0.5
II

0.1

0.5

2.0

I

DDM

CCF

ICCF

SIM
0.3

0.5

0.3

0.5

II (oscillatorY

time response)

To demonstrate the applicatious of

four design methods for two types of

plant with various sampling frequencies

I

0.5

2.0

4.0

0.5

2.O

{.0

I (sluggish

time response)

Methods

under Study

L

T,l,7t
Plant

under Design
ObjectivesGroup
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Finally, in the studies of Group 3, two optirnization-based design methods,

namely SIM and RSO, are asnessed with respect to their convergeucy and speed of

convergency. The evaluation is based on the design of a discrete controller for Plant

I at T:T*:0.5 s. The optimization operations for the design start with two sets of

different initial values; one is close to the optimum and the other far from the optimum.

1.1.2 Dynamic chøracteristics ol plants

Two third-order continuous dynamic plants have been employed in design studies.

The transfer function seiected for Plant I is

cr(s): . (4-1)

It features an overdamped and sluggish step response which is shown in Fig. 4-2. This

response is typical of that of a chemical or thermal process.

Plant II is chosen to be underdamped representing the dynamic performance

of an electromechanical system. The following equation gives its transfer function and

Fig. 4-3 depicts its oscillatory response for a unit-step input signal.

G2(s) : 100(s * (4-2)
(s + 2)(s + 0.5 + 16)(s + 0.5 - i

Note that its frequency of oscillation is wo2 -- 6 radf s.

The open-loop frequency responses of Plants I and II are drawn in Figs. 4-4

and 4-5, respectively. Since the two plants will be compensated in accordance with the

same control specifications, very distinct digital controllers can be expected in the light

of significant differences in the plant characteristics shown in these figures.

1.1.3 Design specifications

The specifications for the dynamic performance of the closed-loop control systems

incorporating Plant I and those of the systems incorporating Plant II are identical.
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Figure 4-2 Unit-step resqonse of Plant I Figure L3 Unit-step rcsponse oI Plant II

They are assigned in terms of closed-loop time responses to a step input signal, as follows:

1. Peak time, t, < 6 s,

2. Settling time, ú, < 10 s,

3. Maximum overshoot, M, < 1070,

4. Steady state error, êr, :0 i

where the settling titne tu is the tinre for the response to approach within 5% of its final

value.

FYom the studies of Chapter III (see Fig. 3-6) , for to ( 6 s, the -3 dó bandwidth

of the desired closed-loop system, t.r¿, is about 0.78 radf s'

4.1.1 Selection of the sampling period

Shannon sarnpling theorem[19] states that, in order to recover an unknown band-

limited signal from its sarnples, one must sample at a frequency at least equal to twice

the highest frequency component in the signaì. Accordingly, as far as the design of servo

control systems is concerned, the lower bound to the sampling frequency r,r, is twice the

required bandwidth ø¿. Also there are many other factors which need to be considered

in a practical design, Isermann[14] gives a list of considerations as follows:

v(t)
vo

2.O

1.0

0.0

-1.0

t.0

0.8

o.6

0.1

0.2

0.0

8.00

4-6



-t

0.0
0.01 0. 1.0

- 20.

- ¿10.

- 60. lc¡(jo.')l (ø)

.01 0.1 1.0

tG ¡liw\ (ilesrcc)

Figwe 4-4 Open-Ioop frequency respotrse oI Plant I

lcr.(iu)l (ù)

20

0
1.0 I

- 40.

90. tc2$u)(desrc)

0.0
I 0.1 1.0 10.

- 90.

rod/s)

10.

U radls)

10.

w(radf e)

100.

rodlt)
100.
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o the frequency spectrum of the disturbances;

o the dead time and sum of real time constants of a plant;

o the computational load per control function;

o the control hardware cost;

o the me:¡¡rurement equipment.

Some of these considerations are conflicting. For instance, the control perfor-

mance deteriorates if the sampling frequency ø" is too low relative to w6, while the

computational load and hardware cost increase rapidly if ø, is too high. Hence a

selection of sampling period is basically a compromise among these requirements. Gen-

erally speaking, the factor of considerable interest to an engineer is the slowest possible

sampling frequency at which the reeulting closed-loop system satisfies all performance

specifications .

In addition to the considerations pointed out by Isermann, Franklin and Powell

[19] show that, for an underdamped plant (like Plant II ), its oscillatory response may

have a strong influence on the system inter-sample behaviour. This is due to the fact

that a digital control system operates effectively in an open-loop mode during the period

between sampling instants, hence in this interval the system output may oscillate at the

plant damped oscillatory frequency øo. Flom this authorts experience, if u" 1 3uo,

the magnitude of the oscillations can be significant and severe ripples on the system

output may occur. As an example, in section 4.2 the design of a controller for Plant

II ¿t T : 0.5 s, i.e., w, * 2uo2, demonstrates this phenomenon. Furthermore, it

should be remembered that the controller synthesis is based on G¡G(z), the a-transfer

function of the plant with a ZOH, rather than the continuous plant G(s) itself. In

accordance with the Shannon sampling theorem, ø, should be greater tha¡ twice the

resonant frequency of plant, which equals øo, in order to prevent the plant dynamic

characteristics from distortion due to the sample effect. In the case of Plant II , the

frequency of oscillation, u)oz, is given in Eq. ( -2) as 6 radf s; therefore, an appropriate

samplingfrequency should be, at least, 3wo2- 18 radf s, which isfar greater than the
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closed-loop bandwidth ar6 : 0.78 radf s

Based on the above discussion, a set of sampling periods has been selected for

design studies and is given in Table 4-2. The associated range of sampling frequencies

is wide; uprthe primary frequency range of the closed-loop system, varies about from I

to 40 times the desired bandwidth ø6.

Table 4-2 Sampling period I seleeted for the design studies

1.1.5 hequency rcsponse models

It has been demonstrated by numerical examples in section 3.2.7 that the desired

second-order discrete frequency response model can readily be derived by the method

developed in Chapter III . By using this method, four second-order z-transfer functions

ML - M4, each corresponding to a given sampling period, are determined for illustrative

designs based on the specifications provided in section 4.1.3. These models are given

in Table 4-3 in the order of increasing sampling period, together with the performance

parameters of their time responses and the complex z-plane parameters. As explained in

r is in seconds and u in radf s.

Note that w6 æ O.78 and c.ro2 : S.

I0.261.00.784.0

Io.522.0t.572.0

I ,II2.097.86.280.5

II3.4913.4t0.470.3

I u1o.4740.33t.420.1

Plant under Studyur luozwrlwtwp (:wr12)T
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1 and ú are in seconds and ø in rad,f s.

Design specifications: úo ( 6s; t, < lOs; Mp 1 LOYo; er, : g.

0.91.1403.50.03.74.81.032-0.113
22-o.o94z+0.0114.0Mt

0.71.1-403.60.04.75.60.5912*0.216
,z2 -0.3092+0.116

2.0Ms

o.70.3-403.30.04.65.10.1032*0.028
*=t.+z+z+o.sss0.5Mz

o.7o.2-403.00.04.64.60.057 z+0.007
22-L.6ttz+o.6780.3Mt

€woTu,te€caMo(%)tpz-Thansfer F\¡nctionT^Model

Table 4-3 Þequenc¡r response models and their time domain performance

parnmeters for comperieon w¡th the control speciflcations

Appendix C, the peak time úo and the mæcimum overshoot M, in Table 4-3 are derived

from the corresponding continuous time responses of these discrete transfer functions.

1.1.6 Orde¡ ol the d,iscrete transfer lunction of a digitøl controller

The r¡arious design methods make differing requirements on the order of the

controller transfer function. The complex-curve ûtting methods, for instance, allow a

designer to start his design with a first-order controller. Ilowever, in the dominant data

matching method, the controller must, at least, be second-order because a minimum of

three points is needed to define a well-behaved complex-curve.

In general, the higher the order of the controller, the more accurate is the match-

ing of frequency responses. But this is achieved at the expense of the complexity of the

control function aud longer computing time both in design and implementation. As a

compromise among these factors, third-order controlleñ¡ are chosen for all design studies

in this chapter.

1.1.7 Simulation ønd øssessment

Following the design of a controller, the performance of a closed-loop system,
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which incorporates the digital controller, is simulated on a VAX-I1l78O digital com-

puter. Its closed-loop frequency and unit-step responses are calculated for evaluation

and comparison. In first part of this section, the formula for the eimulation of frequency

responses and the methods used for comparison are given. In particular a quantitative

figure of merit for the matching accuracy, WIAE, is defined. In the second part, the

digital eimulation of time responses is described, including the continuous-time output

of a closed-loop system and the discrete-time output of a digital controller. Their as-

sessment is based on the performance specifications given in section 4.1.3. Finally the

computational burden is pointed out as an important feature in the evaluation.

(a) Simulation and assessment of frequency responses

The discrete frequency response of closed-loop digital control system defined in

Fig. 4-1 is

H(iù:#ffi\*,,. (4-B)

The frequency matching accuracies of different designs to the assigned model are com-

pared qualitativeþ through the Bode plots of. E$w) and M(ju) in the complex plane.

In addition to the direct observation of frequency response plots, a quantitative

measurement of the matching error is desirable to indicate the n goodness' of matching

performances of various design methods. The commonly-used criterion is the integral

absolute error which integrates the error between the frequency response of a closed-loop

system and that of a model over a relevaut frequency band. The shortcoming of this

criterion lies on the fact that the integral over the linear frequency inherently neglects

the errors in the low frequency band, the response of which is usually as important as

that in the high frequency band. The problem is solved in this thesis by introducing

the logarithm frequency in the error integral so that the errors in the low frequency

band will be weighted more heavily and the errors¡ in the high frequency band less. This

is equivalent to integrating the error between two magnitude curves in the Bode plot

except for that, in order to take phase-shift into account, the difference between the two
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magnitudes is replaced by the magnitude of the vector difference between two complex

functions.

Assume that ø' is a weighted frequency given by:

ø' : loglo rJ. (4-4)

Then WIAE, the weighted integral absolute error criterion, is defined by this author as

IilIAE : I
wlo¿ .t

lu(ir') - M(jwt)þItt', (4-5)
w!

where,I/(it^r') and M(ir') are the weighted frequency response of a closed-loop system

and a model, and can be calculated from H(i") and M(jw), respectively:

H(ir') : H(iw)|,=tou,t (4 - 6")

M(ir') : M(iw)lø=r',,. (a - 6¿)

The upper limit ufrro, is derived from the frequency range u¡n6¡ oyêt which the matching

of H$w) to M(jw) is conducted. The lower limit is zero frequency which can not

be converted to a meaningful weighted frequency and therefore a more practical lower

frequency limit ø¡¡. is chosen for the integral. In the varioug design examples of this

chapter, there is no significant deviation of the frequency response matching when ø (

LO-a radfs. Thus u¡.¡. is assigned to lO-a and the correspondhg w't.r. is -4.

The integral absolute error is divided by ,'*or- r't.t. so that the matching errors

of designs with different sampling frequencies can be compared.

Ideally, the design of a digital controller is optimal if the WIAE of the closed-loop

system is minimum. However, some exceptions should be borne in mind. Firstly, the

design studies in this chapter are based on the discrete frequency response that does not

czrry the information about the inter-sampling performance of the closed-loop system.

Secondly, when the design involves very low sampling frequencies, the high accuracy
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of matching may not guarantee the closed-loop stability though the model is stable.

F\rrthermore, the practical implementation of the resulting digital controller and all

aspects of the closed-loop performance need to be considered. It is therefore necessary

to check the continuous time responses as well.

(b) Simulation and assessment of time responses

The time responses at and between sampling instants are simulated by means of

the method proposed by Flanklin and Powetl [19]. According to their derivation, the

Laplace transform of the time response of the closed-loop digital control system defined

in Fig. 4-1 is

Í(s):Æ.(r) #.c¡(s)c(s). (4-7)

The following are the transforms for a unit-step input signal and a zero-order

hold, respectively:

ß'(s): (4-8)

G¡(s) :'- :-' (4-e)

(4 - lo)

(4 - 1l)

Substitution of Eqs. (a-S) and (a-9) into Eq. ( -7) yietds

Y(s) -
D' s c(")

I + D-(s)GnG-(") s

The first term in Eq. (4-10) corresponds to a train of impulses, i.e.

= ?-Í9 =, . - lco * kte-T' * k2¿-2le+ ... + kne-on' + "'
1+ D-(s)G¡G-(t) 

oo

- D k;¿-ir'
i=0

The values of ft;, d : 0, 1r2,..., caû be determined by a long division. Thus, Eq. (a-10)

may be rewritten as

Y(s) : froqþ) + ft1e-"'919) .,-

oo

: Ë(o,r-d"'Ej)) .

i=0

* kne

4-13
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Let yo(ú) be the inverse Laplace transform of G(s)/s, i.e.,

Ys(t) : ¿-t l

oo

i=0

i=0
oo

i=0

n

c(')
s

.e

-iTe

(4 - 13)

(4 - 14)

Then y(ú), the continuous unit-step response of the closed-Ioop system' can readily be

obtained by taking the inverse Laplace transform of Y(s) in Eq. (4-12), as follows:

v(ú) : ^r-t¡r(s¡l

Ðt'-t k;
G(')

-óT e

s

:Ë k¿L-ttry e

:Dk¡ys(t-iT).

The value of y(ú) at any time instant to, at or between sampling instants, is

y(úo) : DO'uo'/."- iî) , (4 - 15)

i=0

where n is an integer that satisfies

(4 - 16)

The unit-step response y(ü) is evaluated in accordance with the performance spec-

ifications in section 4.1.3. A good design should give a smooth time response between

sampling instants.

Consideration also has to be given to U(kT), the output signal of the digital

controller, because its performance is an important feature in assessing the practical

feasibility of the design.

From Fig. 4-1, the z-transfer function of U(kî) is

r)."<+<('*

4-14
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Expanded in power series of. z-r , U(") can be expressed as

II(z) : uo * utz-r + u2r-2 + "' + tlnz-o * "
co

: t ukz-k
lc=0

Taking the inverse z-transform of both sides of Eq. (4-18) yields

(4 - l8)

(4 - le)

where,

U&n: Ð u¡6(t - kT) ;

oo

ß=0

1, if ú-kT:o;
0, otherwise.6(t - kr) : {

(c) Computational burden

The last factor to be considered in evaluation of the various methods is the

computational burden. In addition to CPU time consumed in each design study, the

preliminary work involved should be taken into account as well.

54.2 Design studies of Group I -
Comparison of the various design methods

In this section, the design studies of Group I are presented. The studies are based

on the design of a digital controller for plants I and II at sampling periods of 0.3, 0.5,

2.0 and 4.0 seconds recommended in Table 4-2. In order to minimize the influence of

the difference between I and 1,r., in these studies, specific frequency response models

from Table 4-3 are assigned for each sampling period so that T^ is the same as I in

each design. As a result, a comparison of various design methods is made and given at

the end of section.
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1.2.1 Designs for PIønt I

(a) Choice of the sampliug frequency and the models

As described in section 4.L.2, Plant I is an overdamped system. Thus theoret-

ically the choice of sampling frequency is mainly the consideration o1 w6, the desired

closed-loop bandwidth.

Design studies start with a sampling period I : 0.5 s for which ø" is about 16

times ø6; model Mz(ir) is used as the ideal closed-loop frequency response model. The

next design is based on a sampling period T :2.O s and on the model Ms(jw). The

final study is for the sampling frequeucy ws : 1.57 radf s (1 : 4.0 s), which is just

twice h/6, and is based on model M+(iw\.

(b) Choice of the dominant data for the DDM method

For the DDM method, the dominant data points are determined from the ideal

open-loop frequency response Mqx(iw) which in turn, is derived from the closed-loop

frequency response model M*(iu),

k: Lrzr3r4. (4 - 20)

Key frequency point s w;ri : I,2r3, 4, tabulated in Table 4-4, are selected as ûrl and ø2

from the low frequency band (r¿ < 0.03ø6), ø3 from the gain cross-overfrequency and

ø4 from the high frequency band (0.9ø6 1w; 1wr).

(c) Choice of the constraints and initial estimates for the SIM method

There are a few requirements on the initialization of the SIM method. The first

step is to set out additional constraints imposed on the gain and pole-zero locations

of a controller transfer function D(z), if necessary. In the case of Plant I , the wider

closed-loop bandwidth is required for a faster system transient response. This implies

that the digitat controller under design possesses a frequency response with high gain in

the high frequency band near u"fZ and so likely yields oscillatory output signal. From

4-16
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2.60.60.020.0020.5

il 5.330.6660.00330.000330.3

o.7o.2750.0050.00054.0

I 1.30.3o.o20.0022.O

2.60.60.020.0020.5

WauguzU1r (')Plant

lable 4-4 Dorninant data point w¿ (rød/s) used in the design studies

based on the DDM method

the time domain analysis of discrete systems [l], such an oscillation can be avoided

if the closed-loop poles are remote to the point (-1,i0) in the z-plane. Therefore,

constraints on the poles and zeros of. D(z) are needed to position the closed-loop poles

away from the (-1,i0) point. Unfortunately, no simple formula is available to choose

these constraints. On the basis of the root-locus analysis, the use of øcut and tryt

procedures may be found hetpful and rely on the desigaerts experience.

The choice of the constraints in this section is explained with one of the de-

sign studies, namely the design for Plant I with T : 2.0 s. The poles and zeros of

D(z)G¡,G(z) are drawn in Fig.4-6, where the plant zcro zpr is very close to (-f i0).

Without additional constraints, the optimization process places a pole slightly to the

left of zpr to cancel its influence as shown in Fig.  -6(a). Consequently on the root

Iocus from this pole to the infinit e zeÍo will be a closed-loop pole that is very close to

(-1,i0) and causes the osciilation. On the other hand, if two poles of D@), remote

from (-1,j0), are located between zpr and another zero, then the shape of the root

locus is changed and a pair of desired complex closed-loop poles can be obtained as

shown in Fig. 4-6(b), which is done by the simplex optimization with constraints on the

real pole-zero locations, -0.5 1p;11.0 and O 1z; ( 1.0, i:1,2,3.

