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Registration is a fundamental task in computer vision, and is often used as a pre-

liminary step in diverse applications. In the process of registration, the transformation

model needs to be estimated to establish the correspondence relationships between input

images. Most transformation models are built upon certain assumptions. However, in

practice, when given uncharacteristic data, applying such a model may result in critical

deviations/artifacts in the registration output. The research conducted in this thesis

focuses on the step of transformation model estimation in registration problems, where

the underlying model assumptions do not hold. A central theme of this thesis is the

usage of moving least squares (MLS) technique to handle violations to model assump-

tions. This thesis contributes in three specific applications: radial distortion estimation,

image stitching and video stabilization.

First, real cameras approximate ideal pinhole cameras using lenses and apertures.

This leads to radial distortion effects that are not characterizable by the standard epipo-

lar geometry model and impacts the efficacy of point correspondence validation based on

the epipolar constraint. Many previous works deal with radial distortion by augmenting

the epipolar geometry model with additional parameters such as distortion coefficients

and centre of distortion. In this thesis, radial distortion is treated as a violation to the

basic epipolar geometry. To account for the distortion effects, the epipolar geometry

is adjusted via the MLS approximation combined with M-estimators to allow robust

matching of interest points under severe radial distortion. Compared to previous works,

the proposed method is much simpler and exhibits a higher tolerance in cases where the

exact model of radial distortion is unknown.

Secondly, spatially varying warps are increasingly popular for image alignment

as alternatives to homographic warps, since the basic homography model carries the

assumptions that images were taken under pure rotational motions, or that the scene is

sufficiently far away such that it is effectively planar – conditions unlikely to be satisfied

in casual photography. However, estimating spatially varying warps requires a sufficient

number of feature matches. In image regions where feature detection or matching fail,

the warp loses guidance and is unable to accurately model the true underlying warp, thus

resulting in poor registration. This thesis proposes a correspondence insertion method

http://www.adelaide.edu.au/
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for As-Projective-As-Possible (APAP) warps, which are extensions of MLS to the pro-

jective setting. The proposed method automatically identifies misaligned regions, and

inserts appropriate point correspondences to increase the flexibility of the warp and im-

prove alignment. Unlike other warp varieties, the underlying projective regularization of

APAP warps reduces overfitting and geometric distortion, despite increases to the warp

complexity.

Lastly, video stabilization is achieved by estimating the camera trajectory throughout

the video and then smoothing the trajectory. In practice, most approaches directly model

and filter the camera motion using 2D image transforms (e.g., affine or projective). From

the smoothed motions, update transforms are obtained to adjust each frame of the video

such that the overall sequence appears to be stabilized. However, the update transform

is also customarily defined by the basic 2D transforms, which cannot preserve the image

contents well. As a result the stabilized videos often appear distorted and “wobbly”.

Therefore, estimating good update transforms is more critical to success than accurately

modeling and characterizing the motion of the camera. Based on this observation,

this thesis proposes homography fields for video stabilization. A homography field is a

spatially varying warp that is regularized to be as projective as possible, so as to enable

accurate warping while adhering closely to the underlying geometric constraints. It has

been shown that homography fields are powerful enough to meet the various warping

needs of video stabilization, not just in the core step of stabilization, but also in video

inpainting. This enables relatively simple algorithms to be used for motion modeling

and smoothing. Results on various publicly available testing videos demonstrate the

merits of the proposed video stabilization pipeline.
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Chapter 1

Introduction

1.1 Introduction

Registration is a fundamental task in computer vision, and is often used as a preliminary

step in diverse applications that require (a) integrating information taken from different

sensors, (b) observing changes in images taken at different times or under different

conditions, (c) extracting 3D information from images, and (d) identifying objects in

images to estimate their poses (location and orientation) [111].

In the most basic form of registration, the task is to align two or more images of the

same scene taken from different viewpoints, and/or by different devices. Although many

methods [24, 16, 21, 113, 6, 29, 15, 143, 114, 135] have been proposed on this topic,

the majority of image alignment methods consist of the following steps as shown in

Figure 1.1. First, in the step of feature detection, as shown in the top row in Figure 1.1,

salient and distinctive objects are detected. Many computer vision applications employ

feature detection as the initial step, thus, a very large number of feature detectors have

been developed. Feature detectors examine every pixel to determine whether there

is an image feature (e.g., corner, interest points, edges), and at last output feature

point representatives, i.e., feature point localizations and feature descriptors. Then, the

correspondence relationships between features from input images can be established with

various feature descriptors and similarity metrics. Given established correspondences,

the mapping is estimated. There are several transformation models that can be used

to characterize the mapping, but they can be roughly categorized as global mapping

1



Chapter 1. Introduction 2

Figure 1.1: Image alignment consists of four steps: feature detection (as shown in
the top row), feature matching (as shown in the middle row), transformation model
estimation and image resampling and transformation. Figure is taken from [143].

transformations and local mapping transformations (more below). Finally, images are

optionally warped onto the same canvas with estimated transformation. The warping

output is shown in bottom row in Figure 1.1.

Apart from image alignment, there are other registration problems, such as estimating

the epipolar geometry. Similar to image alignment, the epipolar geometry estimation

begins with the search for corresponding feature points in stereo images. Then the

transformation model – the fundamental matrix, which is the algebraic representation

of epipolar geometry – is obtained. With the help of fundamental matrix, the poses of

a calibrated camera from stereo images can be determined, which are crucial to the re-

construction of 3D structure. In all registration problems, inevitably the transformation

model requires to be estimated to establish the correspondence relationships between

input images, which is where the focus of this thesis lies.



Chapter 1. Introduction 3

When applying the global mapping transformation, after choosing a certain global

model, e.g., rigid transformation or affine transformation, all feature correspondences

are used for estimating the set of model parameters valid for the entire image. In

general, the number of correspondences is usually higher than the minimum number

required for the estimation of the mapping model. The mapping model is then com-

puted by least square methods, so that the sum of squared residuals at correspondences

is minimized. However, such global model mapping does not map all correspondences

onto their correspondences exactly, and cannot properly handle images deformed locally.

More fundamentally, the usage of a particular model is based on certain assumptions

about the underlying data which may not hold in practice. However, when the un-

derlying model assumptions do not hold, applying such a model may result in critical

deviations/artifacts in the registration output. In this thesis, a central theme is to deal

with violations to model assumptions with the usage of moving least squares (MLS)

technique.

The MLS method was proposed by Shepard [118] for smoothing and interpolating data.

Shepard applied MLS to generate two-dimensional interpolants from irregularly-spaced

data to produce a continuous surface, which was later extended by Lancaster and

Salkaukas in [72, 71]. More recently, the MLS approximation was used in the recon-

struction of two and three-dimensional curves from unorganized and noisy data [73] and

in the reconstruction of surfaces [3, 74]. In [3], data in the form of raw points, acquired

with a range scanner and therefore contains errors, were replaced by surfaces derived

from MLS technique. This was achieved by down-sampling (i.e., iteratively removing

points which have little contribution to the shape of the surface) or up-sampling (i.e.,

adding points and projecting them to the MLS surface where point-density is low). The

projection procedure was later augmented and further analyzed in the work of Amenta

and Kil [5]. The MLS method has also been successfully applied to simulating and

animating elastoplastic materials [14, 104], partition of unity implicits [108], and image

deformation [115]. In [115], an image deformation method was proposed based on linear

MLS. To construct deformations that minimize the amount of local scaling and shear,

Schaefer et al. [115] restricted the classes of transformations used in MLS to similarity

and affine transformations. Following this, Zaragoza et al. [140] proposed moving di-

rect linear transformation (MDLT), which is conceptually the homogeneous version of

MLS and based on projective warps, to produce as-projective-as-possible (APAP) image
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warps.

1.2 Overview of Thesis

This thesis provides mathematical adjustments, inspired by the work of APAP image

stitching [140], to solve three challenging problems: (a) correspondence validation under

unknown radial distortion, (b) correspondence insertion for spatially varying warps, and

(c) video stabilization.

First, radial distortion is viewed as a violation to the basic epipolar geometry equation.

Instead of augmenting the standard epipolar constraint with a radial distortion model,

the proposed method adjusts the epipolar geometry as warranted by the data to account

for the distortion effects. The model adjustment is achieved through the framework of

MLS. Specifically, MLS is extended to allow for epipolar geometry estimation, and is

combined with M-estimators [112] to enable robust point matching under severe radial

distortion. Compared to previous methods, the proposed technique is much simpler and

involves just solving linear subproblems. It also exhibits a higher degree of flexibility

and generality, especially when the true model of radial distortion is unknown.

Second, this thesis attempts to insert correspondences for APAP warps, with a focus

on panoramic stitching. In correspondence-poor regions, the proposed method auto-

matically identifies misaligned regions, and inserts appropriate point correspondences to

increase the flexibility of the warp and improve alignment. It has been shown how cor-

respondence search can be accomplished for MDLT. On panoramic mosaicing problems

that are challenging, the proposed approach has also exhibited the ability to achieve

accurate alignment without being handicapped by insufficient feature matches.

Finally, homography fields are proposed for video stabilization. Conceptually, video

stabilization is achieved by estimating the camera trajectory throughout the video and

then smoothing the trajectory. In practice, the pipeline invariably leads to estimating

update transforms that adjust each frame of the video such that the overall sequence

appears to be stabilized. Contrary to the recent works, this thesis argues that the

key to effective video stabilization is in designing better update transforms rather than

accurately modeling and characterizing the motion of the camera. To capture the camera

motion, it is sufficient to estimate the frame global image motion – following [98, 51],
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simple 2D homographies are used in the novel approach. To construct the all-important

update transform, the homography fields, which are spatially varying warps that are

regularized to be as projective as possible [140], has been used. This enables flexible and

accurate warping that adheres closely to the underlying scene geometry. The obtained

update transform is powerful enough to eliminate unwanted jerky motions, while at the

same time prevents the warped sequence of frames from appearing wobbly or distorted.

Apart from removing shakiness, homography fields are powerful enough to fill in blank

regions arising from video re-rendering. The work conducted in this thesis is one of the

first to treat trajectory smoothing and video inpainting in a single unified pipeline.

1.3 Background on Moving Least Squares

The simple problem of line fitting in 1D will be used to explain the concept of MLS

method. The idea of least squares method will be given first to inspire the theory of

MLS technique.

1.3.1 Least squares

Assume there exists a linear relationship between two variables a and b such that

b = xa. (1.1)

Given a set of observations {ai, bi} as shown by green circles in Figure 1.2, the goal is to

find the linear model that matches the observations as best as possible. It is reasonable

to require the discrepancy, or residual, between the predictions by the fitted model and

the data to be as small as possible. The least squares criterion sums the squared residual

at each observation, i.e.,

e =

N∑
i=1

(bi − xai)2, (1.2)

where N is the number of observations and (bi − xai) is the residual for the i-th ob-

servation. Thus the problem becomes finding the x that minimizes the sum of squared

residuals,

x = argmin
x

N∑
i=1

(bi − xai)2. (1.3)
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Figure 1.2: The concept of line fitting. Data points are plotted in green on the a− b
plane. The fitted line with least squares is marked in red.

Using the notations

b =


b1

b2
...

bN

 and A =


a1

a2

...

aN

 , (1.4)

the error function can be rewritten as:

E = (b−Ax)T (b−Ax) = bTb− 2(Ax)T b+ (Ax)T (Ax). (1.5)

To solve for x, the following can be obtained

∂E

∂x
= 2ATAx− 2ATb = 0. (1.6)

The least squares solution is simply

xLS = (ATA)−1ATb, (1.7)

and the fitted line is shown in red in Figure 1.2.
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1.3.2 Moving least squares

The standard least squares technique solves a large linear system and produces a global

solution. Different from this global fitting strategy, MLS allow the fit to change locally

depending on where the function is evaluated. To achieve this property, the solution for

each point in the problem domain is solved for using weighted least squares approxima-

tion.

In the weighted least squares estimation, as in regular least squares, the unknown x

is estimated by minimizing the sum of the squared residuals. Unlike least squares,

however, each term in the weighted least squares approximation contains an additional

weight, w∗, that determines how much each observation in the data set influences the

final parameter estimation. The problem of weighted least squares for arbitrary point

a∗ can be formulated as following

x∗ = argmin
x

N∑
i=1

w∗(bi − xai)2, (1.8)

where w∗(·) is a distance weighting function. By selecting an appropriate spatially

varying weighting function, a variety of interpolating or approximating behaviors can be

achieved. Here, the Gaussian function is used, not only for its broad usage in practice,

but also because it has been used in MDLT [140] and in this thesis. Thus, the scalar

weights {wi∗}Ni=1 change according to a∗ and are calculated as

w∗ = e−(a∗−ai)2/σ2
, (1.9)

where σ is a scale parameter. Let the weight matrix W∗ ∈ RN×N be a diagonal matrix

containing all weights:

W∗ =


w1
∗ 0 . . . c

0 w2
∗ . . . c

...
...

. . .
...

0 0 . . . wn∗

 . (1.10)

Thus, Equation (1.8) can be written in the matrix form

x∗ = argmin
x

(W∗(b−Ax))T (W∗(b−Ax)), (1.11)
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Figure 1.3: For each point a∗ on a-axis, the corresponding x∗ is estimated using
weighted least squares technique. Estimated points (in red) can be calculated by b∗ =
x∗a∗. By using all estimated points, the MLS curve is obtained as shown in blue.

from which the following equation can be derived

ATWT
∗W∗Ax = ATWT

∗W∗b. (1.12)

As a result, for each point, the solution is

x∗ = (ATWT
∗W∗A)−1ATWT

∗W∗b. (1.13)

The MLS solution is obtained by solving the weight least squares problem for each point

in the problem domain, i.e., all points on a-axis; see Figure 1.3. For each point a∗,

the corresponding x∗ is estimated with (1.13). By calculating b∗ = x∗a∗, the estimated

points {a∗, b∗} are obtained, as shown in red in Figure 1.3. Notice that due to the unique

position of a∗ with respect to all observations {ai, bi}, a unique weight matrix W∗ is

composed, which results in a corresponding x∗ that is specific to a∗. Thus, the MLS

solution appears a curve instead of a straight line, as shown in Figure 1.4.
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Figure 1.4: The MLS technique allows the fit to change locally. The MLS curve is
marked in blue.

1.4 Thesis Outline

Chapter 2 is a review of image registration and several areas in computer vision which are

related to the target problems in this thesis, namely feature correspondences extraction,

radial distortion estimation, image stitching and video stabilization.

In Chapter 3, a practical algorithm is developed for correspondence validation under

radial distortion. As opposed to recent methods that augment the standard epipolar

constraint, the thesis adopts a different approach. The radial distortion is treated as

a violation to the basic epipolar geometry. To account for the distortion effects, the

epipolar geometry is adjusted using MDLT. The proposed technique is much simpler

compared to previous methods and exhibits a high degree of flexibility.

Chapter 4 introduces a method that inserts correspondence for APAP warps. APAP

warps produce accurate panoramic stitching, especially in cases with significant depth

parallax. However, in image regions where feature detection or matching fail, the warp

loses guidance and is unable to accurately model the true underlying warp. While, the

proposed method automatically identifies misaligned regions, and inserts appropriate

point correspondences to increase the flexibility of the warp and improve alignment.
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Chapter 5 proposes the usage of homography fields for video stabilization. It has been

shown that homography fields are powerful enough to meet the various warping needs of

video stabilization, not just in the core step of stabilization, but also in video inpainting.

The last chapter draws the thesis to a close. After summarizing the main contributions

of the preceding chapters, possible directions for future work are offered.



Chapter 2

Literature Review

2.1 Feature Detection and Matching

Many automatic methods have been developed to extract distinctive features from stereo

images, and to then match these features to estalish correspondences. In this section,

methods for detecting and matching distinctive features are reviewed.

2.1.1 Feature detection

Feature detectors extract salient features from images. Salient features include cor-

ners [17, 132, 62], line intersections [121], and lines/edges [78]. Shi and Tomasi [119]

proposed to use the minimum eigenvalue of the subimage Hessian matrix to find good

features. Förstner [46] introduced a method to find keypoints using a Gaussian weight-

ing function to replace the equal weighting used in [119]. Instead of using the minimum

eigenvalue, Harris and Stephens [57] proposed a simpler quantity, which was later ex-

tended by Triggs [127]. Brown et al. [26], on the other hand, used the harmonic mean.

More recently, feature detectors become invariant to scale [93, 101] and geometric trans-

formations [12, 65, 116, 100]. Lindeberg [81] and Lowe [93] achieved scale invariance by

searching for scale-space maxima of Difference of Gaussian (DoG), whereas Mikolajcayk

and Schmid [101] and Triggs [127] used Harris corner detector [57] computed over a

sub-octave pyramid.

11
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Besides keypoints, there are other features that can be used to register images. Line

features [62, 133, 103, 77, 34, 53, 78] can be extracted from images. Alhichri and

Kamel [4] proposed a method that employs virtual circles to produce region features.

Matas et al. [97] introduced a feature extraction method based on maximally stable

extremal regions. Tuytelaars and Van GooL [130] extracted “variant regions” based on

detected corners and their nearby edges.

2.1.2 Feature matching

Once features are detected from input images, they will be encoded into descriptors

to describe the characteristics of their surrounding neighborhoods. Feature descriptors

are suitable for discriminative matching, and are used to establish feature correspon-

dences. Mikolajczyk and Schmid [101] compared several local descriptors [82, 92, 116],

among which the Scale Invariant Feature Transform (SIFT) [93] outperforms others.

When extracting a SIFT feature, an orientation histogram is estimated from local image

gradients. SIFT feature descriptor typically extractes 4 × 4 sub-blocks from a 16 × 16

neighborhood image gradients. Each sub-block contains 8 orientation bins. This results

in a total of 4 × 4 × 8 = 128 bin values. Thus, a SIFT feature descriptor consists of a

128-dimensional vector.

