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Abstract:  

Structural health monitoring systems based on guided waves typically utilise a network of embedded 

or permanently attached sensors, allowing for the continuous detection of damage remote from a 

sensor location. The presence of damage is often diagnosed by analysing the residual signals from 

the structure after subtracting damage-free reference data. However, variations in environmental and 

operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the 

measured residuals. A previously developed acoustoelastic formulation is extended and employed as 

the basis for a simplified analytical model to estimate the effect of applied or thermally-induced 

stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there 

are special combinations of frequency, biaxial stress ratio and direction of wave propagation for 

which there is no change in the phase velocity of the fundamental antisymmetric mode. The 

implication of these results in devising effective strategies to mitigate the effect of stress induced 

variations in guided-wave damage diagnostics is briefly discussed.  

Keywords: Structural Health Monitoring, Damage detection, Acoustoelasticity, Stress mitigation, 

Lamb waves, Environment and operational conditions.   
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1. Introduction 

Damage diagnostics is often necessary for the safe and efficient operation of civil and 

mechanical engineering infrastructure. Structural health monitoring (SHM) normally refers to a 

process for the in-situ monitoring of the integrity of structures using real-time data obtained from a 

permanently attached or embedded sensor network. Therefore, there is no need for disassembly of 

the components to be inspected as the sensors are an inherent part of these structures. This approach 

represents an alternative to traditional time consuming and labour intensive non-destructing 

evaluation procedures [1-3]. 

In recent years, significant progress was achieved in the development of SHM techniques 

utilising guided waves [4-13]. In particular, it was found that Lamb waves, which are guided waves 

in traction-free plates, can propagate over several metres without significant decay, thereby offering 

the possibility of interrogating large areas of plate-like structures with a small number of sensors [14-

16]. A typical guided wave (GW) based SHM system incorporates a grid of permanently bonded or 

embedded transducers. One of the transducers (or transmitters) is excited with a tone burst of a few 

cycles, generating a stress wave that propagates along the structure. The time-domain responses from 

the transmitter and the receiving transducers are then recorded. This process is then repeated using 

different transducers as transmitters. The signal remaining after subtraction from damage-free 

reference data which exceeds the background noise is assumed to be linked to a defect or mechanical 

damage. However, one of the main contributions to the background noise in real-world situations 

arises from variations in environmental and operational conditions (EOC) such as temperature [17-

21] and loading [22-27]. These contributions will be referred to as noise in the sense that they 

represent unwanted contributions. They are, however, deterministic contributions that can be 

predicted and compensated for.  

Changing EOC is arguably the main reason why SHM systems, which have been developed 

and successfully demonstrated in the last two decades in laboratory conditions, often fail to prove 

their efficiency in the real-world environment. The background noise due to changing EOC can 

interfere with the operation of SHM systems leading to false alarms or to the prevention of the critical 

damage from being detected in service. One way to address this problem is to increase the number of 

sensors, which however can adversely affect the cost, weight and power efficiency of the SHM 

system. For example, Croxford et al. [28] demonstrated that in the presence of even modest 

temperature fluctuations, the number of sensors required for damage detection can be prohibitively 
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high. Therefore, some form of compensation for changing EOC is often essential for guided wave 

based SHM systems to be viable [29,30].  

The effect of temperature variations on damage detection has been extensively documented 

in literature over the past two decades. Subsequently, a large effort has been recently directed to the 

development of various temperature compensation techniques [31-38]. The current paper is focused 

on the noise generation due to variations in applied or thermally induced stresses. It is shown that the 

effect of these variations on the noise generation can be comparable with that of moderate temperature 

fluctuations. Therefore, both effects need to be considered when developing SHM systems for real-

world applications. Another interesting outcome of this work is the identification of certain 

combinations of frequency, biaxial stress ratio and wave propagation direction, for which the applied 

stress has a minor effect on the phase velocity of the fundamental antisymmetric mode (A0). 

Favourable operating points for the fundamental symmetric mode (S0) are also discussed. These 

combinations can provide a basis for developing stress mitigation techniques, which might be 

necessary to comply with cost, energy or weight constraints for the SHM system. 

The current paper is structured as follows. In Section 2, we review the fundamentals of the 

theory of acoustoelasticity following the work of Ogden [39]. This formulation is then used to derive 

dispersion equations for Lamb waves propagating along a non-principal direction in a plate subjected 

to biaxial stresses. In Section 3, we provide numerical results to demonstrate the effect of the applied 

stress, the propagation direction and the frequency on the propagation of the fundamental Lamb wave 

modes. Then, in Section 4, we present an analytical model to quantify the noise due to the applied 

stress and compare the noise levels due to temperature variations and thermally-induced stresses. 

Finally, in Section 5, we propose different strategies to minimize the effect of applied stress in Lamb 

wave based SHM systems.    
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2. Acoustoelastic Lamb Wave Propagation 

The equations governing the propagation of small-amplitude waves in pre-stressed plates are 

briefly reviewed, following the work of Mohabuth et al. [40]. These authors used the theory of small 

deformations superimposed on a large deformation [39] to derive dispersion equations for Lamb wave 

propagation along a principal direction in a plate subjected to uniaxial stress. This framework is 

extended to consider the propagation of Lamb waves along a non-principal direction in a plate 

subjected to biaxial stresses.  

Consider an isotropic plate of density ρ0 and thickness h0 in a stress-free reference 

configuration. Suppose biaxial stresses are applied in the plane of the plate such that its density and 

thickness change to ρ and h respectively. The deformed configuration is shown in figure 1, where the 

biaxial stresses σ1 and σ2 are assumed to be applied along the x1 and x2 directions of a Cartesian 

coordinate system xi = (x1, x2, x3). The propagation of small-amplitude plane waves at an arbitrary 

azimuthal angle ϕ to the x1 direction is considered.  