Constraints for designs at other sampling periods are determined following the

same philosophy" They are all included in Table 4-5.
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- 0.{

- 0.5
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0.5

r-pleac

O rcro of D(z)

Q rcro of C¡G(z)
x polc of D(z)

X pole of G¡G(z)

t-ptaDe

O zero oI D(z)
O z,ero ol G¡G(z)
x pole of De)
)( pole oI G¡,G(z)

zpl
Re

l.o

- 0.8

(a) without co.ustråi.nts (b) with const.r¿i¡1ts

Figtre 1-6 Root loci ol the control syslenrs designed by the SIÌt[ ntethod with and without colstråiürs

(PlantI,T:2'0s)

Table 4-6 Constrainte on the gain and pole-tero locations of D(z) in the

designs for Plant I baeed on the SIM method

0.0<ø6(4.0-0.4 < z; 1L.O-0.8<p;(1.04.0

0.0 ( ro0.0 < z; 11.0-0.5Sp;(1.02.0

0.0 ( zs-0.4 < z; 1l.O-0.7<p;(1.00.5

Gain ÍoZero ziPole p;I (')

Re

The second task in the initialization of SIM is to give initial estimates for optimal

poles and zeros of. Dþ). To assess the convergency of the simplex optimization algo-

rithm, all design studies start with a set of arbitrarily-assigned initial values, in which

all 3 poles and 3 zeros o1 D(z) are located at the sane point (0.5, i0) in the z-plane.

Theinitialgain z6 is l0for?:0.5 s and 2.0 s. For ?:4.03r f0: Sischosento

satisfy the constraints employed.

l.s - 1.0 ä¡ -0.5
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(d) Results

Tbble 4-6 gives the coefficients of the controller transfer functions determined

by the various frequency matching design methods (Table 4-6 also includes the design

results for Plant II obtained from the following section 4.2.2.). The performance of

the resulting closed-loop systems is then assessed by frequency and unit-step response

simulation studies. The results of these studies are presented in Fig. 4-7 and 4-8. The

values of the performance index \ryIAE for the various designs are compared in Fig. 4-9.

For the DDM, CCF and ICCF methods, the results reveal that the error in the

frequency response matching decreases when the sampling frequerrcy ws is reduced" In

fact, for the designs based on DDM, CCF and ICCF methods with I - 2-O and 4.0 s,

all freguency response curves match the model response very closely. Consequently

the ICCF gives the same result as the CCF does. As predicted by these excellent

frequency response matching performances, the unit-step time responses of the designs

based on the DDM, CCF and ICCF methods match those of the digcrete models at

sampling instants as if they were just direct copies. However, ripples on y(ú) between

those sampling instants become increasingly large ats us decreases, until eventually the

designs become unacceptable. These ripples are attributed to the oscillation of control

signal UftÐ at the input of plant (via a ZOH) as shown in Fig. 4-8'

Because of the constraints imposed on the pole-zero locations of. D(z), the designs

based on the SIM method for T:2.O and 4.0 s do not give close matching to the ideal

frequency reeponse. But the oscillation of the controller output is effectively minimized.

As a result, the magnitude of ripples on y(t) is reduced significantly.

In terms of the time response specification, all designs at T : 0.5 s are good.

At 1:2.0 s, only the design based on SIM meets all requirements of the specification

except for peak time to being 1.5 s longer than the specified value 6 s. At 1:4.0 s,

none of the designs completely satisfy the specifications, though the design based on

SIM gives a considerably better performance than the others do.
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Table 4-G CoefEcients of the controller transfer functions in the deeign

studies of Group I

-o.32671.5969-2.2702-0.00070.00110.02630.0312SIM

0.5

il

-0.52492.0088-2.4839-0.0043-0.00700.02060.0317ICCF

-0.49431.9479-2.4536-0.0036-0.0063o.o2L20.0318ccF

-o.47871.9120-2.4333-0.0027-0.00540.02180.03r9DDM

-0.50121.9772-2.47602.8 x l0-5-0.00030.00130.0165SIM

0.3

-0.60212.1848-2.5827-0.00780.0104-0.00650.0176ICCF

0.8068-0.6393-1.16750.00430.01870.0140o.0222ccF

-o.70222.3896-2.6874-0.00840.0092-0.00920.0187DDM

-0.1592-0.6388-0.2020-0.01410.4009-2.62884.0SIM

4.0

I

0.0004-0.6689-0.3315-0.0338o.8772-3.97944.8822ICCF

0.0004-0.6689-0.3315-0.0338o.8772-3.97944.8822ccF

0.0049-0.6667-0.3382-0.03940.9039-4.Ot244.8825DDM

-o.L407-0.6408-0.21850.02.7490- r0.23388.8567SIM

2.0

-0.2538-0.91l30.165rr.ffi40- 1.8042-7.26729.0565ICCF

-0.2538-0.91130.16511.8340-t.8042-7.26729.0565CCF

-0.2911-0.92520.21631.9217-2.2502-6.90739.0752DDM

0.3324-0.5576-o.77480.9635t4.o92t-35.059320.2325SIM

0.5

o.4231-0.9733-0.44985.44626.1884-33.554622.2743ICCF

0.423L-0.9733-0.44985.44626.1884-33.554622.2743CCF

0.20030.1248-1.3251-4.38522E.74tO-40.212518.9879DDM

Us!z!trgr2t'¡Ig

Design

Method

T

(')

Plant D(z): rozi +xt z2 *rzz]'{¡
z3+gtzz *gzzlgs
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Figure 1-g VaJues ol WIAE oI the closed-Ìoop s¡,stems in the design studies ol Group I lor Plant I

1.2.2 Designs for Plant II

(a) Choice of the sampling frequency and the model

Plant II exhibits an underdamped response, the frequency of oscillations being

uo:G rød.f s; this is a value well above the closed-loop bandwidth øa : 0.78 rødf s. Thus

uro replaces uò as the dominant factor determining the sampling period T. ^A'ccording

to the conditions outlined in section 4.1.4 and Table a-2(p. -9),T:O-3 s (u,:11 radls)

is the longest sampling period from the appropriate choices because the corresponding

r,,.r, is merely 3.5 times tl" (but 28 times ø6). However, for the purpose of comparison,

controller designs are carried out for I : 0.5 s (t^r, - 2r") as well. The closed-loop

frequency response models used in this part studies of Group I are therefore restricted

to M1(jr",) for ?:0.3 s, and Mz(ir) for ?l:0.5 s' as defined in Table a-3(p.a-10).

(b) Choice of the dominant data for the DDM method

The key frequency points are selected from the open-loop response MQß(tø) of

Eq. (4-f Z) to provide the dominant data for DDM design; they are summarized in Table

a-a(p.a-16).
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(c) Consideration of the constraints and the initial estimates for the SIM method

Fig. 4-10 shows the magnitudes of Mqrjr), the open-loop frequency response

model, and G¿G(jur) for ? : 0.3 s, as well as that of desired controller frequency

response D(i"), which is derived from

(4 - 21)

From these curves, it is clear that within the frequency band 0.lc^r" < u < w"12, the gain

of the controller is below -20 db, and so an overdamped control signal can be expected.

For the designs based on the SIM method, therefore, no additional constraints are

required on the gaiu and pole-zero locations o'f. D(z). Initial estimates for these poles

and zeros are identical with those arbitrarily-assigned to the designs for Plant I , i.e.,

all at the point (0.5, i0) in the z-plane. The initial value of gain øo is set to 0.02.
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controlle¡ D(z) wiù T:0.3 s
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30.
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(d) Results

Once the preparatory work is done, the coefficients of the discrete controller

transfer function (see Tabte 4-6, p.4-20) are readily obtained by running the appro-

priate computer-aided design programs. The frequency and unit-step time response

simulations are presented in Fig. 4-1f and 4-12, respectively. The results based on the

ICCF method at T:0.3 s and 0.5 s are from the second iteration. Fig. 4-13 compares

the values of WIAE of va¡ious designs.

For the DDM, ICCF and SIM methods, it can be seen from Fig. 4-11(a) that'

at 1:0.3 s, the closed-loop frequency responses of designs agree closely with the model

within the frequency band w 12.0 rødf s. From w:2.0 to b):ttrp:6.28, the closed-

loop responses diverge from the model in differcnt degrees. However, because their

magnitudes in this band are lower than -20 dö, the divergences have no significant

impact on the corresponding time responses as shown in Fig. a-n(a\. Moreover, as

expected, output signals of the resulting controllers are overdamped and follow an almost

identical trajectory.

On the other hand, the CCF method yields a closed-loop frequency resPonse with

a 2db resonant peak at u æ 0.4 radf s (æ 0.02u"). Its step respouse correspondingly

presents an excessive overshoot of 18% and a retarded settling time of 12 seconds.

The poor performance of CCF at ?:0.3 s is due to the error-producing effect of the

weighting factor lPs(iù12 contained in the objective function .Ð (see section 2.3.3). The

weighting factor by which .E is multiplied becomes extremely small when t^r ( 0.03ør. A

large matching error is thus introduced in as a resonant peak appears in this frequency

band shown in Fig. a-11(a). By means of the ICCF method, the distortion due to

the weighting factor is compensated and the matching error is reduced to nearly the

minimum after just one iteration.

At f:0.5 s, each design method works well as all closed-loop frequency responses

closely match that of the model in Fig. 4-11(b). Occurrence of ripples on y(t) in Fig. 4-
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Figure 4-13 Vajues oÍ IYIAE o[ the closed-Ioop s¡'stems in úàe design studies of Group I Íor Plant II

l2(b) for all designs results from a slow sampling frequency relative to wo (r, * 2uo).

This verifies the analysis made in section 4.1.4.

It is important to note that, with 1:0.5s, the ripples on y(t) of Plant II in

Fig. a-12(b) look like those on y(ú) of Plant I in Fig. a-8(a) but come for different

reasons. The former is due to the oscillatory nature of Plant II and the latter the

oscillatory nature of control signals.

1.2.5 Discussions ol the simulation results

On the basis of the results from 20 various design studies, this section will discuss

some important factors in the application of the frequency response matching design

methods. Those of interest include the sampling frequency &r', the dynamic character-

istic of plant, the feasibitity of resulting controllers and the computational burden.

It must be understood that the results are obtained from studies only of the

two types of plant specified in section 4.1.2. Thus their validity nay be restricted to

applicatiou to similar types of pìant.

(a) Influence of the sampling frequency ø'

A set of sampling frequencies from 2 to 27 times the closed-loop bandwidth ø6
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has been studied. It is obvious from the comparison of WIAE values in Fig. 4-9 and 4-13

that the matching error of a closed-loop frequency response to a model decreases as u'

becomes lower, provided no constraints are imposed on controller parameters. This is

mainly because the frequency response models tend to be flatter as ø, decreases. In fact

in the time domain, a response resulting from a lower t^r, needs to match fewer specified

points than that from a higher ø" does within a certain time interval. However, such

success in frequency matching with a low sampling frequency is achieved at the risk

of deterioration of time responses. Ripples on the time response are generally larger

for wider sampling intervals as shown in Fig. 4-8 and 4-12, though the responses at

sampling instants are accurately matched to the models.

The discrepancy between the frequency and time response matching is a major

disadvantage of the technique in which a dummy discrete plant is used instead of the

continuous one. An alternative is therefore suggested in Chapter V on the basis of the

hybrid frequency response analysis.

(b) Influence of the dynamic characteristic of plants

The comparison of Fig. 4-9 with Fig. 4-13 reveals that the dynamic characteristics

of the two types of plants used in the assessment of design methods do not affect the

accuracy of frequency response matching significantly. This results from the ability

of the mathematical algorithms in these methods to derive r¡arious types of controller

transfer functions according to given specifications and plants. However, the dynamic

characteristic of a plant does have a strong influence on the quality of time response of

both closed-loop system and digital controller. Though the closed-loop system may have

a satisfactory frequency response obtained from appropriate pole-zero compensations,

the distribution of these poles and zeros between the plant and controller can yield

unsatisfatory time responses. For instance, when designing a digital controller for an

overdamped plant, attention should be paid to the output signal of a controller. On the

other hand, in the design for an underdamped plant, the frequency of plant oscillation
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uo may require a sampliug frequency a;, much higher than that based on the closed-loop

bandwidth. Otherwise the ripples on the system output may become unavoidable and

intolerable.

(c) constraints on the controller parameters

In the previous frequency matching design methods such as DDM and CCF, the

only objective in the design process is to minimize the frequency matching error be-

tween the model and closed-loop system. No constraints are imposed on the parameters

of resulting controllers. This simplifies the synthesis, but the results may be unsatis-

factory for practical applications. A control engineer may have to redesign a resulting

control function because of either au excessively high signal amplitude or an oscillatory

response at the controller output. Fig. a-7(a) and Fig. a-8(a) furnish a convincing ex-

ample in which the frequency response of a closed-loop system, which incorporates a

digital controller designed by the ICCF method, accurately match the model resPonse.

However the large magnitude and oscillatory nature ol U(Kf), are usually found quite

unsatisfactory. This example is not exceptional as similar performances can be observed

in case of T:2.0 and 4.0 s for the designs by the DDM, CCF and ICCF methods. It can

be conclud.ed, therefore, that the design methods only using frequency response match-

ing criteria are unsuitable if they result in controllers with large amplitude oscillatory

responses. The controller characteristic should also be considered in the design process.

The contribution of this author is the development of a new design method SIM

for overcoming the above defrciencies. SIM enables the designer to confine the gain, poles

and zeros of the controller, and indirectly the closed-loop poles and zeros, into some

appropriate region in the complex z-plane so that a trade off between the accuracy of

frequeucy matching and the characteristic of a required control signal can be achieved.

The designs by SIM shown in Fig. 4-7 and 4-8 successfully demonstrate this unique

advantage.
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(d) Computational burden

The CPU time (for VAX-11/780) consumed in the design studies is used to

estimate the computational burden. For the various design methods, Tbble 4-7 lists

the CPU time taken in a set of design studies for a digital controller for Plant I with

1:0.5 second. These values, however, can only serve as rough estimation because the

computational burdeu of the CCF, ICCF and SIM methods depends on the problem

under study in various degrees. For example, in the CCF and ICCF' method the time

required by numerical integrations is highly dependent of the amplitude of integrands.

In general, the DDM method needs the minimal computation as the parameters

of the linear equations (see Eq. (2-16)) to be solved can be readily determined. The

CCF method with integral operations consumes tens of CPU seconds and is comparable

with the SIM method that involves iterative calculations. A heavy burden is imposed

by the ICCF method which may take over one hundred CPU seconds.

Except for the SIM method, all frequency matching design methods are thor-

oughly computerized, and need the minimal preparatory work. When applied to an

overdamped plant, the SIM method employs some constraintg that may require addi-

tional analytical work.

Table 4.7 CPU time consrrmption of the va¡ioue design methods in the

design studies for Plant I with T : O.6 s of Group I

10-30300 - 1000SIM

1503ICCF

972ICCF

22CCF

0.3 - 0.4DDM

CPU Time(s)Number of lterationsDesign Method
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1.2.1 Comparison ol tltc d'esign method's

A comparison is made based on the performances of the DDM, CCF, ICCF and

SIM methods in the design studies of Group 1. Table 4-8 summarizes the results in

a qualitative mantrer. Since the examples are chosen to represent some typical appli-

cations, the author hopes that the table would provide a useful guideline in practice,

though the types of plants and the performance specifications from which the results

are derived should be borne in mind when refering to a particular case.

1.2.5 Conclusions

In this section, a comparative study has been presented. Four frequency matching

design methods were assessed by means of the design of a digital controller for two types

of plants with the sampling frequencies chosen from 2 to 27 times ø¿. Some important

factors regarding the implementation of the methods were discussed. The result of

comparison was given in a tabular form that provides a guideline for the application of

these methods.

The frequency response matching design methods can be applied to different

types of plants, e.g., an overdamped or underdamped plant. The decrease of sampling

frequency may reduce the frequency matching error but increase the ripples between

sampling instants. The simplicity and the light computation load of the DDM method

d,istinguish it from the others. The new ICCF method proves its superiority over the

CCF method by improving the matching accuracy at high sampling frequencies. An-

other new method SIM can be employed for designs at low sampling frequencies at

which the results of the other methods fail to meet the performance specifications.
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$4.S Design etudies of Group 2 - Dtrect of the

discrepancy between the primary frequency range of the model

and that of the closed-loop system on the frequency matching

The primary frequency range wn o'L a discrete system, as defined in section 2.1, is

the frequency band from 0 to wrf 2, one half of the sampling frequency. The term primary

refers to the fact that any part of the frequency response of a discrete system can be

constructed from the frequency response for the primary range because the response for

w"l| 3w 1w, in the complex plane is the mirror image of that for 0 S w 3w'fZ about

the real axis, and the response repeats itself every nw, I w 1 (n*L)urrn: 0, 1,2, . ,. [1].

It has been pointed out in section 3.1 that one way to define a frequency response

model is to use the frequency response of a previously designed closed-loop system which

possesses the desired dynamic performance. Such a system may be equipped with a

discrete or continuous controller. The most common example is converting an existing

analogue controller into an equivalent digital controller.

The case of the sampling period of an existing discrete system, represented by

l-, being the same as that of the system under design, represented by Ir has been

discussed in section 4.2" I'1., however, T #T*, then there is a discrepancy between the

primary frequency range of the existing system, i.e., the frequency response model, and

that of the system under design. In particular, this is always true when an existing

controller is analogue because its primary frequency range is infinite in the sense that

its usampling frequency' is infinitely fast.

Fig. 4-f 4 shows the magnitude of frequency responses of three arbitrarily-selected

discrete systems I , II and III , with different sampling periods Tt 1 Tz 1 13; the

corresponding primary frequency ranges are upL ) up2 ) upSt respectively, where upi:

w,ilT: rlT;. Suppose that system II with 12 :0.5 s is the model for the closed-

loop system. Digital controllers are to be designed for the systems I and III with

Tt :0.1 s and Ts : 2.0 s respectively so that their closed-loop frequency responses
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will match that of system II . It is evident that system III can only match a part of

the frequency response of the model; for system I , the section of primary frequency

response from up2 to upt is not defined by the model. In other words' no matter

how sophisticated the digital controller is, there must be some degree of distortion in

matching. Thus the design studies of Group 2 is devoted to the investigation of the

effect of the above-mentioned distortion on the dynamic characteristics of closed-loop

systems under design.

In the following section 4.3.1, Plant I is compensated at different sampling

periods of 0.1,0.5 and 2.0 s to match the frequency response given by the model M2

with 1- : 0.5 s (see Table 4-3, p. 4-10). Section 4.3.2 deals with the compensation

of Plant II , the designs of which are also based on M2 with 1'' : 0.5 s; the sarnpling

periods tested are 1:0.1 and 0.5 s which, as discussed in section4.L.4, are determined

by øo, the frequency of oscillation of the open-loop plant. The use of a continuous system

frequency response as a model for designing a discrete system is treated in section 4.3.3t

followed by discussions and conclusions drawn from the results of these design studies.