To establish the correspondences, the easiest way is to compare all features in one image

against all features in the other, using one local descriptor (in this thesis SIFT is used).

However, this approach leads to quadratic time complexity in the expected number

of features. Nene and Nayar [106] proposed to use indexing scheme to cull down the

number of candidates for each feature points. Beis and Lowe [13] developed a Best-Bin-

First (BBF) algorithm to identify the nearest neighbors for each feature using only a

limited amount of computation. Shakhnarovich et al. [117] extended the locality sensitive

hashing technique to be more sensitive to the distribution of points in parameter space.

Brown and Szeliski [26] greatly sped up the search for correspondences based on low-

frequency Haar wavelet coefficients. Nister and Stewenius [107] proposed the vocabulary

tree to compare feature descriptors more efficiently. Although many feature detection

and matching methods have been published, it is not the focus of this thesis. In this

thesis, SIFT features are detected and matched with functions released in the VLFeat

open source library [131].



Chapter 2. Literature Review 13

Figure 2.1: Basic set of global transformation models. Figure is taken from [126]

2.2 Transformation Functions

With the feature correspondences established, the transformation function that maps one

input image to another needs to be estimated. A variety of transformation functions

are possible. Generally, transformations can be categorized into two kinds. Global

transformation functions have a fixed number of parameters and are defined for the

entire image. On the other hand, local mapping functions have a varying number of

parameters and are more flexible to local deformation.

2.2.1 Global transformation functions

A variety of global transformation models can be used, like translation, rigid, similarity,

affine, and projective transformations. The transformations are illustrated in Figure 2.1.

Translation. 2D translations can be written as x′ = x + t or

x′ = [ I t ] x̃, (2.1)

where I is a 2 × 2 identity matrix and x̃ = (x, y, 1) is x in homogeneous coordinate.

Given a correspondence in the images, vector t can be estimated.

Rigid. This transformation is also known as the Euclidean transformation since Eu-

clidean distances are preserved. It can be expressed as x′ = Rx + t, which can also be

written as

x′ = [ R t ] x̃, (2.2)
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where

R =

cos θ − sin θ

sin θ cos θ

 (2.3)

At least two correspondences are required to determine the rigid transformation.

Similarity. The similarity transformation can be expressed as x′ = sRx + t, which

can also be written as

x′ = [ sR t ] x̃ =

s cos θ −s sin θ tx

s sin θ s cos θ ty

 x̃, (2.4)

where s is an arbitrary scale factor. The similarity transformation preserves angles. At

least two correspondences are required to estimate the parameters of similarity trans-

formation.

Affine. The affine transformation can be expressed as

x′ = Ax̃ =

a00 a01 a02

a10 a11 a12

 x̃, (2.5)

where A is an arbitrary 2×3 matrix. The affine transformation preserves parallelism. A

minimum of three correspondences are required to calculate the affine transformation.

Projective. The projective transformation is also known as the planer perspective

transformation or more commonly homography. The homography can be expressed as

x̃′ ∼ Hx̃, (2.6)

where ∼ denotes equality up to scale and H is an arbitrary 3× 3 scale invariant matrix.

Straight lines remain straight under perspective transformation. Four corresponding

points are required to determine the projective transformation parameters.
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2.2.2 Local transformation functions

Since global transformation functions have fixed numbers of degree of freedom and are

defined for the entire image, they cannot accommodate local non-rigid deformations.

Local transformation functions can be used to deform local patches of the image.

Radial basis functions. A radial basis function (RBF) is a real-valued function whose

value decreases (or increases) monotonically on the distance (usually Euclidean distance)

from a centre point. There are many kinds of radial basis functions. A commonly used

RBF is the Gaussian function:

ø(‖x− c‖) = exp (−ε2‖x− c‖2), (2.7)

where ø is the RBF associated with the distance ‖x − c‖ from point x to center c, x

is the point at which the function is evaluated, and scalar parameter ε 6= 0 may be

adjusted to adapt the approximation. A Gaussian RBF monotonically decreases with

the distance from a centre point.

RBFs are usually used in interpolation of scattered data. Given N points x1,x2, . . . ,xN

at which values of the function to be estimated are known f1, f2, . . . , fN , the RBF

interpolation is defined as

f(x) =
N∑
i=1

wiø(‖x− xi‖), (2.8)

where ‖x − xi‖ is the distance between x and xi so that each RBF ø(ri) is associated

with a different centre xi meanwhile weighted by scalar parameter wi. To estimate f(x)

at an arbitrary point x, one just needs to estimate the coefficients wi. According to

the interpolation conditions f(xi) = fi, i = 1, . . . , N , the following linear system can be

obtained:

Aw = f , (2.9)

where

A =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

 , (2.10)
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w =


w1

w2

...

wN

 , and f =


f1

f2

...

fN

 . (2.11)

In A, each entry ai,j is calculated as ai,j = ø(‖xi − xj‖). With wi determined, follow-

ing (2.8), f(x) can be easily solved for at any arbitrary point x.

Thin plate spline. The thin plate spline (TPS) method is an augmented RBF in-

terpolation method with additional linear terms. Given N points x1 = {x1, y1},x2 =

{x2, y2}, . . . ,xN = {xN , yN} at which values of the function to be estimated are known

f1, f2, . . . , fN , the TPS interpolation is defined as

f(x) = c1 + cxx+ cyy +
N∑
i=1

wiø(‖x− xi‖), (2.12)

where ø is defined as ø(r) = r2 ln r, under the following conditions

N∑
i=1

wi = 0,

N∑
i=1

wixi = 0 and

N∑
i=1

wiyi = 0. (2.13)

Similar to the basic RBF interpolation method, the following linear system can be

obtained to solve c1, c2, c3, w1, w2, . . . , wN :

 A P

PT 0

w

c

 =

f

0

 , (2.14)

where

P =


1 x1 y1

1 x2 y1

...
...

...

1 xN yN ,

 , and c =


c1

c2

c3.

 . (2.15)

A is the matrix in (2.10), w and f are the vectors in (2.11). Once w and c are computed,

(2.12) is used to solve for f(x).
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Moving least squares. Given control points pi with associated data values fi, moving

least squares (MLS) methods strive to find function f(x) at each point x = (x, y) that

minimizes the following problem:

N∑
i=1

wi(x)‖f(x)− fi‖2, (2.16)

where wi(x) is a non-negative monotonically decreasing radial function centered at con-

trol point pi, such as the one used in [140]

wi(x) = e−(x−pi)
2/σ2

. (2.17)

The derivation in this section is the multivariate extension of the 1D version in Sec-

tion 1.3.2.

MLS technique has been widely used in many research areas in computer graphics and

vision, such as surface reconstruction [3, 74, 5], elastoplastic material simulation and

animation [14, 104], partition of unity implicits [108], and image deformation [115]. More

recently, Zaragoza et al. [140] have further developed the work of [115] and proposed

moving direct linear transformation (MDLT) to produce as projective as possible image

warps. MDLT is conceptually the homogeneous version of MLS and based on projective

warps. Section 4.1.2 will present MDLT in detail.

2.3 Camera Calibration and Radial Distortion

In this section, the concepts of camera calibration, radial distortion and the state-of-

the-art estimation methods will be reviewed.

2.3.1 Camera calibration

Camera calibration has been studied extensively in computer vision [50, 48, 41, 129,

136, 42, 99, 134] and photogrammetry [23, 39]. It is the process of estimating extrinsic

and intrinsic parameters of a camera from 2D images. The camera model considered

here is the pinhole camera model. A pinhole camera is a simple camera without a lens
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Figure 2.2: Principle of a pinhole camera1. A pinhole camera is a simple camera
without a lens and with a hole as the aperture. Light rays pass through the aperture
and project an inverted image on the opposite side of the camera.

and with a single small aperture. Light rays pass through the aperture and project an

inverted image onto the film, as shown in Figure 2.2.

Let m = [u, v]T denote a 2D point coordinate, and M = [x, y, z]T be a 3D point

coordinate. Use x̃ to denote vector in homogeneous coordinate by adding 1 as the last

element: m̃ = [u, v, 1]T and M̃ = [x, y, z, 1]T . The equation of the projection between a

3D point M and its image projection m is given by

m̃ = PM̃ = K[R | t]M̃, (2.18)

where P = K[ R | t ] is known as the camera matrix, K ∈ R3×3 is called the camera

intrinsic matrix, and R ∈ R3×3 and t ∈ R3×1 define a 3D Euclidean transformation on

the basis of position and orientation of the camera.

R is obtained from multiplying three basic rotation matrices that rotate vectors by

angles θx, θy and θz about the x, y, and z axes,

Rx =


1 0 0

0 cos θx − sin θx

0 sin θx cos θx

 , (2.19)

1http://scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-pinhole-camera.

http://scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-pinhole-camera.
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Ry =


cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

 , (2.20)

Rz =


cos θz − sin θz 0

sin θz cos θz 0

0 0 1

 , (2.21)

i.e.,

R = Rz ·Ry ·Rx. (2.22)

The translation vector t is notated as

t =


tx

ty

tz

 , (2.23)

where tx, ty and tz specify respectively the translation amount in the x, y and z direction.

R and t together contain six parameters, which are called extrinsic: θx, θy, θz, tx, ty and

tz.

The intrinsic matrix, K, has the following form

K =


α s cx

0 β cy

0 0 1

 , (2.24)

where (cx, cy) are the coordinates of the principal point, α and β represent focal length in

pixel units, and s is the skew coefficient between two image axes. Primarily, the goal of

camera calibration is to estimate six extrinsic parameters and five intrinsic parameters.

Once extrinsic and intrinsic are extracted, they can be used to correct for lens distortion,

measure the size of an object, infer 3D information from 2D information, and vice versa.

In short, camera calibration is a prerequisite for any application where the relation

between 2D images and the 3D world is needed.
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Figure 2.3: A 3D reconstruction of an 800-frame video of an office scene computed by
a commercial camera tracker2, without distortion correction (left). The lens distortions
appeared in images lead to incorrectly estimated focal length and rotation. Therefore,
the reconstruction result is far from the correct geometry. While, the correct recon-
struction is shown on the right. Figure is taken from [44].

2.3.2 Radial distortion models

A pinhole camera performs a perfect perspective transformation, and is free from lens

distortion [61], since no lens is involved. However, a pinhole camera has a few severe

limitations. The size of the pinhole must be very small, otherwise the image will be

blurry. Using pinhole with smaller size improves the image resolution, which however

reduces the amount of captured light. As a result, a tripod and long exposures are

necessary to photograph a pinhole image, which is impractical for daily use. Thus, real

cameras approximate ideal pinhole cameras using optical lenses.

Due to the imperfections in lenses, to accurately characterize a real camera, camera

lens distortion needs to be considered. Input images effected by lens distortions will

lead to incorrectly estimated focal length and camera poses, which are fatal to the 3D

reconstruction, as shown in Figure 2.3. Although distortion can be irregular or follow

many patterns, the most commonly encountered distortion is radially symmetric.

Denote the perspective, pinhole point using p̃ = (p, q, 1), and denote the distorted

image point as x̃ = (x, y, 1), both in homogeneous coordinates. Denote a set of two-view

2http://www.2d3.com

http://www.2d3.com
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correspondences as p̃ ↔ p̃′, and denote fundamental matrix and essential matrix as

F and E respectively. Since only radial distortion is considered here, the relationship

between x̃ and p̃ is purely dependent on their distances from the center of distortion

(COD).

Earlier works on radial distortion calibration are the so-called plumb line methods,

e.g., [35, 68, 123]. These methods function by identifying (either manually or automat-

ically) distorted straight lines in the input images and then attempting to straighten

them. However, since straight lines are not always available in the real world, such

methods may easily confuse real curves with distorted lines [44].

More recent methods introduce radial distortion directly into the mathematical model of

the imaging process, with the aim of deriving epipolar geometry with radial distortion.

Zhang [142] introduced one of the earliest epipolar geometry model with radial distor-

tion. Zhang’s model was later extended to solve for the system parameters and camera

motions [67]. Under the assumption of mild radial distortion, Fitzgibbon [44] proposed

the division model with a single distortion parameter. In the division model, all points

are expressed in a 2D coordinate system with origin at the distortion center, which is

assumed known or to be located at the center of the image. The radial distortion model

is a function about the magnitudes ‖x̃‖ and ‖p̃‖, and can be written as

x̃ = L(‖p̃‖)p̃. (2.25)

Fitzgibbon expanded the distortion function L as a Taylor series, and kept only the first

nonlinear even term

x̃ = (1 + λ‖p̃‖2)p̃. (2.26)

The inverse function is the division model, also known as the undistortion model, since

it theoretically describes the mapping from distorted coordinates to undistorted coordi-

nates:

p̃ =
1

1 + λ‖x̃‖2
x̃. (2.27)

Given image point correspondences x̃↔ x̃′, the fundamental matrix F which only works

for undistorted points p̃↔ p̃′ can be estimated,

p̃′TFp̃ = 0. (2.28)
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Claus and Fitzgibbon [33] extended the undistortion model to the rational function

model and showed how to estimate epipolar curves and recover highly distorted images.

Barreto and Daniilidis [9] introduced a parameter into the augmented fundamental ma-

trix to quantify the amount of distortion. Kukelova et al. [70] proposed minimal solvers

for such augmented projective models. All these methods assume that the COD is either

known or simply the image centre. However, it has been shown that one cannot assume

that the COD is simply at the image centre [76]. Brito et al. [19] included the COD as

a parameter in the second-order radial distortion model, and recovered the location of

the COD in [18].

2.3.3 Robust radial distortion estimation

Registration methods rely on robust feature point correspondences. The most commonly

used techniques for establishing feature point correspondences are based on geometric

relationships (e.g, fundamental matrix, homgraphy) derived from multiple-view geome-

try [58]. Such geometric transformations can be easily solved using fast linear solvers,

which allows their computations to be integrated into the RANdom SAmple Consensus

(RANSAC) framework to identify correct correspondences (inliers) from incorrect ones

(outliers). However, when images have radial distortion, these transformations cannot

be applied, especially in the image periphery. Thus, Fitzgibbon [44] applied the division

model (2.27) in the kernel of RANSAC to validate feature correspondences under radial

distortion.

The RANSAC algorithm [43] is an iterative resampling technique that estimates pa-

rameters of a mathematical model from input data which contains outliers. In [44], the

basic fundamental matrix is combined with division model, which is then used in the

RANSAC framework to eliminate outliers and recover fundamental matrix and distor-

tion parameter. The algorithm is summarized in Algorithm 2.1. The algorithm has

proven its ability of finding more correspondences and covering more of input images.

However, as tested in [90], the accuracy of [44] severely drops as the distortion level is

increased.

Other augmented fundamental matrices [33, 9, 19, 18] reviewed in Section 2.3.2 can also

be embedded in RANSAC framework to enable robust estimation of epipolar geometry

under radial distortion, just by replacing the number in step 1 in Algorithm 2.1 with
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required number of correspondences and then estimating the augmented fundamental

matrix in step 2. However, the fact remains that these methods are based on assumed

models of radial distortion, and thus may yield low accuracy if the assumed models are

wrong (see the experiments in [90]).

Algorithm 2.1 RANSAC with fundamental matrix combined with division model.

1: Select randomly 9 point matches, which are the minimum for a solution in [44].
2: Solve for distortion parameter λ and fundamental matrix F.
3: Determine the number of matches that fit F within a predefined tolerance ε.
4: Repeat steps 1 through 3 for N = 1000 times.
5: Return the F that has the highest number of agreement (consensus) among all point

matches.

2.4 Image Stitching

The construction of mosaic images have been an active area of research for many years.

There have been a variety of commercial tools based on or incorporating image stitch-

ing, such as photography editor Adobe Photoshop, web-based photo organizer Microsoft

Photosynth, smartphone application Autostitch. However, many tools give unconvinc-

ing results when the input photos violate fairly restrictive imaging assumptions. More

recently, more effective algorithms have been proposed to build image mosaics, including

the moving least squares method. In this section, previous works on image stitching and

panorama construction will be reviewed.

2.4.1 Image stitching pipeline

In general, image stitching algorithms have two steps: estimate the warping functions

that align input images, and then composite the aligned images onto a common canvas.

Most of the current techniques model the alignment functions as 2D projective trans-

forms or homographies. Homographies are justified only if the images were taken under

pure rotational motions, or the scene is sufficiently far away such that it is effectively

planar [124]. On top of the usage of basic homography, Shum and Szeliski [120] used

methods of photogrammetric bundle adjustment [128] to simultaneously optimize the

relative rotations of the input images, and then align all images to a common frame of

reference. Such bundle adjustment technique is also adopted in Autostitch [2]. However,
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the usage of homographic warps for image stitching has been questioned [49, 140] due

to the mentioned assumptions homography carries.

Instead of producing perfect alignment throughout the overlap region, pixel blending

techniques can be applied to remove misalignments. Agarwala et al. [2] and Eden et

al. [38] applied seam cutting methods to select pixels among the overlapping images to

minimize visible seams. Apart from seam cutting, there are other pixel blending tech-

niques, such as Laplacian pyramid blending [28, 25] and Poisson image blending [109],

have been proposed to minimize misalignments. However, such post-processing methods

strive to reduce errors in the compositing step, which may not work all the time (see [64]

for examples).

2.4.2 3D reconstruction and plane-plus-parallax

Given a set of overlapping images of a scene, Agarwala et al. [1] recovered the 3D struc-

ture and camera parameters (via structure-from-motion (SfM) [58] and freely available

software PtLens 3), and then reprojected each scene point to produce panoramas from

images taken along streets. However, a 3D reconstruction can be “overkill” and only

works for scene points in the overlapping regions [140].

Instead of computing the 3D structure, Dornaika and Chung [37] combined a paral-

lax component with the classical planar transformations associated with three different

images (two of them are the images to be stitched). However, their method can only

approximate the parallax at each pixel, which still results in significant parallax errors.