 

Figure 1. An infinite plate of thickness, h, subjected to biaxial loading.  

The equation of motion in the pre-stressed plate and the corresponding constitutive equation 

are given by 

𝒜piqj  
∂2uj

∂xp ∂xq
= ρ

∂2ui
∂t2

 , (1) 

and  

x1 

x2 

σ1 σ1 

σ2 

σ2 

ϕ 

Stress state 

h 

x3 
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Ŝpi = 𝒜piqj  
∂uj

∂xq
 , (2) 

respectively, where 𝓐𝟎 is the fourth-order tensor of instantaneous elastic moduli, 𝐮 is the incremental 

displacement vector associated with the wave, t is the time and 𝐒̂ is the incremental nominal stress 

tensor. For brevity, the derivation of the above equations is not shown here but we refer to [39] for 

further details. 

In the present work, the elasticity tensor is expressed in terms of a third-order expanded strain 

energy function due to Murnaghan [41]. This form of the strain energy function is commonly used to 

evaluate the acoustoelastic effect in engineering materials subjected to a small pre-stress. The 

elasticity tensor can be obtained to the first order in the strain as  

J𝒜piqj = μ(δijδpq + δiqδjp) + λδipδjq + 2μ(2δijEpq + δpqEij + δiqEjp + δjpEiq)

+ λ(Eδijδpq + 2δipEjq + 2δjqEip) + 2lEδipδjq

+m[E(δijδpq + δiqδjp − 2δipδjq) + 2(δipEjq + δjqEip)]

+
1

2
n[δijEpq + δpqEij + δiqEjp + δjpEiq − 2δipEjq − 2δjqEip

− E(δijδpq + δiqδjp − 2δipδjq)] , 

(3) 

where 𝐄 is the Green-Lagrange strain tensor, E = tr 𝐄, J = 1 + E, λ and μ are the classical Lamé 

elastic constants and l, m, n are the third-order elastic constants. For a given biaxial stress field defined 

by σ1 and σ2 (with σ3 = 0), the components of 𝐄 can simply be evaluated by means of the linear 

theory.  

Since the wave propagation is assumed to be along a non-principal direction, the analysis is 

conducted in a transformed coordinate system xi
′ = (x1

′ , x2
′ , x3

′ ) formed by a rotation of the x1 and x2 

axes about the x3 axis through the angle ϕ. The equation of motion (1) and the constitutive equation 

(2) then transform to  

𝒜piqj
′  

∂2uj
′

∂xp′ ∂xq′
= ρ

∂2ui
′

∂t2
 , (4) 

and 

Ŝ′pi = 𝒜piqj
′  

∂uj
′

∂xq′
 , (5) 
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where all the quantities are now expressed in terms of the rotated coordinate system. We note that the 

elasticity tensor in the rotated coordinate system is related to the elasticity tensor in the original 

coordinate system via the tensor transformation 

𝒜piqj
′ = βprβikβqsβjl𝒜rksl , (6) 

where βij is the cosine of the angle between xi
′ and xj. 

The derivation of dispersion equations for Acoustoelastic Lamb wave propagation requires 

the equation of motion (4) to be solved in conjunction with stress-free boundary conditions at the 

surfaces of the pre-stressed plate, i.e. Ŝ′31 = Ŝ′32 = Ŝ
′
33 = 0 at x3

′ = ±h/2. Following the approach 

of Nayfeh and Chimenti [42], we consider solutions in the form of plane waves propagating along 

the x1 direction  

uj
′ = Uje

iξ(x1
′+αx3

′−ct) , (7) 

where  Uj is the amplitude of the displacement, ξ is the wavenumber along the x1
′  direction, α is the 

ratio of the wavenumbers in the x3
′  direction to that in the x1

′  direction and c is the phase velocity in 

the x1
′  direction.  

The detailed solution process is rather lengthy and only the final dispersion equations are 

presented here for reference. These are given by  

D11G1 cot(ζα1) − D13G3 cot(ζα3) + D15G5 cot(ζα5) = 0 , 

D11G1 tan(ζα1) − D13G3 tan(ζα3) + D15G5 tan(ζα5) = 0 , 
(8) 

corresponding to the symmetric and anti-symmetric modes respectively. The definition of the various 

terms used in the above equations are discussed in detail in Appendix A. It is worth noting that Gandhi 

et al. [43] also derived similar dispersion equations. However, their analysis was performed in the 

natural (stress-free) coordinate system which yields the so-called natural wave velocity rather than 

the true wave velocity.  
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3. Numerical Results 

The analytical equations derived can be solved numerically to obtain the phase velocity of the 

different guided wave modes as a function of the frequency-thickness product, the applied biaxial 

stress and the angle of wave propagation, i.e. Cp(f ∙ h, σ1, σ2, ϕ). The term f ∙ h here refers to the 

product of the frequency of the wave, f and the thickness of the deformed plate, h, and the other 

variables are indicated in figure 1. In considering the acoustoelastic effect, it is the change in phase 

velocity from the unstressed state which is of interest. It is given by 

∆Cp(fh0, σ1, σ2, ϕ) = Cp(f ∙ h, σ1, σ2, ϕ) − Cp(f ∙ h0, 0, 0, 0) , (9) 

where Cp(f ∙ h0, 0, 0, 0) refers to the unstressed phase velocity. The latter is evaluated at a frequency-

thickness product f ∙ h0, where h0 corresponds to the thickness of the undeformed plate.  