Because the purpose of these studies is to assess the effect of differences in the
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primary frequency ranges upon the matching accuracy and system performances, only

the ICCF method is used in the studies for its relatively high accuracy, and its consistent

result without intervention of other factors such as the selection of key points in the

DDM method and the initial conditions in the SIM method"

1.3.1 Design studies based on Plant I

Three digital controllers are synthesized for Plant I at three sampling periods

so that the frequency responses of the closed-loop systems match the desired frequency

response derived from model M2 with ?* : 0.5 s. These sampling periods are sum-

marized in Table 4-9, where womis defined as upm: r/T*. The ratio ø, defined as

o : 9 : 
Trdecreases 

from 5 to 0.25 when the sampling period increases from 0.1

to 2.0 s.

Table 4-O Sampling period I selected for the deeign studiee of Group 2

The design studies, based on the ICCF method, yield the values for the coef-

ficients of the discrete transfer function of the digital controller given in Table 4-10.

In Fig. 4-15(a), the frequency responses of resulting closed-loop systems are shown,

together with that of the model. The unit-step time response y(ú) and controller out-

put U(KT) are drawn in Fig. 4-15(b). The performance index of frequency matching,

WIAE, is shown in Fig. 4-16.

From the simulation results, it is clear that the closest matching is achieved with

T : 0.5 s and o : l.O, that is, when the model and the system under design have
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*M2-discrete transfer function with 1- : 0.5s

tM"-cont inuous transfer funct ion.

-4.1568-r.t7294.329724.9364-66.71142L.332231.8623

M"t

2.O

I o.2704-0.9724-0.29809.7831-1.0566-34.164325.83800.5

-o.52492.0088-2.4839-0.0043-0.00700.02060.0317

Mz*

0.5

II -0.84072.6786-2.8379-0.00370.0117-0.01340.00600.1

-3.5586-1.32333.881919.1605-51.407716.683625.59312.0

I o.4231-0.9733-0"44985.44626.1884-33.554622.27430.5

-0.87292.7454-2.8725-t4.674744.5527-45.0907r5.21270.1

9e!z!tfgr2tLø0

ModelT

(')

Plant D(z\:*+:Y:+

Tabte 4-lO Coefrcients of the controller tre''sfer functions in the deeign

studies of Group 2

the identical primary frequency range. \ryith o : 5.O (T :0.1 s), the matching error

becomes larger but is still acceptable. Note that the undefined section of the frequency

response from t.rpm : 6.28 to t.ro : 31.4 has the magnitude well below -30 dö and

thus does not affect the system dynamic performance significantly. On the other hand,

when o : o.25 (1 : 2.0 s), the closed-loop frequency response H(i") matches the

ideal frequency response M2(jw) t"ry closely from 0 to 0.85øo æ 1.3; only within the

range 0.85r,rpo < u < up: 1.57, H(jw) stightly diverges lrom M2(iu), as is shown in

Fig. a-15(a). Unfortunately, it is this narrow frequency band in which the frequency

response proves critical to the system performance; in fact, the design al T : 2.0 s

results in an unstable system.

1.3.2 Design stud,ies bøsed on Plant II

The same discrete frequency response model, Mz(iw) with 1^ : 0.5 s, is adopted
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Set of design studies

Figure 1-16 Values of WIAE o{ the closed-loop systems in tàe design súudies ol Group 2 {or Plant I ,

desigled by tùe ICCF ntethod

for compensation of Plant II . Two sampling periods used in the studies are f : 0.1

and 0.5 s with ø: 0.5 and 1.0, respectively.

Again by using the ICCF method, two discrete transfer functions are obtained for

the digital controller and are shown in Table 4-10. The frequency and time responses of

the closed-loop systems in which they are incorporated are drawn in Fig. 4-17. Fig. 4-18

shows the values of matching performance index WIAE of these designs.

As the primary frequency ranges of the systems under design are either larger

than or equal to that of the modeì, the matching performances in both domains are

excellent. The only exception is ripples that exist in the time response of the design

with T :0.5 s for the reason discussed in section 4.1.4.

1.5.5 Design studies based on matching o continuow frequency rcsponse lor Plont I

A continuous frequency response in transfer function form M.(.) is used as a

model for designs based on the frequency response matching method. The purpose

for this choice is to show how the inevitable difference between the primary frequency

ratrge of the closed-loop system under design and that of the continuous model affects

the matching performance.
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Figure 1-18 Values of WIAE oI the closed-Ioop systems i¡ úùe design studies of Group 2 for Plant II ,

designed by the ICCF method

Assume for purposes of comparison that a closed-loop continuous model Mr(t)

has the same bandwidth (ro : 0.78 radf s) as that specifled for the discrete model

Mz(jw), and has a similar unit-step time response to that for the model Mz(") (with

T^ - 0.5 s). Fig. 4-19 shows the similarity of unit-step responses of both discrete

and continuous models M2(z) and M.(s) at sampling instants. The opeu-loop transfer

function of M.(s) is

Àt^ ( o\ 150s3 * 216s2 * 73.02s + 7.oz
tv'(Jc\Ð) - zo.zsr.+zio.oesss + s¿z.oss4 +444.02ss3 * 130.ls2 * 12.3s'

(4 - 22)

Thus the closed-loop continuous frequency response of the model is

(4 - 23)

Based on the continuous model Mr(jr), design studies for Plant I are carried out

for sampling periods of 0.5 and 2.0 s by means of the ICCF method. The coefficients of

the discrete transfer functions of the digital controller are calculated and given in Table

4-10, p. 4-37. Simulation results for these designs are presented in Fig. 4-20, together

with those of the continuous rnodel. Fig. 4-21 shows the values of WIAE of the resulting

closed-loop systems.
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Mz

v(0

Mz

t (')
0.0 t.0 6.O 12. 20.

Figure 4-19 [Jnit-step resporses oI the continuous model Mr(t) and the discrete model MZ(")

with T*: 0'5 s

At T : 0.5s, the primary frequency range wp of, the discrete system is 6.28 radf s,

at which the magnitude of M,(jr) is as low as -34 dä. Consequently an excellent match-

ing has been achieved by the ICCF method in both the time and frequency domains.

When a longer sampling period T :2.0s is applied, the primary frequency range reduces

to wo : 1.57 radf s, which is about twice the desired frequency bandwidth, ø6 : 0.78.

The magnitude of. M,(ju) at u, is about -LO db. Fig a-20(a) shows that the frequency

response of closed-loop system closely matches that of the model until ø reaches the

vicinity o'f. wo - 1.57, where a sharp divergence occurs in both the magnitude and

phase. Nevertheless, such a close matching to the model over almost the whole primary

frequency range does not prevent the system from losing stability.

1.5.1 Discussions of the simulation results

The effect of discrepancy between the primary frequency range of a model and

that of a system under design has been demonstrated by the results of eight design

studies shown iu Tabte 4-10 and figures from 4-15 to 4-2I. By analysing these results,

the effect of the discrepancy on similar systems to those evaluated in the above studies

can be summarized in Table 4-ll in terms of. o (o : # : ?).

There are two points worthy of emphasis here. First, when up 1 t^/p-, the
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Figure 1-21 V¿Iues oí WIAE oI the closed-loop systems i¡ úùe design súudies ol Group 2 lor Plant I ,

designed b¡, theICCF method, matching the continuous freguency respoüse model M"(ir)

distortion in frequency response matching always occurs within a frequency band near

to u -- wo. The band is so narrow that WIAE is unable to reflect the impact of the

distortion properly, as 6hown in Figs. 4-16 and 4-21, unless a heavy weighting factor is

added to the error in that band. Second, comparison of Figs.4-15 and 4-20 to Figs.4-7

and 4-8 with respect to the designs for Plant I at T : 2.O s reveals that, when a

low sampling frequency is required, the discrete model with 1* : I is vital for the

success of designs as the designs based on the other models with øp- ) t^ro failed with

instability, no matter whether those models are discrete or continuous.

1.3.5 Conclusions

An investigation on the effect of discrepancy between the Primary frequency

range of a model and that of a system under design upon the synthesis of a digital

controller is presented in this section. The design studies were carried out on Plant I

and II . Table 4-11 summarized the results in the order of decreasingo (: #)'

The results of this investigation show that, when wo 1 u)pn¡ ot I ¡ ?,,,, and

up < (S - 6)ø¿, the discrepancy strongly affects the dynamic characteristic of resulting

closed-loop systems. It is suggested, therefore, that a sampling frequency tl, higher
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lable 4-ll Effect of the discrepancy between the primary frequency
tange of a model and that of a cloeed-loop system on the
design of a digital cont¡oller

øo is narrower than wo^ and is very close to

ø¿. The distortion of frequency response near uô

at wbich the magnitude is high degrades the dynar

mic characteristic of the resulting closed'loop syst-

em considerably. (et t:2.0s (wo = 2r¿), the result-

ing closed-loop system is unstable.)

øp<(3-6)oo

t*tp l epmo<l

øo is narrower than û.rp,n but is still much

wider than ø6. Because the failure of the match"

ing occurs at frequencies where the magritude of

response is small, it does not affect the design

significantly. (This may occur as T takes some

value greater than 0.5 and snraller than 2.0.)

u'p>(3-6)ø¡

The discrepancy is nil. The minimum of the

matching error can be achieved.
up : u)pmO:l

The matching error increases but its effect is

negligible. Satisfactory results can be expected.
w9 ) Ugmo>l

Effects of the discrepancyValue of ø,Value of t

than (6 - l})wa be used for the design of a digital controller, if the frequency response

model is derived from a coutinuous transfer function or a discrete transfer function with

T^ 11. On the other hand, if ø" has to be chosen lower than (6 - l?)wu the frequency

response model should be specified from an appropriate discrete transfer function with

T^:T
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$4.4 Design studies of GrouP 3 -
Elvaluation of the optimiration-based design methods

In Chapter II , two optimization-based frequency resPonse matching design meth-

ods, SIM and RSO, have been discussed. SIM is developed from the simplex optimiza-

tion algorithm and RSO from the random searching optimizatiou algorithm. Like other

optimization methods, the efficacy of these algorithms is highly related to their conver-

gency and speed of convergency, and to their dependence on choices of initial estimates.

These aspects of the performances of the SIM and RSO algorithms are therefore the

subject of studies described in this section.

1.1.1 Designs with difrerent initiøI estimates

Design examples are divided into two sets according to the initial estimates for

the gain and real pole-zero locations of a controller transfer function D(z). In set A,

the optimization operations of SIM and RSO start from a set of arbitrarily-assigned

values. They are 0.5,0.5, 0.5 for the real poles, 0.5,0.5,0.5 for the zeros and 10 for the

gain. Initial values in set B are derived from the controller trausfer function obtained

using the DDM method so that these values are fairly close to the optimum. In both

sets, the designs are carried out for Plant I at T: 0.5 s to match the model M2 with

T^ - 0.5 s (see Table 4-3, P. tt-10).

Suppose the optimal parameters of D(z) are those obtained from the more an-

alytical design method ICCF, which gives fairly accurate results in terms of WIAE as

shown earlier in section 4.2.

Because the assessment concentrates on the convergency of the optimization

algorithms and because the optimal parameters are obtained from the ICCF method

without bounds on the pole-zero locations, no constraints are imposed on the designs in

this section except for that the controller poles are located on or inside the unit circle

of the z-plane for the sake of stability.
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Two figures of merits are used for assessing the convergency of the optimization

algorithms. One is the frequency matching error .E calculated from Eq. (2-47) over

40 frequency points listed in Tbble 4-12. The other is the consumption of CPU time

(for VAX-ll1780 digital computer). Moreover, the resulting closed-loop systems are

evaluated on the basis of their unit-step time responses with respect to the specifications

given in section 4.1.3 (p.  -5).

Table 4-12 Values of the frequeney points (radls) used in the calculation

of the error .E

The values of the parameters of the discrete transfer functions for the digital

controllers from design studies for Plant I are given in Table 4-13 with their matching

errorg. Also the table shows the result from the ICCF method. The time and frequemcy

response simulations for set A and set B are drawu in Figs. 4-22 and 4-23, respectively.

Fig. a-22(b) shows the matching error .E of the designs based on SIM and RSO

in set A as a function of CPU time consumption. It can be obeerved that SIM brings

the matchiug error .Ð down to the minimum even though the initial estimates are far

from optimum. After about 25 s, E is minimized from 2089 to 26. In contrast with

SIM, RSO reduces the error E very slowly, and eveutually the design of RSO fails to

converge to the optimum. This failure results in the sharp differences in the frequency

and time responses of the corresponding closed-loop systems, as shown in Fig. a-22(a)

and (c).

In get B, SIM and RSO are used to optimize the controller transfer function,

6.286.246.206.166.t26.086.05.88

5.725.605.204.804.604.404.204.0

3.803.603.202.802.602.402.O1.60

1.200.800.400.360.320.28o.240.20

0.160.120.080.040.020.0040.0020.0001
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E - Frequency matching error defined in Eq. (2-47).

*Init. 
- Initial estimates.

1.00.43r I-0.98130.9014-0.29900.901422.274352ICCF

B

1.0o.4042-0.95450.85650.9118-0.202021.2804208RSO

1.00.4157-0.97510.89510.8943-0.290122.300624SIM

1.00.6388-0.31360.92400.92400.269118.9879524Init

1.00.43u-0.98130.9041-0.29900.901422.274352ICCF

A

1.0- 1.0-1.0o.47690.9807-1.027.8t82688RSO

1.00.4168-0.97510.89630.8933-0.289522.302226SIM

0.50.50.50.50.50.510.02089Init.*

PsPZPt23zzzlt0

EMethodSet

lable 4-18 Paraneters of the z-transfer functions of the digital cont-

rollers for the deeign studies of Group 3 (Plant I , T:O.5s)

say D'(z), obtained from the DDM method. The parameters of D'(r), which give the

matching error E : 525, are assigned as the initial values to the optimization operations.

As shown in Fig. 4-23(b), after 350 iterations (11 seconds CPU time), .E is minimized to

24by SIM. The optimal paranreters of D(z) are almost identical to those obtained from

the design of set A. On the other hand, RSO even can not find any solution better than

the initiat values until 90 seconds CPU time elapses. The performatrces of the resulting

closed-loop systems in the time and frequency domains, as illustrated in Fig. a-23(a)

and (c), are consistent with these optimization results. In order to demonstrate the

improvement gained from the optimization operation, the performances of the closed-

Ioop system incorporated wi|"h Dt(z), based on DDM, are also included in Fig. 4-23.
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1.1.2 Conclusions

Two optimization-based design methods, namely SIM and RSO, have been eval-

uated in this section with respect to their convergency and speed of convergency as

well as dependence on initial estimates. It is demonstrated that the SIM method is

an effective design method which can bring parameters to the optimal values without

strict requirements on initial conditions. This is strongly supported by its successful

applications in the design studies of Group l, in which the controller transfer functions

for both Plants I and II are designed by the SIM method with different initial values

and sampling periods. The computational burden of SIM much depends on the quality

of initial estimates. It is rather heavy but is still comparable with the CCF method and

faster than the ICCF method (see Table 4-7, P.4-31).

It is of interest to note that, in comparison to set A, the combination of DDM

and SIM methods, as illustrated in the design studies of set B, has saved CPU timet

significantly and also improved the matching accuracy. This suggestg that the DDM

method be used for the initial design of a controller transfer function, then SIM be

employed to optimize the design, if its matching error is not satisfactory. By meatrs

of this two-stage design strategy, it is possible that a compromise between speed of

computation and high matching accuracy is achieved.

The convergency of the RSO method ig go poor that no recommendation can be

made on its practical utilization. For this reason RSO is not assessed in section 4.2

together with the other design methods. Because the possibility of the random search

striking an optimum becomes extremely small when the number of variables is large, the

random searching optimization algorithm seems unable to cope with high-dimensional

non-linear programming problems.

I fte CPU time required by DDM for matching dominant data at 4 frequency points is only

0.3 - 0.5 s, which is negligibte compared to that required by SIM.
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CHAPTDR' V

HYBRID FREQUENCY RDSPONSE ÂNALYSIS

55.1 Deflcienciee of discrete frequency respo¡rse anaþsis

In most digital control systems, plants under control are continuous-time systems

as described in Fig. 2-f. A digital controller samples a continuous-time signal and

generates ¿ sequence of impulse control signals determined by some control algorithm.

The control signal is then converted into a continuous-time signal by a ZOH and fed

to the input of a continuous-time power amplifier or plant. Because such a system

incorporates both the continuous- and discrete- time signals, it is refered to as a hybrid

digital control system. Despite its hybrid nature, the technique commonly used to

analyze such a hybrid digital control system is baged on its z-transfer function, which is

obtained by adding a dummy sampler at the output of the continuous plant as shown by

dashed lines in Fig. 2-1. The discretization of the plant makes the task of analysis easier

but discards the information about system inter-sampling time response characteristics.

The frequency response derived from the above discretized model of the hybrid

system is called the discreúe frequency response and written as:

H(i"): H(z)1,="i"r

- 
D(z)GnG(z\ | 

(5 - l): 
| + D(")GhG(ò1"=o,"'

The frequency response of this transfer function has been used for analysis and synthesis

in the earlier part of this thesis. The design of the hybrid digital control system based
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on its digcrete frequency response yields the tìme response only at sampling instants

t. As shown in the design studies of Group I of Chapter IV , the designs with very

Iow sampling frequencies were not satisfactory. Though the system discrete frequency

responses matched the models very closely, significant ripples between sampling instants

rendered the designs unacceptable.

$6.2 Eybrid frequency tesponte analysis

In view of the shortcomings of the discrete frequency response, the hybrid fre-

quency response is derived for improving the analysis of hybrid dìgital control systems.

Fig. 5-l shows a closed-loop hybrid digital control system that is equivalent to

the one deûned in Fig. 2-l and uses the same notation. Then the hybrid frequency

response of the closed-loop system is defined as:

nUù:ffi
:ffiG6Qw)G(iu)'

Eq. (5-2) is derived from the closed-loop transfer function of the hybrid system

with the aid of the block diagram analysis technique [19]. From Fig. 5-1, the transfer

functions Y(t), Í(t), U'(") and .E'(s) can be written as the following:

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

Y(s) : G¡(s)G(s)t/'(t);

v(s) - r(s)r(s);

U-(r) : D-(s)E*(s);

Ø-("):.8*(s) -V-(t).
t Untitr" the others, tbe SIM design method indirectly restrains the system inter-sampliug be-

haviour by imposing some constraints on controller pole-zero locations.
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^ß(t)--'Y
ß'(t) B(') u'(t u(")

T T

Y'(") Y(')
T

Figure 11 Block diagram oI a closed-loop hybrid digital control system

According to the relation for the block diagram analysis of sampled-data systems,

Y-(r) : t/-(s)G¡G'(r);

V'(r) : FY-(s)

: FGnG'(s)U-(s).

