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ABSTRACT

This paper aims at the development of a regression-aided analytical framework for modeling

and analyzing the compressibility behavior of over-consolidated soils. A three-parameter

rectangular hyperbola function (3P-RH) was proposed for describing the void ratio–effective

stress relationship. Validation of the 3P-RH was carried out by a compiled database gathered from

the literature. Simple analytical solutions were then proposed for determining the

compressibility curve variables including the compression (Cc) and recompression (Cr) indices and

the preconsolidation pressure (Pc), which are intended to replace the current subjective

graphical method by providing consistent results. Equations for the preconsolidation pressure

were derived in accordance with four common graphical constructions covering various levels

of geometrical complexity (slightly to highly subjective). A probabilistic comparison among the

graphical constructions was then carried out. Furthermore, a sensitivity analysis with respect to

the proposed preconsolidation pressure functions was considered to evaluate the influence of the

3P-RH fitting parameters (α and β) on the preconsolidation pressure value. The proposed 3P-RH

compressibility model accompanied by the suggested analytical solutions for solving the

compressibility curve variables construct a unique framework for modeling the compressibility

behavior of soils with an acceptable degree of accuracy and, more importantly, by a simple

objective approach.

Keywords

regression-aided analytical framework, compressibility, three-parameter rectangular hyperbola, compression

index, recompression index, preconsolidation pressure

Nomenclature

e= void ratio

σ 0 = vertical effective stress

Cc= compression index (e:logσ 0 space)
Cr= recompression index (e:logσ 0 space)
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λ= compression index (e:lnσ 0 space)
κ= recompression index (e:lnσ 0 space)

C 0
c = compression index (loge:logσ 0 space)

C 0
r = recompression index (loge:logσ 0 space)
Pc= preconsolidation pressure

PCL= vertical preconsolidation pressure line

VCL= virgin compression line (e:logσ 0 space)
RCL= recompression line (e:logσ 0 space)
VCL= virgin compression line (loge:logσ 0 space)

RCL= recompression line (loge:logσ 0 space)
3P-RH= three-parameter rectangular hyperbola function

e0= initial void ratio

α= fitting parameter of the 3P-RH

β= fitting parameter of the 3P-RH

f 0 = first derivative of the 3P-RH (e:logσ 0 space)
f 00 = second derivative of the 3P-RH (e:logσ 0 space)
f 000 = third derivative of the 3P-RH (e:logσ 0 space)
f 0log = first derivative of the 3P-RH (loge:logσ 0 space)

f 00log = second derivative of the 3P-RH (loge:logσ 0 space)

MTL= tangent thorough the maximum curvature point

HML= horizontal line through the maximum curvature point

BSL= bisector line

IVL= horizontal initial void ratio line

θ= acute angle formed between MTL and HML

SM= slope of MTL

SB= slope of BSL

PM1
c = preconsolidation pressure with respect to the

Classical method

PM1S
c = preconsolidation pressure with respect to the

Simplified Classical method

PM2
c = preconsolidation pressure with respect to the Silva

method

PM3
c = preconsolidation pressure with respect to the

RCL-VCL Intercept method

PM4
c = preconsolidation pressure with respect to the

Log-Log method

NRMSE= normalized root mean square error

xi= independent variable

Sxi = sensitivity to variations in xi
μ+xi = positive magnitude caused by increase in xi
μ−xi = negative magnitude cause by increase in xi

Introduction

The compressibility behavior of soils is often studied by means of

the conventional oedometer test. As a result of the test, a change in

void ratio against the corresponding effective stress can be ob-

served. The void ratio–effective stress relationship, commonly illus-

trated over a semi-log space (e:logσ 0), contains fundamental

information required for settlement analysis. Several researchers

(Butterfield 1979; Cargill 1984; Burland 1990; Houlsby and

Wroth 1991; Pestana and Whittle 1995; McNabb and Boersma

1996; Arvidsson and Keller 2004; Baumgartl and Köck 2004;

Gregory et al. 2006; Liu, Xu, and Horpibulsuk 2012; Chong and

Santamarina 2016) have proposed various forms of mathematically

defined compressibility models to describe the void ratio–effective

stress relationship. Generally, any introduced model is expected to

be valid over a wide range of soils, have physically correct boundary

values corresponding to low (σ 0→0+) and high (σ 0→+∞) stress

states, and, most importantly, involve physically meaningful

parameters (Chong and Santamarina 2016; Soltani 2016). In

addition to these fundamental criteria, the model should represent

the most simple yet accurate functional form possible. This basi-

cally implies that any proposed compressibility function, say f(x),

should provide simple explicit solutions to f(x)= 0, f 0(x)= 0, f 00

(x)= 0, and f 000(x)= 0 over the e:logσ 0 space. This particular feature
assumes significance when trying to mathematically solve the com-

pressibility curve variables, including the compression (Cc) and re-

compression (Cr) indices and the yield effective stress, better

known as the preconsolidation pressure (Pc). The majority of avail-

able models, however, fail to satisfy some of these fundamentals

and, therefore, lack the required versatility of being promoted as

a universal function for the purpose of numerical applications.

The hyperbolic function has been widely credited as a useful math-

ematical concept for describing a multitude of physical phenomena

in geotechnical engineering. Different forms of the hyperbolic re-

lationship have been suggested and successfully tested for describ-

ing various geotechnical-related problems such as stress-strain

behavior of soils (Duncan and Chang 1970; Boscardin et al.

1990; Stark, Ebeling, and Vettel 1994; Sridharan and Gurtug

2005) and the strain-time relationship of compressible and

swelling soils (Sridharan and Sreepada Rao 1981; Sridharan,

Rao, and Sivapullaiah 1986a; Sivapullaiah, Sridharan, and Stalin

1996; Sridharan and Gurtug 2004; Al-Shamrani 2005). A literature

survey, however, indicates that various aspects of the hyperbolic

function have not yet been fully evaluated in describing the com-

pressibility curve variables. In this study, a three-parameter rectan-

gular hyperbola (3P-RH) was adopted and validated for modeling

the void ratio–effective stress relationship, which can be given as:

eðσ 0Þ= e0 −
σ 0

α + βσ 0

Boundary conditions∶

(
eð0Þ= e0
lim

σ 0→+∞
½eðσ 0Þ� ≅ e0 − 1

β

(1)

where:

e(σ 0) = void ratio with respect to effective stress σ 0,
e0 = initial void ratio, and

α and β = fitting parameters, α in kPa.