Dispersion results for different loads and directions of wave propagation are not discussed in 

detail here. These will be the subject of a later paper but we refer to the article by Gandhi et al. [43] 

for an overview of typical dispersion results. Although these authors conducted their analysis in the 

natural or unstressed coordinate system, the results are qualitatively the same as in the case of the 

deformed coordinate system. In the present paper, we focus on the fundamental symmetric (S0) and 

anti-symmetric (A0) modes due to their relevance in SHM applications. The material considered is 

6061-T6 Aluminium and its elastic properties are summarised in Table 1.  

Table 1. Elastic Properties of 6061-T6 Aluminium 

Parameter Aluminium[44] 

𝛌 [𝐆𝐏𝐚] 54.308 

𝛍 [𝐆𝐏𝐚] 27.174 

𝐥 [𝐆𝐏𝐚] −281.5 

𝐦 [𝐆𝐏𝐚] −339.0 

𝐧 [𝐆𝐏𝐚] −416.0 

𝛒 [𝐤𝐠/𝐦𝟑] 2704 

𝛔𝐲 [𝐌𝐏𝐚] 300 

Note: The yield strength, σy , was not mentioned in [44]; thus an average of the 

typical values for this material is given in Table 1.  
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Figure 2 shows the change in the phase velocity of the fundamental Lamb wave modes for a 

plate subjected to a range of uniaxial strains (stresses). The waves are considered to be propagating 

along the direction of the applied load such that ϕ = 0o. It can be seen that at any given frequency-

thickness product, the magnitude of the change in the phase velocity is directly proportional to the 

applied stress (strain) for both the A0 and S0 modes. In the case of the A0 mode, an interesting 

behaviour can be observed at a frequency-thickness product of approximately 350 Hz-m. As shown 

in the insert plot in figure 2(a), the change in the phase velocity of the A0 mode is zero at this 

frequency-thickness product. This particular frequency does not seem to be dependent on the 

magnitude of the applied strain (stress) as previously reported by Mohabuth et al. [40].  
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Figure 2. Effect of strain (stress) on the change in phase velocity of the fundamental Lamb wave 

modes, a) A0 Mode and b) S0 Mode, propagating along the direction of the applied strain (stress). 

Figure 3 shows the change in the phase velocity of the fundamental Lamb wave modes for a 

plate subjected to a uniaxial stress of 100 MPa for different angles of wave propagation. The load is 

applied along the x1 axis such that waves propagating parallel to the applied load are at ϕ = 0o. Due 

to the strain induced anisotropy, the change in the phase velocity is dependent on the direction of 

wave propagation. Considering the A0 mode, there is a critical frequency-thickness product (fCr) of 

approximately 300 Hz-m at which ∆Cp is invariant of the angle of wave propagation. As shown in 

the insert plot in figure 3 (a), the magnitude of ∆Cp at this particular frequency is small but non-zero. 

This phenomenon was also pointed out by Gandhi et al. [43]. At frequencies below fCr, the magnitude 

of ∆Cp is lowest when the wave propagation is perpendicular to the applied stress. At higher 

frequencies, it can be seen that the curves corresponding to ϕ < 60o intercept the horizontal axis 

(∆Cp = 0) at different frequencies. These combinations of wave propagation angles and zero-

intercept frequencies may be used in the development of stress mitigation strategies. These will be 

discussed in detail in Section 5.  

In the case of the S0 mode, the curves for wave propagation at an oblique angle to the applied 

stress are not drawn beyond a certain threshold frequency-thickness product (fTh) of 3400 Hz-m. This 

is because at this frequency, the S0 mode and the fundamental shear-horizontal (SH0) mode interact 
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with each other, split and propagate as two hybridised modes. This behaviour was also reported by 

Gandhi et al. [43]. For wave propagation at ϕ = 00 or 900, this behaviour does not occur as the 

direction of wave propagation is aligned with the principal axes and therefore, the motion of the S0 

and SH0 modes are decoupled.  
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Figure 3. Change in the phase velocity of the fundamental Lamb wave modes: a) A0 mode and b) 

S0 mode in a plate subjected to a uniaxial stress of σ1 = 100 MPa (the stress acts along 

direction  ϕ = 0o, see Fig.1). 

The change in phase velocity for a biaxial stress field can also be evaluated from the Taylor 

expansion of equation (9) utilising the change in phase velocity due to the two uniaxial contributions. 

This can be written as  

∆Cp(f ∙ h0, σ1, σ2, ϕ) ≈ Kσ1σ1 + Kσ2σ2 , (10) 

where Kσ1 and Kσ2 are the coefficients relating changes in the phase velocity due to the uniaxial 

stresses σ1 and σ2 respectively. These are given by 

Kσ1 ≈
∂Cp

∂σ1
|
(f∙h0,σ1,0,ϕ)

≈
Cp(f ∙ h1, σ1, 0, ϕ) − Cp(f ∙ h0, 0, 0, 0)

σ1 − 0
 , (11) 

Kσ2 ≈
∂Cp

∂σ2
|
(f∙h0,0,σ2,ϕ)

≈
Cp(f ∙ h2, 0, σ2, ϕ) − Cp(f ∙ h0, 0, 0, 0)

σ2 − 0
 , (12) 

where h1 and h2 correspond to the thicknesses of the deformed plate due to the uniaxial stresses σ1 

and σ2 respectively.  