Y(")

Thus Y(s) in Eq. (5-3) can be rewritten as:

f (s) : G¡(s)G(s)U'(t)

: Gr(s)G(s)Dt(s)E'(s)

: G¡(s)G(s)D'(s)[n'(t) - Y'(")]

: Gr(s)G(s)D'(s)[n'(t) - FG¡G' (s)Lr'(t)]

: G¿(S)G(s)D'(s)^R'(r) - FG ¡G'(t)D'(s)[c¡(s)G(s)U'(s)]

: G¡ (S)G(s)D' (s)^R' (") - .FG¡G' (s)D- (s) I/ (s).

Y(s) can be then solved from Eq. (5-9):

D'(s)G¡(s)c(r)
I + D'(s).F'G¡G'(s)

5-3

'( s

(5-7)

(5-8)

(5-e)

(5 - lo)

r(')
fub.cl
clcmcnt

c(')
Continuou¡.
time phnt

G¡(¡)
Zctt
order hold

D'(")
o¡dùlt
controllcr

Y(s) - R



Therefore, the closed-loop transfer function of the hybrid system is

^ü1'¡ : r(')
B'(r)

D* s

I + D-(s).FG¿G'(s) ¡(s)c(s)
(5 - 11)

(5 - 12)

(5 - 14)

(5 - l5)

Substitution of s by jø io Eq. (5-11) yields the hybrid frequency response:

Ttuù:##
D.(ir) ^:ffiGn(iw)G(iu).

D'nUù:ffi'

Thefrequency responses of sampled-signals in Eg. (5-12), e.g., D"(iw), FG¡G*(iw)retc.,

may be obtained by substituting ei'T lor z in their corresponding z-fuansfer functions.

For instance,

D.(ir) : D(z)1,="i,r. (5 - 13)

In the above derivation, there is no approximation or dummy discretization in-

volved and therefore, the hybrid frequency response Ètjr) represents the actual fre-

quency response characteristics of the closed-loop system. In particular, it carries the

information about the system inter-sampling behaviour.

After having defined the hybrid frequency response for a hybrid control system,

the difference between its discrete and actual frequency responses can be readily deter-

mined. Ler Dþ(jw) be

Then from Eqs. (S-t) and (5-13), the system discrete frequency response H(iw) is

H (i ") -- oh U ")G ¡,G. (j w).

The system hybrid frequency response ÊUù in Eq. (5-12) can be rewritten as

ït U ") 
: Dþ(j w)G ¡(j w)c (j w).

5-4
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The difference between the magnitude of H(jw) and that of Ê$Q is thus given by

lï(iùl - lÈ,(¡")l: lDþ(ju)lllG¡G.u,r)l - lgnuùeuùll (5 - 17)

Correspondingly the phase shift of H(iù with respect to .ü(jø) is

t H (j w) - t It $w) : LGnG' (iù - tG ¡(iw)G(iù. (5 - 18)

Equatiou (5-17) reveals that, if the system discrete frequency response agree with a

model very closely, i.e., H(ju\xM(ir), the matching error of the system actual fre-

quency response to the model in magnitude is directly proportional to the discrepancy

between the magnitudes of the plant discrete and continuous frequency responses.

95.3 Nurnericalexample

Three design examples are extracted from the design studies of Group I in section

4.2 lor comparison between the discrete and hybrid frequency responses. These are

designed for Plant I by the ICCF method with T - 0.5, 2.0 and 4.0 s. The frequency

response models zre M2(jw), Mt(ir) and Ma(iw) (see Tbble 4-3, P. 4-10) with ft :

0.5, 2.0, 4.0 s, respectivety. The coefficients for the digital controllers resulting from

the design studies are given in Table a-6(p. 4-20).

The hybrid and discrete frequency responses of the resulting closed-loop systems

with ? - 0.5, 2.O, 4.0 s are plotted in Fig. 5-2 (a), (b) and (c), respectively, together

with the corresponding models. Since the hybrid frequency response fromwrfZ to w,

is of interest (and since it cannot be obtained by tahing mirror image of that from 0 to

w, f 2 in the complex plane), the frequency responses are plotted from 0.1 to t.rr. Fig. 5-3

shows the time responses of both the models and the closed-loop systems.

Flom Fig. 5-2 and 5-3, the following observations can be made.
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(l) The discrete frequency responses of all designs match the corresponding fre-

quency response models very closely.

(2) The contiuuous time responses of all designs agree closely with the time responses

of the discrete models at sampling instants.

(3) The magnitudes of hybrid frequency responses in all cases possess a resonant

peak at up : wrlL. The gradients of their phase curves vary rapidly in the

frequency band near ü/p where the value of phase shift tends to -360o.

(a) Ripples on the system continuous time response y(t) emerge after y(ú) reaches

its first peak. These ripples oscillate al wo at which the resonant peak occurs.

Tbeir magnitude becomes increasingly large as the sampling frequency decreases

and the resonance peak value of the hybrid frequency responses grows.

(5) The relationship between the maximum overghoot Mo of. the continuous time

responses and the resonance peak value Mp of. the hybrid frequency responses is

approximately consistent with the analysis in Chapter III , where Fig. 3-5 shows

the relationship between the marcimum overshoot and the resonance peak value

for second-order systems. For instance at T-2.O s, M¡æ0.9 dó, the mærimum

overshoot is l0%. Furthermore, when I is 4.0 s, Mü reaches 3 dô and the

marcimum overshoot jumps to 35To. However, in the case of T:0.5 s, the value

of. Mp is -3.4 db arid the overshoot is 6%. This last set of values is not covered

by Fig. 3-5 because the order of the system under study is higher than second

and the value oî. Mg is lower than 0.6 dö(see p.3-la).

It should be pointed out that Plant I (with a ZOII) is an overdamped system with

a zero near the point (-1, i0) in the z-plane. To match the model, the ICCF method

tends to cancel the effect of this zero on the system response by placing a closed-loop

pole on the real ar<is near to -l point as well. In the frequency domain, thìs real pole

contributes a high resonant peak at wpii\ the time domain, it yields a controller output

containing a slowly decaying "oscillatoryt mode whose amplitude changes its sign each

sampling instant. The ripples on y(ú) therefore oscillate at wo.
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The resonant peaks on the hybrid frequency responses shown in Fig. 5-2 are

mainly due to the deviation of G6G'(jw), the discrete frequency response of a plant,

from G¡(jw)G(jw), the continuous frequency response of the plant. As an example,

in Fig. 5-4 are drawn the magnitudee oL G¡G'(ju), G¡(ju)C(ir) and Dir(iø) as well

as H(jw), ÏtU{ and M(jw) for the case of 1:0.5s. With the frequency shifting to

u,/2, GnG' (jø) diverges from G¡(jw)G(jø) and reaches its lowest point al u"f2. To

compensate G ¡G' (jø), the resulting digital controller yields gain peak zt w, f 2 so that

H(j") matches the model M(j"). However, because the magnitude of G¡(ju)G(1ø) is

higher than G¡G'(ir) near wrf 2, the frequency response of the closed-loop system is

over-compensated with an excessively high resonant peak at wrf 2.

Magnitude (dò)
60.

Di'U')

- 20.

- 00,

G¡(ju)G(ju)

-100. u(rodls)
0.1 1.0 u,/2 lo. u¡

Figure 11 Magnitudes ol the \requency responses H(iw), ÈU"), MU"l, DhU"), G¡C'(jw)

and G¡(jw)G(jwl of the hybrid control s¡'stem îor Plant I , desiped by ICCF witå 1=0.5c

20.

0.0

G¡G'(jur)

{
H(i')
M(iu)

5-9



S6.4 Conclusiong

The hybrid frequency response has been derived in this chapter for closed-loop

hybrid control systems consisting of both digital and analogue components. The com-

parison between the hybrid and discrete frequency responses was demonstrated in the

numerical example. Owing to its continuous nature, the hybrid frequency response

fully characterizes the true nature of the dynamic performance of the hybrid control

system. Consequently the continuous time response can be predicted more accurately

by the hybrid frequency response analysis thau by the discrete one, which suffers when

used for designs with low sampling frequencies due to the lack of information about the

system inter-sampling response. Moreover, the investigation shows that, if the discrete

frequency response of the resulting closed-loop system matches the model closely, the

matching error of the closed-loop actual frequency response to the model is proportional

to the difference between the discrete and continuous frequency responses of the plant.

The potential for improvement of frequency response matching design methods

based on hybrid frequency response analysis appears promising. For instance, one may

match the hybrid frequency response, instead of the discrete response, of a closed-loop

control system under design to a specified model so that ripples between sampling

instants can be minimized. It is suggested that such a model be a continuous frequency

response over a frequency band of interest. The investigation of the hybrid frequency

response matching design method is thus a subject worthy of future research work.
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CHAPÎER VI

SUMMARY AND CONCLUSIONS

The frequency response matching technique for the design of digital controllers

has been investigated. The aim of this technique is to design a digital controller so that

the frequency response of the resulting closed-loop system matches a specified frequency

response model. In addition to the discussion and evaluation of Shieh's dominant data

matching design method (DDM) and Rattan's complex-curye fitting design method

(CCF'), both of which were reported in tbe literature, the main contributions of this

thesis are:

o the development of the iterative complex-curve fitting design method (ICCF)

that improves the frequency matching accuracy of the CCF method;

o the development of the simplex optimization-based design method (SIM) which

improves the suitability of the frequency response matching design technique for

the overdamped plant at low sampling frequencies;

o the assessment of the detrimental effect of the discrepancy between the primary

frequency range of a system under design and that of a model upoû the matching

accuracy and dynamic performance of the resulting system;

o the development of a systematic method for selection of an appropriate discrete

frequency response model from performance specifications given in the time,

frequency or complex z- domains;
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o the definition of the hybrid frequency response which fully characterize a closed-

loop system containing both discrete- and continuous- time components.

The initial step in the design by the frequency response matching method is to

determine an appropriate frequency response model from a set of performance specifica-

tions for the closed-loop control system. This model may be a set of dominant frequency

response data, or a discrete or continuous transfer function, depending on the method to

be employed. Then the parameters of a digital controller can be determined by means of

a number of techniques so that the error, defined in different senses for different meth-

ods, between the frequency response of the closed-loop system and that of the model is

minimized for frequencies from zero to one-half the sampling frequency.

These methods are analytic in nature and hence are amenable to solutions using

general purpose digital computers. For higher order control systems, these methods

yield more accurate designs than does the root locus method based on the assumption

of the existence of a pair of dominant poles. Moreover, unlike design methods based

on the time domain synthesis, the design is independent of the type of input signals

and therefore the performance of a resulting closed-loop system is not subject to any

restriction on the type of input signal, as in the case, for example, for the design of

deadbeat controllers.

Comparative studies are conducted based on the two third-order, continuous-time

plants, one being overdamped and the other underdamped. The studies are organized

into three groups in order to:

l. evaluate the features of the existing DDM and CCF methods as well as the new

ICCF and SIM methods;

2. investigate the effect of discrepancy between the primary frequency range of a

closed-loop system and that of a model on the matching accuracy;

3. assess the convergency and speed of convergency of the optimization-based design

methods.
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The comparative study in Group I shows the suitability of the frequency re-

sponse matching design methods when applied to two different types of plants, i.e., an

overdamped plant and an underdamped plant. The decrease in sampling frequency may

reduce the error in discrete frequency matching but may increase the ripples between

sampling instants. In fact the matching error between the hybrid(actual) frequency

response of the cloeed-loop system and that of the model becomes larger when I gtows,

as shown in chapter V .

Shieh's DDM method determines the z-transfer function of a controller by match-

ing the system frequency response to a specified model at few dominant frequency points

and therefore is the simplest method. The high matching accuracy can be achieved with

very light computational burden. But the direct relation between the number of domi-

nant frequency points to be matched and the order of controller may force the designer

to choose a very high order controller if more frequency points are required to specify the

model. It is shown by this author that the non-linearity of results in Shieh's example[4]

for the design of a controller with an integrator can be removed by choosing appropri-

ate dominant frequency points. As a result, the relevant computational algorithm is

considerably simplified and the convergency problem is avoided.

Rattan's CCF method minimizes the weighted mean squared error between two

frequency responses iu transfer function form. At low sampling frequencies, the accuracy

of matching is high. On the other hand, at high sampling frequencies, typically u, )
25w6, the error increases rapidly because the value of the weighting factor becomes

extremely small. The numerical intègration involved imposes a heavy computational

burden on CCF.

The ICCF method proposed in this thesis is based on CCF and is able to eliminate

the weighting factor in Rattan's algorithm by using iterative calculations. The matching

accuracy at high sampling frequencies can be significantly improved in 2 - 3 iterations.

The disadvantage of this method is its heavy computational load.

The DDM, CCF and ICCF methods employ no constraints on the location of
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controller poles and zeros in the z-plane. Such constraints might be desirable when

controller poles and zeros are required to reside in eome specified regions for the sake

of system stability and dynamic performance.

The new method SIM enables a designer to confine the controller poles and

zeros to desired regions in the z-plane. SIM then searches the optimal poles and zeros

within the desired regions by means of the simplex optimization algorithm so that the

squared matching error is minimized. When dealing with an overdamped plant with

a zero near to (-1,i0) point in the a-plane, SIM yields satisfactory results at low

sampling frequencies while the others fail with highly oscillatory control signals and

cotrsequetrt ripples on the system output. The design examples in Group I and 3 show

that arbitrarily-assigned initial estimates for controller poles and zeros do not affect the

convergency of optimization but the speed of convergency. To achieve a compromise

between speed of computation and matching accuracy, d two-stage design strategy is

suggested in which DDM is employed for the initial design that is then optimized by

SIM. Unfortunately there is no simple method to select appropriate constraints and

optimization operation parameters in each design cilse. Therefore a successful selection

may be subject to the designer's e>cperience and skill.

RSO is another optimization-based design method formulated by this author.

The random searching optimization algorithm employed in RSO is initiated by Luus and

is reported to be successful in solving model simplification problems. RSO is evaluated

in the design studies of Group 3 a¡d compared with SIM. The performance of RSO is so

poor that it could not converge to the optimum after thousands iterations. The failure

of RSO is attributed to its dependence on the initial estimates. ÏVith a large uumber

of optimization variables, the possibility of the random search striking an optimum

becomes extremely small if the initial estimates are not close to the optimum and the

size of searching region is large.

Although m¿thematically the type of plant has little influence on the accuracy of

discrete frequency response matching, it does affect the design in terms of time response
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characteristics. In particular, in both the overdamped and underdanrped plants, ripples

between sampling inetants are present on the time response of the closed-loop systems.

Ilowever, the ripples arise for different reasons in each case. For the overdamped plant,

the resulting controller frequency characteristic usually possesses high gain in the high

frequency band eo that its time response is likely to be oscillatory. Such an oscillatory

control signal renders the design impractical in many electromechanical control systems.

For the underdamped plant, its oscillatory nature may yield ripples because the system

is effectively in open-loop mode between sampling instants, typically when u" 1ltro,

øo being the frequency of oscillation of an open-loop plant. Therefore the dynamic

characteristics of a plant should be carefully considered when choosing a design method

and selecting a sampling frequency.

It must be emphasized that one plant under study possesses a heavily overdamped

characteristic and the other a highly underdamped characteristic. Consequently the

application of results of these studies may be restricted to similax types of plants only.

However, these results provide useful clues to the design of plants the characteristics of

which are not as extreme; further studies are required on such plants.

Because of the limited primary frequency range uo of. discrete systems, the fre-

quency response of a closed-loop system cannot match that of a model very closely if

they have different valueg of. w, due to different sampling periods. The effect of guch

discrepancies between the frequency response of the system under design and that of

the model has been investigated by design studies for various types of plants. It is

demonstrated that, when wp 1 wpm(T ;, T^) and øo ( (3 - 6)r¿, the discrepancy

degrades the performance of the resulting closed-loop systems significantly. The analy-

sis of results suggests that a sampling frequency ø" higher than (6 - l?)wu should be

used if the frequency response model is derived from a continuous transfer function or a

discrete transfer function with T'n ( î. On the other hand, if t,r" has to be chosen lower

than (6 - l})wu, the frequency response model should be specified from an appropriate

z-transfer function wit'h T* - f .
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To help determine a meaningful frequency response model, which is derived from

a second-order z-transfer function and is based on performance specifications framed

in one or more of the time, frequency and complex z- domains, a systematic and user-

oriented approach is developed and applied to the design studies. The approach is

based on a thorough investigation of the dynamic characteristics of second-order discrete

systems having a pair of complex poles and a zero. The results are presented in equatiou,

graphical and tabular forms. In addition, the sufficient and necessary conditious for an

open-loop second-order discrete system to be closed-loop stable are derived and proved.

As shown in the design studies of Chapter IV , the frequency response match-

ing desigu method yields a digital controller design for which the discrete frequency

response of the closed-loop system perfectly matches the specified discrete frequency re-

sponse model. However, for the hybrid digital control system containing both discrete

and analogue componeuts, it should be borne in mind that there are two fundamental

deficiencies in the desigu based on the digcrete frequency response. First, the design

derived from discrete frequency response yields the time response only at sampling

instants. Second, the discrete frequency response of a plant with a ZOH is an approx-

imation for its continuous counterpart within the primary frequency range O - ur12.

The accuracy of the approximation deteriorates when the frequency increases close to

wrlL. As a result, the closed-loop system may be either over-compensated or under-

compensated. One of the usefull contributions in thig thesig is therefore the derivation of

the actual frequency response of hybrid control systems, refered to as hybrid frequency

response. Its application to the analysis of closed-loop dynamic systems is illustrated

in an example. It is shown that the system continuous time response can be predicted

more accurately by the hybrid frequency response than by the discrete response, es-

pecially when the sampling frequency is low. Although lack of time prevented further

investigations, the potential for improvement of the frequency response matching design

technique based on hybrid frequency response analysis appears promising. Its imple-

mentation is worthy of future research work.

6-6



In addition to the deficiencies pointed out above, the major disadvantage of the

frequency response matching design technique is its uncertainty about the etability of

resulting closed-loop systems. tr\rrthermore, the SIM method requires userts experience

and skill to determine suitable constraints. If these deficiencies can be overcome, this

powerful computer-aided design technique will be widely applicable.
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APPENDIK A

Objective function E as function of )

The objective function -Ð of the non-linear programming problem for the design

of a digital controller is defined in Eq. (2-47) as:

N
ø:D [úq (r¿) -,9 uo@¿\lt + lrþq(";\ - rÞ uq@¿\12 (á-1)i=1

: Í(xO; ZLt zzt. .. t zmiPt¡PZ¡. . . rPn),

where,
tq(r;) - 20log1s lQU";)|,

8¡re(r¿) - 20lo916 lMq(irù',

,þq(rr) : argl. QUrù l,

,þuo@ù : ørsl Mq(jrù l,
and ørg[ o ] represents the argument or phase angle of I o ] in degrees.