2.4.3 Panorama creation

State-of-the-art methods [120, 25] optimize the focal lengths and camera poses (relative

rotations) of all views by performing bundle adjustment [128], and then estimate inter-

image homographies to construct panoramas. Shum and Szeliski [120] defined the error

terms based on pixel values at regularly sampled patch positions and conducted a second

refinement stage. For each patch position, rays from each view were first back-projected,

whose average was then projected again onto each view to yield the desired patch position

in 2D. Shum and Szeliski utilized the differences between the original and desired patch

3http://epaperpress.com/ptlens/

http://epaperpress.com/ptlens/
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positions to form a correction field to compensate for parallax. In [25], a panorama

recognition step based on SIFT keypoint correspondences [93] is introduced, which is

able to classify images belong to the same panorama. Instead of estimating relative

camera poses, Kang et al. [66] and Marzotto et al. [96] proposed to chain the inter-image

homographies to stitch all images onto a common canvas. Controlling the chaining error

becomes the crux of the method.

2.4.4 Spatially varying warps

Spatially varying warps have been proposed as alternatives to homographic warps [86, 49,

140, 31]. Lin et al. [80] proposed the smoothly varying affine warp for image stitching,

which is conceptually similar to the as-affine-as-possible warp [115]. However, using

affine regularization is inadequate to achieve a perspective extrapolation [124]. In the

context of video stabilization, Liu et al. [86] proposed content preserving warps to render

stabilized video frames. Gao et al. [49] proposed the usage of dual-homography to

construct image mosaics of a panoramic scene containing a distant back plane and a

ground plane. More recently, Zaragoza et al. [140] proposed the as-projective-as-possible

(APAP) warps which is able to interpolate the data flexibly, while maintaining a global

projective trend so as to extrapolate correctly. Half-projective warps [31] improve upon

APAP by preventing excessive stretching when extrapolating.

Ultimately, spatially varying warps are only as flexible as warranted by available feature

matches. Without a sufficiently dense sampling of the underlying interpolant, the warp

reduces to the baseline warp (similarity [86], projective [140]), thus defeating its spatially

varying ability. A large number of feature matches are thus required to obtain good

alignment, especially in areas where the true alignment function deviates from a simple

homography.

2.4.5 Parallax-tolerant image stitching

Except spatially varying warps, an alternative idea is that perfect alignment throughout

the overlap region is unnecessary [141]. Rather, images need only to be aligned well in a

local area, and a randomized algorithm was proposed to find a local homography. Seam

cut [2] is then used to remove misalignments elsewhere. Such an approach is heavily
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(a) Result with simple linear blending (pixel averaging).

(b) Result after seam cut pixel selection to remove ghosting.

Figure 2.4: (a) Parallax-tolerant image stitching finds a homography that aligns a
local region as well as possible. Here, green points are correspondences that are fitted
by the local homography. Expectedly, regions that do not lie on the same plane cannot
be aligned well; (b) Seam cut removes ghosting, but produces perceptually awkward
results; note that the left crane appears to be bent. This result was taken directly from
the project website of [141].

dependent on post-processing by seam cut. However, if misalignments are too severe,

seam cut may not produce geometrically correct results [64]. This will occur when the

true alignment function deviates significantly from a homography, e.g., when there are

two apparent planes; see Figure 2.4. More crucially, this method is reliant on the existing

set of keypoint matches and cannot introduce new correspondences.

2.5 Video Stabilization

The proliferation of hand-held video recording devices has resulted in large quantities

of videos taken by amateurs or casual users. Many amateur videos are taken in an

undirected and spontaneous manner, which yields low quality videos with significant

amounts of shakiness. Professional tools such as dollies (see Figure 2.5a) or steadicams
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(a) Camera dolly. (b) Steadicam.

Figure 2.5: Professional tools such as camera dollies or steadicams mechanically
isolate the operator’s movement. They allow for smooth shot, even when moving quickly
over an uneven surface.

(see Figure 2.5b) used in movie making are too impractical for casual recording purposes.

Consequently, there is a need for post-processing software that can remove shakiness in

recorded videos, especially amateur videos that exist in large quantities on video shar-

ing websites. In this section, the state-of-the-art methods that automatically stabilize

videos, remove rolling shutter effects and lastly inpaint rendered sequence will be sur-

veyed.

2.5.1 Motion compensation methods

Most video stabilization methods conduct the following steps: estimate the camera

trajectory throughout the input shaky video, then smooth the trajectory to remove high-

frequency motions. From the smoothed trajectory, construct update transforms that can

be applied on each frame of the video to “undo” the jerky motions. Theoretically, the

idea can be realized via SfM, where the 3D camera pose trajectory is estimated (along

with a set of features in 3D) and smoothed. The projection of the original frames onto

the smoothed camera poses amounts to performing the update transforms. However,

conducting SfM on a long shaky video can be error-prone.
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Unsurprisingly many approaches avoid explicit 3D reconstruction. The class of 2D

approaches estimate 2D image transforms from feature matches across two successive

frames (e.g., via SIFT matching) to capture the camera motion. The estimated sequence

of transforms are then filtered to perform stabilization. Earlier methods relied on simple

2D image transforms (e.g., affine or projective), which are very efficient to estimate [102,

98, 51]. Fundamentally, however, such simple transforms cannot adequately model the

3D camera motion. Further, the update transform is also defined using simple 2D image

transforms, which cannot preserve the image contents well. As a result the stabilized

videos may appear distorted and “wobbly” [86]. Nevertheless, techniques based on pro-

jective transforms (homographies) can work well in practice, especially if good motion

planning is conducted during stabilization [51]. In particular, Gleicher and Liu [51]

proposed a motion planning framework based on cinematographic principles. Grund-

mann et al. [54] divided the original camera path to segments with constant, linear and

parabolic motions, which are stabilized with L1-norm optimization.

Recent works have proposed more sophisticated motion models and smoothing algo-

rithms. Liu et al. [87] tracked local features in the video, then smoothed the set of

trajectories based on low-rank matrix factorization. Goldstein and Fattal [52] esti-

mated fundamental matrices that encapsulate the epipolar constraint between succes-

sive frames, then generated virtual point trajectories from the epipolar relations which

were then filtered. More recently, Liu et al. [89] spatially partitioned the video frame

into a grid of subwindows, then estimated a chain of homographies across the video for

each subwindow. The separate chains of homographies are then smoothed in a bundled

manner to avoid drift. In all three approaches, an update transform must be performed

on each frame based on the original and stabilized feature locations; content preserving

warps (CPW) [86] have been used or adapted for this purpose.

2.5.2 Rolling shutter removal

Most current imaging sensors are based on CMOS technology. Such sensors are subject

to the phenomenon known as electronic rolling shutter, where image rows are exposed

and readout at different times [105]. This causes distortions in the video known as rolling

shutter effects. For example, as shown in Figure 2.6, the house appears as slanted since
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(a) (b)

Figure 2.6: Synthetic images (a) and (b) are two input images taken from [45], with
rolling shutter effect in the second one.

the camera is panned while recording. Methods have been proposed for the removal of

rolling shutter effects in recorded videos [32, 79, 8, 45, 110, 55].

Figure 2.7: Grundmann et al. [55] proposed the usage of homography mixtures to
remove rolling shutter effects. A frame is partitioned vertically into K equal-sized
strips, and for each strip a homography that maps to the corresponding strip in the
next frame is estimated.

Grundmann et al.. [55] proposed the usage of homography mixtures to remove rolling

shutter effects in the context of video stabilization. Basically, a frame is partitioned ver-

tically into K equal-sized strips, as shown in Figure 2.7, and for each strip a homography

that maps to the corresponding strip in the next frame is estimated. Conceptually this

is a kind of spatially varying warp. However, homography mixtures are allowed to vary

only vertically, and this constrains the flexibility of the warp. Note that Liu et al. [87],

Goldstein and Fattal [52] and Liu et al. [89] do not explicitly model and compensate for

rolling shutter effects, beyond treating it as part of high-frequency jitter.
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(a) Blank pixels lead to cropping. (b) Inpainting result.

Figure 2.8: Due to the deviation of the smoothed camera path from the original
trajectory, the existence of blank pixels in the stabilized video is unavoidable. Each
frame has to be cropped to render the output video following a fixed-sized rectangular
as marked in red in (a). As a result, video inpainting methods have been developed to
avoid significant blank regions in the rendered video; see (b).

2.5.3 Video inpainting

In essence, video stabilization is re-rendering the video frames as viewed from smoothed

camera positions. The existence of blank pixels in the new views is thus unavoidable; see

Figure 2.8a. Further, the size of the blank regions is large if the new viewing positions

significantly differ from the original views. Eventually each image will have to be cropped

to a fixed-sized rectangular frame to allow saving the video. This creates unsightly blank

regions in the video, unless the blank pixels are inpainted using information from other

frames.

Differing from inpainting for censored or damaged videos (e.g., [137]), inpainting for

stabilized videos is an extrapolation problem, since the missing regions almost always

occur at the sides of the video frames. The state-of-the-art method of Matsushita et

al. [98] eschewed the usage of standard mosaicing techniques for video inpainting [83],

due to significant misalignment errors. Instead, Matsushita et al. propagated 2D motion

fields (derived from optic flow) to guide the inpainting. However, Matsushita et al.’s

method produces visible artifacts if the blank region is large. This stems from the

difficulty of extrapolating motion fields to large empty regions without an underlying

function to guide the extrapolation.

Note that approaches that avoid inpainting must either limit the magnitude of smoothing

(as shown in some of Liu et al.’s [89] results) or aggressively crop the output video (such

as Grundmann et al. [54]) to avoid significant blank regions in the output video.
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2.6 Summary

In this chapter, the state-of-the-art methods on feature detection and matching are first

reviewed in Section 2.1. Many computer vision applications are developed based on

feature correspondences from input images. In this thesis, all works employ feature

detection and matching as the initial step.

After feature correspondences are established, the geometric transformation that regis-

ters input images needs to be estimated. There are several transformation models can

be used to characterize the mapping, like the global mapping models reviewed in Sec-

tion 2.2.1 and the local mapping models mentioned in Section 2.2.2. Due to the ability

of registering images locally and providing smooth results, the MLS method can be used

to solve many challenging problems. Among many, three specific applications have been

surveyed: radial distortion estimation in Section 2.3, image stitching in Section 2.4 and

video stabilization in Section 2.5.





Chapter 3

Point Correspondence Validation

Under Unknown Radial

Distortion

3.1 Introduction

3.1.1 Point correspondence validation

Most registration problems rely on robust feature point correspondences. The most

commonly used techniques for establishing feature point correspondences are based on

geometric relationships, such as epipolar geometry. The epipolar geometry is the intrinsic

projective geometry of stereo vision, when a 3D scene is captured by cameras from

multiple distinct positions. A 3D point p that is imaged by two cameras will yield

a pair of corresponding 2D image points x = [x y]T and x′ = [x′ y′]T , denoted in

homogenous coordinates as x̃ = [x y 1]T and x̃′ = [x′ y′ 1]T . A pair of corresponding

points will satisfy the epipolar constraint, given by

x̃′TFx̃ =
[
x′ y′ 1

]

F11 F12 F13

F21 F22 F23

F31 F32 F33



x

y

1

 = 0, (3.1)

33
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where the fundamental matrix F is a 3×3 matrix of rank 2 that algebraically represents

the epipolar geometry [58]. The epipolar constraint is derived based on the assumption

that x̃ and x̃′ were observed using pinhole cameras. See [40] for details.

For each correspondence, the epipolar constraint can be written as follows

af = 0, (3.2)

where

a = [ xx′ yx′ x′ xy′ yy′ y′ x y 1 ], (3.3)

f = [ F11 F12 F13 F21 F22 F23 F31 F32 F33]T . (3.4)

By stacking n correspondences, the following system of homogeneous equations can be

constructed

Af = 0, (3.5)

where A ∈ Rn×9 contains the n point coordinates in the form

A =


a1

a2

...

an

 . (3.6)

Imposing the constraint ‖f‖ = 1 and formulating the problem in the least square sense

leads to the following equation

f̂ = argmin
f
‖Af‖2 (3.7)

Then f̂ can be estimated by taking the least significant right singular vector of A. The

process of rewriting linear equations as a matrix system and then solving the problem

is referred to as the direct linear transformation (DLT) algorithm. The resulting fun-

damental matrix is then truncated to rank 2. In general, at least 7 correspondences

are required to compute the fundamental matrix [58]. In this chapter, the 8-point algo-

rithm [91] is used. For numerical stability, the point coordinates may also be normalized

following [59].
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The fundamental matrix can be easily embedded into the RANSAC framework to iden-

tify inliers from outliers, and thus to validate feature point correspondences. Please refer

to Section 2.3.3 for more details on RANSAC.

3.1.2 Radial distortion calibration

The epipolar geometry of a scene describes how corresponding geometric entities are

mathematically related across stereo images [40]. It serves an important role in recover-

ing the 3D shape of the scene and the relative camera poses. The epipolar geometry is

derived based on the assumption that ideal pinhole cameras (as shown in Figure 2.2) are

used to capture the images. However, due to the strict demand for the pinhole size and

the associated problem of low brightness, pinhole cameras are not practical. Thus, real

cameras conduct the projection operation using lenses and apertures. Unfortunately

imperfections in lenses lead to artifacts in images known as radial distortion. In reality,

radial distortion occurs in every image, and it is especially pronounced in mobile phone

cameras with cheap lenses and catadioptric (fisheye lens) cameras; see Figure 3.1.

Radial distortion in lenses must be calibrated for, or the distorted images will lead

to biased 3D reconstructions; see Figure 2.3. Recent approaches on radial distortion

calibration augment the standard epipolar constraint with a radial distortion model.

Starting from the seminal undistortion model of Fitzgibbon [44], successively more com-

plex distortion models have been incorporated into epipolar geometry; see [18] for a

survey and comparison. For example, Claus and Fitzgibbon [33] extended the undistor-

tion model to allow for a broader class of distortions. Brito et al. [20, 18] incorporated

the center of distortion (COD) into the constraint to deal with images with unknown

COD. Embedded in a RANSAC framework, these augmented epipolar constraints are

more effective than the standard epipolar constraint for outlier removal. However, the

fact remains that these methods are based on assumed models of radial distortion, and

thus may yield low accuracy if the assumed models are wrong. Concrete evidences will

be given in the experiments in this chapter (also see the experiments in [18]). It is worth

noting that, though dominant, radial distortion is but one type of lens distortion [18,

129].
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(a) Peleng Fisheye 3.5/8 M42 Lens. (b) Sample picture using a fisheye lens.

Figure 3.1: A fisheye lens and a sample picture1.

3.1.3 Chapter overview

The emphasis of this chapter falls under the online camera calibration, i.e., the method

only has a set of overlapping images which exhibit radial distortion, and has no access to

the original camera(s). Online radial calibration is usually initiated with procurement of

a set of reliable point correspondences across the images. Such correspondences are often

obtained using automatic algorithms, which invariably yield wrong correspondences or

outliers. The standard epipolar constraint, embedded in a RANSAC framework, cannot

be effectively used to identify the outliers due to the presence of radial distortion. In

this chapter, a novel approach to validate point correspondences under severe radial

distortion is proposed.

Note that the goal of the proposed method does not extend to the recovery of the radial

distortion parameters and the correction of radial distortion; to achieve these, “there

is no recourse but to bundle adjustment, initialized with (1) reasonable estimates of

camera geometry and (2) good correspondences” [44]. The contribution of this chapter,

therefore, is to provide good correspondences in sufficient quantities to support online

radial distortion calibration. A significant advantage of the proposed method is not

relying on a radial distortion model. Eventually, however, undoing radial distortion will

require knowing (or assuming) the underlying distortion model and how to reverse its

effects. The proposed method allows to decouple this model selection task from the

point correspondence validation stage.

1http://www.rugift.com/photocameras/peleng_fisheye_lens.htm

http://www.rugift.com/photocameras/peleng_fisheye_lens.htm
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In this chapter, the radial distortion effect is considered as a violation to the basic

epipolar geometry. Instead of attempting to characterize radial distortion, the proposed

method adjusts the epipolar geometry as warranted by the data to account for the

distortion effects. The model adjustment is achieved through the framework of moving

least squares (MLS). The proposed method extends MLS to allow for epipolar geometry

estimation, and combines it with M-estimators [112] to enable robust point matching

under severe radial distortion. Compared to previous works, the proposed method is

much simpler and exhibits a higher tolerance in cases where the exact model of radial

distortion is unknown.

The rest of the chapter is organized as follows: Section 3.2 gives an overview of the

proposed approach. Section 3.3 captures a rough model of the epipolar geometry. Then

a robust version of moving direct linear transformation (MDLT) is used to validate point

correspondence under unknown radial distortion in Section 3.4. The overall algorithm

is summarized in Section 3.5. Section 3.6 compares the proposed method with state-of-

the-art algorithms on synthetic and real data. A summary is then given in Section 3.7.

3.2 Proposed Method Overview

To validate point correspondences obtained from automatic matching algorithms, the

proposed method has four main steps; see Figure 3.2. First, SIFT feature points are ex-

tracted from input stereo images. Then, RANSAC embedded with the standard epipolar

constraint (3.1) is applied to initialize the fundamental matrix. A loose inlier threshold

is used in RANSAC to accommodate the deviation from the epipolar geometry caused

by radial distortion. The initialized fundamental matrix is then refined by M-estimator.

With the help of the converged weights, the proposed method will adjust or “tweak”

the epipolar constraint with the robust version of MDLT [140] to account for radial

distortion, thereby removing the false positives from the final result.
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Figure 3.2: Point correspondence validation method overview.

3.3 Robust Estimation for Epipolar Geometry

RANSAC embedded with standard epipolar constraint may output feature point corre-

spondences containing outliers, which can severely bias the estimation of fundamental

matrix. However, the fundamental matrix F estimated using matched interest points

{xi,x′i}Ni=1 can still serve as the initialization of M-estimator [112].