Equation (10) provides a very convenient approximation to compensate for load effects in 

practice. It was validated via direct numerical simulations for both the S0 and A0 modes. The 

validation process was carried out as follows: (i) the change in phase velocity was evaluated for a 

range of uniaxial stresses and angles of wave propagation; (ii) the coefficients Kσ1 and Kσ2 were then 

calculated from the ratio of the change in phase velocity to the uniaxial stress based on equations (11) 

and (12); (iii) the analytical equations (8) were numerically solved for different biaxial stresses and 

directions of wave propagation; (iv) the coefficients Kσ1 and Kσ2 evaluated in (ii) were substituted in 

equation (10) to approximate the change in the phase velocity predicted by the analytical equations 

in (iii).  

Figure 4 shows the variation of the coefficient Kσ 1 as a function of the frequency-thickness 

product for the A0 and S0 modes for a range of applied strains (stresses). The waves are considered 

to be along the direction of the applied strain. The results show that Kσ1 does not have any significant 

dependence on the magnitude of the applied strain. This finding is consistent with the results of 
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Gandhi et al. [43] who demonstrated that the change in the phase velocity is linear with load for a 

small pre-stress. Thus, in the remainder of the paper, Kσ1  will be considered to be only a function of 

the frequency-thickness product and the angle of wave propagation. For completeness, the variation 

of Kσ 1 at different angles of wave propagation are shown in Appendix B. The variation of the 

coefficient Kσ2 is not shown as it may be evaluated from its σ1 counterpart using the relation 

Kσ2(f ∙ h0, ϕ) ≡ Kσ1(f ∙ h0, 90
o − ϕ).  
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Figure 4. Effect of strain (stress) on the coefficient relating changes in Cp to the applied stress σ1 

for the (a) A0 mode and, (b) S0 mode, propagating along the direction of the applied strain (stress). 

The results obtained using the representation (10), along with the values of Kσ1 and Kσ2 from 

Appendix B, were found to be in good agreement with the phase velocity changes predicted by the 

analytical equations (8) for all cases considered. The root mean square (RMS) differences between 

the two models for a typical case corresponding to 𝜎1 = 100 MPa and σ2 = 50 MPa are shown in 

Table 2. The highest RMS difference for the A0 and S0 modes are 0.030 m/s and 0.099 m/s 

respectively; these relatively small values are representative of all the cases considered. Thus, the 

approximation in equation (10) may be assumed to be correct. Shi et al. [45] proposed similar 

equations to estimate the change in phase velocity for various biaxial loads and propagation 

directions. Although their analysis was conducted in the undeformed (natural) coordinate system, 

their results also demonstrate the feasibility of estimating the phase velocity changes for a biaxial 

stress field based on the linear combination of the change in phase velocity due to the uniaxial loads. 
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Table 2. Root mean square differences between the analytical and approximate models 

 RMS difference (m/s) 

𝝓 A0 Mode S0 Mode 

𝟎𝐨 0.030 0.078 

𝟑𝟎𝐨 0.014 0.096 

𝟒𝟓𝐨 0.030 0.071 

𝟔𝟎𝐨 0.013 0.099 

𝟗𝟎𝐨 0.029 0.069 

 

4. Stress Effect on Damage Diagnostic with guided waves 

In this section, an analytical model is presented to quantify the residual signal (noise) obtained 

after reference signal subtraction due to the effect of applied (biaxial) stress. Two different methods 

of signal subtraction can be utilised in SHM systems. These methods can be based on either the shift 

in the envelope of the wave packet or on the shift of the individual waves in the wave packet 

respectively. Although the envelope subtraction method led to an improved sensitivity to damage, it 

was demonstrated that this particular method can result in areas where damage detection is not 

possible due to the loss of phase information in the enveloping process [28]. Therefore, the focus of 

this paper will be on the evaluation of the shift of the individual waves in the wave packet due to 

applied stress, which seems to be a more robust technique for damage diagnostics using GW. 

Following the work of Croxford et al. [28], the reference signal is considered to be a Hanning-

windowed toneburst, which is widely utilised in GW based SHM applications. It was demonstrated 

that in the presence of temperature variations, δT, the algebraic signal subtraction of the time trace 

affected by temperature from the reference data results in the following expression for the residual 

signal or noise: 

unoise = 2u0πf
d

Cp
(α −

KT
Cp
) δT , (13) 

where u0 is the amplitude of the received signal, f is the centre frequency of the toneburst, d is the 

propagation distance between the transmitting and receiving transducers, Cp is the phase velocity of 

the wave, α is the coefficient of thermal expansion of the material and KT is the coefficient relating 

changes in Cp to temperature.  
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Similar to the effect of temperature variations on GW propagation, a change in the stress state 

of a structure also leads to a translation in time of the received signal. This is because the applied 

stress not only causes a change in the wave propagation distance due to the induced strain but also 

leads to a change in the phase velocity due to the strain induced anisotropy. In order to establish a 

relationship between the change in the arrival time of the received signal, δt, and the change in the 

stress state of the structure, characterised by δσ1 and δσ2, we start from t =
d

Cp
 and take partial 

derivatives with respect to d and Cp, which gives 

δt =
1

Cp
 (
δd

δσ1
. δσ1 +

δd

δσ2
. δσ2) − 

d

Cp
2  (

δCp

δσ1
. δσ1 +

δCp

δσ2
. δσ2) . (14) 

If the pre-deformation (from a stress-free reference configuration) is considered to be small, the 

relationship between the propagation distance and the applied stress can be expressed using 

