SUBMITTED VERSION

Amin Soltani, An Deng, Abbas Taheri **Swell-compression characteristics of a fiber-reinforced expansive soil** Geotextiles and Geomembranes, 2018; 46(2):183-189

© 2017 Elsevier Ltd. All rights reserved.

Published at: http://dx.doi.org/10.1016/j.geotexmem.2017.11.009

PERMISSIONS

https://www.elsevier.com/about/our-business/policies/sharing

Preprint

- Authors can share their preprint anywhere at any time.
- If accepted for publication, we encourage authors to link from the preprint to their formal publication via its Digital Object Identifier (DOI). Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
- Authors can update their preprints on arXiv or RePEc with their accepted manuscript .

Please note:

- <u>Cell Press, The Lancet</u>, and some society-owned titles have different preprint policies. Information on these is available on the journal homepage.
- Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles.

23 April 2018

http://hdl.handle.net/2440/111655

1	Swell-Compression Characteristics of a Fiber-Reinforced Expansive Soil:
2	Experiments and Modelling
3	Amin Soltani ^{1*} , An Deng ² and Abbas Taheri ³
4	¹ PhD Student, School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005,
5	Australia (*Corresponding author)
6	Tel: +61-8-83132830
7	Fax: +61-8-83134359
8	Email: <u>Amin.Soltani@adelaide.edu.au</u>
9	
10	² Senior Lecturer, School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA
11	5005, Australia
12	Tel: +61-8-83132830
13	Fax: +61-8-83134359
14	Email: <u>An.Deng@adelaide.edu.au</u>
15	
16	³ Senior Lecturer, School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA
17	5005, Australia
18	Tel: +61-8-83130906
19	Fax: +61-8-83134359
20	Email: <u>Abbas.Taheri@adelaide.edu.au</u>

Swell-Compression Characteristics of a Fiber-Reinforced Expansive Soil: **Experiments and Modelling** 22

Abstract 23

24 This study presents results of an experimental program in respect to fiber's capacity of mitigating the swelling 25 behavior of an expansive soil. Two types of tape-shaped synthetic fibers, i.e. fiber A (width $f_w=2.5$ mm) and fiber B (f_w =7mm) were used as the reinforcements. Fibers were incorporated at three contents, i.e. f_c =0.5%, 26 27 1% and 1.5%, each having two aspect ratios (i.e. $f_{AR}=15/2.5$ and 30/2.5 for fiber A, and $f_{AR}=15/7$ and 30/7 for fiber B). Samples were prepared at optimum moisture content and maximum dry unit weight, and were further 28 subjected to oedometer swell-compression tests. An in-depth discussion on the swell-time and compression-29 stress characteristics was also presented. For a given type of included fiber, reduction in swelling potential and 30 swelling pressure was observed to be a direct function of f_c and f_{AR} , with the former taking on a more 31 pronounced role. Furthermore, for a given fiber content and fiber length, the greater fiber width (lower f_{AR}) 32 assumed more efficiency in restricting swelling. The hyperbola concept was extended to the swell-compression 33 framework, promoting simple equations capable of simulating the swell-compression behavior of the fiber-34 35 reinforced soil with an acceptable degree of accuracy.

Keywords: Expansive soil; Tape-shaped fibers; Aspect ratio; Swelling potential; Swelling pressure; 36 37 Hyperbola concept.

38 Notations

39	C_c	Compression index
40	C_{ps}	Primary swelling rate
41	C_{ss}	Secondary swelling rate
42	e_0	Initial void ratio
43	f_{AR}	Fiber aspect ratio (fiber length to width ratio)
44	f_c	Fiber content
45	f_l	Fiber length
46	fts	Fiber tensile strength
47	f_w	Fiber width
48	NRMSE	Normalized root mean square error
49	P_s	Swelling pressure
50	R^2	Coefficient of determination
51	S_p	Swelling potential
52	t	Elapsed time of swelling
53	t _{is}	Completion time of the initial swelling phase
54	t_{ps}	Completion time of the primary swelling phase
55	t_{ss}	Completion time of the secondary swelling phase
56	$1/\beta_s$	Long-term predicted swelling potential
57	\mathcal{E}_a	Axial strain (swelling or compression)
58	\mathcal{E}_{ais}	Initial swelling strain
59	\mathcal{E}_{aps}	Primary swelling strain
60	\mathcal{E}_{ass}	Secondary swelling strain
61	σ'	Effective stress
62	σ_0'	Nominal overburden stress during swelling
63	σ_y	Yield stress

64 **1. Introduction**

As a consequence of their inherent characteristics including low strength, high compressibility and a high 65 potential for swelling and shrinkage, expansive soils are often characterized as unsuitable construction 66 materials for the majority of civil engineering applications (Nalbantoglu 2006). Therefore, such soils often 67 require modification - a process commonly referred to as stabilization - to satisfy design criteria prior 68 application. Stabilization may be achieved through two approaches, i.e. chemical and mechanical techniques. 69 Chemical techniques mainly include the addition of chemical agents (e.g. lime, cement and polymer binder) 70 71 to the soil mass, enhancing physico-chemical interactions and thereby amending the soil fabric into a coherent 72 matrix of improved properties (e.g. Al-Rawas et al. 2005; Mirzababaei et al. 2009; Yazdandoust and Yasrobi 73 2010; Kalkan 2011; Estabragh et al. 2014). The mechanical approach makes use of mechanical effort (e.g. 74 compaction) with the aid of reinforcements. Common reinforcements include fibers of synthetic (e.g. 75 polypropylene and nylon) and natural (e.g. coir and palm) origin or other fiber-like materials such as plastic waste strips, shredded tires and waste carpet fibers. As the global community is shifting towards a more 76 sustainable mindset, alternatives capable of replacing or minimizing the use of traditional cementitious agents 77 have been highly encouraged. The use of fibers may be regarded among the most well-received propositions 78 79 in this context.

80 The fiber assemblage randomly distributes in the soil regime, and where optimized in dosage and geometry, amends the expansive soil in respect to moisture insensitivity (i.e. swell-shrink related volume changes), 81 strength increase, and ductility improvement (e.g. Puppala and Musenda 2000; Tang et al. 2007; Abdi et al. 82 2008; Al-Akhras et al. 2008; Sivakumar Babu et al. 2008; Attom et al. 2009; Viswanadham et al. 2009^{a, b}; Tang 83 et al. 2010; Plé and Lê 2012; Trouzine et al. 2012; Mirzababaei et al. 2013; Estabragh et al. 2014; Phanikumar 84 and Singla 2016; Chaduvula et al. 2017). In some cases, a combination of fibers and traditional cementitious 85 agents may be required to address sever expansive potential (e.g. Cai et al. 2006; Punthutaecha et al. 2006; 86 Kumar et al. 2007; Shahbazi et al. 2016). Based on these studies, improvement in strength or swelling 87 characteristics have been primarily reported as a function of fiber content. However, fiber geometrical 88 properties, mainly defined in terms of aspect ratio (fiber length to the diameter or width ratio), also portrays 89 an equally important role in yielding an effective stabilization scheme. 90

Some of the more recent contributions addressing the aspect ratio-dependent swelling phenomenon have been 91 provided in Table 1. A rather common emphasis on the application of bar-shaped fibers with relatively small 92 diameters, yielding relatively large aspect ratios may be observed among the documented studies. Such 93 materials when applied at high contents are prone to clustering, thus would be associated with implementation 94 difficulties under filed conditions. Meanwhile, tape-shaped fibers with relatively large widths, promoting 95 relatively small aspect ratios have been less regarded in the literature. Such materials are mainly consumed in 96 the packaging industry and are available in abundance, posing a problem for safe disposal without degrading 97 the environment. As such, its beneficial reuse as an alternative to bar-shaped fibers may provide a more feasible 98 99 stabilization scheme. To address any remaining ambiguities associated with adopting appropriate aspect ratios, 100 this study intends to evaluate the effect of other less adopted aspect ratio values on the swell-compressibility 101 characteristics of a highly expansive soil through a series of oedometer swell-compression tests. In addition,

the hyperbola concept was extended to the swell-compression framework, resulting in simple equationscapable of simulating the swell-compression behavior of fiber-reinforced expansive soils.