Let ri := aif be the residual of the i-th correspondence with respect to f . To reduce the

impact of outliers, the M-estimator replaces the squared residual in (3.7) by a robust

loss function ρ(u)

f̂ = argmin
f

∑
i

ρ(ri). (3.8)

Differentiating the objective function and setting to 0 yields

∑
i

ψ(ri) = 0, (3.9)
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where ψ(u) is the first derivative of ρ(u). In general, the robust loss function has the

form ψ(u) = u · w(u), where w(u) is the weight function. This leads to the equation

∑
i

w(ri)ri =
∑
i

w(ri) · (aTi f) = 0, (3.10)

which has the equivalent matrix form

WAf = 0, (3.11)

where W = diag([w1, w2, . . . wN ]) is the weight matrix, and wi = w(ri). Several kinds

of robust loss functions are possible [112]. In this work, the Tukey’s biweight function

is used, whose weight function is

w(u) =

 [1− (uε )2]2 if u ≤ ε

0 if u > ε
, (3.12)

and ε is the error scale or inlier threshold.

Note that in (3.11) W also depends on f . Given W, however, f can be obtained as the

solution of a weighted DLT problem, which is achieved by performing a singular value

decomposition (SVD) on WA. Given f , W can be calculated using the chosen weight

function. Therefore, the computations of f and W alternate until convergence. This

is the well-known iteratively reweighted least squares (IRLS) method, which guarantees

convergence to a local minima. Typically, a small number of iterations are required

(less than 20 iterations in conducted experiments in this chapter). At convergence,

correspondences with higher weights are more likely to be inliers, and vice versa.

The reader may question the efficacy of RANSAC and M-estimator on data affected by

radial distortion. Indeed, Fitzgibbon [44] demonstrated that RANSAC (embedded with

the standard epipolar constraint) fails under radial distortion since the inlier threshold

ε needs to be set to a high value to accommodate the deviation of the inliers from the

expected trend, thus producing also many false positives. It is conceivable that M-

estimator will also suffer from the same weakness. However, in the proposed method,

RANSAC with a loose inlier threshold is used to exclude obvious outliers, and the aim

of using M-estimator is simply to capture a rough model of the inliers.
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3.4 Epipolar Constraint Adjustment for Radial Distortion

First, assume there are no outliers in the data {xi,x′i}Ni=1. However, let there be radial

distortion in the images such that the epipolar constraint is violated. Let p∗ be an

arbitrary position in the first image. Inspired by MLS surface approximation, adjust the

epipolar constraint for p∗ by calculating the local fundamental matrix

f∗ = argmin
f

N∑
i=1

(v∗i aif)2, (3.13)

subject to the usual norm constraint ‖f‖ = 1. The non-stationary weights v∗i are ob-

tained as

v∗i = exp (−‖xi − p∗‖2/σ2), (3.14)

where σ is the neighbourhood scale. Intuitively, since the function (3.14) assigns higher

weights to correspondences that are closer to p∗, f∗ adapts better to the local deviation

(due to radial distortion) around p∗. Further, if point p∗ is moved continuously within

the first image, a set of f∗ that collectively define the epipolar geometry that is globally

adjusted for radial distortion will be obtained.

For a given p∗, (3.13) is again a weighted DLT problem, which can be rewritten into the

matrix form

f∗ = argmin
f
‖V∗Af‖2 (3.15)

where V∗ = diag([v∗1, v
∗
2, . . . v

∗
N ]). Again, the solution is the least significant right sin-

gular vector of V∗A. This estimation procedure is called MDLT. Zaragoza et al. [140]

applied MDLT for estimating projective transforms. The work in this thesis is the first

to apply MDLT for epipolar geometry. Moreover, in the following, a novel outlier iden-

tification scheme for images with radial distortion will be proposed; such an algorithm

was not available in [140].

To deal with data contaminated with outliers, the proposed method incorporates the

converged weights {wi}Ni=1 from M-estimator into MDLT. Specifically, (3.13) is modified

to become

f∗ = argmin
f

N∑
i=1

(wiv
∗
i aif)2, (3.16)
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subject to the usual norm constraint ‖f‖ = 1. Intuitively, the converged weights {wi}Ni=1

of M-estimator will globally reduce the influence of outliers, whereas the non-stationary

weights {v∗i }Ni=1 will locally adapt the epipolar constraint to the deviation around p∗.

This simple combination creates a robust version of MDLT. The solution to (3.16) is

simply the least significant right singular vector of WV∗A.

3.5 Point Correspondence Validation Under Unknown Ra-

dial Distortion

By incorporating the converged weights from M-estimator into MDLT, the epipolar con-

straint is adjusted for radial distortion. The overall correspondence validation method is

summarized in the Algorithm 3.1. MDLT gives more flexibility in the radial distortion

model. However, there is a potentially higher risk of false positives by increasing the

flexibility. To combat false positives, the key is to set the initial rough threshold ε cor-

rectly, so that obvious outliers will not be identified as inliers in the flexible fitting step.

To this point, one may argue instead of following the algorithm pipeline in Figure 3.2,

why do not put MDLT inside the RANSAC loop. However, if MDLT is applied on the

minimal subset sampled in each iteration of RANSAC, no flexibility can be achieved

since the model can be fitted on the minimal subset exactly.

Algorithm 3.1 Point correspondence validation method based on MDLT.

Require: Two overlapping input images, rough inlier threshold ε, neighborhood scale
σ, fine inlier threshold β.

1: Obtain a set of matching points {xi,x′i}Ni=1 across the input images. Normalize the
point coordinates following [59].

2: Invoke RANSAC to initialize f . Refine f using IRLS until convergence. Save the
converged weights {wi}Ni=1.

3: for i = 1, . . . , N do
4: Set p∗ := xi and compute weights {v∗i }Ni=1 from (3.14).
5: Solve for f∗ based on (3.16) using SVD.
6: Calculate the Sampson distance

si =
x̃′Ti F∗x̃i

(F∗x̃i)2
1 + (F∗x̃i)2

2 + (FT
∗ x̃′i)

2
1 + (FT

∗ x̃′i)
2
2

(3.17)

where F∗ is the 3 × 3 version of f∗ and symbol (a)j indicates the j-th entry of
vector a.

7: If si ≤ β, then set (xi,x
′
i) as inlier, else set it as outlier.

8: end for
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3.6 Results

In this section, the proposed method (henceforth, MDLT) will be tested and bench-

marked. Both synthetic and real image data will be used. The main aim of conducted

experiments is to demonstrate the effectiveness of MDLT in dealing with radial distor-

tion without requiring or assuming a particular distortion model. MDLT is compared

with the following methods:

1. Fitzgibbon’s [44] undistortion model;

2. Brito et al.’s [19, 20, 18] one-sided and two-sided radial fundamental matrices;

3. Kukelova et al.’s [70] method.

The methods of Fitzgibbon and Brito et al. are implemented in this thesis, while an

implementation of Kukelova’s method is available on the project website2. Another

recent method by Barreto and Daniilidis [9] has also been studied. However, since their

method uses the same lifting approach as Brito et al., only the latest methods by Brito et

al. are compared.

3.6.1 Synthetic data experiments

First, synthetic point correspondence data without outliers are generated to investigate

the accuracy of MDLT in characterizing radial distortion. The process is summarized in

Figure 3.3. 128 scene points were created and captured by two cameras. The 1st camera

had fixed pose and intrinsics, while 1000 random poses and focal lengths were produced

for the 2nd camera. This yielded 1000 sets of point correspondence data.

One-sided and two-sided radial distortion were then introduced to image points. The

points were distorted following the traditional second-order distortion model [23]

 xd

yd

 =

 xu

yu

+ λr2

 xu

yu

−
 dx

dy

 , (3.18)

where [xd, yd]
T is the distorted point, [xu, yu]T is the undistorted point, [dx, dy]

T is the

COD, λ ∈ R is the distortion coefficient, and r2 = ‖(xu, yu)T − (dx, dy)
T ‖2. Figure 3.4

2http://www2.maths.lth.se/vision/downloads/
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Figure 3.3: Scene and imaging setup for the synthetic data experiment. In total, 128
scene points are generated. The pose and intrinsics of the 1st camera (blue) is fixed,
while the pose and focal length are randomly generated for the 2nd camera (green).
The images captured using the cameras are then corrupted with varying degrees of
radial distortion.

shows an example of two-sided radial distortion. A variant of distortion model used

in Brito et al. [19, 20, 18] was also tested, where the only distinction is that r2 =

‖(xd, yd)T − (dx, dy)
T ‖2 is now computed between the distorted point and the COD.

Two levels of distortion, specified by λ = 0.01 and 0.1, were tested. To further vary

the difficulty of the data, (1) Gaussian noise with standard deviation in the range of

[0.0, 5.0] pixels was added, and (2) the COD was displaced to the right of the image

centre by d(width/2) pixels, where width is the width of the image and d controls the

actual displacement amount.
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(a) Image from camera 1.

(b) Image from camera 2.

Figure 3.4: A sample data with two-sided radial distortion.
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One-sided radial distortion. Here the proposed method is compared against Brito et

al.’s [19, 20] one-sided radial fundamental matrix. The convention was to take the

distorted image as the 1st image, and the undistorted image as the 2nd image. For

MDLT, each point xi in the distorted image was iteratively taken as p∗, and the local

fundamental matrix f∗ was obtained as in (3.13). Using f∗, p∗ was then mapped to an

epipolar line l∗ in the 2nd image. The point-to-line distance (or orthogonal distance)

between x′i and l∗ was obtained as the error measure. For Brito et al., the one-sided radial

fundamental matrix F1 was estimated using all available correspondences simultaneously

(since there are no outliers), then F1 was used to compute the epipolar line (which is

straight, since F1 will map from the distorted to the undistorted image) for each xi.

Again, the orthogonal distance between the epipolar line and the corresponding point

was recorded. The results are shown in Figure 3.5.

From Figures 3.5a and 3.5b, it is obvious that as the Gaussian noise on the point

coordinates increases, the error becomes larger for both methods. Given the same radial

distortion magnitude λ, MDLT consistently has equal or lower error than the one-sided

fundamental matrix. Interestingly, when Brito’s variant of the distortion model is used

to generate the radial distortion, and there is no noise on the point coordinates, it

is possible for the one-sided fundamental matrix to achieve zero error. However, this

good performance disappears when the traditional distortion model is used or when

the Gaussian noise magnitude increases. This dependence on the underlying distortion

model becomes more apparent in Figures 3.5c and 3.5d. Whilst the error of MDLT is

largely stably regardless of the underlying distortion model, Brito’s method appears to

break down at certain ranges of the COD displacement when the traditional distortion

model was used to distort the data.

Two-sided radial distortion The previous experiment was repeated with two-sided

radial distortions. MDLT was compared with Brito et al.’s [19, 18] two-sided fundamen-

tal matrix, as well as Kulelova et al.’s [70] method. Since the epipolar line becomes an

epipolar curve [142, 33] on an image with radial distortion, the orthogonal distance can-

not be calculated as the error measure. Therefore, the Sampson distance for comparisons

was used instead. The results are presented in Figure 3.6.
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(a) Traditional distortion model (3.18).
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(b) Brito’s variant of distortion model.
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(c) Traditional distortion model (3.18).
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(d) Brito’s variant of distortion model.

Figure 3.5: Synthetic data experiment with one-sided radial distortion. (a)(b) The
standard deviation of Gaussian noise is increased from 0.0 to 5.0, while the COD is
placed at the image centre. (c)(d) The standard deviation of Gaussian noise is fixed at
2.0, while the COD is displaced by the amount controlled by d following the equation
d(width/2). Note that in (a)(c) the traditional distortion model (3.18) is used to distort
the synthetic points, while in (b)(d) Brito’s variant of the distortion model is used.

From Figures 3.6a and 3.6b, whilst all methods deteriorate when the Gaussian noise

magnitude on the point coordinates increases, Brito’s method appear to be highly af-

fected by noise, i.e., the rate of increase in the Sampson error is much higher than that

of MDLT or Kukelova’s method. Under different COD displacements, as shown in Fig-

ures 3.6c and 3.6d, the performance of MDLT is the best among all methods and is

also very consistent. Kukelova et al.’s method is also consistent, but not as accurate

as the proposed approach. The performance of Brito et al.’s two-sided fundamental

matrix varies tremendously depending on the level of distortion λ and amount of COD

displacement. This possibly indicates a distortion model mismatch issue.
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(a) Traditional distortion model (3.18).
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(b) Brito’s variant of distortion model.
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(c) Traditional distortion model (3.18).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

COD displacement

S
u

m
 o

f 
S

a
m

p
s
o

n
 d

is
ta

n
c
e

Two−sided distorted, varying COD

 

 

MDLT lambda = 0.01

Brito lambda = 0.01

Kukelova lambda = 0.01

MDLT lambda = 0.1

Brito lambda = 0.1

Kukelova lambda = 0.1

(d) Brito’s variant of distortion model.

Figure 3.6: Synthetic data experiment with two-sided radial distortion. (a)(b) The
standard deviation of Gaussian noise is increased from 0.0 to 5.0, while the COD is
placed at the image centre. (c)(d) The standard deviation of Gaussian noise is fixed at
2.0, while the COD is displaced by the amount controlled by d following the equation
d(width/2). Note that in (a)(c) the traditional distortion model (3.18) is used to distort
the synthetic points, while in (b)(d) Brito’s variant of the distortion model is used.

3.6.2 Real image data experiments

Next, the performance of proposed point correspondence validation method based on

MDLT, specifically Algorithm 3.1, was investigated. Publicly available images exhibiting

various levels of radial distortion3 were used; see Rows 1 and 2 in Table 3.1. Specifically,

three classes of distortion are available (10%, 25% and 45%), and the distortion exists

in both images. To extract and match interest points in the images in an automatic

manner, the SIFT feature [93] implemented in the VLFeat package [131] was employed.

3http://arthronav.isr.uc.pt/ mlourenco/srdsift/dataset.html
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The set of point correspondences produced by SIFT contain mismatches or outliers

which were then identified using MDLT.

Algorithm 3.1 is compared against Brito’s two-sided radial fundamental matrix [19,

18], Kukelova’s method [70] and Fitzgibbon’s undistortion model [44]. Previously these

methods have been embedded in a RANSAC framework to enable robust estimation of

epipolar geometry under radial distortion. The same operation has been performed here

for outlier identification. For all methods, a correspondence is declared an inlier if the

Sampson distance calculated based on the estimated fundamental matrix is less than

the threshold β (the same β is used for all methods).

To compare the accuracy of the methods, the ground truth label of all the SIFT point

correspondences are obtained through manual inspection. Given the labelling result of

a particular method on a specific image pair, the following information is obtained:

1. Nt: true number of inlier correspondences in the data.

2. Ni: number of correspondences labelled as inliers.

3. Nc: number of correspondences correctly labelled as inliers.

The precision and recall rate of the labelling result are then calculated as

PR = 100%× Nc

Ni
, RR = 100%× Nc

Nt
. (3.19)

The results are presented in Table 3.1. It can be observed that at all distortion levels,

the precision and recall rates of MDLT are higher than all the competitors. Further, as

the distortion level is increased, the precision and recall rates of the competitors reduce

much faster than that of MDLT. This points to the superior accuracy and robustness of

MDLT towards different levels of radial distortion.

To simulate real life cases where the COD of the radial distortion may not placed at

the image centre, following [19, 18] the images are cropped at appropriate subwindows.

Specifically, the image is cropped in a manner such that the true COD is shifted horizon-

tally to the right of the image centre; see Rows 1 and 2 in Table 3.2, where the CODs

are marked with yellow crosses while the image centers are marked with red crosses.

From the results in Table 3.2, again it can be seen that at all distortion levels, MDLT is
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able to obtained many more inliers (higher recall) while maintaining a smaller number

of false positives (higher precision) compared to the competitors.

Failure cases have been observed when there are insufficient feature matches. In regions

without sufficient feature matches, MDLT falls to standard epipolar geometry, thus loses

its model flexibility.

3.7 Summary

In this chapter, a novel approach has been proposed to point correspondence validation

under unknown radial distortions. The proposed method was inspired by MLS surface

approximation, which was extended to enable epipolar geometry estimation. The new

estimation procedure called MDLT adjusts the standard epipolar geometry model in a

data-driven manner, such that radial distortions can be accounted for. This adjustment

is also conducted without assuming any particular radial distortion model. The proposed

algorithm is simply and involves nothing more than solving a sequence of linear least

squares subproblems. Experimental results demonstrated that the proposed method has

superior performance than state-of-the-art methods, in terms of high recall and precision

rates for point correspondence validation.
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RD 10% RD 25% RD 45%
In

p
u

t
im

a
g
e

1
In

p
u

t
im

a
g
e

2
M

D
L
T

Nt = 577 Ni = 584 Nc = 574 Nt = 379 Ni = 381 Nc = 376 Nt = 165 Ni = 145 Nc = 141
RR = 99.48% PR = 98.29% RR = 99.21% PR = 98.69% RR = 85.45% PR = 97.24%

B
ri

to
’s

[1
9
,

1
8
]

Nt = 577 Ni = 479 Nc = 474 Nt = 379 Ni = 363 Nc = 361 Nt = 165 Ni = 138 Nc = 136
RR = 82.15% PR = 98.96% RR = 95.25% PR = 99.45% RR = 82.42% PR = 98.55%

F
it

z
g
ib

b
o
n

’s
[4

4
]

Nt = 577 Ni = 492 Nc = 489 Nt = 379 Ni = 300 Nc = 300 Nt = 165 Ni = 72 Nc = 71
RR = 84.75% PR = 99.39% RR = 79.16% PR = 99.99% RR = 43.03% PR = 98.61%

K
u

k
e
lo

v
a
’s

[7
0
]

Nt = 577 Ni = 479 Nc = 474 Nt = 379 Ni = 362 Nc = 361 Nt = 165 Ni = 91 Nc = 89
RR = 82.15% PR = 98.96% RR = 95.25% PR = 99.72% RR = 53.94% PR = 97.80%

Table 3.1: Real image tests.
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RD 10% RD 25% RD 45%

In
p

u
t

im
a
g
e

1
In

p
u

t
im

a
g
e

2
M

D
L
T

Nt = 312 Ni = 310 Nc = 301 Nt = 275 Ni = 275 Nc = 272 Nt = 119 Ni = 115 Nc = 108
RR = 96.47% PR = 97.10% RR = 98.55% PR = 98.91% RR = 90.76% PR = 93.91%

B
ri

to
’s

[1
9
,

1
8
]

Nt = 312 Ni = 290 Nc = 287 Nt = 275 Ni = 263 Nc = 261 Nt = 119 Ni = 97 Nc = 97
RR = 91.99% PR = 98.97% RR = 94.91% PR = 99.24% RR = 81.51% PR = 99.99%

F
it

z
g
ib

b
o
n

’s
[4

4
]

Nt = 312 Ni = 293 Nc = 292 Nt = 275 Ni = 234 Nc = 234 Nt = 119 Ni = 76 Nc = 76
RR = 93.59% PR = 99.67% RR = 85.09% PR = 99.99% RR = 63.87% PR = 99.99%

K
u

k
e
lo

v
a
’s

[7
0
]

Nt = 312 Ni = 292 Nc = 288 Nt = 275 Ni = 259 Nc = 259 Nt = 119 Ni = 54 Nc = 54
RR = 92.31% PR = 98.63% RR = 94.18% PR = 99.99% RR = 45.38% PR = 99.99%

Table 3.2: Real image tests, with COD displacement 50%.