Generalised Hooke’s law as 

δd

δσ1
=

d

2EY
[1 − ν + (1 + ν) cos(2ϕ)] = β1(ϕ)d, 

δd

δσ2
=

d

2EY
[1 − ν − (1 + ν) cos(2ϕ)] = β2(ϕ)d, 

(15) 

where EY is the Young’s modulus of the material, ν is the Poisson’s ratio and ϕ is the angle of wave 

propagation (measured relative to the σ1 axis). The relationship between the wave velocity and the 

applied stress can be written as 

δCp

δσ1
= Kσ1(f ∙ h0, ϕ),

δCp

δσ2
= Kσ2(f ∙ h0, ϕ) , (16) 

where Kσ1 and Kσ2 are the coefficients relating changes in Cp to the uniaxial stresses σ1 and σ2 

respectively, as defined by equation (10). These coefficients may be evaluated based on the 

acoustoelastic model described earlier in the paper. They are functions of the frequency-thickness 

product, f ∙ h0, due to the dispersive nature of guided waves and the angle of wave propagation, ϕ 

(measured relative to the σ1 axis). Substituting equations (15) and (16) into equation (14) leads to an 

expression for δt in terms of δσ1 
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δt =
d

Cp
[(β1 + β2λ) −

(Kσ1 + Kσ2λ)

Cp
] δσ1 , (17) 

where λ = δσ2/δσ1 is the biaxial stress ratio.  

Assuming that δt is sufficiently small, the noise can be approximated as 

unoise = 2u0πfδt . (18) 

Finally, combining equation (17) with equation (18) gives 

unoise = 2u0πf
d

Cp
 [(β1 + β2λ) −

(Kσ1 + Kσ2λ)

Cp
] δσ1 . (19) 

In general, the magnitudes of Kσ1/Cp and Kσ2/Cp are of the same order as those of β1 and β2; so 

both the change in propagation distance d due to the induced strain and the change in Cp due to the 

strain induced anisotropy should be considered. However, in the case of thermally induced stress, β1 

and β2 should be set to zero as the propagation distance remains unchanged. 

Both equations (13) and (19) indicate that the noise associated with changing temperature or 

stress is dependent on the distance between the transmitting and receiving transducers. Thus, if the 

signal-to-noise ratio is known, the maximum propagation distance or the minimum density of the 

sensor/transmitter array can be evaluated. These equations also suggest that faster guided wave modes 

with higher phase velocities are less affected by changes in temperature or stress as compared to 

slower modes. However, faster modes typically propagate at relatively high frequencies and, as a 

result, there is a trade-off between frequency and phase velocity as the noise is directly proportional 

to f but is inversely proportional to Cp. In general, lower frequencies are preferred for SHM 

applications as the number of modes propagating in the waveguide is minimized, thus making the 

signal analysis less complex. 

Example 

The effect of stress on the residual noise is significant and is in fact comparable to the effect 

of temperature. To demonstrate this point, let us consider a 1 mm thick 6061-T6 Aluminium plate in 

a stress free state at a reference temperature, T0. If the in-plane edges of the plate are constrained, a 

uniform temperature rise of 1 Co  will induce compressive biaxial stresses of approximately σ1 =

σ2 = −Eα (1 − v)Τ ×1 Co ≈ −2.56 MPa. To quantify the effect of temperature and the thermally 
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induced stress, an excitation signal with a centre frequency of 1 MHz is employed and the direction 

of wave propagation is chosen to be parallel to the σ1 direction.  

Table 3. Temperature and stress coefficients for a 6061-T6 Aluminium plate at a frequency-

thickness product of 1 MHz − mm and an angle of wave propagation of 0o. 

 𝐀𝟎 𝐒𝟎 

𝐊𝐓 (𝐦𝐬
−𝟏 𝐂−𝟏𝐨 ) −0.383 −1.237 

𝐊𝛔𝟏  (𝐦𝐬
−𝟏𝐌𝐏𝐚−𝟏) −0.037 −0.371 

𝐊𝛔𝟐  (𝐦𝐬
−𝟏𝐌𝐏𝐚−𝟏) 0.021 0.073 

 

Table 3. summarises the values of the temperature and stress coefficients, KT, Kσ1 and Kσ2, at the 

corresponding frequency-thickness product for the fundamental Lamb wave modes. The temperature 

coefficients were extracted using the same approach as in Croxford et al. [28]; the material properties 

of 6061-T6 Aluminium were used along with α =  23.6 x 10−6 C−1o , kS = −0.752 ms
−1 C−1o  and 

kL = −1.089 ms−1 C−1o , where kS and kL are the temperature dependence constants for shear and 

longitudinal wave speeds respectively. The stress coefficients Kσ1 and Kσ2 were extracted from 

Appendix B at an angle of propagation of 0o and 90o respectively. The effect of temperature on the 

material properties is not considered while evaluating these stress coefficients. 

 

-100

-80

-60

-40

-20

0 20 40 60 80 100

u
n

o
is

e 
/u

0
(d

B
)

Propagation distance (mm)

A0 Mode - ∆T

S0 Mode - ∆T

A0 Mode - ∆σ

S0 Mode - ∆σ

Page 17 of 30 AUTHOR SUBMITTED MANUSCRIPT - SMS-105720.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 5. Variation of unoise/u0 with the propagation distance for the fundamental Lamb wave 

modes in an Aluminium plate at a frequency-thickness product of 1 MHz −mm. The solid lines 

represent the noise due to a 1 Co  temperature change while the dotted lines represent the noise 

associated with the induced (biaxial) thermal stress in a plate constrained at its in-plane edges. 