104 **2. Materials and methods**

105 **2.1.** *Soil*

The soil used in this study was clay of high plasticity (CH). X-ray diffraction (XRD) analysis identified the minerals of quartz, calcite, Na/Ca-feldspar, K-feldspar, and clay minerals group of illite and montmorillonite. Other soil properties included a pH of 8.3, electrical conductivity (EC) of 10.25dS/m and cation exchange capacity (CEC) of 17.95meq/100gr. Typical mechanical properties, determined as per relevant ASTM standards, are provided in Table 2. The swelling potential (i.e. S_p^{7kpa}) and swelling pressure were 17.50% and 325kPa, respectively; from which the soil was graded into *highly expansive* in accordance with the Sridharan and Prakash (2000) classification criteria.

113 **2.2.** *Fibers*

114 Two types of tape-shaped polypropylene fibers, i.e. fiber A (width $f_w=2.5$ mm) and fiber B ($f_w=7$ mm) as

illustrated in Fig. 1, were used as the reinforcements. Both fibers were cut into two lengths, i.e. f_i =15mm and

- 116 30mm, ending up with aspect ratios of $f_{AR}=15/2.5$ and 30/2.5 for fiber A, and $f_{AR}=15/7$ and 30/7 for fiber B.
- Each of the four fiber choices was included into the soil at three contents, i.e. $f_c=0.5\%$, 1% and 1.5%. Physical

and mechanical properties of the fibers, as supplied by the manufacturer, are presented in Table 3.

119 **2.3.** *Sample preparation*

A series of standard compaction tests were carried out on natural soil and various soil-fiber mixtures in 120 accordance with the ASTM D698 standard. The mixtures and corresponding compaction results are provided 121 in Table 4. Minor variations were observed for optimum moisture content, while the maximum dry unit weight 122 displayed a marginal decreasing trend with increase in fiber content, mainly attributed to the lower specific 123 gravity and larger specific surface area of fibers compared to soil particles (Estabragh et al. 2012; Kalkan 2013; 124 Estabragh et al. 2014). Samples were prepared by static compaction at corresponding optimum moisture 125 content and maximum dry unit weight values (see Table 4). The required amount of water corresponding to 126 the desired optimum moisture content was added to each mixture, and manually mixed as conducted in Tang 127 et al. (2007), Consoli et al. (2009) and Estabragh et al. (2014, 2016). Extensive care was dedicated to pulverize 128 129 the lumped particles, targeting homogeneity of mixtures. Mixtures were then enclosed in plastic bags and stored under room temperature conditions for 24 hours, ensuring even distribution of moisture throughout the 130 soil mass. A special split mold was designed and fabricated from stainless steel to accomplish static 131 132 compaction. The mold consisted of three sections, i.e. the top collar, the middle oedometer ring, and the bottom collar. The oedometer ring measures 75mm in diameter and 20mm in height and accommodates the sample 133 for the swell-compression test. The inner surface of the mold was smeared with a thin layer of silicon grease 134 to avoid friction during compaction. Mixtures were compressed in the mold at three layers by a constant 135 136 displacement rate of 1.5mm/min to a specific compaction load, each layer having attained the desired

maximum dry unit weight. The required compaction load was different for each mixture and was obtained
through trial and error. The surface of the first and second compacted layers were scarified to ensure a good
bond between adjacent layers of the mixture.

140 **2.4.** *Swell-compression test*

Samples were subjected to the one-dimensional oedometer swell-compression test as specified in the ASTM D4546 standard. The test included two stages, i.e. swell and compression. In the first stage, the desired sample was allowed to freely swell under a low nominal overburden stress of $\sigma'_0=1$ kPa. The incurred axial swelling strain was recorded during various swelling time intervals to a point in which swell-time equilibrium, a state corresponding to the swelling potential of the sample, S_p , was achieved. During compression, the swollen sample was gradually loaded to arrest the built-up axial swelling strain. The stress required to retain the initial placement or void ratio of the sample was taken as the swelling pressure P_s (Sridharan et al. 1986).

148 **3. Results and discussion**

Axial strain-time curves obtained from one-dimensional oedeometer swell tests are illustrated in Fig. 2 (2a: 149 $f_{AR}=15/2.5$; 2b: $f_{AR}=30/2.5$) and Fig. 3 (3a: $f_{AR}=15/7$; 3b: $f_{AR}=30/7$) for fibers A and B, respectively. As a result 150 of fiber-reinforcement, the axial strain-time locus experienced a major downward shift over the $\varepsilon_a:\log t$ space, 151 indicating a significant reduction in the magnitude of exhibited swelling strain and thus swelling potential 152 during swell evolvement. At a specific elapsed time of swelling and for a given type of included fiber 153 corresponding to a particular aspect ratio, an increase in fiber content f_c was accompanied by a significant 154 reduction in swelling strain. At t=1440 min, for instance, natural soil displayed an axial swelling strain of 155 $\varepsilon_a(t)=22.15\%$; while the inclusion of 0.5%, 1% and 1.5% fiber A ($f_{AR}=15/2.5$) led to $\varepsilon_a(t)=14.90\%$, 12.05% and 156 10.05%, respectively (see Fig. 2a). A similar yet less pronounced case can also be made for fiber aspect ratio 157 f_{AR} . At t=1440min, for instance, fiber B corresponding to $f_c=1\%$ and $f_{AR}=15/7$ resulted in $\varepsilon_a(t)=9.97\%$; while 158 for f_{AR} =30/7 of the same inclusion, $\varepsilon_a(t)$ =8.15% was observed (compare Figs. 3a and 3b). Natural soil exhibited 159 160 a swelling potential of $S_p=26.40\%$. Maximum reduction in S_p was achieved in the case of $f_c=1.5\%$ 161 corresponding to f_{AR} =30/2.5 and 30/7 for fibers A and B, respectively. These samples resulted in S_p =16.00% 162 and 12.15%, respectively.

163 Axial strain-effective stress curves obtained from one-dimensional compression tests are illustrated in Fig. 4 (4a: $f_{AR}=15/2.5$; 4b: $f_{AR}=30/2.5$) and Fig. 5 (5a: $f_{AR}=15/7$; 5b: $f_{AR}=30/7$) for fibers A and B, respectively. 164 Similarly, the inclusion of fibers to the soil mass altered the axial strain-effective stress locus, promoting a 165 noticeable downward shift over the $\varepsilon_a:\log\sigma'$ space, and thus a significant reduction in swelling pressure. In 166 general, reduction in swelling pressure P_s follows a trend similar to that of swelling potential S_p . For instance, 167 the swelling pressure dropped from $P_s=325$ kPa for natural soil to 215kPa for the sample reinforced with 0.5% 168 169 fiber A corresponding to $f_{AR}=15/2.5$. The value further decreased to $P_s=205$ kPa at $f_{AR}=30/2.5$, indicating an aspect ratio-dependent compressibility (compare Figs. 4a and 4b). Similar variations were also observed for 170 171 the same inclusion of fiber B where P_s dropped from 201kPa at $f_{AR}=15/7$ to 158kPa at $f_{AR}=30/7$ (compare Figs. 172 5a and 5b). Similar to S_p , maximum reduction in P_s was achieved in the case of $f_c=1.5\%$ corresponding to 173 f_{AR} =30/2.5 and 30/7 for fibers A and B, respectively. These samples resulted in P_s =135kPa and 95kPa, 174 respectively.