Fig. 1 illustrates the general form of a typical 3P-RH function,

specified as f, accompanied by its first, second, and third deriv-

atives (f 0, f 00, and f 000) with respect to the e:logσ 0 space over
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σ 0∈(0,+∞). The 3P-RH poses as a reversed S-shaped curve,

which corresponds to the positive asymptotic values of e0 and

e0-1/β at low (σ 0→0+) and high (σ 0→+∞) stress states, respec-

tively. All three derivatives correspond to the asymptotic value

of zero at σ 0→0+ and σ 0→+∞. f 0 poses as a U-shaped curve

and thus assumes a negative value over the entire effective stress

domain (f 0 < 0), basically resembling the decreasing trend of e as a

result of increase in σ 0. f 00, however, demonstrates a fall-rise-fall

behavior containing two global extrema points, a minimum and a

maximum. f 00 = 0 has one real root (point I in Fig. 1), which is

defined as the global minimum of f 0 and, more importantly,

the inflection point of the 3P-RH (point 2). f 000 graphically cor-

responds to two equal global minimums and a global maximum.

f 000 = 0 has two real roots (points M and M 0), representing the

global minimum and maximum of f 00 and, more importantly,

points with maximum curvature on the 3P-RH (points 1 and 3).

Fig. 2 illustrates the general form of the compressibility curve

with respect to the 3P-RH model for a typical over-consolidated

soil over the e:logσ 0 space. The curve can be generally divided into

two regions, namely the elastic and plastic compression zones,

which are phases in which the compression process takes place.

The two regions are separated by the preconsolidation pressure

(PCL in Fig. 2), a transitional stress state that divides the soil’s

compressibility into a region of small-elastic (recompression

stage) and large-plastic (virgin compression stage) deformations

(Casagrande 1936; Dias Junior and Pierce 1995; Boone 2010). The

compressibility curve variables Cc, Cr, and Pc are normally deter-

mined by a conventional graphical procedure. For this purpose, a

tangent, defined as the virgin compression line (VCL), is drawn

through the inflection point of the compressibility curve. An ad-

ditional tangent, the recompression line (RCL), is then extended

through point A (initial loading stage). Slope of the VCL and RCL

are then obtained and defined as Cc and Cr, respectively. The pre-

consolidation pressure, however, remains a rather ambiguous

concept. A number of methods have been proposed for the in-

terpretation of this parameter, which will be outlined during

the course of this paper. The majority of these methods are

basically graphical approaches that are highly subjective

and thus promote inconsistent results among individuals. The

FIG. 1 Illustration of a typical 3P-RH function (Eq 1) accompanied by
its first, second, and third derivatives with respect to the e:logσ 0
space.

FIG. 2 Interpretation of the preconsolidation pressure with respect to the 3P-RH compressibility model by means of the “Classical” graphical
construction or M1/M1S (Eq 15 or 17).
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preconsolidation pressure has been widely credited as an extraor-

dinarily useful concept for analyzing and predicting settlement

behavior, normalizing other geotechnical engineering parameters

for comparative purposes and advancing constitutive modeling

(Ladd and Foott 1974; Boone 2010).

An accurate estimation of the compressibility curve variables

is essential for the calculation of primary consolidation settle-

ment, which plays a key role in the design of cost-effective foun-

dation systems. The current graphical concept for determining

these variables, particularly the preconsolidation pressure, is

strongly associated with subjective judgements and a high degree

of uncertainty, not to mention being problematic and time con-

suming when being applied over a semilog plot (Becker et al.

1987; Dias Junior and Pierce 1995; Grozic, Lunne, and Pande

2003; Baumgartl and Köck 2004; Boone 2010). In this paper,

an attempt has been made to derive simple equations by means

of a regression-aided analytical concept for determining these

variables. The presence of such relationships intends to aid com-

putational analyses and can replace the conventional graphical

construction by providing consistent results.

Proposed Framework

COMPRESSION AND RECOMPRESSION INDICES

The inflection point resembles a state within the plastic compres-

sion region, which best represents an ideal linear behavior. A nec-

essary condition for x∈Df(x) (domain function) to be defined as

the inflection point of f(x) is that the second derivative over the f

(x):logx space should be equal to zero. Therefore, the inflection

point of the 3P-RH compressibility function or Eq 1 (point I in

Fig. 2) can be obtained by the following three-step procedure:

f 0 =
deðσ 0Þ
d log σ 0 =

∂eðσ 0Þ
∂σ 0 × σ 0 × ln 10=

− ln 10ασ 0

ðα + βσ 0Þ2 (2)

f 00 =
df 0

d log σ 0 =
∂f 0

∂σ 0 × σ 0 × ln 10=
−ðln 10Þ2ασ 0ðα − βσ 0Þ

ðα + βσ 0Þ3 (3)

f 00 = 0∶
�
σ 0
I =

α
β

eðσ 0
I Þ= e0 − 1

2β
(4)

Slope of the tangent to the compressibility curve at the inflec-

tion point (VCL in Fig. 2), defined as Cc, can now be obtained by

substituting the inflection point value (Eq 4) into f 0 (Eq 2), which

results in the following:

Cc =
deðσ 0Þ
d log σ 0

����
σ 0 = α

β

=
− ln 10
4β

(5)

Cr, equivalent to the swell index (Cs in Fig. 2), is defined as

slope of the RCL. Therefore, by calculating f 0 (Eq 5) at σ 0 = σ 0
A

(initial effective stress applied in a typical compression test, which

is basically user defined), the following can be obtained for Cr:

Cr =
deðσ 0Þ
d log σ 0

����
σ 0 = σ 0

A

=
− ln 10ασ 0

A

ðα + βσ 0
AÞ2

(6)

In conjunction with the critical state theory, Cc and Cr are

defined over the e:lnσ 0 space and are commonly referred to as

λ and κ, respectively. Applying the basic logarithmic law

lnx= ln10 × logx, one can obtain the following for λ and κ:

λ=
Cc

ln 10
=

−1
4β

(7)

κ=
Cr

ln 10
=

−ασ 0
A

ðα + βσ 0
AÞ2

(8)

As Eqs 5 to 8 represent the slope of lines with a decreasing

trend, they generate negative values. In conjunction with settle-

ment computations, however, the absolute value of these equa-

tions should be considered.

PRECONSOLIDATION PRESSURE

Numerous methods have been proposed by several researchers

(Casagrande 1936; Janbu 1969; Pacheco Silva 1970; Butterfield

1979; Becker et al. 1987; Oikawa 1987; Jose, Sridharan, and

Abraham 1989; Burland 1990; Sridharan, Abraham, and Jose

1991; Onitsuka et al. 1995; Cui and Delage 1996; Grozic,

Lunne, and Pande 2003; Boone 2010; Ku and Mayne 2013) for

the interpretation of the preconsolidation pressure by means

of standard oedometeric test data. The majority of these methods

are generally graphical constructions defined in the space of e:

logσ 0 or loge:logσ 0, most of which seem to be founded based

on similar empirical observations with respect to e-σ 0 stress pat-
terns exhibited by different soils (a detailed discussion may be

found in Boone [2010]). In this paper, overlooking the possible

advantages a particular approach may pose over another, four

most commonly adopted techniques, covering various levels of

geometrical complexity, were investigated. The objective was to

demonstrate how various graphical scenarios ranking from basic

(slightly subjective) to complex (highly subjective) may be math-

ematically formulized. Generally, the proposed analytical concept

should be applicable to other compressibility functions and any

graphical construction that defines Pc in the space of e:logσ 0 or
loge:logσ 0. The presence of mathematically defined relationships

for Pc that promote a nonsubjective framework may also well

provide a realistic basis for comparing the available graphical

approaches in this context.