The coefficients in Table 3 were then substituted in equations (13) and (19) to predict the 

noise due to a temperature change of 1 Co  as well as the noise associated with the induced 

(compressive biaxial) thermal stress. The coefficients α, β1 and β2 in the latter equations were set to 

zero as the propagation distance remains unchanged in the constrained plate. The results are presented 

in terms of the ratio unoise/u0 as a function of the propagation distance for the fundamental Lamb 

wave modes, as shown in figure 5. It can be seen that the noise is more sensitive to the change in 

temperature as compared to the thermally induced stress. This is not unexpected as the magnitude of 

KT is higher than those of Kσ1  and Kσ2. It can also be seen that the A0 mode is more affected by the 

change in temperature than the S0 mode. Croxford et al. [28] attributed this behaviour to the effect of 

the higher phase velocity of the S0 mode which reduces its sensitivity to temperature. However, in 

the case of thermally induced stress, this effect is largely mitigated as the stress coefficient Kσ1 for 

the S0 mode is an order of magnitude higher than that of the A0 mode. As a result, the S0 mode 

exhibits a much larger sensitivity to the thermally induced stress than the A0 mode. 

It is interesting to note that in a constrained plate, the thermally induced stress might partially 

compensate for the effect of temperature on the phase velocity and the associated noise generation. 

This is because the temperature change and the thermally induced stress usually have an opposite 

effect on the phase velocity of the fundamental Lamb wave modes. For example, at a frequency-

thickness of 1 MHz − mm and an angle of propagation parallel to the σ1 direction, a positive change 

in temperature (δT > 0) leads to a decrease in the phase velocity whereas the induced (compressive) 

thermal stress (𝛿σ1, δσ2 < 0) causes an increase in the phase velocity. Consequently, the stress effect 

partially compensates for the effect of temperature on the phase velocity and the associated noise 

generation. However, this is not always the case as the change in the phase velocity depends on the 

magnitude and sign of the temperature and stress coefficients. The latter coefficients are both 

functions of the signal frequency while the stress coefficients also have an additional dependence on 

the angle of wave propagation. 

Page 18 of 30AUTHOR SUBMITTED MANUSCRIPT - SMS-105720.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5. Possible stress mitigation strategies 

The behaviour of the A0 mode demonstrates some interesting features, which can potentially 

be utilised for future stress mitigation techniques. In particular, the results presented earlier show the 

existence of a critical frequency-thickness product, fCr, at which the phase velocity is invariant of the 

direction of wave propagation, ϕ. This frequency does not appear to be affected by the magnitude of 

the applied stress. Although the change in the phase velocity from the unstressed state is non-zero at 

this critical frequency, its magnitude is relatively small. Therefore, in the case where the Lamb wave 

toneburst is dominated by the A0 mode and the direction of the applied load is unknown, the influence 

of the applied stress can be minimized by selecting a frequency close to fCr at which the values of the 

stress coefficients, Kσ1 and Kσ2, tend to zero.  

In practical systems, the excitation signal is typically generated using piezo-ceramic transducers 

and this causes the signal to have a finite bandwidth. Since the critical frequency fCr is within the 

dispersive region of the A0 mode, a large bandwidth may affect the implementation of the above 

strategy. Windowing techniques such as Hanning window may be used to reduce the bandwidth and 

ensure that the energy of the signal is concentrated near the central excitation frequency. Although a 

narrower bandwidth will reduce the problem of dispersion, post processing techniques [46-48] may 

still be required to compensate for the effect of dispersion.  

 

Figure 6. Variation of the zero-intercept frequency, f ∗, for the A0 mode as a function of the 

angle of wave propagation, ϕ, for different biaxial stress ratios,  λ, with σ1= 20 MPa. 
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A more accurate stress mitigation technique may be employed if the direction of the applied 

load is known. This involves using the frequency at which the change in the phase velocity of the A0 

mode from the unstressed state is zero. Figure 6 displays the variation of this zero-intercept frequency, 

f ∗, as a function of the angle of wave propagation for different biaxial stress ratios. The magnitude of 

the first principal stress, σ1, is kept constant at 20 MPa. The results indicate that the optimum 

orientation of transducers is at an angle of 45 degrees to the principal axes. At this angle, the 

corresponding zero-intercept frequency is independent of the biaxial stress ratio. In addition, the latter 

frequency only shows a weak dependence on the magnitude of the applied stress σ1. It can be 

hypothesised that a similar behaviour also occurs for other materials. In practice, guided wave based 

SHM schemes typically utilise an omni-directional transducer array as they rely on multi-directional 

propagation to achieve full coverage of a structure [49-50]. The transducers in the array are at varying 

pre-defined angles to each other. In this case, the effect of the applied stress can be effectively negated 

by selecting an excitation frequency equal to the zero-intercept frequency for the specific angle 

between two selected transducers.  

For certain guided wave based SHM applications, the S0 mode may be preferred over the A0 

mode. In this case, the viable strategy in the reduction of the residual noise due to stress variations 

would be the utilisation of frequency-thickness products, below the threshold frequency shown in 

figure 3(b). The effect of stress on the change in the phase velocity decreases significantly as we 

approach this particular frequency. The use of the S0 mode above this threshold frequency-thickness 

should be avoided due to the complexities associated with mode splitting.  

6. Conclusion 

In this paper, the effect of stresses on the propagation of Lamb waves was analysed using an 

acoustoelastic formulation to determine the change in the phase velocity as a function of the applied 

stress, frequency and propagation direction. An analytical model was then developed to assess the 

residual signal or noise due to applied or thermally-induced stresses. It was demonstrated that the 

effect of stresses can be as strong as the effect of temperature fluctuations, and it has to be considered 

when implementing guided wave based SHM systems in real-world applications.  

It was interesting to find that applied stresses have a very different influence on the phase 

velocity of the fundamental symmetric and anti-symmetric modes. In particular, for the S0 mode, as 

we approach a certain threshold frequency, the effect of stress on the change in the phase velocity 

decreases significantly. In the case of the A0 mode, there is a critical value of frequency at which the 
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influence of stress on the change in the phase velocity is almost negligible. These features can be 

utilised in the development of effective stress mitigation strategies for on-line SHM systems. 