Figs. 6a and 6b illustrate the variations of swelling potential and swelling pressure against fiber content f_c for 175 the tested samples. For a specific type of included fiber, reduction in S_p and P_s may be considered as a function 176 of f_c and f_{AR} . The magnitude of decrease, however, seems to be dominated by f_c , while f_{AR} also portrays a 177 significant yet less pronounced role. In addition, for a given fiber content and fiber length, a greater fiber width 178 and thus lower aspect ratio (i.e. fiber B versus fiber A) assumes more efficiency in reducing the effect of 179 swelling. The fiber inclusions are able to amend the soil fabric through improvement achieved in three aspects, 180 i.e. resistive tension forces generated due to soil-fiber contact (Al-Akhras et al. 2008; Viswanadham et al. 181 182 2009^a; Trouzine et al. 2012), soil-fiber interlock (Tang et al. 2007, 2010; Kalkan 2013; Phanikumar and Singla 2016), and fiber non-wetting attribute (Cai et al. 2006; Viswanadham et al. 2009^b; Estabragh et al. 2014). 183 184 Resistive tension forces grow as a consequence of fibers experiencing tensile stress in the presence of strong swelling forces. Increase in fiber content leads to an increase in total surface area, promoting a greater contact 185 level between fibers and soil particles. This in turn increases the resistive tension forces among fibers, thus 186 restricting the effect of swelling. Meanwhile, the randomly distributed fibers resemble a spatial three-187 188 dimensional network to weave or interlock soil particles into a coherent matrix of restricted heave. The greater the number of included fibers (increase in f_c) the more effective the interlocking effect. The swell dependence 189 on aspect ratio is ascribed to the improvement mechanisms, i.e. resistive tension forces and interlocking. For 190 a given type of included fiber, an increase in f_{AR} increases soil-fiber contacts, in turn generating a greater net 191 resistive tension force among fibers coupled with an enhanced soil-fiber interlocking, restricting the effect of 192 swelling. This improvement mechanism is in line with the fiber tensile strength f_{TS} , i.e. 3000MPa for fiber B 193 and 1250MPa for fiber A (see Table 3). The more resilient the fiber to withstand stretching along its axis, the 194 less chance the swelling forces may have to facilitate movement of soil particles interlocked to the fiber. 195

196 **4. Swell-compression model**

197 **4.1.** *Description*

As illustrated in Fig. 7a, the axial strain-time relationship plotted over the $\varepsilon_a:\log t$ space develops into an S-198 shaped curve, graphically represented by the initial, primary and secondary swelling; phases during which 199 swelling takes place (Dakshanamurthy 1978; Sivapullaiah et al. 1996; Sridharan and Gurtug 2004; Rao et al. 200 201 2006; Cui et al. 2012; Ye et al. 2015; Chen et al. 2017). The initial swelling phase, referred to as the first interlayer or inter-crystalline swelling, involves macro-structural rearrangements, promoting small volume changes 202 mainly less than 10% of the total volume increase. Inter-layer swelling continues into the primary swelling 203 phase which constitutes for up to 80% of the total volume increase, and is graphically represented by a steep-204 205 sloped linear portion bounded by the initial and primary swelling time margins. The secondary swelling phase takes place as a result of double-layer repulsion, displaying small time-dependent volume changes. Both the 206 primary and secondary swelling phases occur at micro-structural level where swelling of active clay minerals 207 208 take place. Critical variables obtained from the S-shaped curve, defined by a conventional graphical construction as outlined in Fig. 7a, are regarded as useful concepts capable of predicting short- and long-term 209

210 heave under field conditions (Sridharan and Gurtug 2004), which may be characterized as: i) completion time

of the initial and primary swelling phases (t_{is} and t_{ps}); **ii**) initial, primary and secondary swelling strains (ε_{ais} ,

212 ε_{aps} and ε_{ass}); iii) primary and secondary swelling rates, C_{ps} and C_{ss} , defined as:

$$C_{ps} = \frac{(\%)\varepsilon_{aps}}{10^{-2} \times \log\left(\frac{t_{ps}}{t_{is}}\right)}$$
(1)

$$C_{ss} = \frac{(\%)\mathcal{E}_{ass}}{10^{-2} \times \log\left(\frac{t_{ss}}{t_{ps}}\right)}$$
(2)

213 Where t_{ss} is completion time of the secondary swelling phase.

A similar formulation occurs for the axial strain-effective stress relationship plotted over the $\varepsilon_a:\log\sigma'$ space, as 214 illustrated in Fig. 7b. The curve can be divided into two regions, namely the elastic (recompression) and plastic 215 (virgin compression) compression zones; phases during which compression takes place. The two regions are 216 separated by the yield stress ($\sigma' = \sigma_y$), a transitional stress state which divides the compressibility of the soil into 217 a region of small-elastic and large-plastic deformations (Casagrande 1936; Boone 2010). The yield stress σ_v 218 was defined as the intersection of the recompression and virgin compression lines over the semi-log space of 219 220 void ratio and effective stress (Cui and Delage 1996; Estabragh et al. 2011). Slope of the linear post-yield 221 segment, depicted as VCL in Fig. 7b, over the $\varepsilon_a:\log\sigma'$ space may be adopted to represent the compression 222 index (C_c) by:

$$C_{c} = \frac{(1+e_{0})\Delta\varepsilon_{a}(\sigma')}{10^{-2} \times \log \Delta\sigma'}$$
(3)

Swell-time curve variables for the tested samples are provided in Table 5. As demonstrated in the table, t_{is} and 223 t_{ps} varied in a way opposite to that of swelling potential S_p . The primary and secondary swelling strains mainly 224 demonstrated a trend similar to that of S_p , meaning that for a given type of included fiber, $f_c=1.5\%$ 225 corresponding to the greater aspect ratio (i.e. $f_{AR}=30/2.5$ for fiber A and $f_{AR}=30/7$ for fiber B) promoted the 226 lowest ε_{aps} and ε_{ass} values. The initial swelling strain ε_{ais} for fiber-reinforced samples also exhibited a noticeable 227 decrease compared to that of natural soil, however, no specific trend was observed. Variations of C_{ps} and C_{ss} 228 with f_c for various reinforcement scenarios are, respectively, illustrated in Figs. 8a and 8b. The fiber inclusions 229 led to a noticeable decrease in C_{ps} and C_{ss} , indicating a capacity of counteracting the heave in magnitude and 230 time. The greater the fiber content or the wider the fiber the less the swelling rates, following a monotonic 231 trend for the tested samples. As an optimal case, C_{ps} and C_{ss} decreased from 1.23×10^{-1} and 3.87×10^{-2} for natural 232 soil to 6.52×10^{-2} and 1.99×10^{-2} for the sample reinforced with fiber B where $f_c=1.5\%$ and $f_{AR}=30/7$, 233 respectively. 234

Variations of C_c and σ_y for the tested samples are provided in Table 5. Both C_c and σ_y are dependent on fiber content, demonstrating a fall-rise trend, unanimously decreasing at f_c =0.5% then rising for higher f_c inclusions. As a result, C_c and σ_y nearly reverted to the initial value obtained for natural soil in some circumstances. Such a fall-rise relationship suggests that f_c =0.5% may be optimal in respect to reducing material collapse when stressed. Excessive fiber inclusions likely give rise to significant deformation. It is noteworthy to cross check the compression characteristics with the swelling rates which are in favor of a higher fiber content. This discrepancy implies that the fiber, like a net, is effective at weaving the soil into a coherent matrix of restricted heave, while when excessively included raises deformation concerns.