The Classical Method

The Casagrande (1936) approach, recognized as the Classical

method (herein M1), is the oldest and probably the most com-

monly adopted technique for determining the preconsolidation

pressure. The method follows a relatively complex graphical pro-

cedure, which has been outlined in Fig. 2. For this purpose, a tan-

gent (MTL) is drawn through the maximum curvature point M.
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A horizontal line, specified as HML, is then extended from point

M to form an acute angle (θ) with MTL. A bisector with respect to

θ (BSL) is then graphically produced and extended to meet the

VCL at point D 0, which is defined as the preconsolidation

pressure. The crux of this graphical construction is defining

the maximum curvature point, a highly subjective task, indeed.

Defining a point with maximum curvature using a semilog plot

is highly associated with personal judgement, yielding nonconsis-

tent results by different users. Furthermore, defining the point M

is known to become an increasingly difficult task in the case of

sample disturbance (Janbu 1969; Sridharan, Abraham, and Jose

1991; Dias Junior and Pierce 1995; Grozic, Lunne, and Pande

2003; Boone 2010). The method has also proven to be highly

influenced by the scaling effect, an inseparable quirk associated

with plotting (Sridharan, Abraham, and Jose 1991; Clementino

2005; Boone 2010). Good results may be obtained, providing that

the break point (point D) is subjectively well defined.

The second derivative of f(x) is known to measure the degree

of curvature or concavity. A necessary condition for x∈Df(x) to be

defined as an absolute maximum curvature point is that the third

derivative of the 3P-RH over the f(x):logx space should be equal to

zero (Baumgartl and Köck 2004; Imhoff, Da Silva, and Fallow

2004; Gregory et al. 2006). This is basically analogous to maxi-

mizing the second derivative f 00 (Eq 3), which can be given by

the following procedure:

f 000 =
df 00

d log σ 0 =
∂f 00

∂σ 0 × σ 0 × ln 10

=
−ðln 10Þ3ασ 0ðα2 − 4αβσ 0 + β2σ 02Þ

ðα + βσ 0Þ4
(9)

f 000 = 0∶

(
σ 0
M = 1

2+
ffiffi
3

p
�
α
β

�
≈ 0.268

�
α
β

�
eðσ 0

MÞ= e0 − 2
3+
ffiffi
3

p
�

1
2β

�
≈ e0 − 0.423

�
1
2β

� (10)

Slope of MTL (SM in Fig. 2) can be obtained by substituting

the maximum curvature point value (Eq 10) into the first deriva-

tive f 0 (Eq 2), which results in the following:

SM = − tan θ=
deðσ 0Þ
d log σ 0

����
σ 0 = σ 0

M

=
− ln 10
6β

(11)

Considering basic geometrical principles, slope of BSL or SB
can be expressed as:

SB = − tan
θ

2
= tan

2
66412 tan−1

�
− ln 10
6β

�zfflfflfflfflfflffl}|fflfflfflfflfflffl{SM 3
775=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + S2M

p
− 1

SM
(12)

Considering basic geometrical relationships between Cc

(slope of the VCL determined by Eq 5) and the inflection point

I (a point on the VCL given by Eq 4), the VCL can be expressed by

the following linear relationship in the e:logσ 0 space:

VCL∶e=
− ln 10
4β

zfflfflffl}|fflfflffl{Cc

× log

�
β

α
σ 0
�
+ e0 −

1
2β

zfflfflffl}|fflfflffl{eðσ 0
I Þ

(13)

Similarly, the BSL can be represented by means of SB (Eq 12)

and the maximum curvature point M (Eq 10) as the following:

BSL∶e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + SM2

p
− 1

SM

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{SB

× log


ð2 + ffiffiffi
3

p Þβ
α

σ 0
�

+ e0 −
2

3 +
ffiffiffi
3

p
�
1
2β

�zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{eðσ 0
MÞ

(14)

Intersection of the VCL and BSL (point D 0 in Fig. 2), defined

as the M1 preconsolidation pressure (PM1
c ), can now be obtained

by equating Eqs 13 and 14, which yields the following:

σ 0
D 0 = σ 0

D = Pc
M1 = 10

Cc logðαβÞ−SB log½ 1
2+
ffiffi
3

p ðαβÞ�+
ffiffi
3

p
6β

Cc−SB (15)

The void ratio at points D 0 and D can also be obtained by

substituting σ 0 = PM1
c (Eq 15) into the VCL linear relationship

(Eq 13) and the 3P-RH (Eq 1), respectively.

Assuming θ≈ tanθ, an alternate relationship of much greater

flexibility compared to Eq 12 can be obtained for SB. While the

simplification should slightly overestimate SB, it will later be

proven to generate acceptable results for a wide range of scenar-

ios. The simplification promotes the following alternate relation-

ship for SB:

SB ≈
SM
2

=
− ln 10
12β

(16)

Considering the recent Eq 16, a simplified alternative to PM1
c

(Eq 15), termed as PM1S
c , can be derived as:

Pc
M1S = 10

3
2 logðαβÞ−1

2 log½ 1
2+
ffiffi
3

p ðαβÞ�−
ffiffi
3

p
ln 10 =

ė−
ffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pp �
α

β

�
≈ 0.342

�
α

β

�
(17)

where:

ė= Euler’s number, ė≈ 2.718.

The Silva Method

The graphical procedure of determining the preconsolidation

pressure as proposed by Pacheco Silva (1970), recognized as

the Silva construction (herein M2), is illustrated in Fig. 3. The

Silva approach for defining Pc involves following the respective

path of B 0→B→S 0→S. For this purpose, the horizontal initial void

ratio line e(σ 0)= e0 (IVL) is drawn over the entire effective stress

domain. The VCL is then extended to a point at which it inter-

sects the IVL at point B 0. A vertical line is then extended down-

ward from point B 0, which meets the compressibility curve at
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point B. Finally, point B is extended horizontally in order to meet

the VCL at point S 0, which is defined as the preconsolidation

pressure. The method strongly relies on an accurate interpreta-

tion of the VCL. Boone (2010) demonstrated a subjective variabil-

ity of nearly 65 % with respect to the Silva approach using two

different yet common interpretations of the VCL. However, the

method has been widely credited as being independent of the

drawing scale (Clementino 2005; Boone 2010).