This paper has considered a particular case of a plate made of Aluminium to demonstrate the 

importance of the stress effect on noise generation after reference signal subtraction. It should be 

emphasised that any variability in the material properties of the plate, especially in the third order 

elastic constants, will lead to a change in the magnitude of the phase velocity dispersion curves. While 

it is expected that general trends and outcomes of the paper will be qualitatively the same, it would 

be beneficial to conduct a thorough quantitative analysis in the future.  
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Appendix A 

Following the work of Nayfeh and Chimenti [42], the plane waves solution given by equation 

(7) is substituted into the equation of motion (4). This yields an eigenvalue problem which can be 

expressed as 

Kij(α) Uj = 0, i, j = 1,2,3 (A1) 

where  

K11 = ρc
2 −𝒜′1111 −𝒜′3131 α

2 − α(𝒜′1131 +𝒜′3111 ) ,  

K12 = −𝒜′1112 −𝒜′3132 α
2 − α(𝒜′1132 +𝒜′3112 ) ,           

K13 = −𝒜′1113 −𝒜′3133 α
2 − α(𝒜′1133 +𝒜′3113 ) ,           

K21 = −𝒜′1211 −𝒜′3231 α
2 − α(𝒜′1231 +𝒜′3211 ) ,           

K22 = ρc2 −𝒜′1212 −𝒜′3232 α
2 − α(𝒜′1232 +𝒜′03212) ,  

K23 = −𝒜′1213 −𝒜′3233 α
2 − α(𝒜′1233 +𝒜′3213 ) ,           

K31 = −𝒜′1311 −𝒜′3331 α
2 − α(𝒜′1331 +𝒜′3311 ) ,           

K32 = −𝒜′1312 −𝒜′3332 α
2 − α(𝒜′1332 +𝒜′3312 ) ,          

K33 = ρc2 −𝒜′1313 −𝒜′3333 α
2 − α(𝒜′1333 +𝒜′3313 ) . 

(A2) 

The elasticity tensor in the initial coordinate system (x1, x2, x3) exhibits the major symmetry 

𝒜piqj = 𝒜qjpi  . This symmetry persists in the rotated coordinate system (x1
′ , x2

′ , x3
′ ) after tensor 

transformation and as a result, Kij turns out to be symmetric (Kij = Kji). Furthermore, for an initially 

isotropic plate subjected to a biaxial stress field in the x1 − x2 plane, the latter plane is one of mirror 

symmetry. This means that the strain induced anisotropy is, at least, of monoclinic symmetry. The 

latter symmetry is maintained in the x1
′ − x2

′  plane after coordinate transformation, leading to further 

simplification of Kij 

K11 = ρc
2 −𝒜′1111 −𝒜′3131 α

2 ,  

K12 = −𝒜′1112 −𝒜′3132 α
2 ,           

K13 = −α(𝒜′1133 +𝒜′3113 ) ,         

K21 = K12 ,                                            

K22 = ρc2 −𝒜′1212 −𝒜′3232 α
2 ,  

K23 = −α(𝒜′1233 +𝒜′3213 ) ,         

K31 = K13 ,                                           

K32 = K23 ,                                          

(A3) 
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K33 = ρc2 −𝒜′1313 −𝒜′3333 α
2 . 

For non-trivial solutions to the eigenvalue problem, the determinant of Kij is set to zero. This 

yields a sixth order equation in α which can be expressed as 

P6 α
6 + P4 α

4 + P2 α
2 + P0 = 0 , (A4) 