The system open-loop frequency response is defined in Eq. (2-5) and repeated

here:
QU "¿) 

: D(z)G nG(z)1,- ¿ ",r (A-2)
: D(iw;)GnG(iw¿), d : 1, 2,. . ., N.

If Eqs. (2-50), (2-51) and (2-52) are substituted into Eq. (2-44) for D(z), Eq. (A-z)

becomes

QU"ù : GnG(iw¿)'
(roe-lrol¡¡¿iw;r - 0t,e-lx.'l - v,)l

[ei"ir - (Frr-lx**t | -'ù1"'
. . .(eirir - ,-l)--rl ¿ine-l\^'¡ç"ir,, - ,-lÀ--rl e-ine-l\^|,

. . . (ei w ir - ¿-l\^ + n - l ¿i n e-l^^ +"1 
) 1ri " rr - ¿-l\m +n - il ¿- i n e- l^ ^ +" 1 

¡t
(,{ - 3)

with i:1r2,...,/Y
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Note that G¡G(jw;) is knowu aú Mq(ju;) is specifred. The objective function

.E is therefore a function of À¿, i : 0,1,. .. , m * nt

E [20 logl q lQ U, ùl - 20 log 1s lM q(i, ùll2 +lar s[q U, ùl - ør slM q(i, ù]12

: F()0, Àt, )2,..., À-+o),
(a-4)

where QUw;) is defined in Eq. (A-3) and /Y ig the number of gelected frequency points.

.¡vt
d=l
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APPENDD( B

Variation range of the parameter a

The parameter a, defined in Fig. 3-2 and redrawn in Fig. A-1, is introduced by

Kuo [l] to describe the position of a rèal zero 21 of hþ) of F,q. (3-f ) relative to a pair

of complex conjugate poles P and P. The value of a is positive if ft is to the right of

z' , the vertex of the right trian gle LP z' Q, and is negative otherwise. In an attempt to

investigate the dynamic response of h(z), this author derives the bounds on the value

of a.

Im
1.0 z-plane

.0 Zt 1.0

-I

Figure A-l Position oîthe zero 21 relative to the poles P and P in terms oIa

a Re
Roz'

xp

02
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It is apparent from the definition that the upper limit on the value of a is +90"

as Zy approaches the point of (1, j0). On the other hand, the lower limit a¿.¡. is not

a constant but a function of the position of the complex poles. Fig. A-1 illustrates the

relation between the zero and the poles in terms of a, where .B and f represents the

real and imaginary part of the complex pole P, respectively.

It is shown in Fig. A-1 that, when zthes to the left of the point z* (a < 0),

lol :90-fi-02.

Note that
gt:ts-L*'

0z: ts-t# 
^ 

'
arrd 02 + 0 when Zt - -oo. Thus

üt.t.: lim -l"lZt--æ

: ,,rs_(rs-r, _ *I + ts-r {-- eo)

-ts-1*-eo.

In summary, for a pair of complex conjugate poles RLiI, the range of the

parameter a is

(tg-tJ"-eo)"<c<eoo.
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APPENDIK C

lime Ìesponse anaþsis of lr(")

The derivation in this section basically follows the work of Kuo [1]. The closed-

loop transfer function of the second-order discrete system is defined as:

Az* B
- z2+Cz*D'

The time response o!. h(z\ to a unit-step input signal R(z) : * is given by

applying the inverse z-transformatiou otY(z), the product oI h(z) and R(z),

h(z): 
1" - n¡1" -) r¡

Zt)
(z - ¿-€,r"T +i''oT )(z - ¿-(,u"T -i"'T)

Y(nr) : + frv{")""-'a"
I

,"i

(c-r)

(c -2)

lPl" . cos(nwoT + ö), (C - 3)

where I is a closed contour that encloses all singularities of the integrand.

Solving of the contour integration (C-2) by Cauchy's residue theorem yields

Y(nT):L*2

ó:t(P-zù-\(P-Ð-i.
A-5

where



Flom Fig. 3-1, it can be readily observed that

a-L(P-zù-L(P-l)+ 1C (c-4)
2

Hence

ó:a-r. (c-5)

F\¡rther inspection on Fig. 3-l reveals another important property of a, namely

lsec al : 2
A(P - zù (c-6)(P-lXP-P)

Substitution of Eqs. (C-5) and (C-6) into Eq. (C-3) leads to:

Yþf) - I + | secal . lPl" . cos(nwoT * a - r). (c -7)

Assume ú: nl, then

lPl" : vÚ : ¿-€,unt, (c - 8)

and

nwoT : ,¿oy[ -@ - ¿. (C - 9)

Thus the discrete unit-step response Y þf) can be approximated by a continuous func-

tion y(t) that passes through all points oIY(nT),

y(t) : I * f sec al. ¿-(o"t . 
"o"(rn1ffi 

. t + a - r). (c - 10)

The peak values t!, ot y(t) can be found by taking first derivative of y(t) with

respect to ú and setting yt(t) to zero. This results in

tg(r,\/l- ç2.fo*a-nr)

_È

1-€2

\Ã4

_Ê\ (c - ll)

{e
lr: r,PLÏe--

and
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with ¿ : trLr... . The time to for the peak of y(t) corresponds to n:1, i.e.,

€Ç:;ñÞFþu-'( ),R -a*r (c - l3)

Assume that the manimum value of y(ú) occurs at its first peak. Then the

ma>cimum overshoot Mo is

Mp: y(t)l¿=¿, - I
: lsecal r-€'."Ét"-'(ffi)-'*"| (c -t4)

Remember that the continuous-time function y(ú) represents the discrete function

Y (nT) only at the sampling points t : nT¡ r¿ : 0, lr2, . .. . Because to is not necessarily

a multiple of 1, the actual maximum overshoot of the discrete system may be not equal

to but may be smaller lhan Mo.
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APPENDIK D

Þequency response analysis of 9(a) and h(")

The specifications of the open-loop frequency response g(iw), such as PM and

GM, and those of the closed-loop frequency response h(jw), such as ur, M, and w6,

are derived in this section as functions of the system coefficients A, B, C and D, or

functions of. (, wo and a indirectly (see Eqs. (C-l) and (C- )). The derivations of ø"

and M, are refered to Jury's work [22].

The frequency response of the open-loop transfer function g(z\ of. Eq. (3-5) is

gUw): g(z)1,="i,r

AeirT + B
¿i2ur + (C - A)ei,t + @ - B)'

(D-r)

Substitution of ei"T by cos øî * j sin øî gives

sjw): (.Á cos wT * B) + j Asin wT

[cos2t.rÎ +(C - z{)cos wT *(D - A)] + ilsinàuT +(C - Á)sinuTl

: ¡o(¿)¿i'þa@).
(D -2)

The magnitude ro(ar) is

ro(w) : lgff")l

Az + Bz *2ABcoswT
2(D -B)cos ZwT * 2(C - A)(D - B + 1)cos uT * @ - n¡z + (C - A)2 + t

At the gain cross-over frequency ar",

ro(w"): l,

A-8
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so that

A2 + B2 +2ABcosw"T :2(D - .B)cos Zw.T +2(C - A)(D - B + l)cosw"T

+(D-B)2+p-t)2+r;

øcos? u"T + 2å cos w"T + d :0;

where,
ø: 4(D - B),

b:c(D-B+t)-A(D*l),
d : c2 + D2 - zAC - zDB - z(D- B) + t.

the solution for cosw"T from Eq. (D-5) yields the gain cross-over frequency ø":

(D-4)
or

or

cosw"T: -l a Iaø bz-adi

b + v@4

(D-5)

(r-6)

(D -7\
1,w": î cos-'

I
aa

I
where, the sign in front of the term l

absolute value or -! + Ida

bz - ad should be chosen in such a way that the

bz - ad be not greater than unity.

tg

Flom Eq. (D-2), the phase angle of. gjw) can be written as:

úo@) - ts-t (AD - BC - A - 2B cos r.rT) sin ø1 (D-8)
2B cos2 wT * (AD - 2AB + BC +Á) cos wT + u

with ¿ : BD + AC - ¡2 - 82 - B. The commonly-used definition of the phase margin

PM:úo(r)1"="" - (-180) (D-e)

Thus, PM can be determined by substituting Eqs. (D-7) and (D-S) into Eq. (D-9)'

PM :1AO + tg-l (AD - BC - A-ZB cosu"l)sinar"f
2B cosz w"T + (AD - 2AB + BC + A) cosø"Î+ u'

where ø" is defined in Eqs. (D-7) and (D-5) and ¿ in Eq. (D-S).
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Let wo be the frequency at which ,þc@) reaches -180" for the first time, i.e.,

teÍúc@òl: ts(-180) : o.

From Eq. (D-8), the above conditions will be satisfied if:

sinørT:0, (D - 11)

Ã AD-BC-A
COSUgI : 

ZB
(D - L2)

II IAD - BC - Al < l2Bl, the solution of Eq. (D-12) is given by:

or

1-'tìc: 
T 

cos ' (D - l3)

So the gain margin is

GM : -20 logl¡[rc@òl

A2 + B2 +2ABcoswoT (D - t4)
- -201o916 4(D - B) cos2 woT * 2(C - A)(D - B + 1) cos woT + a

with u : (C - A)2+ (D - B -l)2. Ilowever, if IAD - BC - Al> lzBl,the phase angle

oî. g(jw) will not approach -180" until u? reaches zr as sin r : O. In this case,

(D - 15)

GM : -20log1s
A+ B

4 D_ _A +l + C_A) + D_B_I

(D - 16)

The analysis of the closed-loop frequency response /r,(jø) is conducted in a similar

manner. Ftom Eq.(&3),

h(i") : h(z)1"=¿,r

(á cos wT * B) + i Asin uT
(cos2uT * Ccos uT -f D) +i (sin ZuT * C sinwT)

: ¡n(1¿'1¿i'l'n@).

A-r0

1(,o: T,
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The magnitude r¡(ø) is

,n@): lh(jw)l

p + pcos ø1 (D - 18)

9 +ZClcoswT +2Dcos\wT '

where,

P:A2*82,
p - 2AB,

þ:c2+D2+1,

1-D+1.
To determine the resonant frequency ø, and the resonance peak value M,, the first

derivative of r¡, with respect to uT is taken as:

þ +zClcosoT +2DcosÀwT
P + Pcosa¡Î

þ + tt cos wT\(ZC'y sin øf + 4D sin?,wT) (D - re)
(þ + ZCI cos wT + 2D cosàwT)z

¡t sin wT(B * Z0lcos ø1 + 2D cosàwT)
(þ + zC lcos øT + 2D cosàwT)z

At t^r,, the derivative of ,n@) is zero and Eq. (D-19) can be simplified to:

ADpcosz wrT * \pD coswrT * (zpcl - þt, i ZD¡t) : g. (D - 20].

The solution of Eq. (D-20) is

cosw,T: -q' + SIGN(¡I
p

(D - 2t)

Ilere the choice of the sign of the second term on the right side of 2t is based

drn@\
d(wr)

I
2

çY-

on the fact that the absolute value of -L + SIGN(¡I
p

not greater than unity, if ø" exists. Accordingly,

IS

Iur: 
Tco9 )2( L

l.t

þp+ Dp-'[- L+sIGN(,ù

A-11
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Substitution of A, B, C and D into Eq. (D-18) lor p, p,, B and l produces

I',r:T cos-' l- +# + sIGN(ats)
(D - 23)

The magnitude oL h(jw) al w, is called the resonance peak value,

Mr: r¡(w)lr=r,

A2 + 82 + 2AB coso"T (D - 24)

4D cosz w,T + zC(l + D) cos w,T * (D - 1)2+cz'

Finally, the closed-loop frequency bandwidth ar6 is defined as the frequency at

which the magnitude of h(i") equals 0.707 (-3 dö), that is,

r¡(w6): A2 + B2 + 2AB cosw6T

2D cos2w6T + \C(l + D) cosw6T + (1 + C2 + D2) (D - 25)

:0.707.

Reamange Eq. (D-25) 
"r " 

second-order equation in terms of cosø61,

I A2 + B2\2 | C(D+ 1XÁ2 + B2\ - AB(Cz + D2+ 1) I\ zAB ) -r- ''

2Dcos2w6T*(C+CD_2AB)co3u6T-ry_(A,+B2+D):0.(D_26\

Its solution provides the required wb,

Lr2AB-C-CDiìb: TcoE-'I 4D

+ (2AB - C - C D)2 - 4D(L + C2 + D2 - 2A2 - 2¡z - 2D)I
4D

(D - 27)

where, the sign of (2AB - C - CD)2 - 4D(t + C2 + D2 - 2A2 - 282 -2D) is se-

Iected so that the absolute value of the sum in the square brackets is not greater than

unity, provided that ø6 exists.

^-t2



ÀPPENDIX E

Stability of a second-order discrete syetem

Let g(z) be the open-loop transfer function of a general second-order discrete

system and å(z) the transfer function of the corresponding closed-loop system with

unity feedback. The forms of these transfer functions are given as follows:

-t _\ _ k(z* * øLz^-l ¡ or) 
.slz):ffii (E-r)

h(z) :
)zl+e(

k(z^*a¡2ìn-t+az) (E -2)z2*dtz*dz

with m:0,1,2 . Then the closed-loop system is absolutely stable with respect to the

open-loop gain k, if and only if:

(l) - :2, an'd

(2) none of open-loop ueros and poles is outside the unit circle in the z-plane, and

(3) there is at least one open-loop zero or pole inside the unit circle in the z-plane.

prooÍ

Flom the root locus method, it is well known that for the system which has less

zeros than poles, or m ( 2, there must be at least one zero at infinity in the z-plane.

Accordingly, as the open-loop gain /c increases, at least one closed-loop pole will move

to the zero at infinity, i.e., out of the unit circle so that the closed-loop system becomes

unstable.

A-r3



When m:2, the system characteristic equation is

t(z) : "' * "fl-:', * Y:+P. (ø-3)

(E-4)

Thus the closed-loop poles are

D-_ a1k*\_ IPt,z:-tffi-,
If Pr and P2 zre a pair of complex conjugate poles, their magnitude is

lPt,zl: 4

(E',- 5)

øzk * bz

,b+r

Suppose that none of the zeros and poles is outside the unit circle, i.e.,

lozl < t; lózl < l.

Also assume that there is at least one zero or pole inside the unit circle, which means

that either lø21 or lb2l,at least, must be less than unity, thus the magnitudes of P1,2are

less than unity to any positive rt as:

lPt,zl:
lsaz + bz

/c+1

This reveals that the closed-loop poles keep inside the unit circle no matter what the

value of the gain ft is , and the closed-loop system, therefore, is stable.

If Pr, P2 are real poles, they must lie between a pair of the zeros or of the open-

Ioop poles, or pairs of the zeros and open-loop poles, hence they are still inside the unit

circle and the closed-loop system is stable.

On the other hand, because the closed-loop poles travel from the open-loop poles

to zeros as å varies from 0 to *oo, Pt, Pz may locate on or outside the unit circle if any

open-loop zero or pole is outside the unit circle.

Hence the stability criteria is proved.

A- 14
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APPENDTK F

TABLE A-1

Relationships between the design speciûcatione in

the time, frequency and cornplex a- dornains

for second-order discrete control systems

This is a numerical table that covers the dynamic characteristics of second-order

discrete control systems, and serves as a useful tool for discrete system analysis and

design. The table is arranged in the order of the complex z-plane variables (, a and

woT. The ranges covered are 0.4 - 0.9 for f, -80" - *80o for o and 0.1 - 1.3 for ør1.

All symbols used in this table are defined originally in Chapter III . For convenience,

they are summarized below, together with an explanation of remarks in the table. An

example of the uee of this table is given in section 3.2.7, p.3-17.

Open-loop system

Closed-loop system :

Flequency responses

of. g(z) and å,(z):

Gcneral

T - Sampliug period in seconds.

Systen Deflnitions

g(z):Æ

h(z):##
gjw): g(z)1,=¿"r

lrj"\: h(z)1"-"i,r

Symbols

A-15



C omplex z -plane ua¡iable s

€ - Damping ratio of closed-loop poles.

t^ro - Oscillatory frequency of closed-loop system response in radf s.

a - Angle in degrees to define the relative location of a zero

to a pair of closed-loop poles.

Unit- step time response

úo - Peak time in seconds.

Mo- Maxirnum overshoot in percent

Open-loop lrcquency response

PM - Phase margiu in degrees.

GM - Gain margin in decibels.

Closed-loop frequency response

ø¿ - System bandwidth in rødf s.

ø, - Resonant frequency in rødf s.

Mr- Resonance peak value in decibels.

Remarks and Abbreviations

CIL - Closed-loop.

OIL - Open-loop.

Out of Range - Shown when a is out of the effective range (a¡.¿., 90"),

where a¿.¿. is defined in Eq. (3-4).

Mono Increasing - Shown when the magnitude of the closed-loop frequency

response increases monotonically.

Mono Decreasing - Shown when the magnitude of the closed-loop frequency

respoDse decreases monotonically.

OIL Unstable - Shown when an open-loop system is unstable.

A- 16



C/L SYSTE¡I IN COI'IPLEX Z-PLAIN I C/L STEP RES. I C/L FREOUENCY RES. I O/L FREOUENCY RES. I SYSTE¡I COEFF¡CIENTS
- | --------- | ------- --- ---- I ------ __ | ________

auoTl PoLESzERolLp/rño(f)tr.,¡brlJrT¡,tF(db)t pñGr.t(db)tABcD
=========== =========== =========

ê-ats -u ¡ l

-80
-80
-E0
-80
-80
-80
-80
-80

0.953+j0. o9a
0.898+j0.182
0.838+jO.259
0.635+j0.435
0 . s63+ j0. 47s
o,42O+ jO,529
0.281 +j0. s51
0.152+j0.54ó

Ràno e
Rànge
Ranoe
Range
Ranoe
Range
Ranoe
Range

-óo
-å0
-ó0
-60
-60
-ó0
-60
-60

0. 9S g+ j0 . O?ó
0.898+j0.182
0. 838+ j0.259
0,635+j0.435
0.563+ j0. 475
o.12O+ jO.S29
0. 281 +j0.551
0.1 S2+j0 , S4á

Range
Rðnoe
Range
Renoe
Range
Range
Range
Rano e

5.
4,
3.
2,
2.