243 4.2 Model development

The rectangular hyperbola concept has been widely acknowledged as a simple yet accurate approach capable of reproducing the *S*-shaped swell-time curve over a wide time domain of $t \in (0,\infty)$ (Dakshanamurthy 1978; Sridharan et al. 1986; Sivapullaiah et al. 1996; Sridharan and Gurtug 2004; Ye et al. 2015; Soltani et al. 2017). The two-parameter rectangular hyperbola with respect to the axial strain-time relationship can be expressed as:

$$(\%)\varepsilon_{a}(t) = \frac{t}{\alpha_{s} + \beta_{s}t}$$
Boundary conditions:
$$\begin{cases} \varepsilon_{a}(0) = 0 \\ \lim_{t \to \infty} [\varepsilon_{a}(t)] \cong \frac{1}{\beta_{s}} \end{cases}$$
(4)

249 Where α_s and β_s are the fitting parameters, and $1/\beta_s$ defines the positive asymptotic value of the function when 250 $t \rightarrow \infty$, equally the long-term predicted swelling potential.

Other forms of the hyperbola function have been adopted in the literature to represent the void ratio-effective stress relationship during compression (Sridharan and Gurtug 2005; Chong and Santamarina 2016; Soltani 2016):

$$e(\sigma') = e_0 - \frac{{\sigma'}^{\mu}}{\alpha_c + \beta_c {\sigma'}^{\mu}}$$

Boundary conditions:
$$\begin{cases} e(0) = e_0 \\ \lim_{\sigma' \to \infty} [e(\sigma')] \cong e_0 - \frac{1}{\beta_c} \end{cases}$$
(5)

Where $e(\sigma')$ is void ratio in respect to effective stress σ' , e_0 is the initial void ratio, and α_c , β_c and μ are the fitting parameters.

By setting $e(\sigma') \rightarrow \varepsilon_a(\sigma')$, $e_0 \rightarrow S_p$ and $\sigma'^{\mu} \rightarrow (\sigma' - \sigma'_0)^{\mu}$, Equation (5) may be rewritten to satisfy the axial straineffective stress relationship with respect to the swell-compression testing conditions:

$$\varepsilon_{a}(\sigma') = S_{p} - \frac{(\sigma' - \sigma_{0}')^{\mu}}{\alpha_{c} + \beta_{c}(\sigma' - \sigma_{0}')^{\mu}}$$
Boundary conditions:
$$\begin{cases} \varepsilon_{a}(\sigma_{0}') = S_{p} \\ \lim_{\sigma' \to \infty} [\varepsilon_{a}(\sigma')] \cong S_{p} - \frac{1}{\beta_{c}} \end{cases}$$
(6)

Where S_p is swelling potential, which could be fixed as $S_p=1/\beta_s$ (%), and σ'_0 is the nominal overburden stress at which the sample was allowed to swell ($\sigma'_0=1$ kPa for this study).

260 The swelling pressure P_s , by definition (i.e. $\varepsilon_a(\sigma')=0$), can be expressed as:

$$P_s = \sigma_0' + \left[\frac{\alpha_c}{\beta_s - \beta_c}\right]^{\frac{1}{\mu}}$$
(7)

Fitting parameters in respect to the proposed swell-compression model (Equations 4 and 6) were obtained by 261 the non-linear least-squares optimization technique. The regression accuracy was examined adopting the 262 coefficient of determination R^2 and the normalized root mean square error NRMSE. Fig. 9 presents a typical 263 illustration of the proposed swell-compression model for natural soil and the sample reinforced with fiber B 264 where f_{AR} =30/7. Summary of the regression analysis outputs are provided in Table 6. The high R^2 and low 265 NRMSE values imply an excellent agreement between actual and predicted data, both in terms of correlation 266 and error. The R^2 values were mainly above the 0.99 margin, indicating that approximately 99% of the 267 variations in experimental observations are captured and further explained by the proposed model. The NRMSE 268 269 values were observed to be less than 5% for all cases, indicating a maximum prediction offset of 5% associated with the proposed swell-compression model. The fitting parameters in respect to the proposed swell-270 271 compression model are fiber-dependent. As such, a further systematic investigation into the fitting parameters 272 may facilitate the development of empirical or dimensional relationships as a function of fiber properties, e.g. $\beta_c = F(f_c, f_{AR}, f_{TS})$. Such a framework would not only complement computational analyses but may also prove 273 useful for numerical implementations concerning fiber-reinforced expansive soils. 274

275 **5. Conclusions**

The efficiency of two types of tape-shaped synthetic fibers in counteracting the soil heave upon wetting and collapse upon stressing was investigated through a series of experimental tests. Based on test results, the following points can be drawn:

- The fiber inclusions prompted a significant reduction in swelling behavior, i.e. swelling potential S_p and swelling pressure P_s . For a given type of fiber, the reduction was dependent on the fiber content f_c and the fiber aspect ratio f_{AR} , with the former taking on a more pronounced role. Meanwhile, increase in fiber width f_w led to further reduction of S_p and P_s .
- Fiber-reinforced samples exhibited an *S*-shaped swell path, suggesting three swell phases, i.e. initial,
 primary and secondary swelling. Variables obtained from the *S*-shaped curve were content- and aspect
 ratio-dependent. Completion time of the initial and primary swelling phases varied in a way opposite to that

- of swelling potential S_p , while variations observed for the primary and secondary swelling rates were in direct agreement with S_p .
- The compression path for fiber-reinforced samples suggested two compression phases, i.e. elastic and plastic compression. The yield stress and the compression index were also content- and aspect ratiodependent, with $f_c=0.5\%$ suggesting an optimal case among the tested scenarios.
- The hyperbola concept was extended to the swell-compression framework, promoting simple equations
 capable of simulating the swell-compression behavior of the fiber-reinforced expansive soil with an
- 293 acceptable degree of accuracy.