The intersection of the IVL and VCL (point B 0 in Fig. 3) can

be obtained by equating the VCL (Eq 13) to e0. In this case, the

following can be derived for σ 0
B 0 :

σ 0
B 0 = σ 0

B = 10logðαβÞ− 2
ln 10 =

1
ė2

�
α

β

�
≈ 0.368

�
α

β

�
(18)

The void ratio at point B can be determined by calculating the

value of the 3P-RH (Eq 1) at σ 0 = σ 0
B 0 = σ 0

B (Eq 18), which results

in the following:

eðσ 0
BÞ= e0 −

2
ė2 + 1

�
1
2β

�
≈ e0 − 0.238

�
1
2β

�
(19)

Point S 0 on the VCL has an equal void ratio value to that of

point B; therefore, by equating Eqs 13 and 19, the following can be

derived for obtaining the effective stress at point S 0, which also

represents the M2 preconsolidation pressure (PM2
c ):

σ 0
S 0 = σ 0

S = PM2
c = 10logðαβÞ− 2

ln 10ðė2−1ė2+1
Þ = ė−2ðė

2−1
ė2+1

Þ
�
α

β

�
≈ 0.218

�
α

β

�
(20)

The void ratio corresponding to PM2
c on the 3P-RH (eðPM2

c Þ)
can be further obtained substituting σ 0 = PM2

c (Eq 20) in Eq 1.

The RCL-VCL Intercept Method

Fig. 4 shows the graphical construction in accordance with the

RCL-VCL Intercept approach, herein M3, for determining the pre-

consolidation pressure. As the name of the method implies, the M3

preconsolidation pressure (PM3
c ) is defined as the intersection of the

RCL and VCL (point C 0 in Fig. 4). The method probably proposes

the least subjective approach among others that only rely on an

accurate interpretation of the RCL and VCL. The approach seems

to be a common practice among researchers (Cui and Delage

1996; Alonso et al. 2005; Gregory et al. 2006; Estabragh,

Bordbar, and Javadi 2011; Estabragh and Javadi 2013; Estabragh

et al. 2014). However, applying the technique over a semilog plot

may still be associated with some difficulties, not to mention being

inconvenient for numerical implementations.

The M3 preconsolidation pressure can be obtained by equat-

ing the VCL (Eq 13) and RCL linear relationships. Considering

basic geometrical relationships between Cr (Eq 6) and the user-

defined point A, the RCL can be expressed as the following:

RCL∶e=
− ln 10ασ 0

A

ðα + βσ 0
AÞ2

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Cr

× log

�
σ 0

σ 0
A

�
+ e0 −

σ 0
A

α + βσ 0
A

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{eðσ 0
AÞ

(21)

By equating Eqs 13 and 21 and rearranging, the following can

be obtained for solving point C 0, hence obtaining PM3
c :

σ 0
C 0 = σ 0

C = PM3
c = 10

Cc logðαβÞ−Cr logðσ 0AÞ+ 1
2β−

σ 0
A

α+βσ 0
A

Cc−Cr (22)

The void ratio at points C 0 and C can be further obtained by

substituting σ 0 = PM3
c (Eq 22) into the VCL (Eq 13) and the

3P-RH (Eq 1), respectively.

FIG. 3 Interpretation of the preconsolidation pressure with respect to the 3P-RH compressibility model bymeans of the “Silva” graphical construction or
M2 (Eq 20).
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The Log-Log Method

The Log-Log construction proposed by Jose, Sridharan, and

Abraham (1989) and Sridharan, Abraham, and Jose (1991) can

be basically considered as a modified version of the RCL-VCL

Intercept method, as it proposes an identical procedure; however,

it is over the loge:logσ 0 space. On this basis, the approach may be

illustrated using the same figure adopted for M3 (Fig. 4). The

method is probably the only approach established based on prior

knowledge of the preconsolidation pressure. The preconsolidation

pressure in accordance with the Log-Log method (herein M4) is

defined as the intersection of the newly constructed recompression

and virgin compression lines over the loge:logσ 0 space (termed as

RCL and VCL). The approach is expected to be a less subjective one,

providing that the loge-logσ 0 relationship ideally behaves as a two-

segment linear function, where, in this case, Pc can be interpreted by

means of a simple linear regression analysis. Sigmoidal functions

including the 3P-RH, however, still remain a reversed S-shaped

curve over the Log-Log space. As a result, the subjective difficulties

may still remain current. Application of the Log-Log method is

quite simple and straightforward (as M3). From a mathematical

perspective, however, the Log-Log approach poses as a problem

of greater complexity as both void ratio and effective stress are de-

fined over a logarithmic scale that results in a sophisticated deriva-

tion procedure. Nonetheless, due to the simple functional form of

the 3P-RH, an explicit analytical solution may still be obtained.

The inflection point (point I in Fig. 4) with respect to the loge:

logσ 0 space can be obtained by the following three-step procedure:

f 0log =
d log eðσ 0Þ
d log σ 0 =

∂ log eðσ 0Þ
∂σ 0 × σ 0 × ln 10

=
−ασ 0

e0ðα + βσ 0Þ2 − σ 0ðα + βσ 0Þ
(23)

f 00log =
d log f 0log
d log σ 0 =

∂ log f 0log
∂σ 0 × σ 0 × ln 10

=
e0α2 + βð1 − βe0Þσ 02

e0ðα + βσ 0Þ2 − σ 0ðα + βσ 0Þ

(24)

f 00log = 0∶

8<
: σ 0

I = α
β

ffiffiffiffiffiffiffiffiffi
βe0

βe0−1

q
; β > 1

e0

eðσ 0
IÞ= e0

ffiffiffiffiffiffiffiffiffi
βe0−1
βe0

q
= βe0

α σ 0
I

(25)

where:

f 0log and f 00log = first and second derivatives over the loge:

logσ 0 space.

Considering a similar approach adopted in the e:logσ 0 space,
the new compression (C 0

c) and recompression (C 0
r ) indices over

the loge:logσ 0 space can be determined by substituting the inflec-

tion point value (Eq 25) and the user-defined point A (σ 0 = σ 0
A)

into f 0log (Eq 23), which results in the following:

C 0
c =

d log eðσ 0Þ
d log σ 0

����
σ 0 = σ 0

I

=
−1

ð ffiffiffiffiffiffiffi
βe0

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βe0 − 1

p Þ2 (26)

C 0
r =

d log eðσ 0Þ
d log σ 0

����
σ 0 = σ 0

A

=
−ασ 0

A

e0ðα + βσ 0
AÞ2 − σ 0

Aðα + βσ 0
AÞ

(27)

Considering basic geometrical relationships between C 0
c and C 0

r

(Eqs 26 and 27, respectively) and points I (Eq 25) and A (σ 0
A,eðσ 0

AÞ),
the following can be obtained for describing the newly constructed

virgin compression and recompression lines over the loge:logσ 0 space:

VCL∶ log e=C 0
c log

�
β

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βe0 − 1
βe0

s
σ 0
�
+ log

�
e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βe0 − 1
βe0

s �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{eðσ 0
I Þ

(28)

RCL∶ log e=C 0
r log

�
σ 0

σ 0
A

�
+ log

�
e0 −

σ 0
A

α + βσ 0
A

�zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{eðσ 0
AÞ

(29)

PM4
c can now be solved by equating Eqs 28 and 29, which

results in the following:

σ 0
C 0 = σ 0

C =PM4
c = 10

C 0
c log

�
α
β

ffiffiffiffiffiffiffi
βe0

βe0−1

p �
−C 0

r logðσ 0AÞ+log

�
e0−

σ 0
A

α+βσ 0
A

e0

ffiffiffiffiffiffiffi
βe0−1
βe0

p �
C 0
c−C

0
r (30)

The void ratio at point C 0 and point C may also be deter-

mined by substituting σ 0 = PM4
c (Eq 30) into the VCL (Eq 28)

and the 3P-RH (Eq 1), respectively.