Out ol
Out of
Out of
Out of
out of
0uÈ of
Out of
Oub of

OUL of
Out of
Out of
Out of
out of
Out of
Out of
Out of

0.1
o,2
0.3
0,ó
o.7
0.9
1.1
1.3

0.1
o.2
0,3
0.é
o.7
0.9
7.7
1,3

0.1
o,2
0.3
0.6
o.7
0.9
7.7
1.3

0.1
o.2
0.3
0.ó
o.7
0.9
7.7
7.3

0.1
o.2
0.3
0.ó
0.7
0.9
1.1
1.3

I

-l
-{0
-40
-+0
-40
-40
-40
-40
-40

Ranoe
Range
Range

s,7t
{.90
3.81
3.72
2.64

26. BO
26.80
26.80
2ó.80
26.80

4.929
7.074
l .351
1.å05
1 .830

18
3å
10
7b
33

2.972
2.849
2.697
2.573
2.306

44,94
45,63
46 .97
48.32
49 .67

7.77
ó .89
ó.58
6. tt7
ó. 3ó

0. 000
0. 038
o,t37
o.297
0.390

o,322
0.378
0. 480
0.565
o.628

-7 .270
-7.727
-0. 839
-0.561
-0. 303

o.s92
0.543
0,45ó
0. 383
o.322

-30
-30
-30
-30
-30
-30
-30
-30

0 . 95 3+ j0. 096
0. E98+j0.1 82
0. 83E+ j0. 2S9
0.635+jO.+35
0. 563+ j0.475
0.420+j0.529
0.281+j0.ss1
0.152+j0.5rrå

0uÈ of
Out of

-6.643
-7 .826
-1 ,559
-7 .242
-t,o49
-0.91 1

0. 451
o. 890
1 .031
1 .304
1,Só1
1 .801

o.270
o. s37
o.624
o.796
0. 9ó3
7.724

2,713
2.67A
2.574
2.470
2.347
2.2t6

43.33
44.55
45.05
46.76
47 .32
44"+7

0.0r2
0.11{
o.762
o.275
0, 401
0.533

0.0E1
o.208
o.2s3
o.312
o.127
o.485

-7 ,67 é
-7.27fJ
-7.127
-o.839
-o. só1
-0.303

o.770
o.992
0.543
0.45ó
0. 383
o.322

25.SE
25.58
25.58
25 ,58

0,953+jO.09ó Out of
0.E98+j0.182 0ut of
0.83E+j0.259 out of
0 . 635 + j0. 435-t 903, 5 97
0. sé3+j0.475 -9.673
O,42O+jO.s29 -3.515
0.281+jO.551 -2.2O7
0.152+j0.56ó -1.611

0,s
o.6
0.8
0.9
7.7

Range
Ranoe

10. E5

25.58
s8'rs¡

4?

50

ó5
62
96

11 .68
9.+3
8. 96
L28
7.85
7.êO

.11

.03

.oå

.ót

.02

.Eó

.t3

.Eó

43
43
43
43
44
14
4S
16

-20
-?o
-20
-20
-20
-20
-zrj
-20

0.953+j0.09á
0. 898+j0.1 E2
0. E36+J0.259
0. 635+ JO.435
0.563+J0, +75
0. {20+J0.529
0.2t1.+J0.551
0.1 52+ J0.546

0.103
-o.223
-0.3å3
-0.5s8
-o.s77
-0.590
-o.5å4
-0.5ó8

30.79
15. {0
10.2å
s.13
{.40
3.12
2. to
2.37

25 .44
25. ++
25.4+
25.44
25.44
25 .44
25.4+
25,44

o.190
o.300
o.449
0. 890
1 .033
1.313
1.SE2
1 ,812

0. o90
0.f80
o,270
0.537
o.625
o.799
o.970
7,137

2.77+
2,697
2,685
2. bt7
2. S8s
2,572
2.424
2.343

48.74
26,52
75.97
13.f3
72.06
10.56
9.65
9.O7

0.013
0. 036
0.068
o.207
o.26+
0. 36E
o.519
0.649

-0. ool
o. 006
0. 026
0.11S
0.152
o.22i
0.303
0. 3ô9

-1 .905
-7 .796
-7 .67 h
-7.270
-7.127
-0. t39
-0.5al
-0.303

0.916
0.8¿'0
0.770
o,s92
0. s43
o. +s6
0.3t3
o,3?2



C/L SYSTET.I IN COIIPLEX Z-PLAIN I C/L STEP RES. I C/L FREOUENCY RES. I O/L FREOU€NCY RES. I SYSTEII COEFFICIENTS
- | --------- | ---------- ---- | ------ -- | --------

d uoT I poLEs zERo I tp/T ño(x) I t{bT HrT I'ln(db) I Pll G}t(db) I A I C D

=============-========
€ =o'+

j0
¡0
j0
j0
¡0

o
0
0
0
0
0
0
o

0 0,1
o o.2
0 0.3
0 0.ó
0 0.7
0 0.9
0 1.1
0 1.3

0.1
o.2
0.3
o.ó
o.7
0.9
7.7
1.3

0.1
o.2
0.3
0.6
0.7
0.9
1.1
1.3

0.1
o.2
0.3
0.6
o.7
0.9
1.1
1.3

0.1
o.2
0.3
0.6
o.7
o.9
1.1
1.3

0.9S3+j0.096
0.898+ j0. I 82
0.838+j0.259
0. 635+ j0 . 435
0.5é3+j0.475
o. 420+ jo,s29
0 . 281 + j0. 551
0. tS2+j0.s46

27 .30
13. ó5
9.10
1.55
3,90
3.03
2. 18
2.70

27 ,9tl
27.A1
27 .81ì
27,84
27,84
27,84
27.81
27.84

0.160
0.319
o.479
0.955
1.113
7 .127
7.742
2,066

0.092
0, 18S
o.277
o,ss4
0.646
0 ,829
1,011
7 ,794

3,782
3.119
3.742
3.103
3.085
3.045
3 .004
2. 968

42.42
42,27
47.74
47 .O7
41 .0å
17,28
41 .80
42.55

33.39
27.49
?4.06
18.09
16. 70
14.35
72.36
70.62

0.047
o. tg2
o .162
0. 3ó5
0. 437
0.580
o.719
0.84E

-0. o3ó
-0.0s8
-0. oê8
-o,043
-0 .021

0. 036
0. 102
0.170

0 ,91ó
0. 840
o.770
o.s92
0.543
0.45ó
0 .3E3
o.322

o,7êo
0.s73
o. +23
0,118
0.047

-1 .905
-1.796
-7 .67 6
-t .270

-o.062
-o.7+2
-0.200

-7.127
-0. E39
-0.9ê1
-0.303

20
20
20
20
20
20
20
20

0.953+j0.09å
0.898+j0.182
o, 838+ j0.2S9
0.å3S+j0.43S
o. 5ó3+ j0 , 475
O.42O+ jO.szq
O,Zg7+j0.S51
0.152+ jo.5r,ó

o ,862
o.717
0. ó35
0.38+
0. 318
o.202
8.107
0. 028

23 .41
11 ,97

7 ,94
3.97
3. 40
?.65
2,t6
1 .83

34.50
34.50
34.50
3ç, S0
34.50
34.50
34.50
3¡r. S0

D .182
0. 365
o.s48
1.103
1..293
1.ó83
2.77 7

2,642

4,747
1 ,732
4 .728
4.100
+ .o87
4,0ó1
4,O37
1,427

47,76
40.s2
39 .49
27.4â
37. 0ó
3ó.É3
36,62
36.98

28.28
22.56
I ?.30
13.90
72.72
10 .81
9.27
7 .99

o. 082
0. 168
o,2s6
0. 523
0. 609
o.773
0, 920
{.o47

-0.071
-o.725
-0. 1 ó3
-o.201
-0, 1 93
-0.1sá
-0.099
-0.029

-f .905
-7.79b
-7 .67 6
-7.270
-7 ,727
-0. 839
-o.5ól
-0. 303

0.91ó
0.840
o.770
o .592
0.543
0.456
0. 383
o.322

40
40
40
40
{0
10
ç0
40

O,9S3+j0. O9ó
0.898+j0.182
0.838+ j0.259
o, ó35+j0.435
0. S63+jO.47S
0 . /,20+ j0. S 29
0.281+j0.551
o.7s2+ j0.546

0.911
o, a29
o.7s4
0.559
0.502
0, 398
0 .305
o.227

20.32
10.1ó
6.77
3.39
2,90
2,26
1 .85
LSó

49.29
49.29
19 .29
19,29
+9.29
49 ,29
+9.29
49.29

o.227
o.1s5
0. ó86
7.476
1.ó89
2,344
9.990
9. 990

0.101
o,202
0.30+
0. 608
0.710
o.?76
7.721
1 .336

5 .838
5 .472
s .806
L777
s,765
5.738
s.772
s ,694

31 .75
30.70
30 .17
30. 10

0.1?8
0.2ss
o .379
o,729
0.835
7.O24
L7E2
1.307

-1 .905
-7 ,796
-t .67 6
-7.270
-7 .727
-0. E39
-0.561
-0. 303

o.91é
0, E40
o.770
o,s92
0,5+3
0. ¿'5ó
0.383
o.322

o.o97
o. 193
o.290
0.580
o,677
0.871
1.066
7,261

o
o
0
o
0
o
7

7

I

æ O/L LJnsteble
0/L Unstable
0/L UnsLable

32.50 t 0. 93

-o . 116
-o.2tt
-o.zEb
-o.407
-O . rr19

-0,40E
-0.341
-0. 289

9 .91
8.31
7. OE
ó. 10

60
å0
60
é0
60
60
ó0
ó0

EO
EO

EO
EO
80
80
EO
EO

.953+

.898+
,838+
,635 +
.5ó3+

o.947
0.896
0. 847
o.772
0. ó70
0.588
0.509
0. {33

87 .94
87.94
87 .9+
87.94
87.94
87.91
87.94
a7.9+

0. 335
o. é77
1 ,035
2.528
9.990
9 .990
9. 990
9 .990

. 105

.27 7

.317
,635
.7 42
,959
.179
.40s

8.910
I .906
8.899
8.854
8. 834
8.747
8, 736
I .687

otL
o/L
otL
o/L
o/L
o/L
otL
o/L

Un3tåb I Ê
Unstable
Un¡tabl ¡
Unsta b I c
UnståbI e
ljnsta b I e
Unst¡ b I e
Unsta b I e

o,273
o .477
0.611
7 .177
1.2s9
7 .196
t .671
7.795

-o.202
-0.37ç
-o,51E
-o.796
-0.843
-0.880
-0. Es3
-o .77 6

-t .905
-7 .79ê
-7 .67 6
-7.270
-7 , t27
-o . t39
-0.5ól
-o - 303

0.91ó
o.840
o.770
0.592
0.543
0.456
0. 3E3
o.322

096
782
259

1ó.83
8,41
s .67
2.80
2,40
t.a7
1 .53
7.29

13
6
+
2
7
t
1
7

.435

.175
420+j0.529
287 + jO.S9t
152+j0.5çó

0.953+j0.09ó
0. E9B+j0. I E2
0. t3E+j0.259
0. ô35+j0.435
0.5 ó3+j0. 475
0 . 420+ j0 . s29
0 .281 + J0.951
0. 1 52+ j0. 546

0.981
o.962
0.943
O. TEó
0. t67
0. E2t
O.7Eó
o.7 12

.3t

.67

.65

.22

.91

.48

.2t

.03

294 .89
294.89
2?4.à9
2i1,89
29+.89
291.8?
29+. E9
294,89

0.902
2.1o2
9.990
9.990
9.990
9. t90
9.990
9.990

0.108
o,277
o.326
0. ó55
o.7 66
0.990
1.220
I .45E

1 7. 0+0
17,A23
17.00E
16.923
16.å6(
16.787
16.670
I 6. S37

otL
0tL
olL
otL
otL
otL
0/L
0tL

unsÈ¡b I r
Unrt¿b I c
Un¡t¡b I r
Un¡È¡b I r
Unrt¡b I r
Un¡t¡b I r
Un¡t¡ b I ¡
lJn¡trb I r

0. s89
7.734
1.612
2.82?
3. 12t
3.5EO
3.6+7
3.947

-0.576
-1 .091
-1 . S39
-2.5O7
-2.772
-2.963
-3.025
-2.929

-1 .905
-7 .796
-7 ,67 6
-7.270
-1.727
-0. E39
-0.561
-0. 303

0.916
0. E40
o.770
0.592
0.9t3
0. å5ó
0.383
o.322
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sysrE¡r coEFF'crENTS

-¡---------l--------------t--------t--=---awoTt PoLESzERotLp/Tno(x)tr.tbrr.rcT¡ln(db)t ptl 6m(db)tABcD

f =o's

-EO
-80
-80
-EO
-80
-80
-80
-80

803+ jO
5 84+ j0
s11+jo
370+ j0
240+j0

Ranoe
Range
Range
Range
Rår'ìoe
Range
Rånqe
Range

249
399
430
+66
472

0
0
o
D

0
0
o
o

0,1
o.2
0.3
0.6
o.7
0.9
1,1
1,3

0.1
o,2
0.3
0.å
o.7
0.9
1,7
1.3

0.1
o.2
0.3
0.6
o.7
0.9
7.7
1.3

0.1
o.2
0.3
o.é
o.7
0.9
7,7
1.3

1
2
3
6
7
9
I
3

939+ jO. O9r,
B7Z+ jo . t77

,126+j0.455

0ut

0u
0u

0ut
0ut
0uL
0ut
0ut
0uÈ
0uL

Ou
0u
0u
0u
0u

Out of
Out of
Out of

of
of
of
of
of
oÍ
of
of

of
of
of
of

-60
-60
-ó0
-ó0
-ó0
-60
-óo
-ó0

0. 939+ j0.094
0.873+j0.177
0.803+j0.24?
0.58å+j0.399
0.511+j0.430
o , 370+ jO . {6å
o.24O+ jO,172
0.126+j0.çs5

t
t
f
t
t
t
t

Range
Range
Range
Rång e

of Ranqe
of Rånge
of Rånge

-10.309 t 2.82 24,87 2,238 1.156 7,789 54.23 S.48 0.086 0.885 -0.253 0.223
I

(o -r0
-40
-40
-40
-40
-40
-{o
-40

o.939+j0.094
O . B7t+ j9.777
0 . 8o3+ j0 . 249
0, 584+ j0. 399
0.511+ j0. ¿,30

0 . 370+ j0 . 4ó6
o.2+o+ Js. +72
0.126+j0.455

-3,097
-2.301
-1.s66
-1.202
-o.972

Rånge
Range
Range

s.53
4,74
3. ó8
3. Ol
2,55

16,66
7b.6b
1ó.6ó
16.b6
76,66

0.878
1.015
7.275
1,571
1 ,732

0. 488
0.565
o,772
0.849
0.973

7.233
1 .189
1 .089
o. 978
0. 8ó8

51 .99
s2.27
53. 18
53.98
54.73

9.50
9.77
8.70
6. +ó
8, 3E

o.2s2
0.29å
0.375
0. r37
0. 478

-1.767
-7.O27
-0.739
-0.481
-0. 253

0.500
D.446
0. 354
o.287
o.223

-30
-30
-30
-30
-30
-30
-30
-30

0 , 939+ j0. 094
0.873+j0.177
o. 803+ j0 . 249
o. så++j0.399
0.511+j0.430
0.37O+j0.4åå
o.24O+jO,472
0.126+j0. {9S

-o,962
-o.926
-0.891
-0.791
-0. 760
-0,700
-o.643
-0.588

37.+2
75.77
70.47
5,24
4 .49
3 .49
2 .46

16, 30
1ó.30
76.30
16.30
16.30
16.30
1ó.30
1ó.30

o,747
0.293
o.139
0.86ó
1.004
1.277
7.527
7,773

o,oB2
0.163
o.214
o. 483
0.560
0,711
0.856
0 ,995

7 .24tr
7 .239
7.224
1.7â7
I .140
1 .078
1.013
0.951

sl . ó0
s1.50
s1 .49
51 ,88
s2.7t
s2 .67
s3.27
53 .8ó

?5 ,13
20 .04
77,73
72,A7
72.09
77 -O2
10. 3ó
10.00

o. 006
0.025
0.053
0.18å
o,217
0.361
o,447
0.611

0.00ó
0 .023
o.o47
o.l+7
0.183
0,253
0,313
0.359

-7 .87 I
-7 .7 46
-t , bo7
-t .7 67
-1.o27
-0.739
-0.481
-0.2s3

-20
-20
-20
-20
-20
-20
-20
-20

c . 939+ J0 .094
0. 873+ J0. I 77
o.803+j0.2{9
0. 58rr+ J0. 399
0.511 +J0. +30
0 . 370+ J0 . {ó6
o .2+o+ Jo . +72
o. 1 26+ J0. {55

o.s26
o.2+o
0,0s4

-8,228
-o.275
-0.333
-0.361
-0.370

29.67
14.84

9. E9
{,95
+.21
3.30
2.70
2.2ø

7â.6?
76,62
1b.62
16.62
7É.b2
16.62
7è.ê2
16.62

.885

.o29

.372

.589

.867

0 .083
0. 165
o.2+7
o.492
o.s72
0.730
o.885
f .039

7 ,321
7.377
1 .309
7 .264
t.zso
7.277
I .777
1.13E

s2.os
5t .68
57 .42
s7.22
s1 .31
s7 .62
s2.06
s2.s+

39.4E
33, 40
29.72
li.77
76,97
14. 33
12. a4
t7 ,96

o.o27
0. 062
0.106
o.271
0.333
0. 4ó1
0. sE8
0.70E

-0.01 4
-0,015
-0.006

0.062
0.092
0.15t
o.272
o.262

-1 .878
-t .7 46
-t . êo7
-1.167
-7.O27
-0. 739
-0. 4E1
-0.2s3

0.891
o.794
o,7fJ7
0.500
o.4+b
0.354
o.2sl
o.223

081
129
231
363
192

0.
0.
0.
0.
0.

,891
.791
,707
. s00
.446
.354
.247
.223

0
o
0
o
0
0
o
0

0.
0,
0.
0.
ÍL
0.
1.
t.