294 **References**

- Abdi, M.R., Parsapajouh, A., Arjomand, M.A., 2008. Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. Int. J. Civ. Eng. 6, 284–292.
- Al-Akhras, N.M., Attom, M.F., Al-Akhras, K.M., Malkawi, A.I.H., 2008. Influence of fibers on swelling properties of clayey soil. Geosynth. Int. 15, 304–309. doi:10.1680/gein.2008.15.4.304
- Al-Rawas, A.A., Hago, A.W., Al-Sarmi, H., 2005. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling
 potential of an expansive soil from Oman. Build. Environ. 40, 681–687. doi:10.1016/j.buildenv.2004.08.028
- Attom, M.F., Al-Akhras, N.M., Malkawi, A.I.H., 2009. Effect of fibres on the mechanical properties of clayey soil. Proc.
 ICE Geotech. Eng. 162, 277–282. doi:10.1680/geng.2009.162.5.277
- Boone, S.J., 2010. A critical reappraisal of "preconsolidation pressure" interpretations using the oedometer test. Can.
 Geotech. J. 47, 281–296. doi:10.1139/T09-093
- Cai, Y., Shi, B., Ng, C.W.W., Tang, C.S., 2006. Effect of polypropylene fibre and lime admixture on engineering
 properties of clayey soil. Eng. Geol. 87, 230–240. doi:10.1016/j.enggeo.2006.07.007
- Casagrande, A., 1936. The determination of pre-consolidation load and its practical significance, in: Casagrande, A.,
 Rutledge, P.C., Watson, J.D. (Eds.), 1st International Conference on Soil Mechanics and Foundation Engineering.
 ASCE, Cambridge, Massachusetts, pp. 60–64.
- Chaduvula, U., Viswanadham, B.V.S., Kodikara, J., 2017. A study on desiccation cracking behavior of polyester fiber reinforced expansive clay. Appl. Clay Sci. in press, 1–10. doi:10.1016/j.clay.2017.02.008
- Chen, Y.G., Jia, L.Y., Li, Q., W. M., Y., Cui, Y.J., Chen, B., 2017. Swelling deformation of compacted GMZ bentonite
 experiencing chemical cycles of sodium-calcium exchange and salinization-desalinization effect. Appl. Clay Sci. 141,
 55–63. doi:10.1016/j.clay.2017.02.016
- Chong, S., Santamarina, J.C., 2016. Soil compressibility models for a wide stress range. J. Geotech. Geoenvironmental
 Eng. 142, 6016003–7. doi:10.1061/(ASCE)GT.1943-5606.0001482
- Consoli, N.C., Vendruscolo, M.A., Fonini, A., Rosa, F.D., 2009. Fiber reinforcement effects on sand considering a wide
 cementation range. Geotext. Geomembranes 27, 196–203. doi:10.1016/j.geotexmem.2008.11.005
- Cui, S.L., Zhang, H.Y., Zhang, M., 2012. Swelling characteristics of compacted GMZ bentonite-sand mixtures as a
 buffer/backfill material in China. Eng. Geol. 141–142, 65–73. doi:10.1016/j.enggeo.2012.05.004
- Cui, Y.J., Delage, P., 1996. Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique 46, 291–311.
 doi:10.1680/geot.1996.46.2.291
- Dakshanamurthy, V., 1978. A new method to predict swelling using hyperbola equation. Geotech. Eng. J. SEAGS
 AGSSEA 8, 29–38.
- Estabragh, A.R., Bordbar, A.T., Javadi, A.A., 2011. Mechanical behavior of a clay soil reinforced with nylon fibers.
 Geotech. Geol. Eng. 29, 899–908. doi:10.1007/s10706-011-9427-8
- Estabragh, A.R., Namdar, P., Javadi, A.A., 2012. Behavior of cement-stabilized clay reinforced with nylon fiber.
 Geosynth. Int. 19, 85–92. doi:10.1680/gein.2012.19.1.85
- Estabragh, A.R., Rafatjo, H., Javadi, A.A., 2014. Treatment of an expansive soil by mechanical and chemical techniques.
 Geosynth. Int. 21, 233–243. doi:10.1680/gein.14.00011

- Estabragh, A.R., Soltani, A., Javadi, A.A., 2016. Models for predicting the seepage velocity and seepage force in a fiber
 reinforced silty soil. Comput. Geotech. 75, 174–181. doi:10.1016/j.compgeo.2016.02.002
- Kalkan, E., 2011. Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume. Appl.
 Clay Sci. 52, 345–352. doi:10.1016/j.clay.2011.03.014
- Kalkan, E., 2013. Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Appl. Clay
 Sci. 80–81, 117–125. doi:10.1016/j.clay.2013.06.014
- Kumar, A., Walia, B.S., Bajaj, A., 2007. Influence of fly Ash, lime, and polyester fibers on compaction and strength
 properties of expansive soil. J. Mater. Civ. Eng. 19, 242–248. doi:10.1061/(ASCE)0899-1561(2007)19:3(242)
- Mirzababaei, M., Miraftab, M., Mohamed, M., McMahon, P., 2013. Impact of carpet waste fibre addition on swelling
 properties of compacted clays. Geotech. Geol. Eng. 31, 173–182. doi:10.1007/s10706-012-9578-2
- Mirzababaei, M., Yasrobi, S.S., Al-Rawas, A.A., 2009. Effect of polymers on swelling potential of expansive soils. Proc.
 ICE Gr. Improv. 162, 111–119. doi:10.1680/grim.2009.162.3.111
- Nalbantoglu, Z., 2006. Lime stabilization of expansive clay, in: Al-Rawas, A.A., Goosen, M.F.A. (Eds.), Expansive Soils:
 Recent Advances in Characterization and Treatment. Taylor & Francis Group, London, pp. 341–348.
 doi:10.1201/9780203968079.ch23
- Phanikumar, B.R., Singla, R., 2016. Swell-consolidation characteristics of fibre-reinforced expansive soils. Soils Found.
 56, 138–143. doi:10.1016/j.sandf.2016.01.011
- Plé, O., Lê, T.N.H., 2012. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotext.
 Geomembranes 32, 111–116. doi:10.1016/j.geotexmem.2011.11.004
- Punthutaecha, K., Puppala, A.J., Vanapalli, S.K., Inyang, H., 2006. Volume change behaviors of expansive soils stabilized
 with recycled ashes and fibers. J. Mater. Civ. Eng. 18, 295–306. doi:10.1061/(ASCE)0899-1561(2006)18:2(295)
- Puppala, A.J., Musenda, C., 2000. Effects of fiber reinforcement on strength and volume change in expansive soils.
 Transp. Res. Rec. J. Transp. Res. Board 1736, 134–140. doi:10.3141/1736-17
- Rao, S.M., Thyagaraj, T., Thomas, H.R., 2006. Swelling of compacted clay under osmotic gradients. Géotechnique 56, 707–713. doi:10.1680/geot.2006.56.10.707
- Shahbazi, M., Rowshanzamir, M., Abtahi, S.M., Hejazi, S.M., 2016. Optimization of carpet waste fibers and steel slag
 particles to reinforce expansive soil using response surface methodology. Appl. Clay Sci. in press, 1–8.
 doi:10.1016/j.clay.2016.11.027
- Sivakumar Babu, G.L., Vasudevan, A.K., Sayida, M.K., 2008. Use of coir fibers for improving the engineering properties
 of expansive soils. J. Nat. Fibers 5, 61–75. doi:10.1080/15440470801901522
- Sivapullaiah, P. V., Sridharan, A., Stalin, V.K., 1996. Swelling behaviour of soil-bentonite mixtures. Can. Geotech. J. 33, 808–814. doi:10.1139/t96-106-326
- Soltani, A., 2016. Discussion of "Compressibility behavior of soils: A statistical approach" by Syed Iftekhar Ahmed and
 Sumi Siddiqua [Geotechnical and Geological Engineering, doi: 10.1007/s10706-016-9996-7]. Geotech. Geol. Eng.
 34, 1687–1692. doi:10.1007/s10706-016-0062-2
- Soltani, A., Taheri, A., Khatibi, M., Estabragh, A.R., 2017. Swelling potential of a stabilized expansive soil: A comparative experimental study. Geotech. Geol. Eng. in press, 1–28. doi:10.1007/s10706-017-0204-1
- Sridharan, A., Gurtug, Y., 2005. Compressibility characteristics of soils. Geotech. Geol. Eng. 23, 615–634.
 doi:10.1007/s10706-004-9112-2
- Sridharan, A., Gurtug, Y., 2004. Swelling behaviour of compacted fine-grained soils. Eng. Geol. 72, 9–18.
 doi:10.1016/S0013-7952(03)00161-3
- Sridharan, A., Prakash, K., 2000. Classification procedures for expansive soils. Proc. ICE Geotech. Eng. 143, 235–240.
 doi:10.1680/geng.2000.143.4.235
- Sridharan, A., Rao, A., Sivapullaiah, P., 1986. Swelling pressure of clays. Geotech. Test. J. 9, 24–33.
 doi:10.1520/GTJ10608J
- Tang, C.S., Shi, B., Zhao, L.Z., 2010. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembranes 28, 54–
 doi:10.1016/j.geotexmem.2009.10.001
- Tang, C., Shi, B., Gao, W., Chen, F., Cai, Y., 2007. Strength and mechanical behavior of short polypropylene fiber
 reinforced and cement stabilized clayey soil. Geotext. Geomembranes 25, 194–202.
 doi:10.1016/j.geotexmem.2006.11.002