A practical summary of the proposed regression-aided analyti-

cal framework for determination of the compressibility curve var-

iables by means of the 3P-RH model is presented in Table 1. The

applicability of the proposed framework is dependent on σ 0
I ≤ σ 0

P

(σ 0
P is the final effective stress applied in a typical compression test

as shown in Fig. 4), meaning that the estimated inflection point of

FIG. 4 Interpretation of the preconsolidation pressure with respect to
the 3P-RH compressibility model by means of the “VCL-RCL
Intercept” graphical construction or M3 (Eq 22).
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the 3P-RH function should fall in the range of measured laboratory

data. Where σ 0
I becomes increasingly greater than σ 0

P, there is the

possibility of relocating the VCL to higher stress ranges and thus

overestimating the preconsolidation pressure.

Framework Validation

MODEL VALIDATION

A database of 34 compression tests was selected from the liter-

ature to validate the newly proposed 3P-RHmodel. Extensive care

was taken to promote a database that not only covered a wide

range of soils but also various testing approaches and sample

preparation techniques. Index properties of the soils, including

grain size analysis and consistency characteristics, accompanied

by the original source of each dataset, are presented in Table 2. In

addition, descriptive statistics of the index properties are pre-

sented in Table 3. According to these statistics, one can conclude

that the database fairly includes a variety of soil types covering a

wide range of possible index properties, hence providing a solid

basis for model validation. The fitting parameters e0, α, and β

were obtained by means of the nonlinear least squares optimiza-

tion technique. Since the actual value of e0 was not reported by the

majority of data sources, e0 was set an independent fitting param-

eter. Statistical fit-measure indices, namely the coefficient of

determination (R2) and the normalized root mean square error

(NRMSE) were obtained for model validation by the following:

ð%ÞNRMSE=
100

eðσ 0Þamax − eðσ 0Þamin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1



eðσ 0Þmi − eðσ 0Þai

�
2

vuut
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{RMSE

(31)

where:

e(σ 0)mi = predicted void ratio,

e(σ 0)ai = actual void ratio,

e(σ 0)a max and e(σ 0)a min = maximum and minimum actual

void ratios, and

N = number of void ratio–effective stress data points for a

typical dataset (see Table 2).

SENSITIVITY ANALYSIS

As demonstrated in Table 1, the preconsolidation pressure with

respect to various graphical constructions was obtained as a direct

function of the fitting parameters α and β (Pc = f(α,β)). To under-

stand the influence of these parameters on the preconsolidation

pressure function, a sensitivity analysis with respect to M1/M1S,

M2, M3, and M4 was considered. As Pc is currently defined by

means of continuous mathematical relationships, the Partial

Derivative approach (quite similar to that adopted by

TABLE 1 Summary of the proposed regression-aided analytical framework for determining the compressibility curve variables.

Properties Space Model Equation

3P-RH e:σ 0 eðσ 0Þ= e0 − σ 0
α+βσ 0 Eq 1

Cc

e:logσ 0 Cc = − ln 10
4β

Eq 5

loge:logσ 0 C 0
c = −1

ð
ffiffiffiffiffi
βe0

p
+
ffiffiffiffiffiffiffiffiffi
βe0−1

p
Þ2 ; β > 1

e0
Eq 26

Cr e:logσ 0
Cr =

− ln 10ασ 0
A

ðα+βσ 0
AÞ2

Eq 6

loge:logσ 0
C 0

r =
−ασ 0

A
e0ðα+βσ 0

AÞ2−σ 0
Aðα+βσ 0

AÞ
Eq 27

Critical State Framework

λ e:lnσ 0 λ= Cc
ln 10 =

−1
4β

Eq 7

κ e:lnσ 0
κ= Cr

ln 10 =
−ασ 0

A
ðα+βσ 0

AÞ2
Eq 8

VCL e:logσ 0
e= e0 + Cc log

�
β
α σ

0
�
− 1

2β
Eq 13

RCL e:logσ 0
e= e0 + Cr log

�
σ 0
σ 0
A

�
− σ 0

A
α+βσ 0

A

Eq 21

Preconsolidation Pressure

M1/M1S e:logσ 0
PM1
c ≈ PM1S

c = ė−
ffiffi
3

pffiffiffiffiffiffiffiffiffi
2−
ffiffi
3

pp ðαβÞ Eq 17

M2 e:logσ 0
PM2
c = ė−2ðė

2−1
ė2+1

ÞðαβÞ Eq 20

M3 e:logσ 0

PM3
c = 10

Cc logðαβÞ−Cr logðσ 0AÞ+ 1
2β
−

σ 0
A

α+βσ 0
A

Cc−Cr

Eq 22

M4 loge:logσ 0

PM4
c = 10

C 0
c log

�
α
β

ffiffiffiffiffiffiffi
βe0

βe0−1

p �
−C 0

r logðσ 0A Þ+log

�
e0−

σ 0
A

α+βσ 0
A

e0

ffiffiffiffiffiffiffi
βe0−1
βe0

p �
C 0
c−C

0
r

Eq 30

Notes: M1/M1S = Classical or Simplified Classical method. M2 = Silva method. M3 = RCL-VCL Intercept method. M4 = Log-Log method. ė = Euler’s number (≈ 2.718).
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Estabragh, Soltani, and Javadi [2016]) may be the most suitable

sensitivity analysis technique. Assuming α and β as xi, the relative

impact of the independent variable xi on the dependent variable

Pc (Eqs 17, 20, 22, and 30 for M1/M1S to M4, respectively), re-

ferred to as sensitivity or Sxi , can be defined as the following:

Sxi =
σxi
nσPc

Xn
j= 1

���� ∂Pc

∂xi

����
j

(32)

where:
∂Pc
∂xi

= partial derivative of the preconsolidation pressure func-

tion with respect to xi and

σPc and σxi = standard deviation of the predicted preconso-

lidation pressure and xi data.

The term ∂Pc/ ∂xi in Eq 32 represents the likelihood of Pc
increasing or decreasing as a result of increase in xi. Hence,

the likelihood of increase (p+xi ) or decrease (p
−
xi
) in Pc in the case

of increase in xi can be given as the following:

ð%Þp+xi =
m+

xi

n
× 100 (33)

ð%Þp−xi =
m−

xi

n
× 100 (34)

TABLE 2 Index properties of the soils with respect to the compiled data from the literature used for model validation.