0
0
o
0
7

1
1

7

749
298
4+b
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suoTt PoLÊszERo lr.p/Tnp(Í)l¡,tbTunTH¡(db)t PnGn(db)tABcD

€ =o's

0 0.1
o o.2

0.939+j0.094
0. 873+ j0. 1 77
0.803+j0.249
0. Sg/,+ j0. 399
0.511+j0.{30
0. 370+ j0. 4ó6
O.21O+ jO .172
0.126+j0.455

0.793
o,626
0. 489
o.?ot
0.133
0. 025

-0.0s3
-0. 111

26 .18
13. 09
8.73
4,36
3,7 4
2.97
,24
2.47

19.10
19.10
19.10
19.tO
19 .10
19.10
19,10
19.10

0.163
o.327
0, +90
0. 981
1 .145
7.474
7 ,424
2.2fJ4

o.088
0.f7ó
tr.264
D,S2B
o.616
o.792
o.969
1,148

1 .809
r,797
7,793
7,773
7 .7 bS
7.749
7 ,737
7.738

51 .92
50.94
50.14
48. ó8
48.45
44.27
48. +O
14.76

31 .02
25.19
21.å1
76,04
74,73
12.54
10.75
L21

o.061
o, t27
o .797
o,116
0.489
0. 630
0 .760
o.87 1

-0.048
-0.079
-0. 096
-0.084
-0.065
-0. o1 6

0 .040
0.097

-1 .878
-7 ,7 46
-t . ó07
-!,167
-1 . 021
-0. 739
-0.4E1
-0, 253

0.891
o.791
tr.707
0.500
o.446
0. 354
0.281
o.223

O. 939+ j0 , 094
O.873+j0.177
O. 903+ j0. 249
0.5å4+j0.399
0.511+j0.430
0 . 370+ j0 . 4êó
o.21O+ jO.472
0.126+.i0 . {55

0. 8ó8
o.7s2
0. ó50
0. 406
0. 343
o.232
o,741
0.0åå

22.69
7t .34

7 .56
3 .78
3.24
2.52
2,06
7 .75

24 .47
2+ .87
24 .47
2+.A7
24 .87
21 .47
24.A7
2+ .67

0.190
0. 380
o,s7t
1.158
7 ,362
7.79b
2,377
9 .990

0. 095
0 .190
o.286
o.s72
0. óó9
o.8ê2
1.060
7 .263

2,677
?.682
2.689
?.669
2.664
2.658
2.66tr
2.6Tâ

50.55
48,87
47,48
44.é7
44 .70
43.39
43,20
43. t3

26,93
27 .26
18,0ó
12,82
71,7D
9.89
8. 49
7 .35

0.095
0,191
o.247
0.562
0.646
0.800
0. 932
I .039

-0. 083
-o.144
-0. I E7
-0.229
-o.227
-0.1 8é
-0.131
-0 .0é9

-1 .87E
-7 .7 46
-7 .607
-7,167
-7 ,O27
-0.739
-0.4E1
-0.2s3

0.891
o.794
o,707
0.500
o,446
0.354
o.2a1
o.223

I
t\¡o

ó
{
2
1
t
I

0 0.3
0 0.6
o 0.7
0 0.9
0 1.1
0 1.3

0.1
o.2
0.3
o.6
o,7
0.9
1.1
1.3

0.1
o.2
0.3
0.ó
0.7
0.9
7.7
t.3

0.1
o.2
0.3
0,å
o.7
0.9
7.7
1.3

0.1
o.2
0.3
0.6
0.7
0.9
1.1
f.3

19 .20
9. 60
6. 40
3.20
2.7 +

?.73
7.79
1.48

15.71
7.85
s.24
2.62
2.24
7 .75
7 .43
7 .27

20
20
20
20
20
20
20
20

r0
40
+0
40
t0
40
40
40

ó0
å0
60
éo
60
ó0
ó0
ó0

0.939+ j0.09tt
0,E73+j0.177
0.803+j0.249
0. 584+j0.399
0.Si1+j0.430
o. 370+ jo. 4ó6
o.21O+ jO.472
0.12ó+j0.4Ss

0.910
0.828
o.75?
o.5s7
o.501
0. 398
0,30E
o.227

0.238
o, 478
o.722
1 .508
1.811
2.691
9. 990
9,990

0.102
0.205
o. 308
0, 618
o.722
o. 934
1.151
7 .377

4,188
+.787
4.18+
1 .770
+.765
1 .757
4.156
4.769

o. 140
o.275
0. {0s
o.757
0.850
7.O27
7.756
L 255

-o .7?7
-o.228
-0 .305
-0. /r1?
-a .42ê
-0.407
-0.356
-0. 285

-1 .878
-7,746
-1 , å07
-1.167
-1 .021
-0. 739
-0.481
-0.2s3

0.891
o,794
0.707
0.500
0. ç+é
0.354
0.281
o.223

37 .32
37.32
37.32
37.32

O/L Unstable
0/L UnsLable
0/L Unstable

38 .82 1 0. 32
37 .9? 9.35
36. 70 7 .84
36.1tr 6.77
36.17 5 .84

37.32
37.32
37.32
37 .32

O. 939+ j0.094
0 .973+jO.1 72
0 . 803+ j0.249
0.584+j0.399
0.S1i+j0.430
0.370+j0. 4ó6
O.24O+ jO,172
0.126+j0.45S

o,944
0.891
0.840
0.700
o.65ó
0. s73
0,493
0.{1 è

69,94
69.9tt
69.94
69.9{
69.94
69.94
69,94
b9.94

0. 350
o.708
1 .08ó
3. O34
9.990
9.990
9. 990
9 .990

0. 109
o.279
o.328
0. 661
o.773
7.OO2
7.239
I .4A7

7.031
7 .O37
7 .O2S
6.993
6. 978
6 .9{8
6,979
6.899

0/L Unstable
0/L Unstable
0/L Unståble
0/L unstabl e
0/L Unstable
O/L Unståble
0/L Unstable

26.77 4 .23

o.224
o. ç33
o.627
1.108
7,234
| ,437
1.578
1 .662

-o.277
-0.386
-o,s27
-0.77S
-0. 81 0
-0. 823
-o.778
-0. ó91

-1 .878
-7 .7 ttb
-1 . ó07
-7,767
-7,O27
-0. 739
-0.481
-0.253

0. 891
o.794
o,707
o. s00
0. 446
0.35/'
0.281
0.223

,o7
,04
.75
.3ó
.11

72.22 246,33
.17 246.33

60
EO

å0
EO
EO
EO

t0
80

0.939+jO.09{
o. E73+j0.177
0.803+JO.2{9
0. sE4+ t0. 399
0.511 +j0. å30
0 . 370+ JO . 466
o.2+0+J0. a72
0. I 26+ J0. {55

o.979
0. 958
0.937
o. E7ó
0. Ë55
0.812
o.7 67
0.719 0.91

2+h.33
216,33
2+é.33
216.33
246.33
2+6.33

o.922
2.17 I
9.990
?.990
9.990
9.990
9.990
9.990

o.115
o.229
o.34{
o.69+
o.El 3
I .05ó
1 .309
7.579

1 6.803
14.801
14.785
74.707
74 .662
74,567
1 4.455
I 4.330

0/L
otL
ott
otL
0/L
otL
0/L
0/L

LJnstab I e
Unstable
unsteb I e
Unst¡bl e
Unstå b I e
Unstab I e
Unctå b I !
Unst¿b I e

0.595
7 .737
1.ó06
2,6E1
2.924
3.272
3.,r3E
3.4S{

-0.583
-1 .083
-1 .50ó
-2.348
-2.grj4
-2.658
-2 . ó38
-2. 483

-1 .878
-7 .7 46
-{ . ó07
-7.167
-t.o27
-0. 739
-0. +tl
-0.253

0.891
o.79 4
0. 707
0.500
0. {{ó
0.354
0. 2E1
o.223



-80
-80
-E0
-80
-EO
-E0
-80
-80

o.7 63+
o,s26+
0.4s2+
0.31 ó+
0, 1 99+
O. 101+

.236

.360

.381
,399
.391
,3å3

Range
Range
Range
Range
Range
Range
Range
Range

14.21
9 ,49
4.75
{.07
3. 16
2.59
2.79

of
of
of
of
oÍ
of
of
of

tof
t of
èof
t of
f of
t of

0ut
0ut
0ut
0ut
0ut

0u
0u
Ou
Ou
0u
Ou

j0
j0
j0
j0
,¡0jo

0.1
o.2
0.3
0.ó
o.7
0.9
7.7
1.3

0.1
o.2
0.3
0.6
o.7
0.9
7.1
1.3

0.1
o.2
0.3
0.ó
o.7
0.9
1.1
1.3

0.1
o.2
0.3
0.6
o.7
o.9
t.7
1.3

0.1
o.2
0.3
0.6
0.7
0.9
1.1
1.3

0.923+j0.093
0. 844+ j0, I 71

Out
Out
OuÈ

-60
-óo
-60
-é0
-óo
-å0
-60
-60

0. 923+ j0. 093
0.8{4+j0.171
o . 763+ j0. 23ó
0.526+j0.360
0.452+j0.381
0.316+j0.399
0.199+j0.391
0 . 1 01 +jo. 363

Range
Range
Renge
Range
Range

-5 .3ó9
-2. tt89

77.20
77.20

7.b58
7 .779

o.77 4
0 .788

s7.+7
5E ,38

6.87
7 .75

o.t2s
9.270

-0. 398
-o.202

Range
3.22
2.73

20
0

4S
2S

o ,679
o.é77

o.7?2
o.7+2

¡
\t -40

-40
-40
-40
-40
-40
-40
-40

0 . 923+ j0 . o93
0. 844+ j0. I 71
0.7é3+j0.236
0. 52ó+ j0. 3ó0
0.4s2+j0.381
0.31 6+j0,399
o . 1 99+ j0. 391
0.101+j0.3ó3

0u¿ of
-3.1 43
-1 .8ó0
-1 .063
-0.954
-0. 795
-o.678
-0.583

Range
15.98
10.65

s .33
+.97
3.5S
2.97
2,46

.50

.s0
,50
.so
.50
.s0
,50

o.2a7
o,129
0.841
0.973
7.225
7.465
t .696

o.732
0.197
0.381
0 ,437
0. s41
o. Á3+
0. 719

0.35/r
0.344
0. 300
0.281
o,242
0 .204
0.175

5E.09
s7 .96
s7,97
58.05
s8.28
58.52
s8.72

77.34
15.53
72,57
72.02
77.29
70.92
10. E2

0. 013
0.039
o.772
o.224
0. 349
o.47 4
o.59+

0.041
0.073
0. 1E2
o.217
o,277
0.321
0.346

-7 .687
-7.92h
-1 .053
-o.905
-0, ó33
-0.398
-o.202

o.747
0 .638
o.407
o. 350
o.2s9
0. 192
o.742

-30
-30
-30
-30
-30
-30
-30
-30

0. 923+ j0. o93
o,8r,4+ jo.171
0 . 7ó3+ j0. 236
0.52é+JO.3åO
0. 452+j0.381
0 . 31 ê+jO ,399
o. I 99+ jO. 391
0. 101+j0,3å3

0,381
o. oé9

-0. 1 09
-0. 332
-o.3s9
-0.382
-o, 3E0
-0.3ó4

30.22
15.11
r0.07
5.0/r
a ,3z
3.3é
2,75
2.32

,58
.5E
.5E
.5E
,58
.5t

0.145
o.249
0. 433
0.857
0.995
7 ,266
I .534
1 .80ó

o.067
0.13{
0. 200
o.393
0. 455
0.575
0. 691
0 .809

0.375
o.37 +
0. 368
o.3+2
0. 331
0.30E
0. 288
o.27 6

59.5¡r
s9 .04
sE. óó
58.04
s7 .96
57.91
s7 .93
57.95

+7 .26
35.OS
30. 60
77.76
1ó. 30
74.+6
13,43
12.79

o,o23
0. os8
0. 101
o.266
0.328
0.453
0,57å
0.689

-0.009
-0.00{

o.011
0.ott
o. 116
0. 173
o,279
o.2s1

-t.a+6
-7 .6A7
-7.526
-1 . 053
-o. 905
-o.633
-0. 398
-o.202

O. Eól
o.7 ç7
o. 638
o. {o7
o. 350
o.2s9
o. t92
o.742

I
9
9
I
I
j
9

I
9
9
I
I
9
I
9

58
5E

28 .47-2rl
-20
-20
-20_
-20,
-24
-20
-2fJ

0. 923+ j0 . o93
0. E44+ j0. I 71
0 . 7É3+ jo . 236
0. 52ó+ j0. 360
0.452+J0.3El
0.316+J0.399
o.1 99+JO.39t
0.101+J0.963

0.664
0. 430
0.2é0

-0.033
-0.0E9
-0.1 ó3
-o.205
-o,226

10 .0ó
10.06
10.0é
10.0ó
10.06
10.06
10.oé
10. 0ó

0.1s0
0.300
0. t50
0. E96
I .04+
I .340
t .640
f .9ó1

0.071
o.712
o.272
o.4?2
0.490
o,627
o.76+
0.906

o.480
o.475
0. (71
0. ó55
0.446
0.436
o. {26
0.431

ó0 .19
59.40
s8.76
57.5+
s7.31
s7,o2
5ó.89
só. E2

34. tt2
28.45
24.97
1E. 5t
1ó.96
7+.32
72.72
10.28

o. o43
0.094
0. 151
0. 343
0.409
0.538
0. å59
o,7 67

-0.029
-0.040
-0. o39
0.01 t
0.036
0.0E8
o.135
o,771

-1 . Er6
-l .687
-1 .526
-r .053
-0.905
-0. ó33
-0.3tt
-o,202

o. 8é1
o.7 4t
0. å38
0.407
o.350
0.259
o.192
o, t+2



{ =o.s

STE¡I COEFFICIENTS

BCD
========================

0 0.1
0 0.2
o 0.3
0 0.6
0 0.7
0 0.9
0 1.1
o 1.3

o.1
o.2
0.3
0.ó
o.7
0,9
7.7
1.3

o.1
o.2
0.3
0.6
o.7
o.9
7.7
1.3

o.t
o.2
0.3
0.6
o,7
0.9
1.1
1.3

20
20
20
20
20
20
20
20

60
60
60
é0
óo
óo
60
ó0

0.923+j0.093
0. 844+j0. I 71
o.763+j0.23ó
0.526+j0.3áO
o.452+j0.381
o, 31 ó+ jo. 399
o.1 99+ j0 . 391
0.101+j0.363

o.872
o.6s7
0,528
o.253
0.187
0. 064
0.008

-0. 04ó

72.29
72.29
^ 

) ta
72.29
12.29
72,29
12.29
1?.29

0.169
0.338
0.508
1 ,tr23
1 .199
1 . Só5
7.9ê8
2,489

ó0.19
38.75
s7 .s6
55 ,15
9\ .66
54.00
93.70
53.64

o.07?
D.1Sé
o.237
4,474
0.548
0. ó8¿?
0.801
0. 899

24.98
72.45
å.33
4.76
7.57
2.78

7 ,92

27 .49
70.79

.39

.95

.65

.42
,07
.â7
.32

o. 082
0,1ó3
o. ?{5
o,191
o.37 1
o,747
0.913
1 .09S

o,877
o.87 4
0,873
0. 8ó9
o. 868
8.871
0.883
0.9f 0

28,A?
23.06
1?.76
t4.23
13 .00
77,02
9.45
Lf9

-0.062
-0,103
-o .725
-0. I 20
-0. 1 03
-0. 05 7
-0,007
o.o4t

-1 .846
-7 .687
-7.52à
-1 .053
-0. 909
-0. ó33
-0. 398
-o.202

-t.846
-7 ,687
-7 .526
-1 . OS3
-0, 905
-o.633
-o. 398
-0.202

-1 .846
-t .687
-7 .526
-f .053
-0.905
-0. ó33
-0,398
-o.202

-1 .8fr6
-7 .687
-1.s2ê
-1 .053
-0.905
-0. 633
-0.39E
-0.202

o.861
D.717
o. å38
o.407
0.350
o.259
o .792
o.7 42

o. 923+ j0.093
0.8{4+j0 .1 71
o . 7 63+ j0 .246
0.526+j0.3ó0
0.452+jO,381
0.31 6+j0.399
0. I 99+ j0, 391
0.101+j0.3ó3

0. 869
o.7s4
o ,6s4
0.41S
o. 351
4.2+1
0,15E
0.088

16.99
76.99
76,99
76.99
16.99
16.99
76,99
7b.99

o .799
0. 400
o. ó02
1 .232
7 .158
7,964
2.75O
9 .990

0. 093
0.186
0. 280
0.s63
0.658
0.854
1.057
7.273

.598
,598
.598
, ó01
.60+
,616
. ó40
. b81

53,57
s6,47
s4.62
51 .01
so.26
19 .29
48. 90
49.00

25.54
79,94
16.80
71 .76
to,77

9 .09
7. 80
6.84

o ,777
0, 219
0. 323
0.605
0. ó86
o .8?9
0. 943
1 .031

-0.096
-0.1é5
-4.277
-o,2s7
-o.24t
-D.202
-o.149
-0.091

0.86f
0.741
0. ó38
o. 407
0.350
o.259
o .792
0 .1 ¿r2

1

1

1

7

1

7

I
1

7
3
3

?
7

1

76
58
Ð7

s7
2S
81

18. 00
9.00
6. 00
3,00
2.57
2. 00
7.ê1
1 .38

74
7
4
2
2
7

1

7

I\t\¡
40
40
(0
40
40
40
40
40

0.923+j0 , o93
0.944+j0.171
0.7é3+j0.236
0 .5 2ó+ j0. 360
0. +52+jo.3E1
0. 31 Á+ j0. 399
0, 1 99+ j0 .391
O.1 01 + jO. 363

0. 90ó
0. 821
o.7+3
0.5å4
0.487
0. 385
o.29é
o.219

27,07
27.07
27.O7
27 .07
27.O7
27 .07
27 .O7
27 .07

o,252
0.50ó
o,765
7.624
1 .985
9. 990
I .990
9. 990

D. 10+
o,209
0',314
Ð.632
o.717
0. 9Á3
7.796
t ,147

2 .875
2. 880
2.880
2 ,487
2.883
2,894
2.979
2.964

0/L LJnstable
51.89 t7 ,24
49 .4ê 74.27
44.62 9 .70
43.63 8.78
42.3+ 7,39
4t .47 é.39
42.70 5.65

0.1s5
0. 300
0. 435
o.776
o.867
1.018
7.729
7.20+

-0. 1 40
-tr.246
-0.323
-o.422
-o.122
-o,392
-0.334
-o,26+

0.8ó1
o.747
0. 638
o ,407
0.350
o.2s9
o.79?
o.742

0. 923+ j0. 093
o. E+å+ J0 .1 71
0 . 7ó3+ j0 . 236
0.52é+j0.3é0
0.452+ j0, 3S1
0.31 å+j0.399
0.199+j0.391
0 .1 01 +j0 . 363