where the coefficients P6 , P4 , P2 and P0  are given by 

P6 = 𝒜′3333 𝒜
′
3132
2

−𝒜′3131 𝒜′3232 𝒜′3333  , 

P4 = 𝒜′
1233
2

𝒜′3131 + 𝒜
′
1133
2

𝒜′3232 +𝒜
′
3132
2

𝒜′1313 +𝒜
′
3213
2

𝒜′3131 

+𝒜′
3113
2

𝒜′3232 − 2𝒜′1133 𝒜′1233 𝒜′3132 + 2𝒜′1133 𝒜′3113 𝒜′3232 

− 2𝒜′1133 𝒜′3132 𝒜′3213 − 2𝒜′1233 𝒜′3113 𝒜′3132 

+ 2𝒜′1112 𝒜′3132 𝒜′3333 +  2𝒜′1233 𝒜′3131 𝒜′3213 

−𝒜′1111 𝒜′3232 𝒜′3333  − 𝒜′1212 𝒜′3131 𝒜′3333 

−𝒜′1313 𝒜′3131 𝒜′3232 − 2𝒜′3113 𝒜′3132 𝒜′3213 −𝒜
′
3132
2

ρc2

+𝒜′3131 𝒜′3232 ρc
2 +𝒜′3131 𝒜′3333 ρc

2 + 𝒜′3232 𝒜′3333 ρc
2, 

P2 = 𝒜′
1233
2

𝒜′1111 + 𝒜
′
1133
2

𝒜′1212 +𝒜
′
3213
2

𝒜′1111 +𝒜
′
3113
2

𝒜′1212 

+𝒜′
1112
2

𝒜′3333 − 2𝒜′1112 𝒜′1133 𝒜′1233 − 2𝒜′1112 𝒜′1133 𝒜′3213 

− 2𝒜′1112 𝒜′1233 𝒜′3113 + 2𝒜′1133 𝒜′1212 𝒜′3113 

+ 2𝒜′1111 𝒜′1233 𝒜′3213 +  2𝒜′1112 𝒜′1313 𝒜′3132 

−𝒜′1111 𝒜′1212 𝒜′3333  − 𝒜′1111 𝒜′1313 𝒜′3232 

−𝒜′1212 𝒜′1313 𝒜′3131 − 2𝒜′1112 𝒜′3113 𝒜′3213 −𝒜
′
1133
2

ρc2

−𝒜′
1233
2

ρc2 −𝒜′
3113
2

ρc2 −𝒜′3131 ρ
2c4 −𝒜′

3213
2

ρc2

−𝒜′1111 𝒜′3232 ρc
2 +𝒜′1212 𝒜′3131 ρc

2 +𝒜′1111 𝒜′3333 ρc
2

+𝒜′1313 𝒜′3131 ρc
2 − 2𝒜′1233 𝒜′3213 ρc

2 +𝒜′1212 𝒜′3333 ρc
2

+𝒜′1313 𝒜′3232 ρc
2, 

P0 = 𝒜′
1112
2

𝒜′1313 + ρ
3c6 −𝒜′1111 𝒜′1212 𝒜′1313 −𝒜

′
1112
2

ρc2 −𝒜′1111 ρ
2c4

−𝒜′1212 ρ
2c4 −𝒜′1313 ρ

2c4 +𝒜′1111 𝒜′1212 ρc
2 + 𝒜′1111 𝒜′1313 ρc

2

+𝒜′1212 𝒜′1313 ρc
2, 

(A5) 

The lack of odd power coefficients in equation (A4) means that the sixth order equation can 

be reduced to a cubic equation in α3. This simplification results in six solutions for α, which are 

denoted by αq, q ∈ {1,2,3,4,5,6}, with the following properties 
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α2 = −α1, α4 = −α3 , α6 = −α5. (A6) 

For each αq, displacement ratios Vq =
U2q

U1q
⁄  and Wq =

U3q
U1q
⁄  can be defined using the 

relations in equation (A1) as 

                       Vq =
K11(αq)K23(αq) − K13(αq)K21(αq)

K13(αq)K22(αq) − K12(αq)K23(αq)
,. (A7) 

Wq =
K11(αq)K32(αq) − K31(αq)K12(αq)

K12(αq)K33(αq) − K13(αq)K32(αq)
, q ∈ {1,2,3,4,5,6}. (A8) 

The displacement field of the Lamb waves can then be written in terms of the above 

displacement ratios using the principle of superposition 

(u1
′ , u2

′ , u3
′ )  = ∑(1, Vq,Wq) U1e

iξ(x1
′+αqx3

′−ct)

6

q=1

   , (A9) 

Similarly, the stress field can be found by substituting the above displacement field into the 

incremental constitutive equation (2) 

(Ŝ′33, Ŝ
′
31, Ŝ

′
32) = ∑ iξ(D1q, D2q, D3q) U1e

iξ(x1
′+αqx3

′−ct)

6

q=1

 , (A10) 

where 

D1q = 𝒜′3311 + Vq𝒜′3312 +Wq 𝒜′3333 αq , 

D2q = 𝒜′3131 αq + Vq𝒜′3132 αq +Wq 𝒜′3113  , 

D3q = 𝒜′3231 αq + Vq𝒜′3232 αq +Wq 𝒜′3213  . 

(A11) 

Incorporating the relations in (A6) in equations (A7), (A8) and (A11) results in the following 

restrictions  

Vj+1 = Vj , 

Wj+1 = −Wj , 

D1j+1 = D1j , 

D2j+1 = −D2j,   

                          D3j+1 = −D3j, j = 1,3,5 . 

(A12) 
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In order to satisfy the incremental traction-free boundary conditions at the upper and lower 

surfaces of the plate, the components of the incremental nominal stress must be set to zero  

Ŝ′31 = Ŝ′32 = Ŝ
′
33 = 0 at x3

′ = ±h/2 . (A13) 

This leads to a system of equations which can be expressed as 

iξ

(

 
 
 
 
 
 

D11E1 D12E2 D13E3 D14E4 D15E5 D16E6

D21E1 D22E2 D23E3 D24E4 D25E5 D26E6

D31E1 D32E2 D33E3 D34E4 D35E5 D36E6

D11E1 D12E2 D13E3 D14E4 D15E5 D16E6

D21E1 D22E2 D23E3 D24E4 D25E5 D26E6

D31E1 D32E2 D33E3 D34E4 D35E5 D36E6)

 
 
 
 
 
 

(

 
 
 
 
 
 

U11

U12

U13

U14

U15

U16)

 
 
 
 
 
 

eiξ(x1
′−ct) =

{
 
 
 

 
 
 
0

0

0

0

0

0}
 
 
 

 
 
 

 , (A14) 

where U1q = U1(αq), Eq = eiξαq
h

2 and Eq = e−iξαq
h

2.  

For non-trivial solutions, the determinant of the coefficient matrix in (A14) must go to zero. 

Using row and column operations along with the symmetries in (A12), the determinant can be reduced 

to two characteristic equations  

D11G1 cot(ζα1) − D13G3 cot(ζα3) + D15G5 cot(ζα5) = 0 

D11G1 tan(ζα1) − D13G3 tan(ζα3) + D15G5 tan(ζα5) = 0 , 
(A15) 

corresponding to symmetric and anti-symmetric modes respectively, with  

G1 = D23D35 − D25D33 , G3 = D21D35 − D25D31 ,   

G5 = D21D33 − D23D31 , ζ =
ξh

2
=
ωh

2c
 . 

(A16) 
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Appendix B 

 

 

 

Figure A1. Variation of the coefficient relating changes in Cp to the applied stress σ1 for the (a) A0 

mode and, (b) S0 mode, at different angles of wave propagation, ϕ (measured relative to the σ1 

direction). 
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