Soil Description No. Gs C M F200 S LL PL PI USCS Source

Drammen Lean Clay S1 – – – – – 36 21 15 CL Bjerrum (1967)

Drammen Plastic Clay S2 – – – – – 59 28 31 CH

Montmorillonite (Fat Clay) S3 2.83 100 0 100 0 305 44 261 CH Sridharan and Venkatappa Rao (1973)

Kaolinite (Silt) S4 2.59 54 45 99 1 49 29 20 ML

Black Cotton Soil (Fat Clay

with Sand)

S5 2.71 29 43 72 16 101 28 73 CH

P5D4 (Silty Sand) S6 2.70 – – 40 47 48 31 17 SM Sridharan and Allam (1982)

P5D9 (Clayey Sand) S7 2.70 – – 18 78 40 25 15 SC

P2D4 (Clayey Sand with Gravel) S8 2.71 – – 35 49 39 25 14 SC

P2D10 (Clayey Sand) S9 2.70 – – 46 42 56 27 29 SC

P7D4 (Silty Sand) S10 2.72 – – 49 47 45 28 17 SM

P3D11 (Silty Sand) S11 2.73 – – 32 65 52 33 19 SM

NG1 (Clayey Sand) S12 2.60 – – 48 49 43 26 17 SC

NG2 (Sandy Lean Clay) S13 2.62 – – 61 33 45 25 20 CL

NG3 (Clayey Sand) S14 2.59 – – 47 48 36 23 13 SC

IT1 (Silty Sand) S15 2.63 – – 48 50 53 32 21 SM

IT2 (Sandy Elastic Silt) S16 2.59 – – 52 46 51 31 20 MH

Mg-Bentonite S17 2.65 – – – – 129 50 79 MH Sridharan, Rao, and Murthy (1986b)

Nettoor (Fat Clay with Sand) S18 2.64 48 31 79 21 138 48 90 CH Jose, Sridharan, and Abraham (1988)

Meers Fault (Sandy Lean Clay) S19 2.70 38 31 69 30 31 19 12 CL Cetin (2000)

Meers Fault (Sandy Lean Clay) S20 2.72 38 23 61 38 33 18 15 CL

Degirmenlik Flysch (Fat Clay) S21 – 33 67 100 0 68 22 46 CH Nalbantoglu and Tuncer (2001)

Northern Karnataka (Fat Clay) S22 – 66 32 98 2 100 42 58 CH Subba Rao and Tripathy (2003)

Adana-Taurides (Sandy Silty Clay) S23 2.74 26 31 57 43 24 18 6 CL-ML Cetin (2004)

Degirmenlik (Lean Clay) S24 2.74 35 52 87 13 37 25 12 CL Sridharan and Gurtug (2005)

Tuzla (Fat Clay) S25 2.78 42 48 90 10 53 28 25 CH

Akdeniz (Fat Clay) S26 2.75 44 45 89 11 50 28 22 CH

Montmorillonitic Clay (Fat Clay) S27 2.60 76 23 99 1 98 40 58 CH

Pune S28 2.72 – – – – 71 30 41 CH Viswanadham, Phanikumar, and Mukherjee (2009)

Chicago Clay S29 – – – – – 30 15 15 CL Boone (2010)

Black Cotton Soil (Fat Clay) S30 2.70 69 27 96 3 88 36 52 CH Nagaraj, Munnas, and Sridharan (2010)

Karaj Clay (Lean Clay) S31 2.72 34 56 90 10 47 20 27 CL Estabragh, Bordbar, and Javadi (2011)

Adana-Taurides (Sandy Lean Clay) S32 2.71 36 33 69 31 36 20 16 CL Cetin and Gökoğlu (2013)

Kaolin (Lean Clay with Sand) S33 2.72 25 52 77 23 47 20 27 CL Estabragh et al. (2014)

Kaolin and Bentonite (Fat Clay

with Sand)

S34 2.75 45 35 80 20 81 28 53 CH

Notes: Gs = Specific gravity. C = Clay (<2 μm) (%). M = Silt (2–75 μm) (%). S = Sand (0.075–4.75 mm) (%). F200 = Passing sieve No. 200 (<75 μm) (%). LL = Liquid limit (%).
PL = Plastic limit (%). PI = Plasticity index (= LL–PL) (%). USCS = Unified soil classification (ASTM D2487-11, Standard Practice for Classification of Soils for Engineering Purposes
[Unified Soil Classification System]).
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where:

m+
xi andm

−
xi = number of observations where ∂Pc/ ∂xi > 0 and

∂Pc/ ∂xi< 0, and

n = number of void ratio–effective stress datasets, n= 34.

The positive and negative magnitudes (μ+xi and μ−xi ,

respectively) on Pc caused by increase in xi can be defined

as the following:

μ+xi =
σxi
nσPc

Xn
j= 1

���� ∂Pc

∂xi

����
j

; ∀xi ∋
∂Pc

∂xi
> 0 (35)

μ−xi =
σxi
nσPc

Xn
j= 1

���� ∂Pc

∂xi

����
j

; ∀xi ∋
∂Pc

∂xi
< 0 (36)

PROBABILISTIC COMPARISON

Because the proposed regression-aided analytical equations are

able to overcome the subjective uncertainty associated with deter-

mining Pc, an accurate comparison among various graphical con-

structions may now be obtained. The likelihood of a particular

graphical construction, say Mi, promoting a greater Pc value to

that of Mj, termed as pij, can be obtained by the following:

ð%Þpij =
mij

n
× 100 (37)

where:

mij= number of observations where PMi
c > PMj

c .

Results and Discussion

The fitting parameters (e0, α, and β) and statistical fit-measure

indices (R2, RMSE, andNRMSE) with respect to the 3P-RHmodel

are presented in Table 4. As demonstrated in the table, the 3P-RH

well represents the experimental void ratio–effective stress rela-

tionship. The high R2 and low RMSE or NRMSE values imply

a high agreement between actual and predicted data, both in

terms of correlation and error. The R2 values were mainly above

the 0.99 margin, meaning that nearly 99 % of variations in exper-

imental observations are being explained by the 3P-RH. The

NRMSE was observed to be lower than 5.00 % for the majority

of cases. Results justify the high capability of the 3P-RH in de-

scribing the void ratio–effective stress relationship over a variety

of scenarios.

Table 5 presents the preconsolidation pressure determined

in accordance with the proposed analytical equations for

M1/M1S, M2, M3, and M4 (equations presented in Table 1).

PM1
c (Eq 15) and PM1S

c (Eq 17) resulted in nearly identical Pc val-

ues. Therefore, the less complex PM1S
c function can replace the

more sophisticated PM1
c for defining the preconsolidation pres-

sure in accordance with the Classical method. Table 6 presents a

probabilistic comparison of the preconsolidation pressure value

with respect to various graphical constructions. For instance, the

likelihood of M1/M1S promoting a greater preconsolidation

pressure compared to that of M2, M3, and M4 was determined

(by Eq 37) as 100 %, 100 %, and 97.06 %, respectively. Based

on the probabilistic data, the graphical constructions may

be ranked in order as PM1=M1S
c > PM4

c ≥ PM2
c > PM3

c , with

methods M4 and M2 showing marginal differences for the

majority of cases.

