Design of a VLSI Motion Detector
Based Upon the Insect Visual System

Alireza Moini
B.Sc. Sharif University of Tech. Tehran-Iran
Thesis submitted for the degree of
Master of Engineering Science
in
The University of Adelaide
Department of Electrical and Electronic Engineering
Supervisor: Associate Professor Kamran Eshraghian

September 1993
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: ____________________ DATE: 10 July 1994
Acknowledgements

I am indebted to the direct or indirect contributions of many people. My supervisor Prof. Eshraghian deserves special praise for his generous encouragement and guidance which has been a great support for the progress of the research. My two friends and colleagues, Andre Yakovleff and Thong Nguyen with their assistance in many stages of the design and test, have a great share in completing the project. I should thank Dr. Abdesselam Bouzerdoum from whom I learned the first steps in understanding the neurobiology and modeling of insect visual system, and Mr. Derek Abbott for his assistance on providing me the theoretical and practical knowledge on photodetectors.

There are other contributors to the project in the research team, namely Prof. R. E. Bogner, Mr. Kim Ook1, and Mathew Parry, who have actively elaborated on the project, and should be thanked.

Professor Adrian Horridge is the initiator of the elegant idea of the template model for insect vision. We all, in the Bug-Eye team, are indebted to his theoretical support in the early stages of the project by offering the idea of utilizing the insect vision for computer vision applications.

Once again I should thank Dr. Bouzerdoum, Michael, and Derek for reading, correcting and giving constructive suggestions on my ocean-of-errors thesis and saving time from future readers.

I must express my gratitude to my mother and father who have been my constant support.

And finally I should thank the Ministry of Culture and Higher Education of the Islamic Republic of Iran for providing me the scholarship and the opportunity for studying during this period.

Alireza Moini
September 1993

1On leave from Seoul National University, Korea
Contents

1 Introduction ... 1

2 Optical Motion : Models and Implementations 5
 2.1 Introduction 5
 2.2 Motion detection models 6
 2.2.1 Feature Matching Models 6
 2.2.2 Intensity Based Models 7
 2.3 Local models for motion detection 7
 2.3.1 Spatio-temporal gradient models 7
 2.3.2 Spatio-temporal energy models 9
 2.3.3 Delay and compare models 9
 2.4 Insect vision 10
 2.4.1 Insect visual system: neural structure ... 11
 2.4.2 Insect visual system: models 14
 2.5 VLSI implementation of models 17

3 Design of VLSI Motion Detectors 21
 3.1 Some requirements for VLSI motion detection .. 21
 3.2 Photoreceptor Circuit 23
 3.2.1 Optical characteristics of the available devices 23
 3.2.2 Circuits for photocurrent conversion 26
 3.3 Differentiator 27
 3.3.1 Resistive element 30
 3.3.2 Differentiator circuits 38
 3.4 Characteristics of the selected differentiator .. 43
3.4.1 Frequency response .. 43
3.4.2 Sensitivity (Gain) .. 47
3.4.3 Transitional behavior 52
3.4.4 Noise performance .. 54

4 System and Chip Architecture 56
4.1 System architecture ... 56
4.2 Chip architecture ... 58
 4.2.1 Mode controller ... 61
 4.2.2 Control circuit for the array multiplexer 72
 4.2.3 The processing unit 73
 4.2.4 RAM memories ... 76

5 Physical design .. 79
 5.1 Change detector layout 80
 5.2 Floor plan of the chip 82
 5.3 Power and Ground routing 83
 5.4 Pad placement ... 83
 5.5 Signal routing .. 86

6 Testing .. 90
 6.1 Testing the digital modules 91
 6.1.1 Memories ... 91
 6.1.2 Processor ... 92
 6.2 Testing the analog circuits 92
 6.2.1 Photodetectors ... 93
 6.2.2 Contrast change detector 94
 6.2.3 Analog output pads 94
 6.2.4 Testing the whole chip 95

7 Conclusion and future work 101

A CAD tools used in the design of the chip 103
B Analysis of the photodetectors 105

C Design consideration of some of the functional blocks 110
 C.1 Analog input pads ... 110
 C.2 Analog output pads ... 111

D Optical design of the system 114
List of Figures

2.1 An elementary motion detector showing the Null and Preferred directions. 10
2.2 Two mirrored EMDs used for a two-direction motion detector. 11
2.3 The neural structure of fly visual system[6]. 12
2.4 The conjunctive and veto scheme EMDs 15
2.5 Template table 19
2.6 An object moving in front of the photodetectors. 20

3.1 Photodetectors in standard CMOS processes 24
3.2 The absorption coefficient of silicon versus wavelength. 25
3.3 Some of the circuits used in the photodetectors. 26
3.4 Logarithmic current to voltage converter 28
3.5 I-V characteristics of MOS diodes 28
3.6 Differentiation using a delay line and a differential amplifier 29
3.7 Feedback differentiator 29
3.8 Another configuration for the differentiator 30
3.9 Circuit diagram of two floating active resistors 32
3.10 A simple transistor based transconductance amplifier. 32
3.11 a- A simple OTA, and b- a wide range OTA. 33
3.12 Circuit diagram of a source degenerated transconductance amplifier. 34
3.13 I-V characteristics of the active resistor 35
3.14 Implementation of a resistor using a switched capacitor. 36
3.15 The simplest SC differentiator implementation. 36
3.16 Switched resistor. 37
3.17 A structure for using the parasitic leakage. 38
3.18 Circuits for voltage and current differentiation 40
5.6 *Line delays for four different values of capacitive load.* 87
5.7 *Signal routing plan* .. 88
5.8 *Chip microphotograph* .. 89

6.1 *Physical fault* ... 91
6.2 *The layout of the test structure of the change detector.* 94
6.3 *The test configuration of the analog output pad.* 95
6.4 *Simulation results of the analog output pad test structure.* 96
6.5 *The test hardware construction.* 97
6.6 *The controlled environment for testing the chip.* 99
6.7 *The character pattern showing the movement of an object in front of the lens. The character ' '.' indicates No-Motion.* 100

B.1 *Junction photodetector structure.* 105
B.2 *Measured absorption coefficient of silicon and GaAs.* 108
B.3 *The simulated quantum efficiency versus wavelength.* 109

C.1 *Input pad circuit* .. 111
C.2 *A simple current mirror circuit.* 112
C.3 *The schematic diagram of the analog output pads.* 112

D.1 *Two possible physical arrangements of the system* 114
List of Tables

2.1 Hardware implementation of several motion detection models 18

3.1 Characteristics of different circuit design methods in the implementation of differentiator. .. 39

3.2 The parasitic device values in the model of the differentiator 46

3.3 Low frequency poles and zeros of the change detector circuit. 48

4.1 The state of the control signals generated by the mode controller 65

4.2 The memory map of the memories used in the chip. 69

5.1 The capacitance per unit area of the structure shown in Fig. 5.3. 82

5.2 Delay of distributed RC effect of different layers on silicon. 86

B.1 Typical parameters of silicon and GaAs junctions in standard processes. ... 109

B.2 Typical parameters of GaAs junctions in standard processes. 109

D.1 Characteristics of the GRIN lens. .. 115