Chapter 4

Correspondence Insertion for

APAP Image Stitching

4.1 Introduction

4.1.1 Basic homographic stitching

Given input images as shown in Figure 4.1a, the standard pipeline of image stitching [124,

25] begins with detecting and matching feature points across input images. A robust

technique such as RANSAC is invoked to remove outliers and establish feature point

correspondences; see Figure 4.1b. Based on feature correspondences, the projective

transformation (i.e., homography) can be estimated.

Let x = [ x y ]T and x′ = [ x′ y′ ]T be corresponding points across overlapping

images I and I ′. The homography H transforms x to x′ following the relation

x̃′ ∼ Hx̃⇔


x′

y′

1

 ∼

H11 H12 H13

H21 H22 H23

H31 H32 H33



x

y

1

 , (4.1)

where x̃ = [ x y 1 ]T is x in homogeneous coordinates, and ∼ indicates equality up

to scale.

53
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In inhomogeneous coordinates,

x′ =
xH11 + yH12 +H13

xH31 + yH32 +H33
, (4.2)

y′ =
xH21 + yH22 +H23

xH31 + yH32 +H33
. (4.3)

Rewrite (4.2) and (4.3) and obtain

− xH11 − yH12 −H13 + x′xH31 + x′yH32 + x′H33 = 0, (4.4)

− xH21 − yH22 −H23 + y′xH31 + y′yH32 + y′H33 = 0, (4.5)

which can be rearranged as

mh = 0, (4.6)

where m contains monomials for {x,x′} of the form

m =

 −x −y −1 0 0 0 x′x x′y x′

0 0 0 −x −y −1 y′x y′y y′

 , (4.7)

and h = [ H11 H12 H13 H21 H22 H23 H31 H32 H33]T .

Given n corresponding points, the following system of linear equations can be con-

structed

Mh = 0, (4.8)

where

M =


m1

m2

...

mn

 , (4.9)

and mi is (4.7) defined for the i-th point match {xi,x′i}. By imposing the constraint

‖h‖ = 1, the problem is formulated as the least square problem

ĥ = argmin
h

‖Mh‖2. (4.10)

The solution ĥ is the least significant right singular vector of M.
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(a) Input images. Image data taken from [140].

(b) RANSAC result.

(c) Warping result using single homography.

Figure 4.1: The standard pipeline of homographic stitching. (a) Feature points are
detected and matched across the input images. (b) RANSAC is invoked to identify
inliers (in green) from outliers (in red) and estimate the homography that brings the
overlapping images into alignment. (c) The warping result is generated by compositing
the aligned images onto a common canvas.
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Given the estimated H (reconstructed from ĥ), to align the images onto a common

canvas, an arbitrary pixel x∗ in the source image I is warped to the position x′∗ in the

target image I ′ by

x̃′∗ ∼ Hx̃∗. (4.11)

However, image stitching with homographic warps carries the assumptions that the

images were taken under pure rotational motions, or that the scene is sufficiently far away

such that it is effectively planar. However, such conditions are unlikely to be satisfied in

casual photography. As a result, misalignment effects or “ghosting” inevitably occur; see

regions around cranes and railways in the homographic stitching result in Figure 4.1c.

4.1.2 As-projective-as-possible image stitching

Due to the limitations of homographic warps, spatially varying warps have been pro-

posed as alternatives [86, 49, 140, 31]. Such warps can better account for the effects

of parallax when aligning the overlap regions. In particular, as-projective-as-possible

(APAP) warps [140] interpolate the data flexibly, while maintaining a global projective

trend so as to extrapolate correctly.

The APAP warp maps each x∗ using an input-dependent homography

x̃′∗ ∼ H∗x̃∗, (4.12)

where H∗ is estimated from the weighted function

h∗ = argmin
h

N∑
i=1

‖wi∗mih‖2, s.t. ‖h‖ = 1. (4.13)

The non-stationary weights {wi∗}Ni=1 give higher importance to data that are closer to

x∗, and the weights are calculated as

wi∗ = exp (−‖x∗ − xi‖2/σ2). (4.14)

Here, σ is a scale parameter that controls the warp smoothness, and xi is the point

coordinate on the source image I from the i-th correspondence {xi,x′i}.
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Compared to (4.11) which uses a single and global H for all x∗, (4.14) assigns higher

weights to data closer to x∗. As a result, the projective warp H∗ better respects the

local structure around x∗. Moreover, as x∗ is moved continuously in its domain I, the

warp H∗ also varies smoothly, which is also why this method is called moving direct

linear transformation (MDLT).

Equation (4.13) can be written in the matrix form

h∗ = argmin
h

‖W∗Mh‖2 , s.t. ‖h‖ = 1, (4.15)

where W∗ is a 2N × 2N diagonal matrix, and composed as

W∗ = diag([ w1
∗ w1

∗ w2
∗ w2

∗ . . . wN∗ wN∗ ]), (4.16)

and M is the 2N × 9 from (4.9). This is a weighted linear squares problem, and the

solution is simply the least significant right singular vector of W∗M.

However, solving (4.15) for each pixel position x∗ on the source image I is unnecessarily

wasteful, since neighboring positions will yield very similar weights (4.14) and hence

very similar homographies. Thus, Zaragoza et al. uniformly partitioned I into a grid

of C1 × C2 cells, and only solved (4.15) for the center of each cell. Pixels within the

same cell are then warped using the same homography. Based on [75], the C1 continuity

of APAP warps can be established, but is out of the scope of this thesis. Figure 4.2

illustrates how the source image I is warped onto the target image I ′. While, the APAP

warping result without meshgrid is shown in Figure 4.3.

Ultimately, APAP warps are only as flexible as warranted by available feature matches.

Without a sufficiently dense sampling of the underlying interpolant, the warp reduces

to the baseline warp (projective [140]), thus defeating its spatially varying ability. A

large number of feature matches are thus required to obtain good alignment, especially

in areas with parallax where the true alignment function deviates from a simple homog-

raphy. There is no guarantee, however, that feature matches are produced uniformly

in the overlap area. Especially, SIFT output is sometimes unpredictable. As shown in

Figure 4.4, the building on the right is covered by large glossy glass panels, which makes

keypoint extraction/matching difficult. As a result, there are many points in the sky

while no points on the building.
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Figure 4.2: Aligned images with transformed cells overlaid to visualize the warp.
Figure is taken from [140].

Figure 4.3: Result using APAP warp [140]

4.1.3 Chapter overview

Different from [141], this thesis attempts to accurately align the images throughout

the overlap area before compositing. Specifically, in correspondence-poor regions, a

correspondence insertion algorithm is proposed such that a good warping function can

still be estimated. In the proposed method, correspondence search is accomplished for

MDLT, which is the estimation method for APAP warps [140]. The simplicity of the

proposed data-driven warp adaptation scheme over previous spline-based centre insertion

techniques [30, 95, 11] has also been highlighted. On panoramic mosaicing problems

that are challenging, the proposed approach achieves accurate alignment without being
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(a) Input images with verified keypoint correspondences.

(b) Image stitching result using APAP warp.

(c) Result after automatically optimizing 25 new correspondences (indicated as yel-
low crosses) using the proposed method.

Figure 4.4: Overview of the proposed correspondence insertion method. (a) Two
input images with verified keypoint correspondences; (b) Although APAP warp is spa-
tially varying, without sufficient keypoint correspondences, the flexibility of the warp
cannot be realised and the overlap area cannot be aligned well; (c) The proposed corre-
spondence insertion algorithm automatically inserts and optimises new correspondences
to improve the alignment.
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handicapped by insufficient feature matches. Figure 4.4 gives a preview of the proposed

method.

The rest of this chapter is organized as follows: Section 4.2 reviews previous work on

centre insertion. Section 4.3 gives an overview of the proposed method. Section 4.4

introduces how a novel point is chosen and inserted. The location of the correspondence

of the newly inserted center is optimized in Section 4.5. Then, Section 4.6 summarizes

the overall data-driven warp adaptation scheme. Section 4.7 experimentally compares

the proposed method with state-of-the-art stitching methods. Section 4.8 provides a

summary.

4.2 Previous Work on Centre Insertion

Centre insertion has been studied extensively in spline regression [60, Chapter 5]. In

particular, centre insertion has been proposed for pixel-based non-rigid object registra-

tion [30, 95, 11]. A 2D spline f : R2 7→ R2 is a function

f(x) = AT x̃ +

K∑
k=1

αkφ(‖x− ck‖), (4.17)

where A ∈ R3×2 is an affine warp, x̃ = [xT , 1]T is x in augmented coordinates, {αk} are

scalar coefficients, {ck} are 2D positions called centers, and φ is a radial basis function.

The centers can be arbitrary (e.g., on a grid [125] over R2), and need not coincide with

detected features.

The complexity of the warp increases with the number of centers K. If the pixels cannot

be aligned well due to insufficient warp flexibility, one may consider adding new centers

c∗. Each insertion requires deciding where to place c∗, and how to update the parameters

{A, α1, . . . , αK , α∗}. W.r.t. the latter, in [11] the Gauss-Newton algorithm is used to

adjust the parameters to further minimize the intensity difference in the overlap area.

Note that the spline parameters are not independent, e.g., the coefficients in thin plate

spline (TPS) must satisfy the side condition
∑

k αk = 0. Thus, the updates get costlier

as more centers are inserted.

Note that if x is sufficiently far away from all {ck}, the side condition and the monotoni-

cally decreasing radial basis function (RBF) ensures that f(x) reduces to the affinity A.
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Figure 4.5: Correspondence insertion method overview.

This implies that splines are unsuitable for image stitching, since ideally the warp should

revert to a homography in the extrapolation areas [140]. While there exist splines with

a projective baseline [10], the fact remains that parameter updating can be relatively

non-trivial. While the equivalent optimization on moving least squares (MLS) regression

is much simpler and more efficient, which will be shown in the rest of this chapter.

4.3 Proposed Method Overview

The goal of this chapter is to find a warping function f(x) that maps pixels from the

source image I to the target image I ′. The pipeline of the proposed method is given in

Figure 4.5. Like most registration algorithms, the proposed method starts with feature

point extraction; here, SIFT feature is used. RANSAC embedded with a standard

homography (4.1) is then used to initialise the correspondence set. Thus, a set of point-

wise matches X = {xi,x′i}Ni=1 are established across I and I ′, where xi = [pi, qi]
T and

x′i = [p′i, q
′
i]
T . The matches provide a sample of the true underlying warp, from which

f(x) is estimated. In regions where X undersamples the true warp (e.g., insufficient
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point matches), the accuracy of f(x) in approximating the true warp is limited. The

proposed method strives to construct a method to generate new correspondences {x∗,x′∗}

to improve f(x), given that f(x) is modeled as an APAP warp [140]. The step of center

selection inserts a novel point x∗ in the context of panoramic stitching. Then, the

correspondence search algorithm is employed to optimize the corresponding point x′∗

for the newly inserted x∗. The above novel point selection and correspondence search

process is repeated until the overlap area is sufficiently covered by correspondences.

The proposed method improves upon the original APAP warps by inserting correspon-

dences in correspondence-poor regions. There are other guided feature matching meth-

ods [47][69] have been studied. However, [47] is introduced for the purpose of 3D recon-

struction. Employing such complex 3D methods is a bit of “overkill” for the purpose of

image stitching and only works for scene points in the overlapping area. The running

time mentioned in [47] varies from 20 minutes to a few hours, which also backs up the

claims. Despite employed 3D method and running time in [69], the underlying geomet-

ric model is affine transformation. While, homography is used in the proposed method,

which is more suitable for the purpose of panoramic image stitching.

4.4 Center Selection

Given the current correspondence set X = {xi,x′i}Ni=1, an APAP warp f(x) (4.12) is

first estimated and used to warp the source image I to align with the target image I ′.

Naturally correspondences should be added in regions with high alignment errors. This

is provided by the absolute intensity difference map R. Since warp I is warped to align

with I ′, it is natural to put R in the same frame as I ′. Pixels with error less than ε

(default ε is 100) are ignored by zeroing the corresponding values in R. See Figure 4.6a.

The proposed approach relies on seam cut [2] for pixel selection during compositing; see

Figure 4.6b. Therefore, since pixels that will have their color copied (more appropriately,

retained) from I ′, as marked in red in Figure 4.6b, are not subjected to misalignment

errors, the corresponding values in R are zeroed. See Figure 4.6c.

Misalignments in regions with less structured textures (e.g., sky, trees, white board) are

less obvious, thus it is less essential to introduce new correspondences in such locations.

To realize this intuition, the visual saliency map of I ′ is computed using the method
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of [56]; see Figure 4.6d. Values in R corresponding to pixels with saliency less than η

(default η is 0.5) are zeroed (recall that R has the same coordinate frame as I ′); see

Figure 4.6e.

At this stage, an error map is obtained to guide the insertion of new correspondences.

Additional constraints are given by the existing correspondence set X . Specifically,

new correspondences should be inserted in regions that are not too near to X , so as to

avoid inserting redundant correspondences, and also not too far from X , so as to ensure

that correspondence search can be bootstrapped effectively by the existing f(x). These

constraints are realised by computing the distance transform D on the current set of

features L in I ′. Values of D that are less than ρ (default ρ is 15) are set to ∞; see

Figure 4.6f.

Given D and R, the position x′min that has the lowest value in D./R is sought, where

“./” indicates element-wise division. The new point x∗ is then obtained as f−1(x′min).

To calculate the inverse APAP warp f−1(x′min), the proposed technique finds the nearest

neighbor of x′min in {f(xi)}Ni=1, then warps x′min to I using the inverse H−1(x) of the

input-dependent homography (4.12) of the nearest neighbor point.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Center selection. (a) Absolute difference map R with values < ε are
zeroed; (b) Optimized seam for the current f(x); (c) Values in R corresponding to pixels
selected from I ′ are zeroed; (d) Visual saliency map of I ′; (e) Values in R corresponding
to pixels with saliency < η are zeroed; (f) Distance transform D on {f(xi)}Ni=1 with
values < ρ are set to∞ (darker areas here mean lower D values). Green cross indicates
the x′min in this iteration.
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4.5 Correspondence Search

Once the novel point x∗ is initialised, correspondence search method is invoked to opti-

mize the corresponding point x′∗. Details are in the following.

4.5.1 Objective function and minimization

In regions with sparse correspondences, x is equally far (relative to σ) from all {xi}Ni=1,

and f(x) reduces to a “rigid” projective warp, thus losing its spatially varying ability.

Let x∗ be the newly inserted point in I to raise the flexibility of f(x). In the absence

of geometric information, a matching point x′∗ in I ′ is found based on pixel intensity

values. To this end, the intensity matching cost is defined as

E(x′∗) =
∑
x∈D

[
I ′(f(x|x′∗))− I(x)

]2
, (4.18)

where I(x) is the pixel intensity at x, D is a region in I (by default, D is a 31 × 31

subwindow), and the warp f(x|x′∗) is now dependent on x′∗. Specifically, the input

dependent homography is now obtained as

h(x|x′∗) = argmin
h

N∑
i=1

wi(x)‖mih‖2 + w∗(x)‖m∗(x′∗)h‖2,

s.t. ‖h‖ = 1, (4.19)

where m∗(x
′
∗) contains the monomials for {x∗,x′∗} following (4.7), and

w∗(x) = exp (−‖x− x∗‖2/σ2). (4.20)

In matrix form, (4.19) can be rewritten as

h(x|x′∗) = argmin
h

∥∥W∗(x)M(x′∗)h
∥∥2
,

s.t. ‖h‖ = 1, (4.21)

where W∗(x) is W∗ diagonally extended with two w∗(x) values, and M(x′∗) is M ver-

tically appended with m∗(x
′
∗). Note that only M(x′∗) contains the variable x′∗.
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Since the aim is to find x′∗ by minimizing (4.18), the well-known Lucas-Kanade (LK)

technique [7] is applied. A first-order Taylor expansion is applied on E(x′∗ + ∆x′∗) to

yield

∑
x∈D

[
I ′(f(x|x′∗)) +∇I ′(f(x|x′∗))

∂f(x|x′∗)
∂x′∗

∆x′∗ − I(x)

]
, (4.22)

where image gradient ∇I ′ is computed using finite differencing. Differentiating against

x′∗ and equating to 0 yields

∆x′∗ = F−1
∑
x∈D

[
∇I ′(f(x|x′∗))

∂f(x|x′∗)
∂x′∗

]T [
I(x)− I ′(f(x|x′∗))

]
(4.23)

where F is the (approximated) Hessian

F =
∑
x∈D

[
∇I ′(f(x|x′∗))

∂f(x|x′∗)
∂x′∗

]T [
∇I ′(f(x|x′∗))

∂f(x|x′∗)
∂x′∗

]
.