A summary of the sensitivity analysis results for α and β with

respect to the preconsolidation pressure functions PM1=M1S
c , PM2

c ,

PM3
c , and PM4

c (equations presented in Table 1) is presented in

Table 7. A review of the sensitivity parameter Sxi indicates that

the variations of Pc are mainly controlled and dominated by the

fitting parameter α. All Sxi values for α were observed to be

significantly greater than those determined for β (Sα > Sβ).

Regarding methods M1/M1S, M2, and M3, the sensitivity param-

eter Sα was observed to be approximately four times greater than

Sβ (Sα/Sβ≈ 4). In the case of M4, however, Sα/Sβ was nearly 2,

meaning that the PM4
c function is relatively more sensitive to

the variations of β compared to others. The likelihood of increase

TABLE 3 Descriptive statistics of the soil index properties with respect to the compiled data from the literature.

Descriptive Statistics

Properties Na Min Mean Max σ

Specific Gravity, Gs 29 2.59 2.69 2.83 0.06

Clay (<2 μm), C (%) 18 25 46.44 100 19.73

Silt (2–75 μm), M (%) 18 0 37.56 67 15.32

Passing Sieve No. 200 (<75 μm), F200 (%) 29 18 68.55 100 23.91

Sand (0.075–4.75 mm), S (%) 29 0 28.59 78 21.59

Liquid Limit, LL (%) 34 24 65.22 305 50.66

Plastic Limit, PL (%) 34 13 28.07 50 8.82

Plasticity Index, PI (%) 34 6 37.15 261 44.84

Notes: Na = Number of available data. σ = Standard deviation.

10 Geotechnical Testing Journal
 

Copyright by ASTM Int'l (all rights reserved); Thu Jun 11 00:17:43 EDT 2020
Downloaded/printed by
University of Adelaide (University of Adelaide) pursuant to License Agreement. No further reproductions authorized.



in Pc as a result of increase in α was observed to be 100 % with

respect to all methods (p+α = 100%), which suggests a direct rela-

tionship between α and Pc (Pc ~ α). On the contrary, β inversely

influences Pc (Pc ~ β-1), as the likelihood of decrease in Pc owing to

increase in β was observed to be 100 % (p−β = 100%). The mag-

nitude of increase (μ+xi ) and decrease (μ−xi ) in Pc as a result of in-

crease in α and β suggests equal values to that of Sxi . A comparison

of the sensitivity and magnitude values presented in Table 7 indi-

cates that while methods M1/M1S, M2, and M3 more or less show

similar sensitivities to α and β, M4 is quite more sensitive to the

variations of α and β. Therefore, the accuracy of the determined

preconsolidation pressure by means of M4 (Eq 30) may be more

dependent on how well the 3P-RH simulates experimental data.

Applications

The conventional oedometer test (ASTM D2435-11, Standard Test

Methods for One-Dimensional Consolidation Properties of Soils

Using Incremental Loading, and ASTM D4546-14, Standard Test

Methods for One-Dimensional Swell or Collapse of Soils) has been

widely criticized as a relatively time-consuming process. With the

TABLE 4 Summary of the regression analysis outputs with respect to the 3P-RH compressibility model (Eq 1) for the compiled data
from the literature.

No. N e0 α (kPa) β R2 RMSE NRMSE (%)

S1 10 0.974 690.77 2.394 0.9838 1.17×10-2 4.66

S2 10 1.488 405.32 1.093 0.9817 2.68×10-2 5.04

S3 9 4.959 60.09 0.258 0.9978 4.62×10-2 1.64

S4 8 0.961 732.40 3.457 0.9962 4.73×10-3 2.21

S5 8 1.183 517.02 1.301 0.9908 1.71×10-2 3.54

S6 7 0.767 957.02 3.477 0.9983 2.36×10-3 1.48

S7 7 0.876 570.08 2.788 0.9990 2.30×10-3 1.01

S8 7 0.803 674.75 3.167 0.9932 5.73×10-3 2.93

S9 7 0.858 1,398.14 4.765 0.9989 1.32×10-3 1.15

S10 7 0.669 997.76 3.780 0.9977 2.54×10-3 1.69

S11 7 0.811 894.55 3.202 0.9978 2.86×10-3 1.59

S12 8 0.602 1,185.74 3.632 0.9968 3.75×10-3 1.89

S13 8 0.718 707.68 3.077 0.9966 4.98×10-3 1.97

S14 8 0.599 981.47 3.958 0.9966 3.85×10-3 1.96

S15 7 0.702 708.11 4.224 0.9985 2.12×10-3 1.35

S16 7 0.763 604.12 3.147 0.9948 5.15×10-3 2.43

S17 7 2.439 113.08 0.569 0.9981 1.85×10-2 1.53

S18 7 4.014 37.51 0.293 0.9938 7.08×10-2 2.92

S19 10 0.776 8,728.39 6.119 0.9912 2.63×10-3 2.99

S20 12 0.773 6,931.63 5.536 0.9904 2.97×10-3 2.90

S21 8 0.882 713.56 2.236 0.9982 5.44×10-3 1.48

S22 8 1.205 2,943.35 6.487 0.9947 2.38×10-3 2.40

S23 15 0.798 753.96 2.166 0.9994 2.47×10-3 0.76

S24 7 0.583 2,945.14 4.006 0.9978 2.68×10-3 1.58

S25 7 0.821 1,618.23 2.349 0.9985 3.91×10-3 1.31

S26 7 0.745 2,075.23 2.829 0.9983 3.35×10-3 1.41

S27 7 1.148 896.32 1.812 0.9985 5.41×10-3 1.32

S28 8 0.937 735.95 2.127 0.9962 6.59×10-3 2.21

S29 16 0.629 2,182.14 2.863 0.9990 2.48×10-3 0.89

S30 9 1.582 433.55 1.071 0.9989 8.54×10-3 1.20

S31 6 1.897 156.26 2.183 0.9987 3.17×10-3 1.33

S32 16 0.864 46.31 1.535 0.9986 6.92×10-3 1.24

S33 8 2.095 380.86 1.577 0.9968 1.05×10-2 1.98

S34 8 3.219 217.16 0.738 0.9941 2.99×10-2 2.90

ΣN = 291

Note: N = Number of void ratio–effective stress data points.
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TABLE 5 Preconsolidation pressure with respect to the proposed regression-aided analytical equations for various graphical
constructions.