- Trouzine, H., Bekhiti, M., Asroun, A., 2012. Effects of scrap tyre rubber fibre on swelling behaviour of two clayey soils
 in Algeria. Geosynth. Int. 19, 124–132. doi:10.1680/gein.2012.19.2.124
- Viswanadham, B.V.S., Phanikumar, B.R., Mukherjee, R. V., 2009. Swelling behaviour of a geofiber-reinforced expansive
 soil. Geotext. Geomembranes 27, 73–76. doi:10.1016/j.geotexmem.2008.06.002
- Viswanadham, B.V.S., Phanikumar, B.R., Mukherjee, R. V., 2009. Effect of polypropylene tape fibre reinforcement on
 swelling behaviour of an expansive soil. Geosynth. Int. 16, 393–401. doi:10.1680/gein.2009.16.5.393
- Yazdandoust, F., Yasrobi, S.S., 2010. Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized
 expansive clays. Appl. Clay Sci. 50, 461–468. doi:10.1016/j.clay.2010.09.006
- Ye, W.M., Zhu, C.M., Chen, Y.G., Chen, B., Cui, Y.J., Wang, J., 2015. Influence of salt solutions on the swelling behavior
 of the compacted GMZ01 bentonite. Environ. Earth Sci. 74, 793–802. doi:10.1007/s12665-015-4108-1

391 List of Tables

- 392 **Table 1** A summary of some of the more recent contributions addressing the aspect ratio-dependent swelling
- 393 phenomenon
- 394 **Table 2** Mechanical properties of the expansive soil
- 395 **Table 3** Physical and mechanical properties of the fibers (as supplied by the manufacturer)
- **Table 4** Mechanical properties of the prepared samples
- 397 **Table 5** Summary of the swell-time and compressibility curve variables for the tested samples
- 398 **Table 6** Summary of the regression analysis outputs in respect to the proposed swell-compression model
- 399 (Equations 4, 6 and 7)

Table 1 – A summary of some of the more recent contributions addressing the aspect ratio-dependent swelling phenomenon

	~	
Δ	()	1
-	v	

Reference	Type of fiber	Shape of fiber	Content f_c (%)	Length <i>f</i> _l (mm)	Diameter or width f_d or f_w (mm)	Aspect ratio
Abdi et al. (2008)	Polypropylene	Bar-shaped	1 2 4 8	5 10 15	N/A	N/A
Al-Akhras et al. (2008)	Nylon	Bar-shaped	1 2 3	5 10 15 20	0.2	25 50
AI-Akiiras et al. (2008)	Palmyra fiber	Bar-shaped	3 4 5	10 20 30 40	0.4	75 100
Sivakumar Babu et al. (2008)	Coir fiber	Bar-shaped	1.0 1.5 2.0 2.5	15	0.25 0.35	60 ≈43
Viswanadham et al. (2009 ^{a, b})	Polypropylene	Tape-shaped	0.25 0.50	30 60 90	2	15 30 45
	Polyethylene	Bar-shaped			0.3	≈33 ≈67 100
Estabragh et al. (2014)	Polypropylene	Tape-shaped	0.5 1.0 1.5	10 20 30	3.0	≈3 ≈7 10
	Polypropylene	Tape-shaped	-		5.0	2 4 6
Phanikumar and Singla (2016)	Nylon	Bar-shaped	0.05 0.10 0.15 0.20 0.25 0.30	15 20	1	15 20
Shahbazi et al. (2016)	Polyacrylonitrile	Bar-shaped	0.2 0.9 1.6 2.3 3.0	N/A	N/A	5 15 25 35 45

Table 2 – Mechanical properties of the expansive soil

Properties	Standard designation	Value
Specific gravity, G _s	ASTM D854	2.76
Clay (<2µm) (%)		41.15
Silt (2–75µm) (%)	ASTM D422-63	42.75
Sand (0.075–4.75mm) (%)		16.10
Liquid limit, <i>LL</i> (%)		85.30
Plastic limit, PL (%)	ASTM D4318	26.05
Plasticity index, PI (%)		59.25
Shrinkage limit, SL (%)	ASTM D427	10.34
USCS Classification	ASTM D2487	CH
Swelling potential, S_p^{1kPa} (%)		26.40
Swelling potential, S_p^{7kPa} (%)	ASTM D4546	17.50
Swelling pressure, P_s (kPa)		325
Maximum dry unit weight, γ_{dmax} (kN/m ³)		14.95
Optimum moisture content, ω_{opt} (%)	ASTM D698	23.40

 $S_p^{1\text{kpa}} = \%$ Expansion from optimum moisture content under $\sigma'_0 = 1$ kPa $S_p^{7\text{kpa}} = \%$ Expansion from air-dry condition under $\sigma'_0 = 7$ kPa

Table 3 – Physical and mechanical properties of the fibers (as supplied by the manufacturer)

Type of fiber	Fiber A	Fiber B
Properties	Va	lue
Specific gravity, Gs	0.72	0.85
Width, f_w (mm)	2.5	7.0
Thickness, f_t (mm)	0.01	0.03
Tensile strength, frs (MPa)	1250	3000
Young's modulus, <i>f</i> _E (MPa)	7000	5000
Туре	Single	e fiber
Shape	Tape-s	shaped
Water adsorption	Negl	igible
Resistance to acid and alkaline	Exce	ellent

Fiber	$f_c(\%)$	f _{AR} =f _l /f _w	w _{opt} (%)	γ_{dmax} (kN/m ³)	<i>e</i> 0
_	-	-	23.40	14.95	0.811
	0.5		22.35	14.80	0.823
	1.0	15/2.5	22.10	14.62	0.838
Fiber A	1.5		21.72	14.30	0.872
riber A	0.5		25.15	14.50	0.860
	1.0	30/2.5	23.45	14.50	0.853
	1.5		21.05	13.92	0.924
	0.5		22.20	14.40	0.874
	1.0	15/7	21.95	14.12	0.904
Fiber B	1.5		21.20	13.96	0.919
riber D	0.5		22.22	14.25	0.893
	1.0	30/7	25.11	14.15	0.900
	1.5		26.15	13.60	0.970

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 4} - \textbf{Mechanical properties of the prepared samples} \end{array}$

 $\label{eq:compressibility} \textbf{Table 5} - \textbf{Summary of the swell-time and compressibility curve variables for the tested samples}$

Fiber	fc (%)	f _{AR} =fi/f _w	t _{is} (min)	t _{ps} (min)	Eais (%)	Eaps (%)	Eass (%)	Sp (%)	C_{ps}	C_{ss}	Ps (kPa)	Cc	σ _y (kPa)
_	-	_	45	1640	3.71	19.22	3.47	26.40	1.23×10 ⁻¹	3.87×10 ⁻²	325	0.388	45
	0.5		110	3750	2.67	18.37	1.91	22.95	1.20×10 ⁻¹	3.55×10 ⁻²	215	0.331	38
	1.0	15/2.5	115	4200	2.25	18.22	1.58	22.05	1.17×10 ⁻¹	3.23×10 ⁻²	198	0.388	49
Fiber A	1.5		155	4450	2.48	15.97	1.40	19.85	1.10×10 ⁻¹	3.02×10 ⁻²	177	0.405	82
Fiber A	0.5		130	4200	2.84	17.90	1.71	22.45	1.19×10 ⁻¹	3.49×10 ⁻²	205	0.377	44
	1.0	30/2.5	160	4460	2.48	15.45	1.37	19.30	1.07×10 ⁻¹	2.96×10 ⁻²	192	0.401	55
	1.5		265	6100	2.10	13.05	0.85	16.00	9.58×10 ⁻²	2.60×10^{-2}	135	0.443	66
	0.5		155	4255	2.27	16.20	1.63	20.10	1.13×10 ⁻¹	3.37×10 ⁻²	201	0.340	38
	1.0	15/7	165	4625	2.38	14.47	1.35	18.20	1.00×10 ⁻¹	3.02×10 ⁻²	163	0.386	41
Eth an D	1.5		200	5110	2.16	13.09	1.10	16.35	9.30×10 ⁻²	2.72×10 ⁻²	136	0.431	76
Fiber B	0.5		140	4510	2.57	16.51	1.47	20.55	1.09×10 ⁻¹	3.21×10 ⁻²	158	0.382	39
	1.0	30/7	170	4710	2.19	12.82	1.19	16.20	8.89×10 ⁻²	2.71×10 ⁻²	124	0.390	42
	1.5		190	5765	1.78	9.67	0.70	12.15	6.52×10 ⁻²	1.99×10 ⁻²	97	0.461	53