The current value for x′∗ is then updated by ∆x′∗, and the steps are repeated until

convergence. Refer to [7] for more details.

x′∗ is initialized by mapping x∗ with the f(x) prior to correspondence insertion. It is

crucial to note that h(x|x′∗) changes for different x ∈ D. Essentially a unique homogra-

phy is estimated for each x ∈ D given x′∗, thus realizing a spatially varying warp. This

differs from the standard LK approach for “frame global” projective registration [7].

Brightness constancy assumption. The objective function (4.18) assumes bright-

ness constancy. In another word, this means corresponding pixels across input images

have the same color/brightness. This assumption may not hold in general, especially

if the images are taken using cameras with various color auto-correction routines. To

ensure the applicability of the proposed method, color normalization techniques can be

applied on the input images prior to stitching [138].

4.5.2 Jacobian of APAP warp

Evaluating f(x|x′∗) and its Jacobian requires solving the weighted algebraic least squares

problem (4.21) at each iteration - again, this differs from the common types of parametric
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motions used in LK [7]. Specifically, the solution h(x|x′∗) to (4.21) is the least significant

eigenvector of

S(x|x′∗) := [W∗(x)M(x′∗)]
T [W∗(x)M(x′∗)], (4.24)

where S(x|x′∗) varies with x′∗. The eigenvector satisfies

[
S(x|x′∗)− λ(x|x′∗)

]
h(x|x′∗) = 0, (4.25)

‖h(x|x′∗)‖ = 1, (4.26)

where λ(x|x′∗) is the eigenvalue. Via the chain rule,

∂f(x|x′∗)
∂x′∗

=
∂f(x|x′∗)
∂h(x|x′∗)

∂h(x|x′∗)
∂x′∗

. (4.27)

The first term can be obtained by differentiating (4.12). The second term requires

differentiating the eigenvector. Based on known results [94], the following expression

∂h(x|x′∗)
∂x′∗

=
[
λ(x|x′∗)I− S(x|x′∗)

]† ∂S(x|x′∗)
∂x′∗

h(x|x′∗) (4.28)

can be derived, where I is the identity matrix. The derivative of S(x|x′∗) can in turn be

obtained based on (4.24). Note that only the last-two rows of M(x′∗) depend on x′∗.

The proposed correspondence search procedure is summarized in Algorithm 4.1. Note

that in Step 4, the eigenvector h(x|x′∗) for each x ∈ D needs to be calculated. Using

modern linear algebra packages, this does not represent significant computational load,

even for large S(x|x′∗), e.g., 1000 × 1000. Moreover, an incremental decomposition

scheme [140] can be used to further reduce computational cost.

Algorithm 4.1 Correspondence search for APAP warp.

Require: Images I and I ′, feature matches {xi,x′i}Ni=1, novel point x∗.
1: Initialize x′∗ by warping x∗ using (4.12).
2: repeat
3: for each x ∈ D do
4: Solve (4.21) to obtain h(x|x′∗) and λ(x|x′∗).
5: Calculate transformation f(x|x′∗).
6: Calculate warp Jacobian (4.27) for x.
7: end for
8: Calculate ∆x′∗ (4.23) and update x′∗ ← x′∗ + ∆x′∗.
9: until x′∗ converges.
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Comparison against center insertion for splines. At this juncture, it is instruc-

tive to compare the proposed correspondence insertion algorithm with spline-based cen-

ter insertion techniques (Section 4.2). The proposed warp update algorithm involves

nothing more than searching for a 2D point x′∗. This is a direct consequence of using

“point set surfaces” [3] to define the warp. Contrast this to spline-based center insertion

schemes, where all the warp parameters {A, α1, . . . , αK , α∗} need to be adjusted in each

update.

4.6 Data-driven Warp Adaptation Scheme

Given the novel point x∗, Algorithm 4.1 is invoked to find its correspondence x′∗. The

newly inserted correspondence {x∗,x′∗} is appended to X , if E(x′∗) is less than ω (default

ω is 1000). Else, the new correspondence is considered unsatisfactory and discarded. In

any case, x′min is appended to L to prevent it from being selected again in the next

iteration. The novel point selection and correspondence search steps are encapsulated in

a data-driven warp adaption scheme, which iteratively inserts new correspondences until

sufficient “coverage” of the overlap area is achieved. The data-driven warp adaptation

scheme is summarized in Algorithm 4.2.

As an indication of runtime, invoking Algorithm 4.2 on the image pair in Figure 4.7

inserted 81 new correspondences in 65 seconds, among which 11 correspondences were

accepted.
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Algorithm 4.2 Data-driven warp adaptation.

Require: Input images I and I ′, initial correspondence set X = {xi,x′i}Ni=1, error
threshold ε, saliency threshold η, distance threshold ρ, and acceptance threshold
ω.

1: L ← {x′i}Ni=1.
2: Compute visual saliency map on I ′; see Figure 4.6d.
3: loop
4: Estimate APAP warp f(x) from X .
5: Warp I to align with I ′ using f(x).
6: R← absolute intensity difference map in overlap area.
7: Set values in R which are < ε to 0; see Figure 4.6a.
8: Optimize seam [2] for pixel selection in overlap area; see Figure 4.6b.
9: Set values in R corresponding to pixels selected from I ′ according to the seam to

0; see Figure 4.6c.
10: Set values in R corresponding to pixels of I ′ with saliency < η to 0; see Figure 4.6e.

11: D ← distance transform on L in the overlap area.
12: Set values in D that are < ρ to ∞; see Figure 4.6f.
13: If D./R is all ∞, then break.
14: x′min ← location in D./R with minimum value.
15: x∗ ← f−1(x′min).
16: x′∗ ← optimized correspondence from Algorithm 4.1.
17: if E(x′∗) < ω then
18: X ← X ∪ {x∗,x′∗}.
19: end if
20: L ← L ∪ x′min.
21: end loop
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Figure 4.7: Comparing three methods on truck image pair. Inserted correspondences
by APAP+CI are shown as yellow points.

4.7 Results

4.7.1 Comparisons with state-of-the-art stitching methods

In this section, results are shown using images of a scene with significant depth parallax.

The proposed method is compared (abbreviated as APAP+CI) against other state-of-

the-art approaches, namely the original APAP method [140] and parallax-tolerant image

stitching [141]. Publicly available images by Zaragoza et al. and Zhang and Liu, as well

as additional images collected in this thesis, are used. Most of the tested images were

taken under camera poses which give rise to significant depth parallax.

For APAP warps, the code shared by Zaragoza et al. was used. For parallax-tolerant

image stitching, this section simply reprinted the results (where available) from the

project page of Zhang and Liu. For newly collected images, this section executed the

thesis author’s implementation of Zhang and Liu’s method.
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Figure 4.8: Comparing three methods on temple image pair. Inserted correspondences
by APAP+CI are shown as yellow points.

Parameter settings for the proposed method are as follows: σ = 8 in (4.14), D in (4.18)

is a 31× 31 subwindow, ε = 100, η = 0.5, ρ = 15, and ω = 1000 in Algorithm 4.2.

In image pairs with very serious depth parallax, not all pixels have valid correspondences

in the other view. Theoretically, the true warping function must “fold over” or be

discontinuous to correctly align the images. Such characteristics are not supported by

APAP or content preserving warps (CPW) [86] used in parallax-tolerant image stitching.

Following Zhang and Liu, seam cut is employed to composite the images and remove

ghosting.

Figures 4.7 and 4.8 show results on two image pairs used by Zhang and Liu. In Figure 4.7,

parallax-tolerant image stitching produced significant distortions on the glass building.

This was likely due to the concentration of the local homography on the major building

to the right, and neglecting the other regions not lying on the same plane (cf. Figure 2.4).

In contrast, APAP warp was more capable of globally aligning the images; notice that

the glass building was not distorted. However, unpleasant distortions exist around the
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Figure 4.9: Comparing three methods on shopfront image pair. Inserted correspon-
dences by APAP+CI are shown as yellow points.

smokestack - due to a lack of feature matches in this region, the warp was “dragged away”

by existing feature matches on the lower building. The proposed method APAP+CI

rectified the distortion by inserting new correspondences in the appropriate positions.

In Figure 4.8, observe the distortions on the pavilion produced by parallax-tolerant image

stitching. Overall, APAP warp accurately aligned the whole image, however, due to the

lack of feature correspondences, the tower in the background appeared discontinuous.

This was rectified by APAP+CI with the insertion of new correspondences.

Similar results on two more challenging image pairs are shown in Figures 4.9 and 4.10;

these are newly collected data. Results show that by inserting new correspondences to

adapt the warp, the proposed method rectifies the weakness of APAP warp.
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Figure 4.10: Comparing three methods on lobby image pair. Inserted correspondences
by APAP+CI are shown as yellow points.
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4.7.2 Evaluation of flow-based methods

This section evaluates the quality of the dense correspondences from flow-based methods

for image stitching. All image pairs from Section 4.7.1 are used. Three state-of-the-art

flow-based dense and semi-dense correspondence methods were evaluated [84, 85, 27].

Before obtaining the dense correspondences, one image of each pair was pre-warped

using a homography estimated from sparse SIFT keypoint matches. This served to

simplify the problem for the flow-based methods. Further, RANSAC was invoked with

a tight inlier threshold (1 pixel) to ensure high-quality correspondences, before APAP

warp [140] (the baseline) was estimated.

Despite the above precautions, the stitching results exhibit significant local distortions.

This indicates that many of the correspondences are actually inaccurate. The small

error tolerance of RANSAC still allowed sufficient local deviations (e.g., due to repetitive

textures) that distorted the warp. While such local inaccuracies may not affect motion

analysis or segmentation, they are fatal for accurate image stitching using spatially

varying warps.

In Fig. 4.11, all three methods produce significant distortions on the chimney and the

truck, despite the dense correspondences. In Fig. 4.12, dense correspondences were

obtained around the pavilion. However, in Fig. 4.12b the pavilion is seriously distorted,

and in Figs. 4.12d and 4.12f the two separate pillars of the pavilion are merged into

one and the tower in the background also appears discontinuous. This points to the

inaccuracies in the dense correspondences.

In Fig. 4.13, the inaccuracies in the dense correspondences are obvious, especially around

top left corner of Fig. 4.13e. This leads to discontinuities in the balcony and missing

pillars. The scene in Fig. 4.14 contains two apparent planes, and SIFT was able to find

good sparse correspondences from only one of them (the floor). Thus, the prewarping

result using a homography cannot wholly align the images well. Inevitably, this causes

problems for the flow-based methods. Large displacement optical flow [27] found a large

amount of correspondences on the ground; however, the region on the wall of the flower

bed was not covered. The optical flow implementation of [84] and SIFT Flow [85] cap-

tured matches on the wall, but still produced stitching results with significant artifacts

in Figs. 4.14d and 4.14f. This is due to the repeated textures on the wall which lead to

inaccurate dense correspondences.
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(a) Pre-warp input images using a homography estimated from SIFT keypoint matches.

(b) Image stitching result using APAP warp [140] estimated from a set of semi-dense cor-
respondences (validated by RANSAC and shown as red points in the final stitched image)
produced by Large Displacement Optical Flow [27].

(c) The optic flow implementation of [84] produced 195868 correspondences (after RANSAC
validation).

(d) Image stitching result using APAP warp [140] estimated from the correspondences in (c).

(e) SIFT Flow [85] produced 403308 correspondences (after RANSAC validation).

(f) Image stitching result using APAP warp [140] estimated from the correspondences in (e).

Figure 4.11: Dense correspondences and stitching results of three flow-based methods
on the truck image pair.



Chapter 4. Correspondence Insertion for As-Projective-As-Possible Image Stitching 76

(a) Pre-warp input images using a homography estimated from SIFT keypoint matches.

(b) Image stitching result using APAP warp [140] estimated from a set of semi-dense cor-
respondences (validated by RANSAC and shown as red points in the final stitched image)
produced by Large Displacement Optical Flow [27].

(c) The optic flow implementation of [84] produced 147858 correspondences (after RANSAC
validation).

(d) Image stitching result using APAP warp [140] estimated from the correspondences in (c).

(e) SIFT Flow [85] produced 317753 correspondences (after RANSAC validation).

(f) Image stitching result using APAP warp [140] estimated from the correspondences in (e).

Figure 4.12: Dense correspondences and stitching results of three flow-based methods
on the temple image pair.
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(a) Pre-warp input images using a homography estimated from SIFT keypoint matches.

(b) Image stitching result using APAP warp [140] estimated from a set of semi-dense cor-
respondences (validated by RANSAC and shown as red points in the final stitched image)
produced by Large Displacement Optical Flow [27].

(c) The optic flow implementation of [84] produced 83318 correspondences (after RANSAC
validation).

(d) Image stitching result using APAP warp [140] estimated from the correspondences in (c).

(e) SIFT Flow [85] produced 165789 correspondences (after RANSAC validation).

(f) Image stitching result using APAP warp [140] estimated from the correspondences in (e).

Figure 4.13: Dense correspondences and stitching results of three flow-based methods
on the shopfront image pair.
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(a) Pre-warp input images using a homography estimated from SIFT keypoint matches.

(b) Image stitching result using APAP warp [140] estimated from a set of semi-dense cor-
respondences (validated by RANSAC and shown as red points in the final stitched image)
produced by Large Displacement Optical Flow [27].

(c) The optic flow implementation of [84] produced 118823 correspondences (after RANSAC
validation).

(d) Image stitching result using APAP warp [140] estimated from the correspondences in (c).

(e) SIFT Flow [85] produced 241276 correspondences (after RANSAC validation).

(f) Image stitching result using APAP warp [140] estimated from the correspondences in (e).

Figure 4.14: Dense correspondences and stitching results of three flow-based methods
on the lobby image pair.
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4.7.3 Comparisons on image pairs without significant parallax

In this section, results on the additional three images pairs that have taken of scenes

without significant parallax are presented. Because parallax is not present, all results

are generated without using seam cut blending. Seam cut, however, is an important

step in parallax-tolerant image stitching [141], so the proposed method (APAP+CI)

is only compared with results obtained from a single homography (baseline) and the

APAP method. Since seam cut blending is not used, the proposed method is used on

the overlapped image region only, which is slightly different from the Algorithm 4.2.

Figs. 4.15, 4.16 and 4.17 show the results.

The single homography model works under the assumption that the images are suffi-

ciently far away or taken with a camera undergoing pure rotational motion. For these

images, this imaging condition is not satisfied and a single homography is not sufficient

to align the images. As shown in Figs. 4.15b, 4.16b and 4.17b, warping with a single ho-

mography introduces significant ghosting artifacts in the stitching results. APAP warp is

able to provide a more accurate alignment, but fail if there are insufficient point matches

(e.g. pillar in Fig. 4.15c, arch in Fig 4.16c, and railing and eave in Fig 4.17c). The pro-

posed method automatically adds new correspondences and rectifies the weakness of the

APAP warp producing results that have a better overall alignment.
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(a) Input images.

(b) Result using a single homography.

(c) Result using APAP warp [140].

(d) Image stitching result after adding 38 new correspondences using the pro-
posed method.

Figure 4.15: Comparing three methods on the building image pair. Inserted corre-
spondences by APAP+CI are shown as yellow points.
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(a) Input images.

(b) Result using a single homography.

(c) Result using APAP warp [140].

(d) Image stitching result after adding 6 new correspondences using the pro-
posed method.

Figure 4.16: Comparing three methods on the arch image pair. Inserted correspon-
dences by APAP+CI are shown as yellow points.
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(a) Input images.

(b) Result using single homography.

(c) Result using APAP warp [140].

(d) Image stitching result after adding 93 new correspondences using proposed
the method.

Figure 4.17: Comparing three methods on the stage image pair. Inserted correspon-
dences by APAP+CI are shown as yellow points.
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4.8 Summary

Wide-baseline image stitching is a challenging problem. Flow-based methods often fail

to produce dense and accurate correspondences, while spatially varying warps are only

flexible up to the sparse set of keypoint matches given. This chapter presented a novel

data-driven warp adaption scheme for APAP image stitching. A core step in the pro-

posed algorithm is a correspondence insertion technique. The proposed method improves

upon the original APAP warps, which fails when the overlap region is correspondence-

poor. Generated results also show that it is crucial to accurately align the images

throughout the overlap area, even if sophisticated compositing is used.





Chapter 5

Video Stabilization Using

Homography Fields

5.1 Introduction

5.1.1 2D video stabilization

2D video stabilization methods rely on simple 2D image transforms (e.g., affine or pro-

jective), which are very efficient to estimate. Given input frame sequence I1, I2, . . . , IT ,

transform Ti is first estimated from feature matches across two successive (or neighbor-

ing) frames (e.g., via SIFT matching), as shown in Figure 5.1.

By applying the transform estimation for every pair of adjacent frames, a transformation

chain can be obtained. Most methods build up the transformation chain by cumulating

transforms with an anchoring frame (normally the first frame I1) to describe the camera

motion; see Figure 5.2, original camera trajectory is plotted in dotted lines.

Camera motion is then filtered to perform stabilization and remove high-frequency jit-

ters; see Figure 5.2, stabilized camera motion path appears continuous and smooth.

From the smoothed trajectory, update transforms Bi are constructed, which can be

applied on each frame of the video to “undo” the jerky motions.

Lastly, using the obtained update transforms Bi, full-frame warps are applied on original

frames to render stabilized frame sequence I ′1, I
′
2, . . . , I

′
T ; see Figure 5.1.