No. PM1
c (kPa) (Eq 15) PM1S

c (kPa) (Eq 17) PM2
c (kPa) (Eq 20) PM3

c (kPa) (Eq 22) PM4
c (kPa) (Eq 30)

S1 98.56 98.64 62.92 68.93 82.76

S2 126.28 126.72 80.83 81.02 112.25

S3 77.12 79.49 50.70 43.21 75.18

S4 72.39 72.42 46.20 39.07 44.92

S5 135.49 135.83 86.64 66.39 101.04

S6 94.05 94.08 60.01 48.63 58.66

S7 69.86 69.89 44.58 38.65 47.23

S8 72.78 72.82 46.45 39.44 47.84

S9 100.27 100.29 63.97 50.98 57.15

S10 90.18 90.21 57.54 46.98 57.34

S11 95.46 95.50 60.92 49.17 59.71

S12 111.55 111.59 71.18 55.68 71.36

S13 78.57 78.61 50.14 42.09 53.15

S14 84.72 84.74 54.06 44.66 55.36

S15 57.29 57.30 36.55 33.00 38.45

S16 65.59 65.62 41.86 36.70 44.97

S17 67.16 67.89 43.31 37.60 59.99

S18 42.61 43.76 27.91 25.41 48.88

S19 487.46 487.52 310.98 250.75 275.94

S20 427.87 427.93 272.97 226.51 251.70

S21 108.96 109.06 69.56 55.96 74.07

S22 155.06 155.08 98.92 74.28 78.76

S23 118.89 119.00 75.91 48.65 72.01

S24 251.22 251.29 160.29 114.77 146.10

S25 235.26 235.45 150.18 108.67 148.08

S26 250.60 250.74 159.94 114.95 151.40

S27 168.83 169.06 107.84 81.22 106.59

S28 118.13 118.24 75.42 53.40 72.08

S29 260.36 260.50 166.17 126.76 176.33

S30 137.86 138.36 88.25 67.21 96.53

S31 24.44 24.46 15.60 14.51 16.05

S32 10.29 10.31 6.58 4.56 8.15

S33 82.41 82.56 52.66 40.45 47.00

S34 99.88 100.59 64.16 47.94 60.30

TABLE 6 Probabilistic comparison of the preconsolidation pressure with respect to various graphical constructions.

Mj

Method M1/M1S M2 M3 M4

Mi

M1/M1S — 100 100 97.06

M2 0 — 94.12 47.06

M3 0 5.88 — 0

M4 2.94 52.94 100 —

Note: Values represent the likelihood of Mi promoting a greater preconsolidation pressure compared to that of Mj (%).
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goal of avoiding the labor of such tests, numerous attempts have

beenmade to estimate the compressibility curve variables Cc and Cr

as a function of the soil’s index properties (e.g., consistency char-

acteristics) by means of various data-driven techniques. The

existing empirical models can be generally divided into two catego-

ries based on the adopted technique used for model development,

namely, traditional (classical statistical analyses) and nontradi-

tional (computational intelligence methods). A more detailed

discussion may be found in Onyejekwe, Kang, and Ge (2014),

Kordnaeij et al. (2015), and Moayed, Kordnaeij, and Mola-Abasi

(2016). Cc was defined as a function of β (Eq 5); hence, by predict-

ing Cc in accordance with any well-established empirical model, β

can be obtained. Since Cr was expressed as a function of α and β

(Eq 6), predicting Cr by any chosen empirical relationship, α can be

estimated with a known β. This implies that by integrating the

existing empirical models for Cc and Cr with Eqs 5 and 6, it is pos-

sible to construct the compressibility curve (and determine Pc)

without the need of conducting oedometer tests, which would

be quite useful, particularly for initial estimations. The validity

of the constructed compressibility curve, however, strongly relies

on how well the selected empirical models are able to predict Cc

and Cr. Hence, the first essential step is to review the applicability

conditions of each empirical relationship and select a model that

best suits the study objectives.

Conclusions

The following conclusions could be drawn from this study:

1. The proposed 3P-RH compressibility model accompanied
by the suggested analytical solutions for solving the com-
pressibility curve variables construct a unique framework

for modeling the compressibility behavior of soils with an
acceptable degree of accuracy and, more importantly, by a
simple objective approach. Utilization of the framework
relies on estimation of the fitting parameters α and β,
which are normally determined by means of void
ratio–effective stress oedometer data or alternatively
predicted by the well-established empirical relationships
proposed for Cc and Cr.

2. The subjective judgement and uncertainty associated with
defining the preconsolidation pressure over the e:logσ 0 or
loge:logσ 0 space can be avoided or at least minimized by
introducing a continuous mathematical function that
involves physically meaningful parameters. Based on
the probabilistic comparison, the investigated graphical
constructions may be ranked in order as PM1=M1S

c > PM4
c

≥ PM2
c > PM3

c . The sensitivity analysis indicated that the
preconsolidation function obtained in accordance with
the Log-Log method (PM4

c ) is much more sensitive to
the variations of α and β.
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Appendix

The Wolfram Mathematica 10.2 software package was used to

determine the first derivative of the M3 and M4 preconsolidation

pressure functions (Eqs 22 and 30, respectively) with respect to α

and β ( ∂Pc/ ∂α and ∂Pc/ ∂β), which resulted in the following:

TABLE 7 Summary of the sensitivity analysis results for the fitting parameters α and β with respect to various preconsolidation
pressure functions.

xi Method ∂Pc
∂xi

1
n

P
n
j= 1j ∂Pc

∂xi
j
j

σxi σPc ðkPaÞ
σxi
σPc

Sxi m+
xi p+xi ð%Þ m−

xi p−xi ð%Þ μ+xi μ−xi

Fitting Parameter α M1/M1S (Eq 17) ė−
ffiffi
3

pffiffiffiffiffiffiffiffiffi
2−
ffiffi
3

pp
�
1
β

�
0.23 1,824.14 102.97 17.72 3.99 34 100 0 0 3.99 0

M2 (Eq 20)
ė
−2
�

ė2−1
ė2+1

��
1
β

� 0.14 1,824.14 65.68 27.77 3.99 34 100 0 0 3.99 0

M3 (Eq 22) Eq A1 0.10 1,824.14 51.66 35.31 3.37 34 100 0 0 3.37 0

M4 (Eq 30) Eq A2 0.15 1,824.14 58.95 30.94 4.73 34 100 0 0 4.73 0

Fitting Parameter β M1/M1S (Eq 17) − ė−
ffiffi
3

pffiffiffiffiffiffiffiffiffi
2−
ffiffi
3

pp
�

α
β2

�
65.66 1.56 102.97 0.015 0.99 0 0 34 100 0 0.99

M2 (Eq 20)
−ė

−2
�

ė2−1
ė2+1

��
α
β2

� 41.88 1.56 65.68 0.024 0.99 0 0 34 100 0 0.99

M3 (Eq 22) Eq A3 27.63 1.56 51.66 0.030 0.83 0 0 34 100 0 0.83

M4 (Eq 30) Eq A4 74.79 1.56 58.95 0.026 1.97 0 0 34 100 0 1.97

Note: ė = Euler’s number (≈ 2.718).
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M3∶
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∂α
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where:

e= initial void ratio, e= e0, and

A= initial effective stress at the initial loading stage or

point A, A= σ 0
A.
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