Table 6 – Summary of the regression analysis outputs in respect to the proposed swell-compression model (Equations 4, 6 and 7)

Fiber	fc (%)	f _{AR} =f _l /f _w	a s	ßs	R ²	NRMSE (%)	Sp (%)	1/βs (%)	$arepsilon_a(t_{ss})$ (%)	<i>Ac</i>	βc	μ	R ²	NRMSE (%)	Ps ^a (kPa)	P_s^m (kPa)
_	_	_	10.79	3.73×10 ⁻²	0.994	3.3	26.40	26.81	26.22	0.951	1.68×10 ⁻²	0.661	0.999	0.9	325	335
	0.5		34.59	4.01×10 ⁻²	0.993	3.5	22.95	24.94	23.38	0.318	1.20×10 ⁻²	0.453	0.992	3.1	215	214
	1.0	15/2.5	42.24	4.09×10 ⁻²	0.990	4.2	22.05	24.45	22.65	0.293	3.72×10-3	0.389	0.994	2.9	198	204
T ¹ 1 A	1.5		51.80	4.52×10 ⁻²	0.990	4.1	19.85	22.12	20.33	0.303	1.35×10 ⁻³	0.377	0.993	3.1	177	169
Fiber A	0.5		41.37	4.11×10 ⁻²	0.991	4.0	22.45	24.33	22.58	0.321	8.17×10-3	0.433	0.996	2.4	205	194
	1.0	30/2.5	54.25	4.71×10 ⁻²	0.995	3.0	19.30	21.23	19.50	0.372	4.86×10 ⁻³	0.418	0.993	3.1	192	183
	1.5		103.84	5.33×10 ⁻²	0.994	3.1	16.00	18.76	16.31	0.354	1.26×10 ⁻³	0.396	0.989	3.7	135	127
	0.5		53.30	4.43×10 ⁻²	0.995	3.2	20.10	22.57	20.66	0.582	1.76×10 ⁻²	0.589	0.990	3.9	201	188
	1.0	15/7	60.54	4.95×10 ⁻²	0.995	2.9	18.20	20.20	18.46	0.742	1.67×10 ⁻²	0.625	0.995	2.7	163	149
D' 1 D	1.5		79.13	5.47×10 ⁻²	0.996	2.8	16.35	18.28	16.45	0.355	1.92×10 ⁻⁴	0.388	0.994	2.7	136	126
Fiber B	0.5		48.74	4.36×10 ⁻²	0.995	3.2	20.55	22.94	21.11	0.387	1.32×10 ⁻²	0.505	0.994	3.1	158	156
	1.0	30/7	70.68	5.61×10 ⁻²	0.992	3.8	16.20	17.83	16.25	1.012	1.85×10 ⁻²	0.689	0.996	2.5	124	120
	1.5		109.18	7.25×10 ⁻²	0.987	4.8	12.15	13.79	12.36	1.849	1.85×10 ⁻²	0.785	0.995	2.6	97	91

Notes: $1/\beta_s = \text{Long-term predicted swelling potential}$ $\varepsilon_a(t_{ss}) = \text{Short-term predicted swelling potential (Equation 4 when <math>t=t_{ss}=216\text{hr}$)

 P_s^a = Actual swelling pressure

 P_s^m = Predicted swelling pressure (Equation 7)

414 List of Figures

- 415 **Fig. 1** Loose tape-shaped polypropylene fibers
- 416 Fig. 2 Axial strain-time curves for natural soil and samples reinforced with fiber A: (a) $f_{AR}=15/2.5$; (b) 417 $f_{AR}=30/2.5$
- 418 Fig. 3 Axial strain-time curves for natural soil and samples reinforced with fiber B: (a) $f_{AR}=15/7$; (b) $f_{AR}=30/7$
- Fig. 4 Axial strain-effective stress curves for natural soil and samples reinforced with fiber A: (a) f_{AR} =15/2.5; (b) f_{AR} =30/2.5
- Fig. 5 Axial strain-effective stress curves for natural soil and samples reinforced with fiber B: (a) $f_{AR}=15/7$; (b) $f_{AR}=30/7$
- 423 Fig. 6 Variations of (a) S_p and (b) P_s against fiber content for the tested samples
- 424 Fig. 7 (a) Axial strain-time (swell) and (b) axial strain-effective stress (compression) characteristics
- 425 Fig. 8 Variations of (a) C_{ps} and (b) C_{ss} against fiber content for the tested samples
- 426 Fig. 9 Typical illustration of the proposed swell-compression model (Equations 4, 6 and 7) for natural soil
- 427 and samples reinforced with fiber B where $f_{AR}=30/7$

Fig. 1 – Loose tape-shaped polypropylene fibers

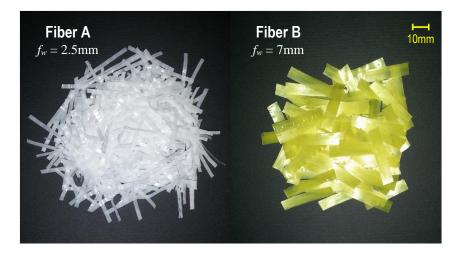
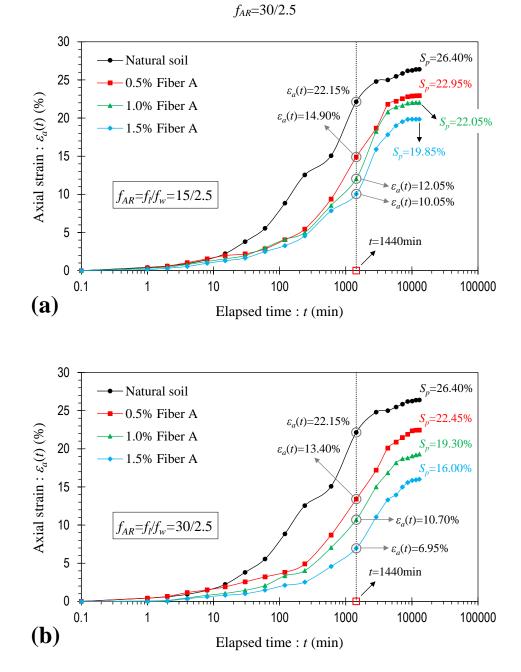
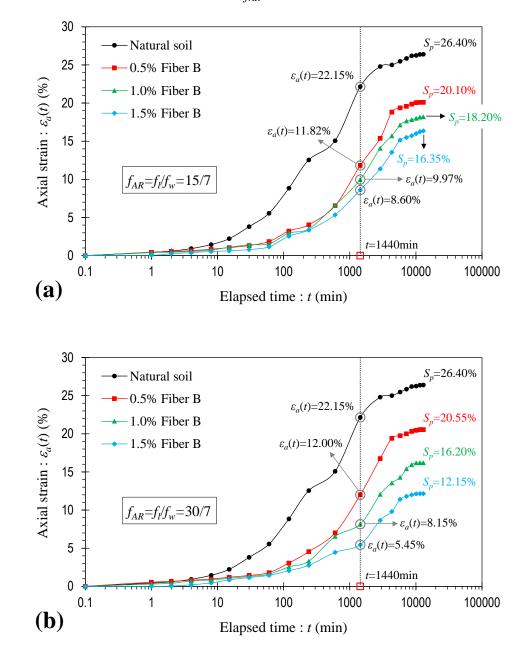