85



Chapter 5. Video Stabilization Using Homography Fields 86

Figure 5.1: 2D video stabilization methods estimate 2D image transforms Ti across
two successive frames to capture the camera motion. Camera motion is then smoothed
to remove high-frequency motions. From the smoothed trajectory, construct update
transforms Bi that can be applied on each frame of the video to “undo” the jerky
motions. The stabilized frames Ii

′ are rendered as the bottom frame sequence. Figure
taken from [98].

Figure 5.2: Original camera trajectory along X and Y directions (dotted line) are dis-
played. The estimated camera motion is filtered to perform stabilization. The smoothed
motion path is shown with solid lines. Figure taken from [98].

2D video stabilization methods employ simple 2D image transforms to estimate camera

trajectory and define update transform, which leads to the fact that standard 2D stabi-

lization methods can only provide very limited amount of stabilization because the 2D

motion model is restricted. This approach can only achieve good results if the camera

motion is nearly purely rotational, or the scene is nearly purely planar. However, in most

cases, camera motions are much more complicated than that. Thus, there is typically a

large gap between 2D video stabilization and the desired outputs.
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5.1.2 Chapter overview

Contrary to the recent works that have proposed more complex motion models and

smoothing algorithms, this chapter focuses on constructing better update transforms.

Given that update transforms will be eventually applied on all the frames to obtain the

final result, it is more fruitful to design warping functions that can adjust the frames

without introducing undesirable artifacts. On the other hand, to estimate the camera

trajectory for smoothing, it is sufficient to capture the main trend of motion, rather than

precisely characterize the movement of each pixel - in this thesis, following Gleicher and

Liu [51], simple 2D homographies are used for motion modeling and smoothing. For the

all-important update transform, homography fields, which are spatially varying warps

that are regularized to be as projective as possible, have been proposed. This enables

flexible and accurate warping that adheres closely to the underlying scene geometry.

The obtained update transform is powerful enough to eliminate unwanted jerky motions,

while at the same time prevent the warped sequence of frames from appearing wobbly or

distorted. Crucially, homography fields can be integrated closely with any homography-

based smoothing algorithm; this realizes a video stabilization pipeline that smooths

globally and warps locally.

The ability of the proposed warping function extends beyond removing shakiness in

videos. This chapter shows how rolling shutter effects (distortions due to non-uniform

CMOS sensor readout) can be simultaneously modeled and compensated for using ho-

mography fields. The proposed method is also able to solve the problem of video in-

painting to fill in blank regions in the output video resulting from cropping the adjusted

frames which are non-rectangular. It will be shown how inter-frame motions can ac-

curately be modeled based on homography fields, such that blank regions can be filled

in using pixels from neighboring frames without creating undesirable misalignment er-

rors. In contrast to previous works that have tackled the above issues separately using

different methodologies and algorithms, the proposed approach is the first that treats

trajectory smoothing, rolling shutter removal and video inpainting under a single unified

video stabilization pipeline.

The rest of the chapter is organized as follows. Section 5.2 gives an overview of the

proposed shaky video postprocessing pipeline. Section 5.3 describes the proposed video
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Figure 5.3: Overview of the proposed video processing pipeline. Given the input
video, the shaky camera motion is firstly estimated using the frame global homography,
and smoothed to remove high-frequency components. The update transform is then
constructed with the usage of homography fields to produce the stabilized video. The
unavoidable blank pixels are then filled in by the video inpainting method.

stabilization pipeline and the estimation of homography fields for frame updating. Sec-

tion 5.4 shows how homography fields can naturally deal with rolling shutter effects,

and demonstrates its superior efficacy relative to previous techniques. Section 5.5 pro-

poses the video inpainting approach based on homography field warping. Results are

presented in Section 5.6. Conclusions and discussions on the limitations of the proposed

approach are given in Section 5.7.

5.2 Proposed Method Overview

There are two main parts in the proposed pipeline. Given the input video, the shaky

camera motion is firstly estimated using the frame global homography, and smoothed

to remove high-frequency components. The update transform is then constructed with

the usage of homography fields, which are spatially varying warps that are regularized

to be as projective as possible, to produce the stabilized video. These steps construct

the proposed “smooth globally warp locally” stabilization algorithm. Due to the devi-

ation of the smoothed camera path from the original trajectory, the existence of blank

pixels in the stabilized video is unavoidable. The stabilized video is then processed

through the video inpainting step. The proposed video inpainting method fills in blank
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regions in each frame using pixels from neighboring frames without introducing unpleas-

ant artifacts. Figure 5.3 gives an overview of the proposed video stabilization pipeline.

The proposed approach treats camera trajectory smoothing, rolling shutter removal and

video inpainting under a single unified video stabilization pipeline. Each step will be

introduced in detail in the following.

5.3 Smooth Globally Warp Locally

Consider the (ideal) case where the video is shot with the camera purely rotating about

a point. Under the perspective camera model, each inter-frame image motion can be

modeled perfectly by a homography. Chaining the homographies thus yields a repre-

sentation of the camera trajectory, which can then be stabilized. Gleicher and Liu [51]

interpreted the process as warping all the frames to the first frame to create a panoramic

mosaic, then finding a stable sequence of cropping homographies through the mosaic.

Let the video frames be I1, I2, . . . , IT . Denote Ct as the homography that warps It to

the first frame I1. To undo the effects of jerky motion, the frame It must be warped by

the update transform

Bt = P−1
t Ct, (5.1)

where Pt is a homography that warps It to I1 following a smoothed camera path. Note

that since both Pt and Ct are homographies, update transform Bt is also a homography.

Furthermore, if Pt = Ct (i.e., no smoothing), the update transform reduces to the

identity mapping.

5.3.1 Motion estimation and smoothing

The transform Ct is recursively defined as

Ct = Ct−1Ht,t−1, (5.2)

where C1 is the identity matrix, and Ht,t−1 is the homography that maps points from

It to It−1. Motion estimation is thus achieved by estimating Ht,t−1 for all t = 2, . . . , T ,

then chaining them in the right order to yield the camera trajectory.
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To estimate Ht,t−1, a set of features across It and It−1 are first detected and matched.

To ensure more uniform coverage of features, the same strategy used in [139] of ap-

plying the SIFT technique on overlapping subwindows across It and It−1 is employed.

Alternatively, dense features can be tracked in the video which are then broken up into

feature matches [122]. Given the point matches, RANSAC is used to robustly estimate

the homography Ht,t−1.

As mentioned earlier, any stabilization and motion planning algorithm that represents

the camera trajectory as a homography chain can be used in the proposed framework.

For concreteness, the single path smoothing algorithm of Liu et al. [89] is used. Given

{Ct}Tt=1, the smoothed path {Pt}Tt=1 is obtained by minimizing

O({Pt}) =
∑
t

(
‖Pt −Ct‖2 + λ

∑
r∈Ωt

‖Pt −Pr‖2
)
, (5.3)

where Ωt contains the index of the neighbors of It. In this thesis, each frame is linked

to the nearest 40 frames. The second term smooths the trajectory, while the first term

encourages Pt to be close to Ct. Parameter λ controls the strength of smoothing by

trading off the two terms. Minimizing (5.3) can be done by a Jacobi-based iterative

solver [22]:

P
(ξ+1)
t =

1

1 + 2λ
Ct +

∑
r∈Ωt,r 6=t

2λ

1 + 2λ
P(ξ)
r , (5.4)

where ξ is an iteration index. At initialization, set P
(0)
t = Ct.

5.3.2 From global to local

In practice, the camera motion is unlikely to be purely rotational, thus the homography

Ht,t−1 cannot perfectly align the pixels of It and It−1. Nonetheless, as the results will

show, for the purpose of capturing and smoothing the main trajectory of the camera, a

chain of homographies is sufficient to produce excellent stabilization.

However, if the update transform Bt is also a frame-global homographic warp, updating

It with Bt will cause distortions or wobbling effects in the video. To avoid such artifacts,

Bt should be a spatially varying warp. Specifically, for a pixel p∗ in It, the proposed
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Figure 5.4: Smooth globally warp locally stabilization method. Given the input
video, the camera motion is estimated as a chain of 2D homographies (red trajectory)
which are then smoothed (green trajectory). Instead of applying frame-global update
transforms (dotted frames), the smoothed parameters are used to estimate homogra-
phy fields (shown as flexible grids), which are spatially varying warps warps that are
regularized to be as projective as possible.

method warps p∗ to the output frame using the local update transform

B∗t = P−1
t C∗t . (5.5)

Conceptually, C∗t is a localized homography that warps p∗ to the base frame I1. Similar

to (5.2), C∗t can be defined recursively as

C∗t = C∗t−1H
∗
t,t−1, (5.6)

where C∗1 is the identity matrix, and H∗t,t−1 is a localized homography that maps p∗

from It to It−1. Collectively, for all {p∗} in It, the overall set of {B∗t } define the update

transform for It. Note that in each B∗t , the de-shaking adjustment is still provided by

applying the inverse of the smoothed global homography chain Pt. Thus, this thesis dubs

the proposed method “smooth globally warp locally”; Figure 5.4 provides an overview.

The following section shows how the localized homography H∗t,t−1 can be estimated

such that B∗t provides an update transform that preserves the contents and geometric

structures in It.
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5.3.3 Homography field warps

Let {(pi,p′i)}Ni=1 be a set of corresponding feature points across It and It−1, where each

pi = [xi yi]
T and p′i = [x′i y

′
i]
T . p̃i = [xi yi 1]T is pi in homogeneous coordinates. At

this stage, mismatches have been removed by RANSAC. The direct linear transformation

(DLT) method estimates the frame-global homography Ht,t−1 that maps from It to It−1

by solving

argmin
h

∑
i

‖mih‖2 = argmin
h

‖Mh‖2, s.t. ‖h‖ = 1, (5.7)

where h is 9-vector obtained by vectorizing Ht,t−1, and mi is a 2 × 9 matrix resulting

from linearizing the homography mapping constraint based on data {pi,p′i}. Matrix M

is obtained by vertically stacking mi for all i. The solution to (5.7) is simply the least

significant right singular vector of M. Refer to Section 4.1.1 for details on homography

estimation.

To estimate a local H∗t,t−1 centered on an arbitrary p∗ in It, Zaragoza et al. [140] proposed

the moving direct linear transformation (MDLT) technique

argmin
h

∑
i

‖w∗mih‖2 = argmin
h

‖W∗Mh‖2, s.t. ‖h‖ = 1, (5.8)

where the weight w∗i is calculated as

w∗i = exp
(
−‖pi − p∗‖2 /σ2

)
, (5.9)

and W∗ is a 2N × 2N matrix composed as

W∗ = diag([w∗1 w
∗
1 w
∗
2 w
∗
2 . . . w∗N w∗N ]). (5.10)

The solution to (5.8) is the least significant right singular vector of W∗M. The scalar

weights {w∗i }Ni=1 assign greater values to point matches that are closer to p∗ based on an

isotropic Gaussian kernel of width σ. This allows H∗t,t−1 to adapt to the local structure

around p∗. As p∗ is varied across the 2D domain of It, the set of homographies {H∗t,t−1}

collectively create a field of homographies.
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The smoothness of the overall warp is ensured by the spatial chaining of the homogra-

phies {H∗t,t−1} by (5.9). Specifically, any two pixels in It that are spatially close will

yield similar local homographies, since their respective set of weights will be similar. To

regularize the overall warp, an offset γ is applied

w∗i = max
(

exp
(
−‖pi − p∗‖2 /σ2

)
, γ
)
, (5.11)

whereby if γ approaches 1, the homography field warp {H∗t,t−1} reduces to the frame-

global homography Ht,t−1.

5.3.4 Calculating homography fields

While the homography field is defined over all pixels in It, in practice, closely neighbor-

ing pixels yield very similar homographies. Following Zaragoza et al. [140], this thesis

solves (5.8) on a X × Y grid on It, and warps a pixel from It using its closest local

homography. This also implies that the corresponding update transform {B∗t } is defined

over the same grid. It is crucial to note that each H∗t,t−1 can be solved independently,

thus the effort for estimating a homography field scales linearly with the number of

local homographies. For X × Y = 2500 and N = 2000, Matlab can solve for all local

homographies in ≈ 1s.

B∗t can be further simplified by computing the homography chain as

C∗t = C∗t−1H
∗
t,t−1 ≈ Ct−1H

∗
t,t−1, (5.12)

i.e., the frame-global homography chain Ct−1 is used to propagate the homography field

between It and It−1 to the base frame. In practice, this yields little noticeable difference

in the warping results. Computationally, this provides significant savings since only a

single homography chain (i.e., the camera trajectory) needs to be maintained. Contrast

the proposed approach to Liu et al. [89] who need to estimate and smooth multiple

homography chains.

5.4 Removing Rolling Shutter Effects

1http://www.premiumbeat.com/blog/know-the-basics-of-global-shutter-vs-rolling-shutter/

http://www.premiumbeat.com/blog/know-the-basics-of-global-shutter-vs-rolling-shutter/
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(a) Sample image without rolling shutter effects.

(b) Same image with rolling shutter effects.

Figure 5.5: Example of rolling shutter effects1. Rolling shutter issues can damage a
photo in a number of ways, but most often by causing a horizontal skew, also known
as the “jello effect”, when helicopter propellers panning in (b).

Rolling shutter distortions can occur prominently in videos captured using CMOS sen-

sors (e.g., digital single-lens reflex cameras (DSLRs) or cameras available on smart-

phones and tablet devices); see Figure 5.5 for examples. Interpreting video stabilization

as panoramic mosaicing again, rolling shutter effects can be compensated if all the video

frames can be aligned accurately with the base frame, which is assumed to be free of

rolling shutter distortions. In the context of the proposed approach, it is required that

each pixel-centered homography chain C∗t can precisely warp p∗ in It to its rightful

position in I1. This amounts to accurately aligning each pair of It and It−1, to account

for rolling shutter effects.

Grundmann et al. [55] proposed a 2D image motion model whereby each frame is divided

vertically into K strips that are readout at different times. The goal is thus to align

the corresponding strips between neighboring frames; see Figure 2.7. Grundmann et al.
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proposed a homography mixture warp, which has the constraint

[
W1M W2M · · · WKM

]
︸ ︷︷ ︸

Π∈R2N×9K


h1

h2

...

hK


︸ ︷︷ ︸
η∈R9K

= 0, (5.13)

where matrix M is obtained from linearizing the homography constraint for N point

matches following (4.9), Wk is a diagonal matrix which weights each point match based

on their distance from the mid-line of each strip. The K homographies are solved for

simultaneously via DLT, i.e., the solution η is the least significant right singular vector

of Π.

A weakness of the model, however, is that it ultimately assumes that the camera motion

is purely rotational. The flexibility in the homography mixture occurs only along the

vertical dimension. If there is distortion along the horizontal direction, e.g., depth

parallax due to non-pure rotational camera motion, the strip-to-strip alignment will

be poor; Figure 5.6 shows a concrete example. This in turn leads to distortions and

wobbling effects in the smoothed video.

To improve the robustness of Grundmann et al.’s model with respect to distortions that

it can handle while aligning images, the proposed approach replaces the spatial weighting

function (5.9) with a non-isotropic (horizontal) Gaussian kernel

w∗i = exp

(
−
(

(xi − x∗)2

2σ2
x

+
(yi − y∗)2

2σ2
y

))
, (5.14)

where p∗ = [x∗ y∗]
T . By setting σx > σy (usually σx = 2σy), the proposed method

encourages the homography fields warp to increase its vertical flexibility to account for

rolling shutter, without neglecting possible distortions in the horizontal directions. Fig-

ure 5.6 shows the result on the same data, and Section 5.6 will provide more comparisons.

More fundamentally, Grundmann et al. estimate the K homographies in (5.13) simulta-

neously to ensure overall smoothness. Using DLT also implies the constraint ‖η‖ = 1,

which does not prevent any hk from becoming degenerate, thus further regularization
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(a) Input image 1: without rolling shutter
effect.

(b) Input image 2: with rolling shutter ef-
fect.

(c) Warping result using
Global Homography

(d) Warping result using
Homography Mixture [55]

(e) Warping result using
Homography Field

Figure 5.6: Figures (a) and (b) are two input images taken from [45], with rolling
shutter effect in the second one. Global Homography is not able to model rolling shutter
effect and will introduce pixel misalignment, as shown in (c). Although Homography
Mixture [55] corrects skewed lines to be straight in (d), distortion along the non-vertical
direction, e.g., depth parallax due to non-pure rotational camera motion, will not to be
corrected. Warping result generated using Homography Field is much better, as shown
in (e).

and refinement of η is necessary. In contrast, the proposed approach chains the ho-

mographies via the spatial weighting (5.14), and all local homographies are estimated

independently without fear of degeneracy.

5.5 Inpainting with homography fields

Taking video stabilization as panoramic mosaicing again, one can stitch neighboring

frames to the current frame to fill in the missing values. However, instead of using

standard homographies (which cannot deal with depth parallax and rolling shutter ef-

fects), homography fields are used to conduct the warping. In contrast to Matsushita et
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al.’s [98] method, homography field warps can depend on a projective regularizer that

is supported by the epipolar constraint. Although the projective mapping is valid only

if the camera purely rotates, in the absence of any information in the faraway blank

regions, a homography field warp reduces to a projective warp, which limits the amount

of distortion in the inpainting region. The proposed novel inpainting technique is sum-

marized in Algorithm 5.1. The following subsections provide details of major steps of

the algorithm, while Figure 5.7 shows an actual iteration.

Algorithm 5.1 Video inpainting based on homography field warps.

Require: Target frame Ĩt, source frames S = {Ĩs | s 6= t}, original feature matches
between all frames.

1: while there exist blank pixels in Ĩt and S is not empty do
2: Remove from S the frame Ĩs closest in time to Ĩt.
3: Compute additional feature matches between Ĩt and Ĩs.
4: Conduct sliding window RANSAC between Ĩt and Ĩs to verify new matches.
5: for each blank pixel p∗ in Ĩt do
6: Compute H∗t,s that is centered on p∗ by (5.8).