53.89
53.89
53.89
s3.89
53.89
53.89
s3,89
53.89

45
48
90
90
90

0.115
o. 230
o.346
0. ó99
0.819
1 .06E
7 .332
7 .622

s.428
s .426
s.422
5.403
5.395
s .383
s.379
s .393

0/L Unstable
0/L Unståble
0/L Unst,abl e
0/L UnEtàble
0/L Unsteble
0/L Unstable

3t ,24 4.79
31 . (5 4.27

o.237
0.4s3
o,646
7.O97
1 .208
7.37+
7.478
1 .529

-o.223
-0.399
-0.s34
-0.743
-0.7ó3
-0. 748
-0. 683

-1 .84ó
-1 .687
-7.526
-1 .053
-0,90s
-0.633
-0. 39E
-o.2rJ20

E00
800
E00
800
t0' 0
to0
EO7
80 I

0. t39
0.881
g.827
o.677
0. ó31
0. s{4
o. +62
0.385

0
o
7

9
9
9
I
9

367

0. ó02
7 .126
7.575
2,376
2.709
2.?45
3. 016
2.9ó0

0.861
o.747
0. ó38
0 .407
0,350
o.299
o.792
0.1+2

0. 861
o.747
o. é3E
o.107
0.350
o.25i
o.192
o.742

7
7

9
9
I
9

88-0.599LZ
90

.1

.2

.3

.ô

.7

.9

.7

.3

0 . 923+ j0 . 093
0 . 8+4+ jo. 1 71
0.7ó3+JO.236
0.52ó+J0.360
0. +52+J0.3tl
0 . 31 6+ J0. 399
0.199+JO.391
0. 1 01 +J0. 343

o.97è
0.952
o.929
0. E59
0.636
o.7t7
o.737
0. ót2

77.O2
5. S1
3. é7
1.84
1.57
1,22
1 .00
0. 85

207 .62
201 . é2
2tJ7.62
207 ,62
207,62
207 ,62
201.62
207 ,62

o.9 47
2.277
9.990
9. 990
9.990
9. 990
9.990
9.990

o ,723
O.2a7
0 .371
0.753
0.88+
1.7s7
7.451
7,782

12.790
12.7 8l
72.7 63
72 ,681
12.6+t
12.51i
72.4(2
12,328

tratllala¡l¡alt¡llrl!aat¡!l¡at!t!¡llr!-t¡-=-===!¡!=-r=t==---E=E==!r=!A====!aE====

o/L
o/L
o/L
o/L
otL
olL
otL
0/L

Unst¿ble
Unstabl e
LJn¡t¡ble
Unst¡ b Ìr
Unst¡b I r
Un¡t,¡blr
Un¡ta b I ¡
UnsL¡b I e

-0.96E
-1 .073
-7.+61
-2. t 62
-2.26+
-2,319
-2.222
-2.O20
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0.1
o.2
0.3
0.6
o.7
0.9
1.1
1.3

0.1
o.2
0.3
o,É
o,7
o.9
1.7
1.3

0.1
o.2
0.3
0.6
o.7
0.9
7,7
1.3

0,1
o.2
o.3
0.é
o.7
0.9
7.7
1.3

0.1
o.2
0.3

I
19qt

-80
-80
-80
-80
-80
-E0
-80
-80

0.9O2+j0.091
0 . 806+ J0. I ó3
o.772+ jO .22O
0.458+j0,31+
0.385+j0.324
o.2s7+ jo,324
0.1s4+j0.3o3
o.o75+ jO.269

Range
Range
Rånge
Rang e
Rang e
Range
Range
Rang e

0uÈ
Out
Out

of
of
of

0ut
0ut
0uÈ
Out
0ut

0ut,
Out
0ut

ol
of
of
of
of
oÍ
of
of

I

I

I

I

I

I

I

I

I

I

I

I

I

5.03 I

s.03 I

5.03 I

5.O3 r

I

4.62 I

4.62 I

+.62 I

4.62 I

+.62 I

4,62 I

+.62 I

4.62 I

-60
-éo
-60
-å0
-ó0
-60
-ó0
-åo

0. 902+ j0. 091
0 . 806+ jo.1 å3
o.772+ jO.22O
0.lt58+j0.31+
o.385+j0.324
0 . 2s 7+ jo.32+
0.154+j0.303
0 .07s+ j0. 2é9

-8 . 110
-2 .625
-1 .51 E

-7 .O2S

Rang e
Range
Range

4. 8E
3 .79
3, 10
2.63

7 .O27
7.238
1.410
1 .963

60.41
é0.94
67 .43
61 .81

8.7 4
8.7 6
9.00
9.+3

0.053
o. 181
o.327
0.458

0. 430
o.176
0,4E7
o.174

-o.770
-0.s15
-0. 309
-0.150

o.2s4
0. 171
0. 11ó
0.078

I

0ut of Range

-+0
-40
-+0
-t0
- /r0
-40
-40
-40

0.902+j0. o91
0. 806+ j0 . 1 63
o.712+ jo.22O
0. 458+j0.31 4
0.385+j0.324
o,2s7+ jo,324
0.15¿?+j0.303
0. 075+ j0. 2ó9

0.190
-o.123
-o.273
-0.40ó
-0.410
-0.395
-0.365
-0. 328

30. å6
15.32
70.21
5.77
{.3E
3. 40
2.79
2.36

o.742
o.28+
o.424
o. 837
o.977
7 ,234
1 .498
7 ,777

65 .3E
64.68
b4.72
62,?7
62.77
62,2A
61 ,90
67.52

42.97
33.40
24.+E
17 ,O4
16.00
14.73
13, é1
11.76

-0.004
0. 007
0. 028
0.113
0.141
0.18ó
o.216
o.229

-1 .80{
-t ,677
-7 .421
-o.977
-o.770
-0.515
-0. 309
-0.1 50

o,82?
o,676
o.555
0.308
o,254
o.771
0.116
0. o78

-20 fL6
-20 0.7
-20 o.e
-:o r .1
-20 t .3

0. 902+ j0. o9i
O. 80å+ jO. 1 63
o,772+ iO.22O
0.4S8+j0.31 +
0. 38S+ j0. 324
o.297+ jO.324
0.154+j0.303
0.075+j0.2å9

0.9O2+j0.091
0. 606+ j0. 1 ó3
o.772+ jO .22O
0.458+jO.316
0.385+j0.32+
o.257+ 1O.321
o.1 54+j0.3ot
0.075+JO.26?

o.226 0.012
¡lono Dec¡eðsing
lfono Decreasing
I'lono Decreas i ng

o.o22 0.oo0
o.o42 0.003
o.059 0.00a
0.067 0. 000
o.029 0 .000

llono Decceasing
¡!ono DecFeesing
I'lono Decseasing

0,035
o.0ó9
o.to2
0,19{
o.222
o.279
0. 345
0. 43E

0. o48
o.o9s
D.712
o.28+
0.332
0,431
0.5+3
o.677

0.0s5
0.058
0,058
0. 056
0.056
0.05E
0.064
o.o77

o
0
0
0
o
0
0
0

0
o
0
0
0
0
0
0

o22
057
103
279
3{3

-30
-30
-30
-30
-30
-30
-30
-30

0. 611
0.356
0. 183

-0. 086
-0. t 30
-o.782
-0.203
-o.2D7

28.90
1(. {5

9 ,63¡
+.82
+. 13
3.27
2,63
2.22

0.017
0,016
0.015
o.o72
0.011
0. 010
0,011
0.01 4

.046

. 100
,7 67
.361
.424
.9Sé
.677
,77 0

-0. 028
-0. 03å
-0,029

0.031
0.05ó
0.101
0. 136
0.1s9

o,822
0,676
0. 555
0. 308
o.2s4
o.777
0. 11ó
0 ,078

4
+
4
+
4
4
4
+

,'l
.85 r

.85 I

.85 r

.85 I

.85 I

.E5 r

.E5 I

.85 I

I

.31 I

.31 I

.31 I

.31 I

.31 I

.31 r

.31 t

o.747
o.295
o,4+7
0.879
7.O25
1.319
t .626
7.970

66.7 6
65.74
64. E8
63.04
62.59
67.87
67.28
60. 75

67.52
66 .17
ó5 .09
62.57
61 .99
61 .0S
é0.3r
s9.77

34. 04
28.03
24.43
t7 .79
1ó.1E
73. +6
17.29
9.57

30.4ó
24,61
27 .20
ls,27
t3:92
11.70
9.9á
8. 60

.471

.591

.699

0. 0ó5
0.135
o. 208
o.427
o.497
o,625
o.735
o.827

-1 .804
-7 ,671
-7 ,424
-0.91 7
-o.770
-0.515
-0. 309
-0.150

-1 .804
-t ,671,
-7 .424
-o,917
-0.770
-o.51S
-0 .309
-0. 1 50

-20
-20
-20

o.726
o.s22
0.3é8
0.-0E4
o.o27

-0. 051
-0. o9E
-0.1 23

0.15ó
0. 31t
o.467
0.939
1 .09A
t.428
1.7E7
2.225

-0.047
-0. o7t
-0.07å
-0.03ó
-0. 01 (
0.032
0. o72
0. 101

o.s22
o.67 6
o. ss5
0, 30E
o.2s4
o.771
0.116
0.078

27.15
13.-ã8
9.05
+.5a
3. t8
3, 02
2.47
2.O9 .31 I

! r!la¡¡!¡ ¡a¡a ¡ ¡ara a aata a al-a!tlar-
"it¡¡r!lÉ¡¡!l¡a¡rra!aa¡¡lra-a¡a¡a¡aaaas!!a¡¡a-t-!t!a¡tara¡-=rta-::-á-r¡::r----==



0.902+jo .091
0. 806+j0. 1 ó3
o .7 72+ jO .22O
0.458+j0,314
0.385+jO.32f
O.257+ jO.324
0.15{+jo.3o3
0 . 075 + j0. 269

0.818
0. 668
0.5 4ç
o.277
o.214
0.1f6
o.046

-o.00ó

23 .66
11.83

7 .89
3, 94
3.38
2,63
2.79
1 .82

7 .O2
7,O2
7.O2
7.O2
7.O2
7 .O2
7 .O2
7 .O2

o.779
0.359
0,540
1.100
1.29t
1.729
2.276
9. 990

0 .070
0,140
tr.217
o.426
o. 900
o.655
o,825
1.018

0.280
0,280
0.281
0. 288
o.293
o. 307
o.331
o. 371

65 .55
á3.8E
ó0.37
59.58
58.43
97.69
57.25

26. bO
20,93
77 .73
r2.50
11.39
I .64
å.3+
7.35

0.098
o.794
0.268
o.s42
0.é15
o.7 43
0.E+ó
o.925

-0.080
-0.1 30
-o.1s7
-0, 1 50
-o. t 32
-0. 086
-0.039
0.003

-1 .80+
-7 .6tt
-t . +24
-0. 91 7
-o,77f)
-0.51s
-0.309
-o, 1 50

o,822
o.676
o. s55
0.308
o.251
o .771
o.116
o. o78

0 , 902+ j0 . 091
0,806+j0.1é3
o.772+ jO.22O
0.6S8+j0.31{
0. 385+j0. 324
o .257 + jO.324
0.154+j0.303
0.075+j0.269

O. Eó4
o.7+è
0. ó43
0. {03
0.3{f
o.237
0.15ó
0.093

20,77
10.09
6.72
3.3å
2,88
2.24
7 .83
1 .55

70.s2
10.52
70.s2
!tr.s2
to,s2
10.52
70.s2
7tr.52

o.273
o,428
o. ó46
7 .346
1.610
2.275
9.990
9.990

0. 069
o.779
o.266
0.54¿r
0. å40
0 .839
1 ,05ó
1 ,301

o.776
0.781
o.763
o.799
0. 808
0. E35
0. 87E
0.943

ó5.81
63.09
6fJ.47
sà. +2
s5.50
s4.29
53, 73
s3.67

24.07
1å.SO
15.45
10.óE
9.71
8.21
7,19
6 .41

0. 131
8.254
0. 368
0.65é
0. 733
0.861
o.9só
1 .023

-0. 113
-0.169
-o.237
-o.261
-0.250
-0.20+
-0. f 49
-o. o95

-1 ,804
-1.611
-t ,42+
-o. 91 7
-0.770
-o.st5
-0.309
-0.1s0

o.822
o. é76
0.555
o.30t
o.254
0.171
0. 11ó
o.07E

40
40
40
40
40
40
{0
+o

0.902+j0.091
0.80ó+ jo,1 ó3
o.712+ jo.22O
o. 4s E+ j0. 31 4
0,385+j0.324
o ,2s7 + jo.32+
0.1s4+jo.3o3
0. 07s+ j0.269

0.898
0. 80ó
a.722
0.513
0. 455
0.353
o.2ê6
o. 193

.78

.38

.85

.s2

18.17
78 .17
18.77
78.77
74.77
18 .77
78.77
t8 .77

o.269
0. s43
o.82+
1.E07
2.276
?. 990
9.990
9.990

0.107
o.214
o.321
0. 653
0. 768
I .009
7,?72
1 .575

7.782
f .783
7.786
1 .804
1 . E15
t .817
1.t9t
7.978

67.74
58,27
ss.+0
50.02
+8.99
47.78
47 .52
48.01

27.58
76.25
13.37
9.03
E .19
ó.96
6.72
5 .55

o.774
0.331
o. +73
0.805
0 .867
f .015
1.100
7.757

-o. I 56
-o.267
-0.3å1
-0.413
-0.40(
-0.358
-0.293
-o.223

o.t22
0. 676
o.5s5
o. 308
o.2s+
o.771
0.11å
o. o78

0 0.1
o o.2
o 0.3
0 0.6
0 0.7
0 0.9
o 1.1
0 1.3

0.1
o.2
0.3
0.6
o.7
0.9
t,t
1.3

o.1
o.2
0.3
0.6
0.7
0.9
1.1
1.3

0.1
o.2
o.3
o.é
0.7
o.9
1.7
1.3

0.1
o.2
0.3
0.6
a.?
0.9
t.t
1.3

20
20
20
20
20
20
20
20

60
ó0
óo
ó0
60
ó0
ó0
60

67 .96

68

sé

I
t9À 16

I
5
2
2
7

7
I

34

o .137
o.275
0.41 a
0. 846
o.99?
I .326
r .703
2,192

1 0. r00
10.790
70.771
I 0.6E8
10.å+9
I 0.560
10.46+
1 0.371

o. å1t
t.127
7.537
2.320
2.159
2. stt
2.565
2. 453

-0.593
-1 .05ó
-1 .40å
-1,?2t
-l .97t
-1.925
-r .75E
-1 .525

-1 .80ç
-1 .ó11
-7 ,42+
-8.977
-o.770
-o.5t 5
-0.309
-0.1s0

-1 .804
-1.ó11
-l .421
-0.91 7
-0.770
-0.sl5
-0.309
-0. I 50

o.822
o.676
o. s55
0.308
0.25+
o.t7t
o.1t ó
0.07t

.28

13. 190. ?02+ j0.091
0 . 806+ j0. 1 63
o,712+ jo.22o
0.4S8+j0.31{
0. 365 + j0. 321
o.2s7+ jo.32+
O. I 5 4+ j0. 303
0. 075 + j0 .269

0. 930
0.8é5
0.804
0.639
0.589
0. {96
0. 41f
0.333

å.59
4.40
2.20
1.E8
7 .47
I .20
I .01

39.20
39.20
39.20
3i.20
39.20
39.20
39.20
39.20

0.390
o.794
1.237
9.990
9. 990
9.99rl
9.990
9 .990

o,723
o.247
o.372
o.796
0.891
1 .775
7 .497
1 .8å9

3. 959
3.9ê0
3.959
3.95E
3. 960
3.972
4. 002
6.0s9

0.255
o.477
0. ó70
1 .0t5
1,177
I .304
1.377
7.392

-9.237
-0.413
-0.536
-o. é93
-0. ó93
-o.6+E
-0.5ó+
-o. 4å3

-1 . E04
-1.é11
-7.+21
-o.91 7
-o.770
-0 . 515
-0.309
-0. 150

o.622
0. å7å
0.555
0.30r
o.2s4
o. 171
0,tfó
0. o7t

0/L Unst¡ble
0/L unst¿ble
0/L Unst,¡ble
O/L Unstebl¡

3E. 20 6. 37
37.00 5 . {1
36.95 1.79
37.91 4.47

ljn¡table
Un¡t¡blr
Un¡È¡ bl e
Unsùrb l¡
Unrt¡b I r
UnrÈ¡bl r
Un¡trb I r
Un¡t¡bl r

I

EO
80
EO
EO
EO
sô'
EO
t0

0.902+j0.091
0.8oó+j0.163
o.772+ jO.22O
0.458+ J0. 3t {
0.369+J0.32+
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0.971
o.9(2
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15E.9t
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9.990
9.990
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o/L
0tL
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0.6
o.7
0.9
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0,ó¿r0+j0,198
0.371+jo.?5{
0. 301 + j0. 253
0. 1 87+j0,23ó
0.105+j0.20ó
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0.751+j0.152
0 . 640+ jO. 1 96
o, 371+ j0. 25rt
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o.727

-7.712
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-o.742
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0.587
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0.047+j0.170
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13. 69
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o,245
o.483
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-o.o77
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80
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0.1
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0.3
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12.40
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o.727
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-0. 01 1
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-1 .501
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-0.209

73.95
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¡aaa ¡
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-20 0.9
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0.751+j0.152
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0.0E9
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0.3
0.6
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0.3
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0.6+0+j0.1 98
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0.0ó7
0.104
o. 235
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64,03
h2.95
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59. 63
s8.22
s7,s2
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70.37
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0. 804
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7 .477
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8.26
7 .51
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9.92
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o.377
o.s26
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-o.224
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-ÍJ.428
-0.534
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0.031



C/L SYSTEI.I IN CONPI-EX Z-PLAIN I C/L STSP RES. I I/'-. FRSQUENCY RES. I C/L FPEQUENCY RES.I SYSTEIÍ COEFFICIENTg
-t---------t--------------t--------t--------d uoT I poLEs zERo I tplT tfp(f) I t¡br t{rT I'tr(db) I pH Gr(db) I A B c D

{' =0. ç

-80
-80
-EO
-80
-80
-80
-80
-80

0 , 8o9+ jo .081
0 . ó49+ j0. 1 31
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Range
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3.11
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0.2
0.3
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0.7
0.9
7.7
1.3

0.1
o.2
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0.3
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0
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I
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0ecreasing
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Decceasing
Oecreasi ng
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Decceasi ng
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-60
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-60
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0. 809+ j0. 081
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-0.1 38
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