Fig. 2 – Axial strain-time curves for natural soil and samples reinforced with fiber A: (a) f_{AR} =15/2.5; (b) f_{AR} =30/2.5

Fig. 3 – Axial strain-time curves for natural soil and samples reinforced with fiber B: (a) $f_{AR}=15/7$; (b) $f_{AR}=30/7$

Fig. 4 – Axial strain-effective stress curves for natural soil and samples reinforced with fiber A: (a) $f_{AR}=15/2.5$; (b) $f_{AR}=30/2.5$

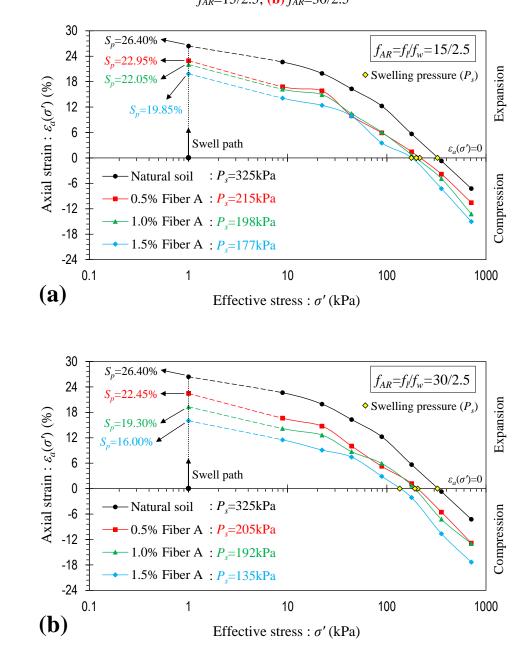
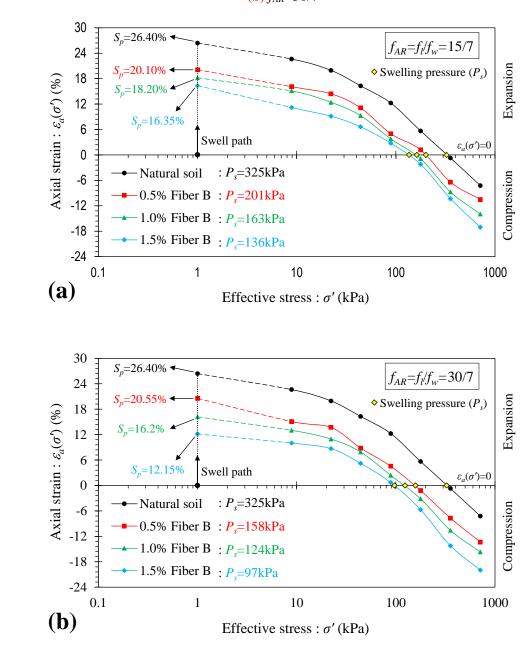
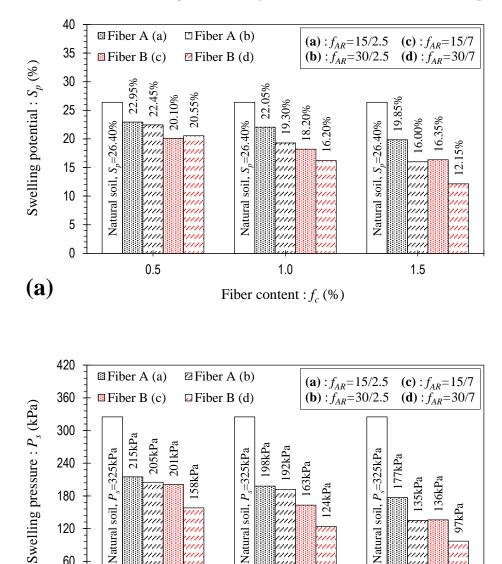




Fig. 5 – Axial strain-effective stress curves for natural soil and samples reinforced with fiber B: (a) f_{AR} =15/7; (b) f_{AR} =30/7

158kPa

0.5

177kPa

136kPa 135kPa

1.5

97kPa

163kPa

1

Fiber content : f_c (%)

124kPa

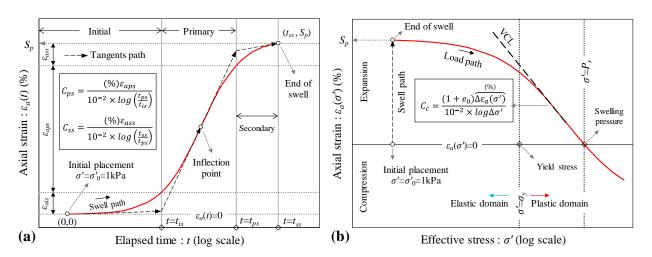
452

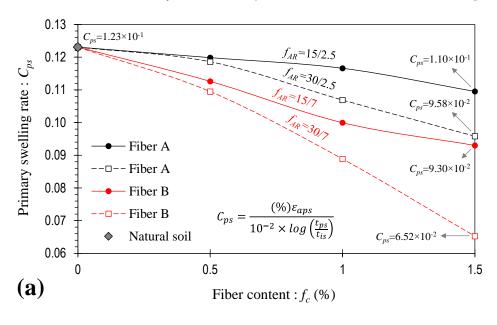
451

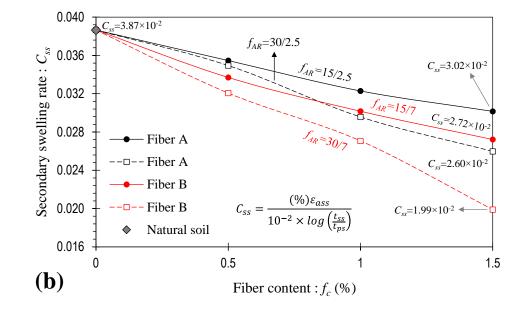
453

240

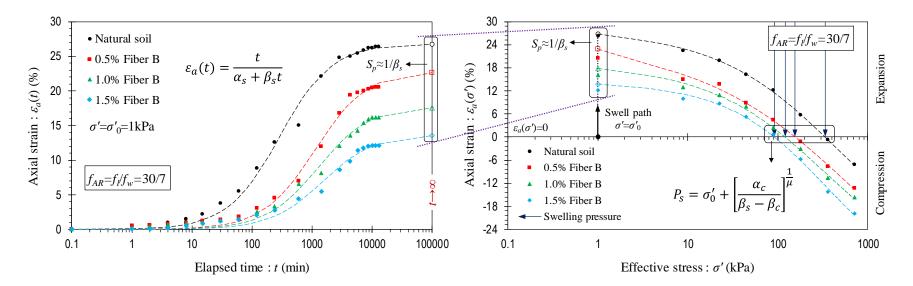
180


120


60


0

(b)


455 Fig. 7 – (a) Axial strain-time (swell) and (b) axial strain-effective stress (compression) characteristics

461 Fig. 9 – Typical illustration of the proposed swell-compression model (Equations 4, 6 and 7) for natural soil and samples reinforced with fiber B where $f_{AR}=30/7$