7: Warp p∗ to Ĩs by calculating p̃′∗ ∼ H∗t,sp̃∗.

8: if Ĩs(p
′
∗) is not blank or out of bounds then

9: Copy pixel colors from Ĩs(p
′
∗) to Ĩt(p∗).

10: if p′∗ is a detected feature in Ĩs then
11: Designate p∗ as a feature, and match p∗ to the correspondences of p′∗.
12: end if
13: end if
14: end for
15: end while

5.5.1 Sliding window RANSAC

At this stage, the input video frames have been updated Ĩ1, Ĩ2, . . . , ĨT to remove jerky

motions and rolling shutter distortions. Each Ĩt is stored as a 2D image with blank

regions. The feature matches used in motion estimation and smoothing have also been

warped to the updated frames.

Given the current target frame Ĩt to inpaint, the unused source frame Ĩs that is closest

in time to Ĩt is chosen. Apart from the point matches inherited from motion estimation,

new features across Ĩt and Ĩs are also detected and matched. RANSAC is then conducted

in a sliding window fashion to remove outliers. Specifically, given a common subwindow

of Ĩt and Ĩs, RANSAC is applied to estimate a standard homography using the feature

matches in the subwindow. Once all subwindows have been processed, any match that
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(a) Target image Ĩt. (b) The first source image Ĩs.

(c) Copied pixels from Ĩs. (d) Inpaint result after 1 iteration. Red
lines show the original boundaries of input
image.

(e) Ipainting result after 20 iterations. (f) The blue shaded and red shaded win-
dows show the output frames from Grund-
mann et al. [55] and Liu et al. [89].

Figure 5.7: Given a target image It in (a), blue points are tracked feature points.
For the missing area with green meshgrid, the homography fields connected with source
image in (b) are calculated. Blue points are corresponding feature points, while yellow
points are feature points which appear on source image but not on target image. With
the calculated homography field, the part warped from source onto target image is
shown in (c). After copying pixels fall on the missing area, the warping result after one
iteration is given in (d). Green points are propagated feature points as explained in
Section 5.5.2. The final inpainting result is given in (e). In (f), the output frame of the
proposed method is compared with results of Grundmann et al. [55] and Liu et al. [89].

is not deemed an inlier in a subwindow is discarded. The rationale for this procedure is

that a frame-global homography is not flexible enough to describe the motion between

Ĩt and Ĩs, thus many genuine matches will be lost if standard RANSAC is applied. For

a local region, however, a homography can adequately characterize the feature motions.
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5.5.2 Feature propagation

For each blank pixel p∗ in Ĩt, a local homography H∗t,s is estimated between Ĩt and Ĩs

following (5.8). The source pixel p′∗ is then obtained by warping p∗ to Ĩs. If p′∗ is a

defined pixel, its color is copied to p∗. To increase efficiency, Ĩt can be divided into

X×Y cells, and (5.8) is invoked on the center of the cells. A blank pixel is then warped

using the local homography of the cell to which it belongs.

Similar to all feature-based methods, homography fields require good feature matches

to produce accurate alignment. This means, however, that blank pixels far away from

the defined regions (and available feature matches) may not be mapped optimally to the

source image. While projective regularization in homography fields avoids excessively

bad warps, ideally there should be feature matches in or close to the blank pixels.

Fortunately, due to the camera movement and the time-based order of choosing source

frames in Algorithm 5.1, the blank regions in Ĩt are usually inpainted in the order of

their proximity to the defined regions; see Figure 5.7c. The proposed method exploits

this to progressively grow the set of feature matches between the blank regions and other

source frames. If a copied pixel p′∗ from Ĩs is a detected feature, the inpainted pixel p∗

will also be designated as one. The correspondences of p′∗ in the other frames will then

be matched to p∗. This ensures that a target blank pixel will always be close to feature

matches; see Figure 5.7d.

The proposed feature propagation step is analogous to Matsushita et al.’s optical flow-

based motion inpainting. Thus, even though feature matches can be transferred to the

blank regions as a byproduct, they will not benefit the subsequent motion propagation

steps, since the optic flow vectors will not change. Section 5.6.3 will compare both

approaches.
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5.6 Results

To evaluate the performance of the proposed method, this section has conducted exper-

iments on the video clips used in Grundmann et al. [55]2 and Liu et al. [89]3. A variety

of scenes and camera motions are contained in these videos. The reader is referred to

the supplementary material4 for the full video results.

Parameters settings for the proposed approach are as follows: the number of neighboring

frames in Ωt in (5.3) is 40; for calculating homography field warps for frame updating

(Section 5.3.4) and video inpainting (Section 5.5), the grid size is X × Y = 20 × 20.

Generally σ = 8 and γ = 0.05 are used. For video with rolling shutter effect, σx = 12,

σy = 6 are used in stead. In the proposed pipeline, motion estimation, smoothing and

frame updating take about 0.8s per frame, while inpainting takes ≈ 6.4s per frame.

In the following sections, the various components of the proposed pipeline are bench-

marked against several state-of-the-art video stabilization approaches: Matsushita et

al. [98], Gleicher and Liu [51], Liu et al. [86], Grundmann et al. [55] and Liu et al. [89].

5.6.1 Smooth globally warp locally

An underlying premise of the proposed approach is that 2D homographies are sufficient

for motion estimation and smoothing. This follows the practice of influential works such

as Matsushita et al. [98] and Gleicher and Liu [51]. However, the update transform must

be more flexible than a standard homography warp, in order to deal with violations to the

assumption of pure rotational motions and other distortions. To validate the hypothesis,

the following videos have been generated (see supplementary material):

• Video 1: stabilization by temporal local method [98] and frame updating via frame-

global homography (5.1).

• Video 2: stabilization by temporal local method [98] and frame updating via ho-

mography field (5.5).

2http://www.cc.gatech.edu/cpl/projects/rollingshutter/
3http://liushuaicheng.org/SIGGRAPH2013/database.html
4https://www.youtube.com/playlist?list=PLXqTNhVpuRQhzl6J0_2jBVBlN4wIZuZjt

http://www.cc.gatech.edu/cpl/projects/rollingshutter/
http://liushuaicheng.org/SIGGRAPH2013/database.html
https://www.youtube.com/playlist?list=PLXqTNhVpuRQhzl6J0_2jBVBlN4wIZuZjt
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• Video 3: stabilization by single path smoothing (5.3) and frame updating via

frame-global homography (5.1).

• Video 4: stabilization by single path smoothing (5.3) and frame updating via

homography field (5.5).

Observe that significant distortions and wobbliness remain in Videos 1 and 3, more so in

Video 1 since the temporal local method is not as prolific in smoothing very shaky videos.

Good results are obtained in Videos 2 and 4, even though the same homography-based

stabilization approaches are used. This supports the intuition that homography chains

are sufficient to characterize the camera trajectory, and that the “trick” for successful

video stabilization is good frame updating.

Liu et al. [89] proposed an approach where a video is divided into a uniform grid of

subwindows, and a 2D homography chain is estimated for each subwindow. The multiple

chains are then smoothed in a bundled manner. Content preserving warps (CPW) is

adapted to conduct frame updating - in short, their approach can be considered “smooth

locally warp locally”. Video 5 shows the result of [89] on the same input video above.

Comparing Videos 4 and 5, it is evident that both the proposed approach can provide

the same quality. Practically, however, the proposed approach is simpler and more

efficient since only one homography chain needs to be estimated and stabilized. Note

that since the proposed pipeline is not tied to a specific stabilization and motion planning

algorithm, any homography-based technique can be exploited by the proposed pipeline.

5.6.2 Removing rolling shutter effects

Under the proposed approach, the successful removal of rolling shutter effects depends on

the accurate alignment of two neighboring frames It and It−1 in the video. This section

compares the ability of several spatially varying warps to align neighboring frames from

videos captured under rolling shutter. Figures 5.8 – 5.11 show results from standard

global homography, CPW [86], homography mixtures [55] and homography fields with

horizontal kernel (5.14), labeled as GH, CPW, MH and H-field respectively. It can be

observed that, on average, homography fields provide more accurate alignment. This

stems from the fact that in most real life videos, the inter-frame camera motion is not

pure-rotational, thus the warping function should also handle the potential occurrence
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Figure 5.8: Rolling shutter warping result 1.

of depth parallax. The horizontal kernel is proven to be adequate for this purpose.

Although homography mixtures can rectify slanted vertical structures (due to rolling

shutter), it fails to account for more general distortions. The allowance of non-rigid

warping enables CPW to also handle rolling shutter distortions. However, the aim of

preserving the rigidity of an overlaid grid structure seems to limit the flexibility of CPW

to handle significant parallax and distortions.

Videos 6 to 9 show the usage of the proposed video stabilization pipeline to successfully

rectify rolling shutter effects. The input videos were used in Grundmann et al.’s work.
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Figure 5.9: Rolling shutter warping result 2.
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Figure 5.10: Rolling shutter warping result 3.

5.6.3 Video inpainting

Since most recent video stabilization approaches do not conduct video inpainting, Mat-

sushita et al. [98] remains the state-of-the-art. First, the proposed method is compared

with methods that do not conduct inpainting at all [55, 89]. As shown on the top right of

Figures 5.12–5.17, the stabilized output frames of such methods must sacrifice significant

image contents in order to avoid blank regions in the video. This can clearly show the

image area which has been abandoned due to the cropping step and the frame size of the

proposed inpainting method. Observe that the amount of discarded contents is larger if

the video is stabilized more aggressively (Figures 5.16 and 5.17). This is expected since

the stabilized path deviate more from the original trajectory.

If the frame to be inpainted has small blank regions (Figure 5.12; see also the target

frames in [98]), both Matsushita et al. and the proposed approach can satisfactorily in-

paint the video. The target frames in Figures 5.13–5.17 have large blank regions - again,

this condition occurs if the video is very shaky and significant amounts of smoothing

must be applied. On such challenging cases, it can be observed that Matsushita et al.’s
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Figure 5.11: Rolling shutter warping result 4.

motion propagation often introduces artifacts in locations far away from the originally

defined pixels. Note that the default number of neighboring frames used in [98] is 12,

which can inpaint very limited blank region. Instead, neighboring size of 40 was used. In

contrast, homography fields can depend on projective regularization and feature propa-

gation for guidance to more accurately fill-in large blank regions.

5.6.4 Overall results

Videos 10 to 26 in the supplementary material are the results generated with the overall

video stabilization pipeline. Note that the blue boundaries in the videos mark the

image region of stabilized frames before inpainting. To compare results of the proposed

method with results of the state-of-the-art methods, please refer to the videos of [89] (also

included in the supplementary material5) and [54, 55]6 (the latter has been implemented

as the video stabilizer on YouTube).

5https://www.youtube.com/playlist?list=PLhRzYMNYGcCehIMvvY9vl-y3F0M0lK0mJ
6https://www.youtube.com/playlist?list=PLhRzYMNYGcCdF4LPbuiHmMBYhxerNMGB_

https://www.youtube.com/playlist?list=PLhRzYMNYGcCehIMvvY9vl-y3F0M0lK0mJ
https://www.youtube.com/playlist?list=PLhRzYMNYGcCdF4LPbuiHmMBYhxerNMGB_
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However, failure cases have been observed. When the camera is spinning too fast while

shooting, or when the scene is too homogeneous, no/insufficient feature tracks can be

extracted which leads to the breakage of homography chain. Under such circumstance,

the proposed method fails to smooth shaky camera motion.

5.7 Summary

In this chapter, a new 2D video stabilization method that stabilizes globally and warps

locally has been proposed. The hypothesis is that global homography is sufficient for

motion representation and camera path stabilization. The key to effective video sta-

bilization is the construction of accurate update transforms. To this end, this chapter

proposes the usage of homography fields which is a kind of spatially varying warp. Com-

pared with the state-of-the-art methods, the proposed method can generate equally good

results with a much simpler pipeline. Based on homography fields, a video inpainting

method has been proposed for stabilized videos. With the help of inpainting, users do

not need to worry about the cropping ratio and limit the strength of stabilization.
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Figure 5.12: Selected video inpainting result 1. (top left) Updated input frame Ĩt;
(top right) Blue and red shaded windows respectively indicate equivalent final output
frames of Grundmann et al. [55] and Liu et al. [89] who do not conduct video inpainting;
(bottom left) Matsushita et al. [98]’s result using motion inpainting; (bottom right)
Result using homography fields.

Figure 5.13: Selected video inpainting result 2. (top left) Updated input frame Ĩt;
(top right) Blue and red shaded windows respectively indicate equivalent final output
frames of Grundmann et al. [55] and Liu et al. [89] who do not conduct video inpainting;
(bottom left) Matsushita et al. [98]’s result using motion inpainting; (bottom right)
Result using homography fields.
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Figure 5.14: Selected video inpainting result 3. (top left) Updated input frame Ĩt;
(top right) Blue and red shaded windows respectively indicate equivalent final output
frames of Grundmann et al. [55] and Liu et al. [89] who do not conduct video inpainting;
(bottom left) Matsushita et al. [98]’s result using motion inpainting; (bottom right)
Result using homography fields.

Figure 5.15: Selected video inpainting result 4. (top left) Updated input frame Ĩt;
(top right) Blue and red shaded windows respectively indicate equivalent final output
frames of Grundmann et al. [55] and Liu et al. [89] who do not conduct video inpainting;
(bottom left) Matsushita et al. [98]’s result using motion inpainting; (bottom right)
Result using homography fields.
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Figure 5.16: Selected video inpainting result 5 (same data used in Figure 5.7). (top
left) Updated input frame Ĩt; (top right) Blue and red shaded windows respectively
indicate equivalent final output frames of Grundmann et al. [55] and Liu et al. [89]
who do not conduct video inpainting; (bottom left) Matsushita et al. [98]’s result using
motion inpainting; (bottom right) Result using homography fields.

Figure 5.17: Selected video inpainting result 6. (top left) Updated input frame Ĩt;
(top right) Blue and red shaded windows respectively indicate equivalent final output
frames of Grundmann et al. [55] and Liu et al. [89] who do not conduct video inpainting;
(bottom left) Matsushita et al. [98]’s result using motion inpainting; (bottom right)
Result using homography fields.





Chapter 6

Conclusions and Future Work

Registration is a fundamental task in Computer Vision. It is essential for (a) inte-

grating information taken from different sensors, (b) finding changes in images taken

under different conditions, (c) extracting three dimensional information from images,

and (d) for model-based object recognition. Among many related research topics, this

thesis investigated three of them in Chapter 2: radial distortion estimation (Section 2.3),

image stitching (Section 2.4) and video stabilization (Section 2.5).

Apart from background research and literature review, this thesis also made several

contributions. First, Chapter 3 treats radial distortion as a violation to the basic epipolar

geometry equation and adjusts the epipolar geometry using the framework of moving

least squares (MLS). MLS method is extended to allow for epipolar estimation, and

is combined with M-estimators to enable robust point matching under severe radial

distortion.

Secondly, a correspondence insertion algorithm is proposed for as-projective-as-possible

(APAP) warps [140]. The proposed method automatically identifies misaligned regions,

and inserts appropriate point correspondences to increase the flexibility of the warp

and improve alignment. Chapter 4 has shown how correspondence search can be ac-

complished for moving direct linear transformation (MDLT). On panoramic mosaicing

problems that are challenging, the proposed approach achieves accurate alignment with-

out being handicapped by insufficient feature matches.

Lastly, this thesis proposes homography fields for video stabilization. A homography field

is a spatially varying warp that is regularized to be as projective as possible, so as to

111
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enable accurate warping while adhering closely to the underlying geometric constraints.

Chapter 5 has shown that homography fields are powerful enough to meet the various

warping needs of video stabilization, not just in the core step of stabilization, but also

in video inpainting. This enables relatively simple algorithms to be used for motion

modeling and smoothing.

6.1 Future Work

6.1.1 Radial distortion correction

Due to radial distortion, epipolar lines meant to be straight are “bent” to be curves.

Brito et al. [18] look for straight lines in all possible epipolar curves and argue that the

center of distortion (COD) must be on such a line. Then, the COD can be recovered

from the intersection point of straight epipolar lines. Based on this knowledge, the

proposed approach can be extended to allow for COD extraction and radial distortion

correction, such that accurate 3D information can be extracted from the input images.

6.1.2 Quantitative evaluations on image stitching methods

Chapter 4 has improved upon the original APAP warps, which fails when the overlap

region is correspondence-poor. In the experimental result section, qualitative visual

evaluations have been conducted, while quantitative evaluations are needed to back up

the ability of the proposed method. However, it has been noticed that the quantitative

benchmarking technique employed in [140] is not suitable for the proposed method due to

the indeterminacy of the number of correspondences. Meanwhile, quantitative evaluation

methods tested in [36] also lead to some confusion as visually better results may have

worse evaluation scores. Thus, this thesis realizes the need of a robust and abroad

suitable quantitative evaluation method on image stitching techniques. Such research

will be studied in future work.
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6.1.3 Extensions for video stabilization

The proposed video stabilization and inpainting pipeline relies on the existence of suffi-

cient feature matches across successive frames. With denser feature points, the proposed

method is able to produce stabilized frames closer to the real scene and inpainted im-

ages with less distortion. However, if the feature points are not widely spread across the

entire image area, especially around the area with clear and definite geometric struc-

ture, the proposed method will not produce very satisfactory results. Although a center

insertion method designed for wide-baseline image stitching, with a focus on panoramic

stitching, has been presented in Chapter 4, it is not suitable for video stabilization due

to the processing speed. To alleviate this problem, possible solutions will be sought for

by investigating spatially smooth optic flow methods [88].

Another issue of inpainting in some input videos is the occasional sudden exposure

changes between neighboring frames. This yields unsightly “strips” in the inpainted

regions. To deal with exposure changes, the exposure normalization schemes [63] will

be investigated.
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